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With the sun in my hand
Gonna throw the sun
Way across the land-
Cause I'm tired,

Tired as I can be

So Tired Blues by Langston Hughes
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Abstract

The thesis focuses on the use of the Dynamic Ensemble Selection algorithms in conjunc-
tion with data preprocessing techniques in the tasks of the stream and imbalanced data
classification. The aim was to present the natural ability of classifier selection algorithms
to deal with data imbalance and to propose new, effective solutions to the rarely discussed
problem of highly imbalanced data stream classification. Based on these assumptions,

the following hypothesis was formulated

There exist such methods employing data preprocessing and classifier selection
that can outperform state-of-the-art classifiers for difficult data classification

tasks.

The hypothesis was substantiated by achieving the following goals:

Goal 1 — Developing an ensemble selection algorithm for imbalanced data
classification, as well as designing a dedicated combination rule.

This goal was met by developing three algorithms based on the clustering of models in
a one-dimensional space of classifier diversity. To construct this clustering space, the
H measure, informing about about the impact of individual classifiers on the ensemble

diversity, was proposed.

The Diversity Ensemble Pruning (DEP) prunes the ensemble by selecting, from each
cluster, only the model with the highest BAC value. The Two-step majority voting or-
ganization (TSMV) algorithm classifies imbalanced data using the two-step voting struc-
ture. The Random Sampling Multistage Organization (RSMO) algorithm, additionally
uses sampling with replacement to reduce the number of similar models involved in the

decision-making process.

Goal 2 — Proposing a novel distance-based Dynamic Ensemble Selection
method for imbalanced data classification.
This goal was met by proposing novel Dynamic Classifier Selection algorithms for the

imbalanced data classification problem. Two methods were proposed, namely Dynamic
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Ensemble Selection using Euclidean distance (DESE) and Dynamic Ensemble Selection
using Imbalance Ratio and Euclidean distance (DESIRE), which use the Euclidean dis-
tance and Imbalance Ratio in the training set to select the most appropriate model for
the classification of each new sample. DESE performs the selection based on local compe-
tencies and distance to classified neighbors, while DESIRE additionally scales the obtained

weights by Imbalance Ratio of the problem.

Goal 3 — Developing a chunk-based ensemble algorithm, aimed specifically
for the task of highly imbalanced data stream classification.

This goal was achieved by proposing the Minority Driven Ensemble (MDE) algorithm.
This algorithm classifies highly imbalanced data streams using a decision rule exploiting

local data characteristics to prefer the minority class instances.

Goal 4 — Designing a novel framework combining Dynamic Ensemble Selec-
tion and preprocessing techniques for imbalanced data stream classification.
This goal was achieved by proposing two batch-based approaches, combining Dynamic
Classifier Selection algorithms and preprocessing techniques for the task of highly im-
balanced data stream classification. The Dynamic Ensemble Selection for Imbalanced
Stream Classification (DESISC) method generates a single model on each data chunk,
while the Dynamic Ensemble Selection for Imbalanced Stream Classification approach
using Stratified Bagging (DESISC-SB) employs a stratified version of Bagging for the base

classifier generation.

Goal 5 — Proposing a strategy for learning from drifting data stream under
limited access to labels scenario.

This goal was achieved by the introduction of the Budget Active Labeling Strategy (BALS)
algorithm. The proposed approach, in addition to the pool of objects selected for label-
ing based on their distance to the decision boundary, also received a small number of

randomly selected objects.

Goal 6 — Evaluating the behavior of the previously proposed data stream
classification framework, taking into account the limitation in the label ac-
cess.

This goal was achieved by combining the proposed DESISC-SB framework with the ac-
tive learning method based on selecting patterns located at a certain distance from the

decision boundary.

Goal 7 — Conducting an experimental evaluation of the proposed methods in
comparison to state-of-the-art approaches.
Goal 8 — Developing a Python Machine Learning library for difficult data

stream analysis.
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Goals 7 and 8 were achieved by designing an experimental environment for imbalanced
data classification, as well as by creating the stream-learn] package for difficult data
stream analysis, which was used to conduct all experiments related to data stream clas-

sification.

Keywords
Pattern recognition; inductive learning; classification; classifier ensemble; classifier se-
lection; difficult data; imbalanced data; data stream; data preprocessing; concept drift;

active learning.

Ksieniewicz, P. and Zyblewski, P., 2020. stream-learn-open-source Python library for difficult data
stream batch analysis. arXiv preprint arXiv:2001.11077.






Streszczenie

Rozprawa doktorska koncentruje si¢ na wykorzystaniu algorytméw Dynamicznej Selekcyi
Zespotu Klasyfikatoréw w polaczeniu z metodami przetwarzania wstepnego w zadaniu
klasyfikacji statycznych oraz strumieniowych danych niezbalansowanych. Celem pracy
bylo przedstawione naturalnej zdolnosci algorytmoéw selekcji klasyfikatorow do radzenia
sobie z niezbalansowaniem danych oraz zaproponowanie nowych, efektywnych rozwigzan
rzadko poruszanego w literaturze problemu klasyfikacji wysoce niezbalansowanych stru-
mieni danych. W oparciu o te zalozenia, w pracy sformutowa zostata hipoteza, zaktada-

jaca, ze

Istniejg metody wykorzystujgce zarowno wstepne przetwarzanie danych, jak
1 metody selekcji klasyfikatorow, ktore przewyzszajq jakosé predykcyi znanych

z literatury metod stosowanych w klasyfikacji danych trudnych.

Hipoteza zostata uprawdopodobniona poprzez osiggniecie ponizszych celow:

Cel 1 — Opracowanie algorytmu selekcji zespolu klasyfikator6w na potrzeby
klasyfikacji danych niezbalansowanych oraz zapro jektowanie dedykowanej reg-
uly kombinacji.

Cel zostat zrealizowany poprzez opracowanie trzech algorytmoéw, opartych na grupowaniu
modeli bazowych w jednowymiarowej przestrzeni réznorodnosci klasyfikatorow. Pod-
stawe do utworzenia tej przestrzeni stanowila zaproponowana miara H, informujaca

o wplywie poszczegélnych klasyfikatoréw na réznorodnosé osiagang przez calty zespor.

Algorytm Diversity Ensemble Pruning (DEP) dokonuje grupowania modeli bazowych
w przestrzeni réznorodnosci, a nastepnie ocenia jakosé¢ klasyfikacji poszczegdlnych klasy-
fikatorow w oparciu o zbalansowang doktadnosé. Do finalnego zespolu wybierany jest,
z kazdego klastra, model o najwyzszej wartosci BAC. Algorytm Two-step majority voting
organization (TSMV), zamiast redukowac liczno$¢ zespotu, dokonuje klasyfikacji danych
niezbalansowanych z wykorzystaniem struktury gtosowania dwuetapowego. W pier-
wszym etapie glosowania, kazdy klaster traktowany jest jako osobny zespot klasyfika-

torow, ktory niezaleznie podejmuje decyzje w oparciu o gtosowanie wickszosciowe.

5
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W drugim etapie, ponownie poprzez glosowanie wickszosciowe, kombinowane sa decyzje
uzyskane przez poszczegllne klastry. Algorytm Random Sampling Multistage Organi-
zation (RSMO), bedacy modyfikacja TSVM, wykorzystuje dodatkowo operacje losowania
ze zwracaniem w celu zredukowanie liczby podobnych klasyfikatoréw wykorzystywaych

w procesie podejmowania decyzji.

Cel 2 — Opracowanie algorytmu Dynamzicznej Selekcji Klasyfikatoréow opartego
o miary dystansu, na potrzeby klasyfikacji danych niezbalansowanych.

Cel zostal zrealizowany poprzez opracowanie dwoch algorytméw Dynamicznej Selekcji
Klasyfikatoréw, ktore oceniaja kompetencje modeli bazowych w zaleznosci od decyzji
podjetych przez nie w odniesieniu do przypadkéw znajdujacych sie w lokalnym sasiedztwie
klasyfikowanej instancji, jednocze$nie uwzgledniajac odlegtoé¢ Euklidesows do tych przy-
padkow. Dynamic Ensemble Selection using Euclidean distance (DESE) wykorzystuje do
selekcji wytacznie decyzje klasyfikatorow oraz odlegtosci, natomiast Dynamic Ensemble
Selection using Imbalance Ratio and Euclidean distance (DESIRE) dodatkowo modyfikuje

otrzymane wagi w oparciu o stopien niezbalansowania klasyfikowanego problemu.

Cel 3 — Opracowanie opartego o przetwarzanie wsadowe algorytmu klasy-
fikacji wysoce niezbalansowanych strumieni danych.

Cel zostat zrealizowany poprzez zaproponowanie algorytmu Minority Driven Ensem-
ble (MDE). Algorytm ten dokonuje klasyfikacji wysoce niezbalansowanych strumieni
danych z uzyciem regulty decyzyjnej, ktora wykorzystuje lokalng charakterystyke danych

do preferowania klasy mniejszosciowej.

Cel 4 — Zaprojektowanie metody laczacej Dynamiczna Selekcja Klasyfika-
torow oraz przetwarzanie wstepne danych, na potrzeby klasyfikacji niezbal-
ansowanych danych strumieniowych.

Cel zostat osiggniety poprzez zaproponowanie dwéch, opartych o przetwarzanie wsad-
owe, podejs¢ do taczenia algorytméw Dynamicznej Selekcji Klasyfikatoréw oraz tech-
nik przetwarzania wstepnego na potrzeby klasyfikacji wysoce niezbalansowanych stru-
mieni danych. Metoda Dynamic Ensemble Selection for Imbalanced Stream Classification
(DESISC) generuje pojedynczy model na kazdej nowej porcji danych, podczas gdy pode-
jécie Dynamic Ensemble Selection for Imbalanced Stream Classification using Stratified

Bagging (DESISC-SB) wykorzystuje do tego celu stratyfikowanag wersje Baggingu.

Cel 5 — Zaproponowanie strategii budowania modeli klasyfikacji w przypadku
strumieni danych z ograniczonym dostepem do etykiet.

Cel zostal osiagniety poprzez zapoponowanie strategii odpytywania o etykiety, nazwanej
Budget Active Labeling Strategy (BALS). Algorytm ten taczy w sobie losowe podejs-
cie do etykietyzacji z podejéciem witasciwym algorytmom uczenia aktywnego. Dzieki

temu oproécz puli instancji wybranych na podstawie ich odlegtosci od granicy decyzyjnej,
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etykiety pozyskiwane sa rowniez dla matej liczby obiektéw losowo wybranych z aktualnej

porcji danych.

Cel 6 — Ewaluacja zaproponowanego wczesniej frameworku klasyfikacji stru-
mieni danych, w przypadku ograniczonego dostepu do etykiet.

Cel zostal osiagniety poprzez polaczenie metody DESISC-SB z podejsciem do uczenia
aktywnego, opartym na przekazywaniu do etykietyzacji przypadkéw znajdujacych sie

w okreslonej odleglosci od granicy decyzyjnej problemu.

Cel 7 — Przeprowadzenie ewaluacji eksperymentalnej, poréwnujacej zapro-
ponowane algorytmy z podejSciami stanowigcymi state-of-the-art.

Cel 8 — Opracowanie biblioteki jezyka Python, pozwalajacej na analize trud-
nych strumieni danych.

Cele 7 i 8 zostaly osiggniete dzieki zaprojektowaniu oraz implementacji $§rodowiska
eksperymentalnego w jezyku Python, ktore postuzyto do przeprowadzenia badan zwiazan-
ych z klasyfikacja danych niezbalansowanych. Dodatkowo, w trakcie pracy na rozprawa,
opracowana zostala biblioteka stream—lear, pozwalajaca na przetwarzanie niezbalan-
sowanych strumieni danych z dryfem koncepcji. Biblioteka ta zostata wykorzystana do

przeprowadzenia wszystkich eksperymentéw zwiazanych z danymi strumieniowymi.

Stowa kluczowe
Rozpoznawanie wzorcow; uczenie indukcyjne; klasyfikacja; zespdt klasyfikatorow; se-
lekcja klasyfikatorow; przetwarzanie wstepne danych; dane trudne; dane niezbalansowane;

strumienie danych; dryf koncepcji; uczenie aktywne.

2Ksieniewicz, P. and Zyblewski, P., 2020. stream-learn-open-source Python library for difficult data
stream batch analysis. arXiv preprint arXiv:2001.11077.
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Chapter 1
Introduction

Nowadays, many practical classification tasks require building a model from data con-
taining various serious difficulties. These complications may be represented by charac-
teristics such as a high number of problem classes da], data heterogeneity @], the high
dimensionality of the problem , low or very high cardinality of the learning set, or
data incompleteness |. Regardless of which of these difficulties occurs in the ana-
lyzed data set, they can severely deteriorate the performance of the final model, and the
problem containing at least one of them can be described as the task of difficult data
classification. In the following thesis, data difficulty is defined mainly by the imbalanced
class distributions ] and streaming data ]

The nature of imbalanced data and data stream

The primary problem with learning from imbalanced data is the ability of data with
skewed class distribution to significantly deteriorate the performance of classical learning
algorithms, as they assume a roughly equal number of samples in all considered problem
classes |. However, in many real-life tasks, samples from some classes appear much
more frequently than from others. In the case of binary classification, these classes
are called majority and minority classes, respectively. Therefore, when confronted with
the problem of imbalanced data classification, the above-mentioned algorithms fail to
represent the data distributive characteristics and display a bias towards the majority
class |. At the same time, from the point of view of the classification task, it is the

minority class that is usually more important.

The problem of data stream classification is interesting due to a potentially infinite
amount of continuously arriving data, which can appear at high speed and require a
quick response from the decision system. Data streams pose new challenges for traditional

machine learning algorithms, which were designed with the classification of static data in

11
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mind and are not capable of adapting to the characteristics exhibited by the fast growing
amounts of data ] The most distinctive feature of a data stream is the phenomenon
called concept drift, which can change the data distribution in the stream over time and
thus lead to deterioration of the classification model. Concept drift can be categorized as
(7) virtual or real, depending on the influence of the changes on the shape of the decision
boundary, (i1) sudden, gradual or incremental, depending on the dynamics of changes,
and (i11) recurring or non-recurring, depending on the possibility of the reappearance of
previously observed concepts. Additional problems are memory and time constraints due
to the potentially infinite amount of data as well as potential limitations in the ability

to label all incoming samples.

The imbalanced data stream classification task dﬁ], which combines both of the notions
described above, is very rarely represented in the literature. This is despite the fact
that real-life data streams often exhibit high and dynamically changing class imbalance.
When dealing with both imbalanced data and data stream classification, one of the
most promising directions is the approach based on classifier ensemble M] Ensemble
methods, due to their flexibility, allow for easy combination with data preprocessing
in the case of learning from imbalanced data and for the continuous adaptation of the
classifier pool to deal with the concept drift occurrence. This approach refers to the
need, rooted in human nature, to obtain a few opinions before making a decision. That
is why the foundations of the need to generate relatively strong (better than random
guess) and diverse (making mistakes on different instances of the problem |) models
can also be found in political science. It is also worth paying attention to the important
role of classifier selection [59], both static and dynamic, which allows for more effective

use of the local knowledge of each base model.

Ensemble learning roots

Everyday decision making is an essential part of everyone’s life. We think about trivial
things. We decide what to eat for dinner, what to wear for work, or what book to read
after coming back home. However, we also consider choices that have a much greater
impact on our lives, such as choosing an education path, career, or buying a house. In
many of these cases, we seek for a help in the opinion of an expert who has been gaining
experience in a given field for years and — with given probability dependent to his or hers

lifespan — is able to recommend us the best possible choice.

However, it is also worth considering an alternative that has long been considered by
political science, namely the Wisdom of Crowds - initiated by Condorcet’s jury theorem,

which was first introduced by Marquis de Condorcet in 1785 in an important work on
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probability, Essay on the Application of Analysis to the Probability of Majority Decisions
], which was originally published in Frenc .

Condorcet’s theorem provides the theoretical basis for democracy, describing the relative
likelihood of a group of people reaching the right solution to a problem by combining
their knowledge (by voting) and trusting the majority’s decision. The conclusion being,
that a majority of independent individuals who make correct decisions with a probability
greater than by random choice are more likely to make the correct choice than each of
the individual separately E] Unfortunately, the assumptions made by Condorcet were
quite unrealistic and difficult to achieve in reality, however, there have also been some

generalizations of this theory that no longer possess these limitations d@]

A well-known and often-cited example of the effectiveness of the Wisdom of the Crowds is
the experiment carried out by the English statistician Francis Galton during a competi-
tion organized at the Plymouth fair. The aim of the competition was to guess the weight
of the slaughtered and dressed ox, and the winner was the person whose proposal was
closest to the real value. In his work Voz Populi |[87], published in 1907, Galton described
gathering 8oo voting cards and — after getting rid of 13 unreadable ones — calculating the
median of the remaining 787 votes in order to represent the combined wisdom of each
participant. The result was a response of 1.207 pounds, which differed only by 1% from
the true weight of 1.198 pounds. After the publication of Vox Populi, one of the readers
started a discussion with Galton in which he proposed using the average of the votes
instead of the median. It turned out that this approach led to a virtually perfect result,

differing from the true value by only one pound.

Surowiecki, based on this phenomenon, concluded in his book The wisdom of crowds
] that instead of looking for experts in a given field — which can often turn out to
be a highly costly process — one should rather approach the crowd that may know the
answer to the problem in question. He also referred to the show Who Wants to Be a
Millionaire in which a player, if unsure about the question, can use one of the three
lifelines. Two of these aids are, respectively, a phone call to a friend previously selected
by the competitor, who may be considered an expert, and a request for the opinion of a
random crowd located in a TV studio. According to the data provided by Surowiecki, the
experts answered correctly almost 65 percent of the time, while the audience picked the
right answer 91 percent of the time. Even without knowing the level of expert knowledge
and the fact that these statistics do not relate to the same questions, there is a clear

similarity between this example and the research conducted by Galton.

Based on this assumption as well as Condorcet’s criterion, the desired properties of a

Y Essai sur Uapplication de l’analyse d la probabilité des décisions rendues o la pluralité des voiz

decision-making system based on the group opinion of people can be listed
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e Diversity of opinion — each member should possess different information and have

a different perspective on the problem,
e Independence — each member should make independent decision errors @],

e Decentralization — each member should draw conclusions based on their local

knowledge,

e Aggregation — an approach to combining individual decisions into a joint result

The core of the ensemble learning approach and the reason for using it is perfectly
rendered in the quote from Marvin Minsky’s book The Society of Mind ] - "What
magical trick makes us intelligent? The trick is that there is no trick. The power of

intelligence stems from our vast diversity, not from any single, perfect principle.”

1.1 Motivation and challenges

The following thesis aims to connect two rarely combined research directions, i.e., non-

stationary data stream classification and data analysis with skewed class distributions.

Learning from non-stationary data streams remains the focus of intense research because
many real decision-making problems should process on streaming data ] Neverthe-
less, the decision-making algorithms should also take into consideration the dispropor-
tions among the observations from different classes ] Because real data streams
may exhibit a high and changing class imbalance ratio, which can further hinder the

classification task, then the high demand for this type of solution is evident.

A typical example of such a case is the technical diagnosis in which the fault probability
increases with utilization time, and it may be a result of material fatigue. Sometimes
the relationship between the minority and majority classes changes in a way that the
former minority becomes the majority class. We may observe this phenomenon in tasks
related to social media analysis, as the popularity of topics discussed on Twitter ] or
environmental hazards detection system, like oil spill detection M] Another real-life
example of imbalanced data streams is continuous medical screenin for a condition
being usually performed on a large population of people without the condition, in order
to detect a small minority among them (e.g., HIV prevalence in the USA is ca. 0.4%) or
the conversion rates of online ads, estimated to be a lie between 1072 to 1076, Examples
can also be found in banking (fraud detection, anti-money laundry, etc.) or cybersecurity

(e.g., spam filtering, or intrusion detection). It is also worth noting here that financial

2T Fawcett, Learning from Imbalanced Classes, 25th August 2017,
https://svds.com/learning-imbalanced-classes/
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or cybersecurity institutions are trying to develop methods of protection against these
violations. However, criminals change their attack models to cheat the security measures
developed, i.e., the nature of the decision model changes - so we are dealing with the

phenomenon called concept drift.

Based on the analysis of the literature, it can be seen that the imbalanced data stream
classification problem is poorly represented, what is more, most works do not address
the issue of the possibility of the concept drift appearing during the operation of the
classification model. There are also only a few works that distinguish the differences
between the dynamically imbalanced data stream classification problem and a scenario
where the prior knowledge about the entire data set is given |. This is a result of the
additional problems resulting from the lack of knowledge about the class distribution,

which are notably present in the initial stages of the data stream classification ]

The proposed solutions should, therefore, have high adaptability to changing parameters
of the classification task, which guarantees, among others, the approach based on classi-
fier ensemble M] On the other hand, such methods should take into account the local
characteristics of data distributions and the disproportions among the classes. There-
fore, the natural candidate seems to be an approach based on the Dynamic Classifier
Selection (DES). Due to the fact that the dynamic classifier selection is based only on
the local neighborhood of query samples, techniques of this type should not be biased in
relation to the majority class. Despite this, only a few works attempt to employ these

methods to the problem of imbalanced data classification @, ]

1.2 Research hypothesis, its aims and goals

This thesis aims to propose effective (regarding the quality of classification as well as
computational efficiency) algorithms for the task of classifying highly imbalanced data
stream with concept drift occurrence. Additionally, it intends to meet the need to develop
new Classifier Selection algorithms dedicated to the classification of data with the skewed

class distribution. The research hypothesis is as follows:

There exist such methods employing data preprocessing and classifier selection
that can outperform state-of-the-art classifiers for difficult data classification

tasks.
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Aims and goals

In order to confirm the expressed hypothesis, the following goals have been formulated:

1. Developing an ensemble selection algorithm for imbalanced data classification, as

well as designing a dedicated combination rule.

2. Proposing a novel distance-based Dynamic Ensemble Selection method for imbal-

anced data classification.

3. Developing a chunk-based ensemble algorithm, aimed specifically for the task of

highly imbalanced data stream classification.

4. Designing a novel framework combining Dynamic Ensemble Selection and prepro-

cessing techniques for imbalanced data stream classification.

5. Proposing a strategy for learning from drifting data stream under limited access to

labels scenario.

6. Evaluating the behavior of the previously proposed data stream classification frame-

work, taking into account the limitation in the label access.

7. Conducting an experimental evaluation of the proposed methods in comparison to

state-of-the-art approaches.

8. Developing a Python Machine Learning library for difficult data stream analysis.

1.3 Thesis structure

Chapter 2 introduces selected topics of pattern classification, with an emphasis on in-
ductive learning and classification task. Classifier ensemble is discussed, including its
components, ensemble diversity, and the notion of classifier selection. The problem of
difficult data classification is precisely defined, with an emphasis on imbalanced data clas-
sification, data stream classification, and limited access to labels. The Python stream-
learn library for difficult data stream analysis, which was developed during the work
on this thesis, is also presented. Chapter 3 presents the ensemble algorithms proposals
using classifier selection for imbalanced data classification. The first algorithm employs
diversity-based static classifier selection, the second proposition combines base models
using a multistage organization, and the third approach proposes Dynamic Classifier
Selection based on Euclidean distance. Chapter 4 presents proposed algorithms for the
classification of unbalanced data streams. The ensemble algorithm employing a classi-

fier selection approach in order to focus on the minority class detection is presented,
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followed by a novel framework combining dynamic classifier selection and data prepro-
cessing. Chapter 5 deals with the problem of limited access to labels when classifying
data streams. First, an algorithm combining active learning and random labeling is
introduced. Then, the imbalanced data stream classification framework introduced in
Chapter 5 is extended with an active learning module and evaluated under limited access
to labels scenario. Chapter 6 concludes the thesis and presents potential future research

directions.






Chapter 2

Selected topics of pattern

recognition

This chapter aims to introduce the areas which form the basis of the following thesis
and are necessary to properly explain the proposed ideas. First, the basics of pattern
recognition will be presented, including the formulation of the classification task, an
introduction to classifier ensemble, as well as the notion of diversity and the Classifier
Selection, with an emphasis on the Dynamic Ensemble Section. Then, the subject of
difficult data classification will be briefly introduced, including data with a skewed class
distribution, data stream classification, as well as scenarios with limited access to labels.
Finally, the approach to classifier evaluation for imbalanced and streaming data will be
discussed and the developed Python package for difficult data stream analysis will be

presented.

2.1 Inductive learning

With the advent of personal computers and the spread of wireless communication, large
companies lost their monopoly on generating and storing data. Instead, data is now

generated by virtually all internet users in their typical day-to-day activities.

The appearance of a large amount of data introduced problems that cannot be solved
with a fixed algorithm containing a sequence of instructions. In such cases, we know
the input and we know what the output should be, but we do not know the process
that leads to the transition from one to the other. It is difficult especially due to the
fact that the process may be influenced by factors changing over time. However, we

can try to compensate for this lack of knowledge with the amount of data we have and

19
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learn to distinguish between the examples described by the different outputs after their
in-depth analysis. To sum up, we want the computer to automatically find an algorithm
appropriate for the task at hand M] Even if we are not able to completely identify
the transformation process in this way, we can construct a useful approximation that,
while it does not explain everything, may be sufficient to properly identify some of the

patterns present in the data.

This field is known as machine learning and uses statistical theory to build models ca-
pable of drawing conclusions from known examples [3]. The following thesis focuses,
among the different learning methods, on inductive learning |. In this approach, the
learner uses the available examples to generalize hypotheses for the problems in question.
Hence, inductive learning algorithms can at best ensure that the output hypothesis fits
the concept with respect to the training data. The fundamental assumption of inductive
learning, formulated by Mitchell ], states that "Any hypothesis found to approximate
the target function well over a sufficiently large set of training examples will also approzi-
mate the target function well over other unobserved examples. " In the inductive learning,

two main types of tasks can be distinguished:

e Supervised learning, assuming a prior knowledge, which identifies samples from
the training set as members of predefined classes in form of the labels |. These
labels, typically provided by an expert, allow for learning dependencies between the
class and data characteristics. Then, learned rules are generalized for the previously
unseen data. In the supervised learning, one can distinguish a classification task,
in which the target label is a discrete value, and a regression task [3], in which the

class is represented by a continuous value.

e Unsupervised learning, which assumes that labels cannot be accessed. Therefore,
the obtained data is analyzed in order to understand its structure and relations
between the problem instances. Unsupervised learning consists of the (i) task of
density estimation, where e.g. with the use of clustering | the unlabeled objects

are grouped based on their similarity, and (i) the task of dimensionality reduction

232], the methods of which are used to extract and select features for the purposes

of classification and visualization dﬂ]

Additionally, we can distinguish semi-supervised learning dﬂ], in which at the learning
stage the model receives both labeled and unlabeled data. This scenario is typical in
cases where labels are not readily available or have a high cost to obtain. In the special
case of semi-supervised learning, called active learning |, the aim is to determine
which of the unlabeled instances, after asking an expert about their labels and adding

them to the training set, will be able to improve the system performance to the point of



Chapter 2. Selected topics of pattern recognition 21

being comparable to the standard supervised learning scenario. Another branch of semi-
supervised learning is self-labeling or self-learning |. In such approaches, a classifier
is trained using an initially small number of labeled samples, in order to classify the
unlabeled instances. The most confident predictions are added to the training set, which

is then used to retrain the model.

This dissertation deals mainly with the notion of concept learning, which is a type of
supervised learning. It involves using training examples to acquire general concepts,
which describe some subset of objects. Each concept can be defined as a binary function
that divides samples into ones belonging and not belonging to the concept ] Mitchell
defined concept learning as "Inferring a boolean-valued function from training examples

of its input and output” .

2.2 Pattern classification task

As mentioned earlier, the following thesis will focus on supervised learning, and more
precisely, on the classification task. The purpose of the classification is to assign a given
object to one of the classes predefined in the form of labels, and the process is carried
out based on the values of attributes characterizing this object. To formalize this task,
we have a feature space denoted by X, where z € X is the feature vector representing

an object. Assuming, that the feature vector is d-dimensional

21
@ 1 2 d
x = cand 2z € X = XM x X@ x L x x@) (2.1)

(@)
where 20 ¢ X,

Denoting the labels set containing predefined categories as M = {1,2..., M}, a classi-
fication algorithm in form of a function ¥ with domain & and codomain M assigns a

given object to it’s category during classification process

U:X — M. (2.2)

This decision is made by the classifier with the use of support functions which inform

about the chance of the object belonging to each class
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F={F.,F,... Fy). (2.3)

Usually, the class of a given z is determined by the highest value of obtained support

function which is equivalent to the maximum rule

U(x) = ar]ge%aa:(Fk(a:)). (2.4)

Probabilistic Approach

Due to the fact that the classifier’s decision is made by applying the maximum rule on the
support function, the problem of uncertainty of the object’s belonging to the class arises.
Although any continuous classifier output can be used [67], the main discriminant of the
support function — associated with probabilistic models — is posterior probability ]
The statistical decision theory is an effective approach to the uncertainty management,
which assumes that both the feature vector x € X and its class label j € M are defined
as observed values of random variables pair (X, J) B, ] The probability distribution

of these random variables is given by prior class probabilities
pj =PI =3j), jeM (2.5)
and class-conditional probability density function of X
fi(z) = f(z]j), z € X, j e M. (2.6)

The main goal when designing a classification system should be to minimize the average
misclassification cost, which can be defined on the basis of so-called loss function used

to measure the decision cost between the classes
L MxM—=X, (2.7)

where L(i,7) returns the loss associated with the wrong assignment of the object from
class j to class ¢. This allows for formulating the criterion of classification task for the

optimal Bayes classifier
mqiln Risk(V) = Risk(¥™), (2.8)

where

M
Risk(V) = EIL(,3) = [ - L((). pif;(a)da. 2.9)
X
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The goal here is to minimize the Risk(V*), which is defined as the average risk of the

classifier W. This allows the so-called conditional risk to be minimized
ri(z) = ZL i,7)pi(z (2.10)

Which in turn leads to the following decision rule for the optimal Bayes classifier

M

M
U*(z) =iif ZL(Z J)pj(z Z (k, j)pj(z (2.11)

j=1
where the posterior probability p;(«) can be calculated from the Bayes formula

pj(a:) _ ]wp]f](m)

. (2.12)
> prfe(x)
k=1

Considering the popular 0 — 1 loss function, which is often used in the practical tasks
due to the inability to assess the loss values
Oifi =74

Lifi#j (2.13)

L) = {

the following decision rule aiming to minimize the misclassification probability of the

optimal Bayes classifier U* can be obtained
U*(x) =i if p;(z) = max pg(x). (2.14)
keM

As the defined loss function is related to the class with the highest posterior probability
and the conditional risk is defined as the probability of misclassifying a sample x, the

risk of misclassification probability can be averaged

Risk(V™) = Pepp( ij/fj de =1— /max pifi(x)de =1 — Pae (V).

(2.15)

Overfitting
To build a classification model, the LS training set is used, which groups the observations

from a given domain in the form of pairs

LS = {(z1,51), (x2,42),--., (N, IN)} (2.16)
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where x; denoted the feature vector of the k-th learning pattern, ji is its correct label
and N is the cardinality of £S. Each element in this set corresponds to a single instance

of a problem and its proper class.

Two types of errors can be observed in the classification task

e The training error, which is defined as the proportion of incorrectly classified ob-

jects from the training set to its cardinality

N
> (U () # il
k=1

LS

PLS(\IJ) —

err (2.17)
e The real error (also known as the generalization error), which is defined as the

number of misclassified objects drawn from the general population
P (V)= /P(\Il(a:) # i|z) f(x)dx. (2.18)
X

Owerfitting is a phenomenon related to the loss of the classifier’s ability to generalize
the acquired knowledge. This means that the model, instead of extracting knowledge
from a given data set, begins to remember individual instances. In this case, due to too
much training complexity or an insufficient number of examples, the learner is not able
to correctly predict the labels of instances that were not present in the training process.
Due to this phenomenon, the classification accuracy on previously unseen data decreases,

while the accuracy on training data increases consistently.

In practice, we can say that the classifier U overfits the learning data LS if there exists

another classifier ¥* such that

PYS (W) > PYS(W) and P53(W) < PES(0), (2.19)

err err err err

err

where PYS is an error on the validation dataset (VS) which contains a set of examples
not presented during the training procedure ] The classifier error can be broken

down into three components |:
e Error, lower bounded by the error of the optimal Bayes classifier, that is specific
to the problem and cannot be eliminated.

e The error related to bias resulting from the assumptions made by the model based

on the training data.
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e The error related to variance related to training data.

Bias is defined by Mitchell as "(...) the set of assumptions that the learner uses to
predict outputs given inputs that it has not encountered " and mathematically it can be
described as the difference between the actual and expected outputs. Variance, on the
other hand, determines how much the model’s predictions vary depending on the training
data used. In the case of high bias, the assumptions are too simple and the model misses
the relevant relationships present in the data, which results in underfitting. High vari-
ance causes the model to fit too closely to the training set, which causes the previously
described overfitting phenomenon. No free lunch theorem |, formulated by Wolpert,
tells us that there is no such thing as one universal machine learning algorithm that can
do best for all the problems encountered, as each has its own domain of competence.
These competencies result from the learner’s bias, which, according to the Ugly Duck-
ing theorem B], is necessary to generalize knowledge and carry out the classification
process. Therefore, we are dealing with a bias-variance dilemma |93|, in which, on the
one hand, assumptions are necessary to train the classifier - which increases the bias,
and on the other hand, reducing the bias increases the demand for samples and thus
increases the variance. Propositions for dealing with this problem include approaches
such as comparative study of models using cross-validation, penalizing model complexit

based on augmented error function |j|, selecting models based on their complexity @i

and trying to find the best model based on so-called Minimum Description Length (MDL)

f1o).

Description of selected classifiers
Let’s introduce the classification algorithms chosen from the five different families, which

will be used for experiments performed later in this thesis.

e Bayesian Classifiers, family of probabilistic classifiers based on Bayes’ theorem
|. Common examples here are the Naive Bayes classifier, which simplifies the
conditional probability by assuming strong independence between the problem’s

features.

e Minimal Distance Classifiers, where the most popular example is the k-Nearest
Neighbors (kNN) algorithm [56]. Here, the sample classification is performed by a
majority vote of its k nearest neighbors found in the learning set. The neighborhood
is determined based on the chosen distance metric, which usually is the Euclidean
distance. kNN is an example of a lazy learner, which delays the generalization

process until the prediction phase |

!Tom M. Mitchell, Machine learning, McGraw-Hill, New York, 1997.
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e Rule-Based Classifiers, using the indirect learning approach, in which the decision

tree is first trained and then converted to rules easily interpretable for humans
5d)

— Classification and Regression Decision Tree (CART) @], which constructs
binary decision tree and employs the Gini index as the impurity measure for

assigning features to the nodes.

— Hoeffding Tree (HT) or Very Fast Decision Tree (VFDT) B], which processes
each sample in constant time and memory. It uses Hoeffding bounds | to
ensure, that the output obtained by the incremental learner is asymptotically

nearly identical to that of conventional model.

e Neural Networks, defined as structures composed of a number of artificial neu-
rons, which interact with each other on the basis of weights. McCulloch and Pitts
formulated the first model of simple artificial neuron capable of performing basic
logical operations ], while Rosenblatt proposed the perceptron, which was able
to perform classification based on the sum of the weighted inputs and activation

function |.

e Support Vector Machines (SVM) @], based on the concept introduced and then
expanded by Vapnik ] They consist of a set of binary supervised learning
methods, with a goal to form the hyperplane separating data points into two sets

by mapping them into a high-dimensional space.

2.3 Classifier ensemble

The following section presents the concept of a classifier ensemble. The stages of base
model generation and combination are discussed, while special emphasis is placed on the

optional stage of classifier selection - especially the Dynamic Ensemble Selection.

Components of Multiple Classifier Systems

One of the most popular and still actively developed approach to classification is one
in which, instead of using a single learner, we employ multiple classification models,
and then we combine their decisions in order to obtain the final output. The aim here
is to take advantage of the strengths of each combined classifier and their domain of
competence. Deserathy and Sheela first applied this approach in 1979 @] when they
combined k-NN and a linear classifier, and since then many studies have demonstrated
the effectiveness of using multiple models instead of a single one |. Such an approach

is known as a classifier ensemble or a multiple classifier system (MCS) | and its main
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components organized in the parallel topology [254], which is by far the most common,

are depicted in Figure 211

Classifier #1

1~ Classifier #2

Object Combination rule ——> Decision

Classifier #n \
:
1

Figure 2.1: Parallel topology of a classifier ensemble.

A multiple classifier system consists of three steps |33]: i) Generation, ii) Selection and
iii) Combination (also known as Fusion or Aggregation). It should be noted that the
selection can be performed as a separate process or in conjunction with the combination

block. It is also entirely optional and not used by some of the ensemble algorithms.

The purpose of the generation stage is to train a pool of classifiers Il = {Uq, Wy, ... U, },
where n is a number of base models. The two most important determinants of a good
classifier ensemble are that the base models are both diverse (as there is no reason to
combine classifiers offering the same output [68]) and accurate, which in this case means

that they perform better than the random classifier.

2.3.1 Ensemble diversity

As mentioned above, one of the determinants of a valuable classifier ensemble is the
high diversity of its base models, therefore the question of how to measure this diversity
arises. According to Kuncheva [150], there are two styles of measuring the classifier pool

diversity:

e Pairwise diversity measures calculates diversity between each pair of classifiers and

then average the results to obtain value for the entire ensemble. For a classifier

pool consisting of n models there are "("2_1) values of pairwise diversity. Examples

of such measures include Q-statistic [266], disagreement measure [108, 213] and

double-fault measure |95].
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e Non-pairwise measures take into account all the learners in the pool and offer a
single diversity value for the entire ensemble. Among these types of measures, we

can distinguish the entropy measure F dah and Kohavi-Wolpert variance |.

Diversity is one of the key factors for generating a valuable classifier ensemble, but the

main problem is how to measure it. Let us present the selected diversity measures:

The entropy measure E da] is defined as

1 N
0 = 7 3Gy minites)n —Hai), (2:20)

where N is the number of instances, n stands for the number of base models in the
ensemble and [(z;) denotes the number of classifiers that correctly recognize z;. E
varies between 0 and 1, where 0 indicates no difference and 1 indicates the highest

possible diversity.

Kohavi-Wolpert variance M] is defined as

1 N
KW :N—g z)(n — I(z5)). (2.21)

The higher the value of KW, the more diverse the classifiers in the ensemble. Also, KW
differs from the averaged disagreement measure Disq, by a coefficient, i.e.,

n—1

KW(II) =~

Disqy (1), (2.22)

Measurement of interrater agreement k M] @]

S )~ 1))
Nn—-1p(l-p)

k(D) =1 — (2.23)

where p is average individual classification accuracy

N n

Z z],k, (2.24)

where ;1 is an element of an N-dimensional binary vector i, = [i1, ... Ling) T repre-
senting the output of a classifier Wy, such that i;; = 1, if ¥} recognizes x; correctly,
and 0 otherwise. Measurement of interrater agreement k£ varies between 1 and 0, where

1 indicates complete agreement and 0 indicates the highest possible diversity.
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Table 2.1: A table of the relationship between a pair of classifiers.

Uy correct (1) Wy wrong (0)
U, correct (1) N N1O
U, wrong (0) NOL N0

The averaged @ statistics [266] over all pairs of classifiers is given as

n—1 n
Qav(Il) = ﬁ DY QI Ty, (2.25)

h=1k=h+1

where N1 00 _ A7OL pr10
Q(\Ph’ \Pk) - N11N00 4 01107 (2'26)

and N2 is the number of elements x; for which i;, = a and i;; = b. Relationship
between a pair of classifiers is denoted according to Table 21l @ varies between —1 and
1. Classifiers that recognize the same objects correctly will have positive values of @,

and those which commit errors on different objects will render @) negative.

The averaged disagreement measure [108] over all pairs of classifiers is given as

n—1 n
2
Disgy (1) = 712 Y Dis(W, ), (2.27)
n(n —1) h=1k=h+1
where o1 "
NOL 4 N
Dis(Wy, Uy) = * (2.28)

NI 4 N10 4 01 4 pOO©
The averaged disagreement measure is the ratio between the number of observations on
which one classifier is correct and the other is incorrect to the total number of observa-
tions. Dis varies between 0 and 1, where 0 indicates no difference and 1 indicates the

highest possible diversity.

It should be noted, however, that despite the multitude of available measures, none
of them can be considered best suited to minimize the classification error. The only
recommendation can be made on the basis of the ease of interpretation of a given measure
[151].

Ensuring classifier diversity

Another problem that arises is how to ensure the diversity of the generated pool of
classifiers. According to the literature, this issue can be approached in three different
ways [96, [150]:
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e (lassifiers can be trained on different input data. This can be done by using differ-
ent data partitions, e.g. through bootstrapping approaches such as Bagging [30],
which creates new training sets, based on the original one, for each base model
through sampling with replacement. Another approach of this type is Boosting

, 183] which in the case of its most well known AdaBoost algorithm [82] gen-
erates subsequent training sets by increasing the probability of drawing instances
that have been incorrectly classified. Walmsley et al. proposed a classifier pool
generation method based on Bagging, in which the probability of instance selec-
tion during the resampling corresponds to the instance hardness ] Online pool
generation method for generating locally accurate classifier pool in difficult regions
of feature space was proposed by Souza et al. |. Jamalinia et al. proposed
the Ensemble-based Artificially Generated Training Samples (EBAGTS) algorithm,
which manipulates training samples based on error-prone instances and feature
space regions ] Hido et al. proposed the Roughly Balanced Bagging (RBB)

|, extensively studied by Lango and Stefanowski ], which uses sampling to
balance the class distribution across all bootstraps for the imbalanced data classi-
fication task. The linear Modification of the AdaBoost algorithm was proposed by
Burduk M] Burduk and Bozejko modified the Gentle AdaBoost algorithm [84] on

the basis of scaled distance from the decision boundary [45].

The base models can also be trained using different subsets of the problem fea-
tures. This approach to diversification is known as Random Subspace dﬂ, ]
(also called Attribute Bagging B] or Feature Bagging dﬁ]) and is used, among
others, by the Random Forrest algorithm to generate trees fitted on randomly
chosen attributes B] Algorithms based on Random subspace are still quite pop-
ular and constantly find their way into new applications. Wang et al. proposed
the Deep Random Subspace Ensemble (DRSE), which integrated Random Subspace
with deep learning methods |. The Random Subspace based Ensemble Sparse
Representation (RS__ESR) algorithm, which introduced the feature resampling into
sparse representation model, was proposed by Gu et al. |. Blaszczykowski and
Stefanowski proposed the Ordinal Consistency Driven Feature Subspace Aggregat-
ing (coFeating), which construct local classifiers in chosen regions of the feature
space |24]. Blaser and Fryzlewicz improved the ensemble diversity by generating
each base classifier using a randomly rotated feature space ] There are also ap-
proaches that train base classifiers on features derived from many different feature
extraction methods, which have been successfully used in the task of face image
classification ]

Another way is to select classifiers from the generated pool, which assumes that each

of the base models is an expert in a certain region of the feature space. The selection
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can be conducted either in a static or dynamic fashion. In the static approach, the
models are selected once during the training phase and the same ensemble/single
classifier is used to classify all unknown examples dﬂ] In the dynamic approach, a
separate ensemble or a single model is selected for each unknown problem instance

|. Such approaches are one of the main topics of this thesis and will be described

in detail later.

e (lassifiers can also be trained to recognize only some of the problem classes. In
this case, the combination method used should be able to recover the entire set
of labels before a final decision is made. These types of approaches are based on
the fact that any multiclass problem can be broken down into a number of binary
problems ] and propose different methods to build a multiclass classifier by
combining two-class models |71]. Some of the well known binarization strategies

are:

— One-vs-One (0OVO) M], which trains a binary classifier for each pair of

classes.

— One-vs-All (OVA) @], which train a binary classifier for each class, consid-

ering all remaining classes as a majority one.

— One-Against-Higher-Order (OAHO) M], which sorts the classes in descending
order by the number of samples and iterates starting from the largest one. A
binary classifier is generated for the current class and all remaining classes

with less cardinality.
— All-and-One (A&0) @], which combines OVO and OVA.

— The Error Correcting Output Codes (ECOC) @], which encodes each class

with a code-word in order to obtain the distance between classes.

e Finally, ensemble diversity can be ensured by creating a pool containing differ-
ent classification models. This can be done, for example, by training different
machine learning algorithms (heterogeneous ensemble) on the same input data
]. Another method may be to use a single classification algorithm (homoge-
neous ensemble), but differentiate it by modifying its parameters. An example of
such an approach is the modification of the initial weights of neural network m]
Approaches combining heterogeneous ensembles with data-level diversification for

real-life applications, such as credit scoring, are also gaining popularity @]
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2.3.2 Combination rule

During the combination stage, the answers obtained by each of the base classifiers are
processed, using the chosen combination rule ], in order to reach a final decision.
These rules take advantage of the fact, that the base classifiers outputs have a clear
interpretation and may be represented by class labels, distances or confidences (proba-
bilities) dﬁ] Usually, the combination process is be based on the class labels returned
by the models or on their support functions (Equation 23] on p. 22]).

One of the most common approaches to combination based on class labels is voting. In
its simplest version, called majority voting, the instance is assigned to the class that was

most often indicated by the base models

U(x) = arg%axz (U (z) =], (2.29)
1€ k—1

where [] denotes the Inverson’s bracket.

There is also weighted voting, which introduces weight wy, for each of the k base classifiers

in such a way that they may have different influence on the final decision

U(zx) = argmaxz (V) (z) = i]wy. (2.30)
M
1€ k=1

Another popular approach to the labels-based classifier combination is known as Stacked
Generalization ((Stacking)) |. Here, the combination rule (also known as meta-
classifier or meta-level classifier) is trained based on the predictions made by base models.
In order to reduce the possibility of the meta-classifier overfitting, the dataset used for
combination rule training should be excluded from the dataset used for generating the
base classifiers. Usually, stacking employs a heterogeneous classifier pool in order to

assure their diversity.

When the decision is made on the basis of the support functions, a common approach is

to use the aggregation (also called accumulation or the sum rule) of supports

V(z)=1 if Fi(z)= maz Fi(k,x), (2.31)

where

Fi(z) = ZwlFlﬂ-(x) and Zwl =1, (2.32)
=1 i=1

where Fj(x) denotes the support function for the it class of the I*" classifier, and wy is

a classifier weight.
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These weights are usually static M], but their values may also change depending on the
classifier and label ] or be a function of feature vector |. Regardless of whether the
combination is based on the labels or support functions, there exists various possibilities
of weight assigning ]:

e Weights dependent on classifier — a traditional approach where each the [-th clas-

sifier is weighted by the value w;.

e Weights dependent on classifier and feature vector — where weight w;(x) is assigned

to the [-th classifier and a given sample x.

e Weights dependent on classifier and class number — where value w; ; is assigned as

weight to the [-th classifier and the i-th problem class.

e Weights dependent on classifier, class number, and feature vector — where weight

wyi(x) is assigned to the I-th classifien, a given sample  and the i — th class.

Besides the sum rule or its weighted equivalent, base classifiers can be aggregated using

simple operators such as [76]:

e The product rule, which corresponds to the sum rule for small deviations in the
classifier outputs. Theoretically it performs well if the base models are independent,

which unfortunately is an unrealistic assumption.

e The mazimum rule, which selects the classifier most confident in its own predictions
and can be interpreted as a kind of classifier selection. This rule is very sensitive

to overfitting.

o The minimum rule, which chooses the classifier with the least objection to the

certain class.

o The median rule, which is similar to the sum rule but may give more robust results.

Another approach worth mentioning is the Mizture of experts , ], which divides
the problem space into a number of subspaces and trains an expert learner of each of
them. This process is managed using a gating function which is trained together with
the experts and then used to dynamically compute weights for base classifiers taking into

account their local competencies.

Alternative combination proposal is a multiple-stage organization, which was briefly
mentioned by Ho et al. | and described in detail by Ruta and Gabrys |, where

authors refer to such systems as a multistage organization with majority voting (MOMV)
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since the decision at each level is given by majority voting. Initially, all outputs are
allocated to different groups by permutation and majority voting is applied for each group
producing single binary outputs, forming the next layer. In the next layers, exactly the
same way of grouping and combining is applied with the only difference being that the
number of outputs in each layer is reduced to the number of groups formed previously.

This repetitive process is continued until the final single decision is obtained.

2.3.3 Classifier selection

Classifier selection employs the overproduce-and-select approach, in which the models
used in the classification process are selected on the basis of their local competencies.

There are two approaches to the selection process:

e Static selection, presented in Figure a, in Figure in which the selection process
of a classifier or an ensemble is performed during the training phase, based on the
selection criterion estimated in the validation dataset. Then, this exact ensemble
is used in the generalization phase to predict the labels of all test samples. Clas-
sifier diversity and classification accuracy are among the most common selection
criteria. Among the well-known algorithms implementing this approach, Classifier
and Selection proposed by Kuncheva | can be distinguished. Another example
is the approach proposed by Jackowski et al. ] called Adaptive Splitting and
Selection, which uses an evolutionary algorithm to find the best partitioning of the

feature space and matches each cluster with the most fitting ensemble.

o Dynamic selection, depicted in Figure b, where the discriminant ability of clas-
sifiers is assessed in the local region of competence for each unknown example
separately. Then, based on these competencies, the selection is performed individ-
ually for classifying each of these samples. Since the Dynamic Classifier Selection

is one of the main topics of this thesis, it is described in more detail below.

Dynamic Selection methods can select either a single model (Dynamic Classifier Selection
- DCS) or an ensemble of classifiers (Dynamic Ensemble Selection - DES), with the latter
being recognized as a very promising direction in ensemble learning [59]. DES selects the
best classifiers for each test instance based on the notion of competence, which is usually
estimated in the local region of competence containing, e.g., the k-Nearest neighbors
of the given sample. This region is formed using the dynamic selection dataset (DSEL)
composed of labeled samples from either the training or validation set. This is based on
the assumption that each of the base classifiers is an expert in a different region of the

feature space.
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Figure 2.2: Static and dynamic classifier selection procedure.

The classification of each unknown sample by DES involves three steps:

e Definition of the region of competence; that is, how to define the local region
surrounding the unknown sample, in which the competence level of the base models
is estimated. This local region of competence is found in the dynamic selection

dataset (DSEL), which is usually part of the training set.

e Defining the selection criterion later used to assess the competence of the base

classifiers in the local region of competence (e.g., accuracy or diversity).

e Determination of the selection mechanism deciding whether we choose a single

classifier or an ensemble.

Previous work related to the imbalanced data classification using classifier ensembles and
DES involves various approaches. Ksieniewicz proposed an Undersampled Majority Class
Ensemble (UMCE) | employing different combination rules and pruning, based on a
k-fold division of the majority class to divide a single imbalanced problem into many bal-
anced ones. Chen et al. [51] presented the Dynamic Ensemble Selection Decision-making
(DESD) algorithm to select the most appropriate classifiers using a weighting mechanism
to highlight the base models that are better suited for recognizing the minority class. Roy
et al. combined preprocessing with dynamic ensemble selection to classify both binary
and multiclass stationary imbalanced datasets |. Randomized Reference Classifier,

which produces supports for each class that are realizations of random variables with
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the beta distributions, was proposed by Woloszynski and Kurzynski @] Lysiak et al.
| showed that employing diversity measures during the classifier selection leads to
smaller ensembles but does not improve the classification accuracy. META-DES.Oracle,
which uses feature selection and meta-learning over numerous datasets to improve the
E] Oliveira et al. M} described a two-

step ensemble forming using a pre-selection mechanism. Zyblewski et al. | proposed

selection process, was proposed by Cruz et al.

the Minority Driven Ensemble algorithm, which employs a dynamic classifier selection
approach to exploit local data characteristics for imbalanced data streams classification.
The proposal of combining preprocessing and Dynamic Ensemble Selection, which is the
basis of research carried out in this work, was presented by Zyblewski et al. |. Pinagé

et al. proposed a concept drift detection method based on dynamic classifier selection

f1ss).

We may also consider the following DES strategies based on oracle information, which

will be used later in conducted experiments:

e KNORA-Eliminate (KNORA-E) ], which creates an ensemble consisting only of
the local oracles, i.e., models that classify correctly all data samples located in the
local region of competence. In the case where no classifier is selected, the size of
competence region is reduced by removing the farthest neighbor and the search for

oracles is repeated,

e KNORA-Union (KNORA-U) ] makes the decision based on weighted voting, where
each selected classifier has a number of votes proportional to the number of correctly

predicted samples in the local region of competence.

e DES-KNN dﬂ] ranks individual classifiers according to their prediction performance
and then the fixed number of the best classifiers are first selected. The final ensem-

ble is formed based on the fixed number of the most diverse preselected individuals.

e DES-Clustering ] employs the k-Means to define DESL, then the most accurate

and diverse classifiers ale selected for the ensemble.

Additionally, as the reference methods, two Dynamic Classifier Selection algorithms will

be used:

e Modified Classifier Ranking (Rank) dﬂ, ] uses for classification such an indi-
vidual classifier which classifies correctly the highest number of consecutive samples

in the region of competence.

e Local classifier accuracy (LCA) ] selects for classification such an individual

classifier which correctly classifies the higher number of samples within the local
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region, but considering only those examples where the classifier predicted the same

class as the one it gave for the test instance.

Ensemble pruning
Another concept, closely related to the classifier selection, is known as ensemble pruning.

Let us first present the ensemble pruning taxonomy proposed in @]

e Ranking-based pruning chooses a fixed number of the best ranked individual clas-

sifiers according to a given metric (as kappa statistics) @]

e Optimization-based pruning solves the problem of choosing individual classifiers
as an optimization task. Because the number of base models is typically high,
therefore heuristic methods @], evolutionary algorithms dﬂ] or cross-validation

based techniques |65] are usually used.

e Clustering-based pruning looks for groups of base classifiers, where individuals in
the same group behave similarly while different groups have large diversity. Then,
from each cluster, the representative is selected, which is placed in the final ensem-
ble.

As the following thesis partially deals with employing clustering-based classifier ensemble
pruning methods to improve the predictive performance of combined classifiers then let
us briefly present the main works related to this field. Clustering-based pruning consists
of two steps. In the first one, base models are grouped into several clusters based on a
criterion, which takes into consideration their impact on the ensemble performance. For
this purpose, various clustering methods were used, such as hierarchical agglomerative

clustering deterministic annealing |10], k-Means clustering [85] | and spectral

clustering [267]. Most of those methods employ some kind of diversity-based criteria.
Giacinto et al. @] estimated the probability that classifiers do not make coincident errors
in a separate validation set, while Lazarevic and Obradovic @] used the Euclidean
distance in the training set. Kuncheva proposed employing a pairwise diversity matrix

for hierarchical and spectral clustering methods .

In the second step, a prototype base learner is selected from each cluster. In dﬂ] a new
model was trained for each cluster, based on clusters centroids. In [96] Giacinto et al.
chosen the classifier, which was the most distant to the rest of clusters. In | models
were iteratively removed from the least to the most accurate. The model with the highest

classification accuracy was chosen in @]

The last issue is the choice of the number of clusters. This could be determined based on

the performance of the method on a validation set M} In the case of fuzzy clustering
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methods, indexes based on membership values and data set or statistical indexes can be

used to automatically select the number of clusters ]

2.4 Difficult data classification

The following section aims to discuss the notion of difficult data classification, focusing on
the skewed class distribution, data stream, and the case of limited label access, strongly
associated with active learning. Dealing with these problems, especially in cases of
their simultaneous occurrence, is the main focus of this dissertation. As mentioned
in the introduction, these three scenarios are not the only definitions of difficult data.
However, issues such as data heterogeneity, high dimensionality, a high number of classes,
data incompleteness, or low or very high cardinality of the learning set are not dealt with

in this thesis, therefore they are not covered in a longer description.

2.4.1 Imbalanced data

Most of the classification algorithms assume that there are no significant disproportions
among instances from different classes. Nevertheless, in many practical tasks, we may
observe that examples from one class (so-called majority class) significantly outnumber
the objects from remaining classes (minority class). This disproportion, in the case
of binary problems, is often represented by the Imbalance Ratio, which describes how
many majority class samples are there per one minority class sample. Most of the
traditional classifiers have a bias in favor of the majority class. However, more often, the
minority class is more interesting because misidentification of an instance belonging to
it is usually much more expensive than assigning an instance from the majority class to
the minority one. A good example is an undetected fraud that would be more expensive
than the cost of additional analysis of a correct transaction classified as a fraudless
transaction. Such a problem is known as imbalanced data classification , |, where
an unequal number of instances from the examined classes plays a key role during the
classifier learning. Various approaches have been proposed in the literature to tackle
this challenging difficulty embedded in the nature of data. Usually, the researchers are
focusing on maximizing the correct minority class classification. At the same time, the

performance of the majority class cannot be neglected.

In the case of imbalanced data classification, the disproportion between the different
classes is not the sole issue of learning difficulties. One may easily come up with an exam-
ple where the instance distributions from different classes are well-separated. Proposing

an efficient classifier for such a task is not a challenge. Unfortunately, instances from
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the minority class often form clusters of an unknown structure that are scattered @]
An additional complication comes from the fact that during learning, the number of
instances from the minority class may not be sufficient enough for the learning algorithm
to acquire the appropriate generalization level, which in effect can cause overfitting |54].

All those problems remain the focus of intense research dﬂ, IE, IE]

Methods for imbalanced data classification can be divided into three main groups, i.e.

data preprocessing methods, inbuilt mechanisms and hybrid methods |.

Data preprocessing methods. This approach focuses on reducing the number of
objects in the majority class (undersampling) or generating new objects of the minority
class (oversampling). These mechanisms have the objective of balancing the number of
instances from considered classes. For oversampling, new instances are random copies of
existing ones (Random Oversampling [13]), or they are generated in a guided manner.
The most popular method is Synthetic Minority Oversampling Technique (SMOTE) M]
algorithm, which creates new instances based on existing ones by slightly modifying
the values of their attributes. As a result, new artificial examples that are compatible
with the minority class distribution are generated. Other oversampling methods are
ADASYN |, that also takes into consideration the object difficulties, or RAMOBoOSt

|. Unfortunately, methods like SMOTE may lead to changes in the characteristic of
the minority class. Consequently, it may result in the classifier overfitting. Several
modifications of SMOTE have been proposed that are able to identify the instances to
be copied in a more intelligent fashion such as BorderlineSMOTE |. It generates new
instances from the minority class close to the decision border. Safe-Level SMOTE ] and
LN-SMOTE | reduce the probability of generating synthetic instances of the minority
class in areas where the predominant objects are that of the majority class. SMV-SMOTE
employs SVM classifier in order to generate new examples considering it;s support vectors
@] Among other propositions are: RBO | and cCr that enforce instances from
the maj(d)lr_;]r—class to be relocated from the areas where the minority-class instances are

I

present

Methods of undersampling are built around the idea of randomly removing the instances
from the majority-class or removing them in such a way that the quality of the classifier is
not disrupted. The most basic method, Random Undersampling (RUS) ], achieves the
class balance by random elimination of the majority class intances. Condensed Nearest
Neighbors (CNN) @] removes the majority class samples that are close to the decision
boundary using 1-NN rule. Edited Nearest Neighbors (ENN) ] computes three nearest
neighbors of each instance and a given sample is removed if it belongs to the majorit

class and is missclassified by its three neighbors. Neighborhood Cleaning Rule (NCL)

removes samples, for which labels obtained based on ENN rule for three and five neighbors
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are different. Tomek’s modification of Condensed Nearest Neighbor (TL) @] performs
guided undersampling using two Tomek Links, dedicated for majority and minority class.
One Sided Selection (0SS) @] detects Tomek Link using 1-NN and then removes all
majority samples embedded in it. Undersampling Based on Clustering (SBC) M] divides
data into clusters and then, based on the Imbalance Ratio, removes samples from the

majority class clusters.

Inbuilt mechanisms. In this approach, existing classification algorithms are adapted
for imbalanced problems ensuring balanced accuracy for instances from both classes.
Two of the most popular areas of research of these methods are using one-class classi-
fication |, usually known as learning without counterexamples. They aim to learn
the minority class decision areas, and because of the frequently assumed regular, closed
shape of the decision borders is adequate to the clusters created by minority classes ]
The disproportion between the number of instances in classes is then omitted. Another
approach is the (cost-sensitive) classification, where the algorithm takes into account the
asymetrical loss function that assigns a higher cost to misclassification of an instance
from a minority class M, IE, Iﬂ] Unfortunately, such methods can cause a reverse
bias towards the minority class. There also exists a cost-sensitive approach to classifier
selection. However, the algorithms proposed so far are based almost solely on static
ensembles such as cost-sensitive trees ensemble |, ensemble methods based on ROC
space dﬁ, Iﬂ], or cost-sensitive Boosting dﬂ] There is a clear lack of DYNAMIC EN-
SEMBLE SELECTION methods taking into account the different costs of problem classes.
Therefore, the proposal of such methods might present another interesting challenge.
Worth noting are methods based on ensemble classification |, like SMOTEBoost E]
and AdaBoost.NC ] or Multi-objective Genetic Programming Ensemble ]

Hybrid methods. They combine the advantages of methods using data preprocessing
with the classification methods as well ass different approaches to data preprocessing.
The most popular category is the hybridization of undersampling and oversampling with
ensemble classifiers @g] This approach allows the data to be independently processed
for each of the base models. Batista et al. proposed two hybrid methods based on
the SMOTE oversampling algorithm |13]. SMOTE-ENN combines SMOTE with Condensed
Nearest Neighbor, which is used to filter noisy items and remove samples from both
classes before applying the oversampling algorithm. SMOTE-TL uses SMOTE to gener-
ate synthetic minority class instances and then detects and removes samples composing
Tomek Links. Stefanowski and Wilk proposed the Selective Preprocessing of Imbalanced
Data (SPIDER) M], which combines local minority class oversampling with filtering of
difficult samples from the majority class. Napierala et al. then extended this idea and
introduced the SPIDER2 algorithm @], which detects noisy samples from both minor-

ity and majority class. Majority noisy samples are then relabeled or removed, while
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the minority noise samples are replicated. Adaptive Oversampling Technique Based on
Data Density (ASMOBD), which combines oversampling with SELF-LABELING based on
the instance difficulty, was proposed by Wang et al. |. Yang et al. introduced a hy-
brid optimal ensemble classifier framework combining density-based undersampling with
multi-objective optimization algorithm dﬂ] Zhaot et al. presented the Weighted Hy-
brid Boosting (WHMBoost) algorithm consisting of two base classifiers and two weighted

data preprocessing methods

Metrics

The evaluation criterion plays an extremely important role in the process of evaluating
the performance of the pattern recognition algorithm. This thesis focuses on the binary
classification task, for which all metrics are based on the confusion matrix shown in Table

2.2l

Table 2.2: The confusion matriz for binary classification.

Positive (1) Negative (0)

Positive (1) TP FP
Negative (0) FN TN

Traditionally, the accuracy score is used to assess the performance of classification algo-
rithms. Unfortunately, in the case of imbalanced data classification, it is not adequate
and informative, as it does not distinguish correctly classified objects of the majority
(negative) and minority (positive) class. Therefore, if the minority class we are inter-

ested in constitutes, for example, 3% of all instances in a given problem, assigning all of

them to the majority class will result in an accuracy score of 97% .
TP+ TN
accuracy(V,VS) = TP FNTFPLTN (2.33)

Therefore, the evaluation in the case of imbalanced data must be carried out using
dedicated metrics that take into account the class distribution. Among these metrics,

we can distinguish three base metrics, as well as multiple aggregated metrics:

Recall (also known as sensitivity or TPR) M], which represents the classifier’s ability to
recognize minority (positive) class objects. It tells us what percentage of minority class

instances were detected.

TP
T’GC(I”(W, VS) = m (234)
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Miss rate (also known as FNR) M], which is the inverse of recall and tells what per-

centage of objects belonging to the minority class has not been recognized.

FN
miss Tate(\I/, VS) = m (235)

Specificity (also knows as TNR) @], which is equivalent to recall for the majority (neg-
ative) class. In the case of problems with the dynamically changing prior class proba-
bilities (including swapping the majority and minority class), an exchange of the recall

and specificity values can be observed.

TN

Fallout (also known as FPR) M], which is the inverse of specificity and informs about

the percentage of majority class objects classified as belonging to the minority class.

rpP

Precision (also known as positive predictive value) @], informing about the model’s
ability to correctly detect minority class objects. Indicates how many of the objects

assigned by the model to the positive class actually belongs to said class.

TP
precision(¥,VS) = TP+ FP (2.38)

Balanced accuracy score (BAC) M, ], defined for multi-class problems as the average

of recall calculated on each class. For binary problems, it is the average of recall and

specificity. o
BAC(W,VS) = Recall + gpeczfzczty (2.30)

Geometric mean score , ], known in two versions. By far the most popular is
defined as the square root of the product of recall and specificity (Gmeans). However,

there is also an alternative definition where specificity is replaced by precision (Gmean).

Gmeang = \/Recall x Speci ficity (2.40)

Gmean = vV Recall x Precision (2.41)

Fg score E], which is interpreted as the weighted harmonic mean of recall and precision.
Thanks to this, it takes into account both of these base metrics, while punishing extremely

low values of either of them. The S parameter expresses how many times recall is more
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important than precision and can be tuned, resulting in different trade-offs between
both metrics. Using this metric could be dangerous if the parameter is not set properly.
Brzezinski et al. d;]i show, that unsuitable 5 value may resulting in favoring the majority
class. Fg score is also criticized due to asymmetric response to the dynamically changing

Imbalance Ratio and being more susceptible to simple oversampling [36].

Precision * Recall

Fg=(1+p?
=457 (B2 x Precision) + Recall

(2.42)

F score dﬁ] can be interpreted as Fj score, where the § value is 1. It is defined as the

harmonic mean of recall and precision.

Precision * Recall
F =2 2.4
1 seore * Precision + Recall (2.43)

Another way to evaluate to classifiers performance is to use two graphical-based metrics

|, namely Receiver Operating Characteristics (ROC) curve and the corresponding area
under the ROC curve (AUC) ] The ROC curve allows the visualization of trade-
off between the FPR (z axis) and TPR (y axis) for given value of threshold used for
labeling a sample as belonging to the positive class. The point (0, 1) represents a perfect
classifier, the point (0,0) is a classifier that predicts all samples as negative, (1,1) is
the classifier that labels all samples as belonging to the positive class, and the point
(1,0) is the classifier which is always incorrect. The ROC curve has been widely used
in the case, where the classification cost is hard to obtain. AUC allows the models
comparison or general evaluation of a single classifier, averaged over different parameter

values [78]. Nevertheless, Hand deemed AUC as fundamentally incoherent and proposed

the alternative measure |.

Static imbalanced data sets

Chapter 3 of this dissertation focuses on the classification of static imbalanced data.
Table 23] presents the characteristics of 41 datasets selected from the KEEL M] repository.
All datasets have a high imbalance ratio of at least g and contain binary problems that

were generated through various combinations of class merging.

Experimental protocol

In this thesis, all experiments on static data sets will be conducted according to the
k-fold cross-validation evaluation protocol ] In this approach, a dataset is randomly
divided into k mutually exclusive folds of equal size. Then, k—1 folds are used for training

the algorithms and the remaining one for evaluation. This procedure is repeated until
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Table 2.3: Imbalanced datasets characteristics.

Dataset #1 #F IR Dataset #1 #F IR
ecoli-0-1 vs 2-3-5 244 7 9 glass2 214 9 12
ecoli-0-1 _vs 5 240 6 11 glass4 214 9 15
ecoli-0-1-3-7_vs_2-6 281 7 39 glassb 214 9 23
ecoli-0-1-4-6_vs_5 280 6 13 led7digit-0-2-4-5-6-7-8-9 _vs_1 443 7 11
ecoli-0-1-4-7_vs_2-3-5-6 336 7 11 page-blocks-1-3_vs_4 472 10 16
ecoli-0-1-4-7_vs_ 5-6 332 6 12 shuttle-c0-vs-c4 1829 9 14
ecoli-0-2-3-4_vs_5 202 7 9 shuttle-c2-vs-c4 129 9 20
ecoli-0-2-6-7_vs_ 3-5 224 7 9 vowel0 988 13 10
ecoli-0-3-4_vs_5 200 7 9 yeast-0-2-5-6_ vs_ 3-7-8-9 1004 8 9
ecoli-0-3-4-6_vs_5 205 7 9 yeast-0-2-5-7-9_vs_ 3-6-8 1004 8 9
ecoli-0-3-4-7_vs_ 5-6 257 7 9 yeast-0-3-5-9_vs_7-8 506 8 9
ecoli-0-4-6_vs_5 203 6 9 yeast-0-5-6-7-9_vs_4 528 8 9
ecoli-0-6-7_vs_ 3-5 222 7 9 yeast-1_vs_7 459 7 14
ecoli-0-6-7_vs_5 220 6 10 yeast-1-2-8-9_vs_7 947 8 31
ecoli4 336 7 16 yeast-1-4-5-8 _vs_7 693 8 22
glass-0-1-4-6 _vs 2 205 9 11 yeast-2_vs 4 514 8 9
glass-0-1-5 vs_ 2 172 9 9 yeast-2_vs 8 482 8 23
glass-0-1-6_vs_ 2 192 9 10 yeast4 1484 8 28
glass-0-1-6_vs_5 184 9 19 yeastb 1484 8 33
glass-0-4_vs_5 92 9 9 yeast6 1484 8 41
glass-0-6 _vs 5 108 9 11

the chosen metric is estimated based on all available folds, i.e., k times. The final metric
values is calculated as the average of k metric estimations. The whole process can also be
repeated a set number of times, resulting in repeated cross-validation protocol. The value
of the parameter k usually depends on the dataset size, i.e., the more problem samples,
the smaller the k. Recommended values are £ = 10 or £k = 5. As the random splitting
may lead to so-called dataset shift, in which the folds obtained are not representative
of the original dataset, the protocols based on stratified sampling have been proposed
|L76]. One such approach is the standard stratified cross-validation which maintains in

each fold the original class distributions and will be used in the following thesis.

The use of cross-validation allows, apart from desensitizing to the random factor, for
performing the null hypothesis statistical tests [215]. Such tests enable answering the
question, whether the obtained performance difference is statistically significant. Stapor

et al. describe three scenarios, in which the statistical tests can be applied [219]:

e Two classifiers — one dataset,

e Two classifiers — multiple datasets,
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e Multiple classifiers — multiple datasets.

For the comparison of two classifiers on one dataset, when using the repeated cross-
validation protocol, the most popular are the classical ¢ test and the corrected ¢ test

|. When comparing two classifier on multiple datasets, the Wilcoxon signed-rank
test is widely recommended ] For the comparison of multiple classifiers on multiple
datasets, the recommended methodology is to first use the omnibus test in order to check
if any model differs from other. The most popular omnibus test is the Friedman non-
parametric test ] In the second step, if the null hypothesis of the omnibus test is
rejected, the post-hoc analysis with multiple hypothesis testing is performed, which for

Friedman test in based on the means ranks.

2.4.2 Data stream

The main characteristic of the data stream classification ] is the possibility of the
large amount of data appearing sequentially, creating endless data stream over which the
observer has no influence when it comes to the order at which instances arrive. Moreover,
a classifier has to be ready at all times to make a decision. When designing effective

classifier for data streams, we have to consider a few important issues:

Possibility of changes in data distribution (concept drift),

Frequent need for quick classifying of incoming samples,

Delay or impossibility of data labeling,

Limited resources as memory, storage, and computational power.

For the purposes of the following thesis, the data stream is defined as a set of data chunks
DS with fixed-size IV, where k is the chunk index. and Wy denotes the classifier trained
based on the kth chunk.

Because not all objects can be stored in memory, it is widely accepted that each instance
may be processed at most one time, and it is not remembered. Therefore its re-evaluation
could be impossible. Usually, information about instances is replaced by statistics. Fi-
nally, we may be faced with non-stationary data streams, i.e., where parameters of the
classification model (characteristics of probabilistic distributions) may change, forcing
the classification model to adapt to upcoming changes. This phenomenon is called con-
cept drift and its nature can vary due to both the character and the rapidity. It forces the

implementation of mechanisms enabling adapting to the current class imbalance status
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or concept drift detectors that providing a drift occurs enforces the model to be rebuilt.
From the classification point of view, we can distinguish two types of such an event:
(7) the real concept drift that can strongly affect the shape of the decision boundary;
and (#7) the virtual drift that does not affect the decision rule. Another drift taxonomy

depends on the drift impetuosity:

e slow changes, i.e., incremental drift.

e abrupt changes, i.e., incremental drift.

It is difficult to assign a gradual drift in this taxonomy. On the one hand, it can be
considered as a slow-moving change, but on the other hand, it can be seen as an abrupt

change related to class overlapping.

Additionally, we can consider a reoccurring concept drift. It may occur in cases of,
e.g., seasonal phenomena as weather prediction or client preferences of clothes or sports
stores. It is worth emphasizing that the presence of a concept drift can lead to serious
deterioration of the classifier’s accuracy. Therefore, developing efficient methods that are
able to deal with this type of change in the data stream is nowadays the focus of intense

research.

Kuncheva analyzed various approaches to streaming data classification employing clas-
sifier ensemble techniques in ] Based on this analysis, the following strategies can

be distinguished:

e Dynamic combiners, where the classifier ensemble changes the rule by which trained

in advance base models are combined (e.g., changing weights for weighted voting)

fi61),

e Updating training data, where base classifiers are updated in an online manner us-

iEj incoming training instances, (e.g., in online bagging @] or leveraging bagging
D,

e Updating base classifiers ],

e Updating the classifier ensemble line-up, where, e.g., the oldest or worst performing
@]

classifier is replaced by a new one, trained on the most recent data

Based on the approach to data processing, classifiers dedicated to the data stream classi-
fication task can be categorized into chunk/batch-based or online methods. Batch-based
methods process the stream in chunks, which contain a fixed number of samples. This

allows iterating several times of samples in each chunk to generate base classifiers. Online
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learning methods process each sample individually after its arrival, which is an approach

dedicated for scenarios with strict memory and time constraints ]

Despite the large number of methods proposed, the classifier ensemble remains the focus
of intense research and is one of the more promising directions of the data stream analysis,
both stationary and non-stationary. Still, constructing a well-performing ensemble of
classifiers is strongly related to the method of ensuring high diversity of the classifier

pool and employed combination method ]

One the most well recognized ensemble approaches to stationary data stream classifica-
tion is the Learn++ algorithm proposed by Polikar et al. @] Learn++ trains a neural
network model on each incoming chunk and adds it to the pool, which is combined using
majority voting. All models are retained in the pool. Zhao et al. proposed Bagging++

| as an improvement for Learn++. This approach employs Bagging to generate new
models from each data chunk, using four different learning algorithms. Minku et al.
introduced the Growling Negative Correlation Learning Growling NCL M] algorithm,
aimed at co-training a classifier ensemble composed of diverse and accurate neural net-

works.

Online ensembles for stationary data stream classification include Online Bagging OB,
proposed by Oza @] which uses the Poisson(A = 1) distribution to update each base
classifier with the appearance of a new instance. Bifet et al. two algorithms modifying
OB, namely Adaptive-Size Hoeffding Trees (ASHT) _] and Leveraging Bagging (LevBag)

|. Both of those methods aimed at randomizing the classifiers’ input and ouput. ASHT
does that by generating decision trees of different sizes, while LevBag allows specifying
the value of X parameter during resampling and employs output detection codes. Another
approach proposed by Oza is the Online Boosting (OzaBoost) M} Here, a fixed-size
ensemble is maintained and the classifiers are sequentially updated using each incoming.
The weights of misclassified instances are increased in order to emphasize them when
updating models. Gama proposed Hoeffding Option Trees (HOT) ensemble @] which

allows updating a set of option nodes instead of a single leaf.

One of the most well known example of batch-based classifier ensemble algorithm for
the non-stationary data stream classification task is the Streaming Ensemble Algorithm
(SEA) ] proposed by Street and Kim, which trains a new base model on each incoming
data chunk and adds it to the classifier pool but removes the worst model if the pool size
is exceeded. Wang et al. introduced the Accuracy Weighted Ensemble (AWE algorithm

|, which is a standard ensemble batch processing method based on mean square
error calculations. Brzezinski and Stefanowski proposed the extension od AWE, namely
the Accuracy Updated Ensemble (AUE) algorithm allowing for updating the member
classifiers. The Weighted Aging Ensemble (WAE) |, modifying AWE by changing
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the weights calculation and classifier selection methods, was proposed by Wozniak et al.
Elwell and Polikar Learn++ for non-stationary environments Learn++.NSE [71], inspired
by Learn++, sets the weights of training samples from each chunk based on the error

obtained when classifying it.

Regarding online ensemble methods for non-stationary data stream classificatio, one of
the popular approaches is the Dynamic Weighted Magjority (DWM) proposed by Kolter
and Maloof ] In DWM, each base classifier has a weight, which is reduced each time
a wrong prediction is made. Brzezinski and Stefanowski introduced the incremental
version of AUE, namely Online Accuracy Updated Ensemble (OAUE) @], which employs
the new cost-effective function for classifier weighting. Yoshida et al. proposed the wwH
algorithm @], which combines an adaptive ensemble with instance selection based on
overlapping windows. The Sparse Online Classification (SOC) framework from Wag et al.

| uses sparse online learning algorithms for online drifting data stream classification.

Data stream classifier evaluation

As previously mentioned, cross-validation is the most commonly used evaluation ap-
proach in learning from static data. However, in the case of learning from the data
stream, this method cannot be used due to, among other factors, computational lim-
itations due to potentially huge amounts of data, as well as possible concept drift or

dynamic imbalance occurrence .

Concerning batch data stream analysis, which is one of the main topics of interest in the

following thesis, two approaches are often employed:

o Test-Then-Train @], shown in Figure 2.3 a. Each individual chunk is first used to
test the current classification model and then to update it. The first data chunk in
a data stream is used to initialize the classification model, skipping the prediction

step.

e Prequential @] (Figure 2.3 b), which in the batch-based version relies on the
forgetting mechanism in the form of a sliding window, rather than on separate
data chunks. After each prediction and update step, the window moves by a
fixed number of instances, keeping some of those previously seen. This makes
the approach more sensitive to changes occurring in the stream. However, it is
associated with an increase in the computational cost. An example of an evaluation
based on this technique can be the prequential AUC proposed by Brzeziniski and

Stefanowski for imbalanced data stream classification [40].
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Figure 2.3: Data stream evaluation schemes.

There also exist other approaches for comparing data stream classification methods. An
example are metrics for assessing the behavior of classification methods during a concept
drift occurrence, proposed by Shaker and Hiillermeier [210], namely the restoration time
and the mazimum performance loss. Let’s denote two stationary streams generated
according to distributions P4 and Pp as DSy and DSp. The drifting data stream
generated by random sampling of DS4 and DSp is defined as DS¢.

Restoration time informs about the length of the algorithm’s recovery phase after the

concept drift occurrence, and is defined as

to — 11
T

e [0,1], (2.44)

where ¢ is the time at which the learning curve DS¢ drops below 95% of the performance
curve DSy, ty is the time at which the learning curve DS¢ recovers up to 95% of the

performance curve DSp, and T denotes the length of the entire data stream.

The mazimum performance loss measures the maximal decrease in the method perfor-
mance in the event of concept drift. In classification task, it compares DS¢ with the

pointwise minimum

DS(t) = min{DSA(t), DS5(t)} (2.45)
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as a baseline and computes the mazimum performance loss as compared to this baseline

DS(t) — DSo(®)
S I (246)

Another problem in the case of data stream classification is the method of carrying out
the statistical analysis of the obtained results. So far, there have been few solution
proposals for this issue [18]. One such approach is to perform standard statistical tests
using metric values averaged over the entire length of the data stream - which requires
the use of synthetic streams to generate a replication of the said stream with the same
characteristics but a different random seed. This approach, however, tries to transform a
dynamic problem into a static one and does not take into account the changes occurring
during the entire length of the evaluation process. This approach is also not applicable to
real data streams. Another method is to use a sliding window or separate data chunks.
However, due to a large number of degrees of freedom, the results are almost always
statistically independent of each other. For this reason, there is currently no defined

approach to performing statistical tests on single data streams.

2.4.3 Imbalanced data stream

Despite the fact that real-life data streams may often display a high degree of imbalance,
there is still a scarcity of articles trying to combine both non-stationary data stream
and imbalanced data classification tasks [37]. Additionally, it is often overlooked that
imbalanced data streams may be characterized by the dynamic changes in the Imbalance
Ratio, which may be regarded as the equivalent of concept drift phenomenon for prior
class probabilities. The analysis of literature in the field of non-stationary data stream
shows that the vast majority of works deal with problems of changes in the posterior
probability, relatively rarely addressing the topic of imbalanced streams, and in partic-
ular, dynamically imbalanced streams, i.e. those characterized by changes in the prior

probability .

Existing methods for mining imbalanced data streams, same as for balanced ones, work
in two distinctive modes, i.e., the data is arriving in chunks and data windows are given
for processing or the data is processed online. Work by Gao et al. M] is worth highlight-
ing as a technique based on the notion of classifier ensemble, where each of the individual
learners is generated using instances from the majority class in the consecutive data win-
dows as well as on the already accumulated minority class instances. In ], authors
propose an ensemble approach, where before learning on each upcoming data windows
undersampling is performed based on the k-Means algorithm. Chen et al. [53] follow the

same technique and describe a family of algorithms SERA, MuSeRA and REA, which add
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selected from the appearing minority class objects to the currently processed data win-
dow. In |, authors discuss a method for calculating the weights of classifiers learned
on data windows and using combination rule based on weighted voting. In B] authors
propose a modification of the Learn++ algorithm for imbalanced data (Learn++.NIE
and Learn++.CDs). Both methods, while achieving good recognition ability, require
significant computational resources. An interesting approach, also employing classifier
ensembles, in which the Imbalance Ratio dynamically changes were proposed by Sun
et al. |. The second group of methods are based on incremental (online) learning
mode. Nguyen et al. described an approach based on Random Oversampling |, while
in ], authors propose an interesting method called Sampling-based Online Bagging,
employing both undersampling and oversampling. The decision on which model to use
at the given time is made based on the outputs of both imbalance ratio detector and drift
detector. Worth mentioning is also the work on the RLSACP by Ghazikhani et al. d&ﬁ,

and WOS-ELC algorithm by Zong et al. ] The aim of these methods is to set the

perceptron weights in a way preferring the minority class.

Real data streams

Unfortunately, when it comes to the task of classifying imbalanced data streams with
concept drift, there are many limitations in accessing the real data. There are some works
that present an overview of the databases available for this type of problem dﬂ, @, @]
Alas, after discussion with some of the authors of these articles and thoroughly checking
the data streams they listed, the use of provided data streams for this particular problem

turned out to be difficult.

That was due to various factors, such as:

The problem turned out to be too simple,

The stream contained instances appearing sequentially in classes,

The data stream did not have noticeable or definable concept drifts,

The data did not have an appropriate imbalance ratio.

Some of these problems could be addressed by modifying the actual data stream (e.g., by
reshuffling or injecting drift). However, this approach was not used, as such a solution
would destroy the actual data structure and would amount to researching artificially
generated data. Due to the low availability of data that would allow reliable verification

of the proposed algorithms in terms of their behavior when classifying imbalanced data
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streams with concept drift, based on preliminary study, five benchmark streams were se-
lected. All streams were binarized artificially (by combining classes). Both covtypeNorm-
1-2vsAll and poker-lsn-1-2vsAll [47] do not have a definable type of drift. Also, in order
to make them usable during experiments, the longest possible section intervals were se-
lected from both streams. This was done in order to guarantee the appearance of samples
from both classes in each chunk containing 1000 instances. In the case of INSECTS data
[218], the streams have distinct - predefined - types of concept drift. However, to make
things more difficult, a tool included in the data stream mining framework MOA [19]

was used to establish the minority class size in each of these three problems at 5%.

The characteristics of selected real data streams are presented in Table 2.4

Table 2.4: Real data streams characteristics.

Data stream #Samples #Features IR
covtypeNorm-1-2vsAll 266 000 54 4
poker-lsn-1-2vsAll 360 000 10 10
INSECTS-abrupt_imbalanced_ norm 300 000 33 19
INSECTS-gradual_imbalanced_ norm 100 000 33 19
INSECTS-incremental imbalanced norm 380 000 33 19

Synthetic data streams

Based on the above-mentioned conclusions, it was considered necessary to use synthetic
data stream generators to evaluate the methods proposed in the thesis. Thanks to this,
the behavior of algorithms under strictly defined conditions can be tested. The variety of
streams can be ensured by generating a number of replications, based on the determined
random seeds, for each combination of parameters such as: (i) the Imbalance Ratio, (ii)
the level of label noise, defining the global percentage of incorrect labels occurrence, and

(73i) the type of concept drift.

One of the commonly used generators are those available in the MOA data stream mining
framework [19]. Aside from the above-mentioned parameters, these streams differ in the
generator used and the number of attributes. The following generators are important in
the context of the following dissertation: (i) Agrawal - sudden and gradual concept drift,

g attributes, (ii) Hyperplane - incremental concept drift, 10 attributes.

The vast majority of research presented in the following thesis has been carried out on
synthetic data streams generated using stream-learn package for difficult data stream

batch analysis [141], developed in collaboration with Dr Pawel Ksieniewicz.
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2.4.4 Partially labeled data

Another critical problem encountered during streaming data analysis is access to the
correct label for incoming objects. Many of the methods described in the literature
ignore this topic, assuming that labels are always available. They ignore the fact that
even if the labels for the incoming objects can be obtained, samples can arrive fast
enough, that labeling all of them will be impossible. The cost of labeling should be also
taken into consideration. Sometimes this cost is negligible, e.g., in the case of weather
forecasting (a label can be obtained with a delay, but the cost is only related to the
observation and imputing it into the system). However, in most cases, such as medical
diagnostics, labels are the result of human experts’ effort, so labeling involves the cost
of their work. Given the above, the assumption that labels can be obtained for free is

unrealistic and limits the possibility of using many methods in real-life decision problems

(.

The following thesis deals partially with minimizing the necessary cost of data labeling
using the so-called active learning approach |. It concentrates on choosing the inter-
esting unlabeled objects, which are then passed as queries to be labeled by the expert.

There three main active learning scenarios that have been considered in the literature:

o Membership Query Synthesis H] — In this scenario, the learner can request labels for
any unlabeled samples, but typically the queries relate to the instances synthesized
by the learner. The labeling of the generated instances can be problematic if the
annotator is a human expert. For example, in image classification, the generated
instances may not contain meaningful objects ] However, this scenario shows
promising results when the labels are not derived from a human annotator but are,

for example, the result of experimentation ]

e Stream-Based Selective Sampling dg, @] — The assumption of this scenario is that
obtaining an unlabeled sample is inexpensive (or basically free). Because of that,
an instance can be first samples from the distribution, and then the learner can
decide whether it wants to query an expert about its label. Samples are evaluated
based on various query strategies [64], like e.g., uncertainty samplin |, Query-

By-Committee (QBC) |, or Expected Gradient Length (EGL) .

e Pool-Based Sampling d@] — This scenario is motivated by the fact, that for many
real-world tasks, a large collections of unlabeled samples can be gathered simulta-
neously. In contrast to the stream-based selective sampling, query decisions are not
made individually in a sequential manner, but the collection of samples is evaluated

and ranked before selecting the best query.
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The use of active learning for streaming data processing has been noticed, among others
, ], however it is still not widely used. Hence, it is worth noting the work of
Bouguelia et al. |, who proposed a new active learning query strategy based on in-
stance weighting. Ksieniewicz et al. ] used query by example based on the values of
the support function to improve neural network’s prediction. M] proposed employing
different (query by committee) to classify non-stationary data stream. It is also worth
mentioning the work ], where the authors build a classifiers ensemble employing both
the active learning approach as well as random labeling. Yu et al. proposed the eztreme
learning machine based solution, called Active Online-Weighted Extreme Learning Ma-
chine AOW-ELM |. A hybrid labeling strategy based on uncertainty sampling and
class distribution was proposed for the imbalanced data stream classification by Zhang

et al. @]

Another approach aiming to deal with the problem of limited access to labels is known
as self-labeling ] The goal of these techniques is to enlarge the original learning
set (or obtain several extended learning sets) by adding unlabeled samples with the
most confident predictions.vIn the literature, Self labeling is usually divided into (i) self-
training @, |, where classifier is trained using small initial pool of labeled samples
and then retrained using learning set extended by its most confident predictions, and (ii)
co-training E, ], which assumes that the feature space can be split into two independent
sets called views. Then one classifier is trained on each view and they teach each other
the most confident predictions. Triguero et al. defined the main properties of self-labeled

techniques |:

e Addition mechanism, which defines whether an enlarged labeled set is obtained

incrementally, in batch mode, or by amending.

e Single-classifier versus multi-classifier, which specifies how many classifier are used

during the enlarging process.

e Single-learning versus multi-learning, which defines whether the used classifiers are

heterogeneous of homogeneous.

e Single-view versus multi-view, which specifies how the feature space is considered

by the self-labeled algorithm.

The example of employing self-labeling in the data stream classification task might be

the Scaffolding Type-2 Classifier proposed by Pratama et al.@] and (ST2Class) based

on Fuzzy Neural Network. Korycki et al. augmented the active learning module using

self—labe‘hﬁé in order to improve data stream classification under very small instance
.

budget
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2.5 Stream-learn library for difficult data stream batch anal-

ysis

The stream-learn is a Python module, implementing the scikit-learn API @], intended
for a batch-oriented data stream processing. It implements a data stream generator,
based on the Madelon @] model used to generate static data in scikit-learn and al-
lows the development of both stationary and dynamic data streams, containing both
concept and prior class probabilities drifts. 1t is supplemented with exemplary, simple
stream classifiers (Accumulated Samples Classifier and Sample Weighted Meta Estima-
tor), which may be used as the boilerplate for the users’ solutions, and state-of-art
classifier ensembles (SEA (Streaming Ensemble Algorithm,) ], OnlineBagging @],
00B (Oversampling-Based Online Bagging) |, voB (Undersampling-Based Online
], AWE (Accuracy Weighted Ensemble |, AUE (Accuracy Updated En-
] and WAE ( Weighted Aging Ensemble) |). The package also implements

Bagging)
semble)
evaluation metrics that are more computationally effective than those available in scikit-
learn and imbalanced-learn. The element wrapping-up the package and allowing for
conducting experiments is a pair of evaluators: Test-Then-Train @] and Prequential

|, in their batch variants.

Software Architecture
The stream-learn package is organised in five modules, responsible for (i) data streams,
(73) evaluation methods, (74i) classification algorithms, (iv) classifier ensembles and (v)

evaluation metrics. A general diagram of the project architecture is shown in Figure 2.4
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Figure 2.4: Overall schema of the software architecture.
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The streamms module contains the ARFF file parser class, which is the standard format for
serialising both real data streams and those generated, for example, by the MOA software,
as well as the StreamGenerator class responsible for generating synthetic data streams.

A more detailed description of the module can be found in Section 3.

The evaluators module contains classes responsible for two main prediction measures es-
timation techniques on data streams, namely Test-Then-Train and Prequential, in their
batch-based versions. The former one is based on separate windows known as data
chunks, while the latter uses a sliding window as a forgetting mechanism. Both tech-

niques, in each step, reevaluate existing classifiers.

Estimators can be found in the classifiers and ensembles modules, which contain the
classifiers adapted for stream classification and state-of-art classifier ensembles that can

be used with implemented estimators.

The module metrics implements a variety of evaluation measures for unbalanced binary
classification ] The decision to create a new implementation was made due to the

low computational efficiency of the metrics included in ex1st1ng packages. The module
includes recall Ijapreczszon @], Fg score @], Fy score ] BAC dj ], Gmeans,
, 147].

and Gmean

Data stream generation A key element of the stream-learn package is a generator
that allows a replicable (according to the given seed) classification dataset to be cre-
ated with a class distribution that changes over the course of a data stream, with basic
concepts built on a standard class distribution for the scikit-learn package from the
make_ classification() function. These types of distributions attempt to reproduce the
rules for generating the Madelon set [99]. The StreamGenerator is capable of generating

any variant of the stream known in the general taxonomy of streams.

Stationary Stream The simplest types of data streams are stationary streams. They
contain a basic concept that is static for the entire course of processing. The chunks
differ from each other in terms of the patterns they contain, but the decision boundaries
of the models built on them should not differ statistically. This type of stream can be
generated with a clean generator call with no additional parameters. Such a stream
is shown in Figure 2.5 which contains the set of scatter plots for a two-dimensional

stationary stream with the binary problem.

What is important, contrary to a typical call to make_ classification(), the n_ samples
parameter, determining the number of patterns in the set, is not specified here, but

instead, two new attributes of a data stream are provided:
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Figure 2.5: Scatter plots of selected chunks from a stationary data stream.

e n_ chunks — to determine the number of chunks in a data stream.

o chunk_size — to determine the number of patterns in each data chunk.

In addition, data streams may contain noise, which is not considered concept drift but
presents an additional challenge during stream analysis and against which classifiers
should be robust. The StreamGenerator class implements noise by inverting the class
labels of a certain percentage of the incoming instances in the data stream. This per-
centage can be defined by an y flip parameter, as in the standard scikit-learn dataset
generation call. If a single float is specified as the parameter value, the percentage of
noise refers to combined instances from all classes. On the other hand, if a tuple of floats

is specified, the noise is done separately within each class using the specified percentages.

Data streams containing concept drift The most commonly studied property of data
streams is their variability over time. The phenomenon of concept drift is responsible for
this. The stream-learn package attempts to address the need to synthesize all the basic

variants of this phenomenon (i.e., sudden, gradual, and incremental drifts).

Sudden (Abrupt) drift

This type of drift occurs when the concept from which the stream is generated is sud-
denly replaced by another. The concept probabilities used by the StreamGenerator class
are created based on a sigmoid function generated with the concept sigmoid_ spacing
parameter, which determines the shape of the function and the suddenness of the concept
change. The higher the value, the more sudden the shift. Here, this parameter takes the
default value of 999, which allows for the generation of a sigmoid function that simulates

an abrupt change in the data stream. An illustration of sudden drift is shown in Figure

b1l

Gradual drift

Unlike sudden drifts, gradual drifts are associated with a slower rate of change that can
be detected by observing the data stream for a longer period of time. This type of
drift refers to the transition phase in which the probability of obtaining instances of the
first concept decreases, while the probability of obtaining instances of the next concept

increases. The StreamGenerator class simulates gradual drift by comparing the concept
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probabilities with the generated random noise and selecting which concept is active at a
given time depending on the result. An illustration of gradual drift is shown in Figure
0.2l

Incremental (gradual) drift

incremental drift occurs when a series of barely perceptible changes in the concept used
to generate the data stream occur, unlike gradual drift where samples from different
concepts are mixed without changing. For this reason, drift can only be detected after
some time. The severity of the changes, and thus the speed of transition from one concept
to another, is described by the parameter concept sigmoid spacing, as in the previous

example. An illustration of incremental drift is shown in Figure
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(b) Data stream with gradual drift.
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(c) Data stream with incremental drift.

Figure 2.6: Changes in class distribution under each type of concept drift.

Recurrent drift

The cyclic repetition of class distributions is an entirely different property of concept
drifts. If after another drift, the concept earlier present in the stream returns, we are
dealing with a recurrent drift. We can get this kind of data stream by setting the recurring

flag in the generator. Illustration of the recurrent drift is presented in Figure 27Tal

Non-recurring drift

The default mode of consecutive concept occurrences is a non-recurring drift, where
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in each concept drift an entirely different new, previously unseen class distribution is

synthesised. Illustration of the non-recurring drift is presented in Figure [2.7Dl
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(b) Data stream with non-recurring drift.

Figure 2.7: Changes in class distribution under recurring and non-recurring concept drift.

Class imbalance
Another area of data stream properties, different from a concept drift phenomenon, is
the prior probability of problem classes. By default, a balanced stream is generated, i.e.

one in which patterns of all classes are present in a similar number.

Stationary imbalanced stream The primary type of problem in which we are dealing
with disturbed class distribution is a stationary imbalanced stream, where the classes
maintain a predetermined proportion in each chunk of a data stream. To acquire this
type of a stream, one should pass the list to the weights parameter of the generator ()
consisting of as many elements as the classes in the problem and (7i) adding up to one.

Mlustration of the stationary imbalanced stream is presented in Figure 2.8al

Dynamically imbalanced stream A less common type of imbalanced data, impossible
to obtain in static datasets, is data imbalanced dynamically. In this case, the class
distribution is not constant throughout a stream, but changes over time, similar to
changing the concept presence in gradual streams. A tuple of three numeric values is

passed to the weights parameter of the generator to get this type of a data stream:

e the number of cycles of distribution changes.

e concept_sigmoid_ spacing parameter, deciding about the dynamics of changes on

the same principle as in gradual and incremental drifts.

e a range within which oscillation is to take place.
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Mlustration of the dynamically imbalanced stream is presented in the Figure 2.8b
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(b) Dynamically imbalanced data stream.
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(c) Dynamically Imbalanced Stream with Concept Oscillation (DISCO).

Figure 2.8: Changes in class distribution under dynamically changing prior class probabilities (a,b)
and concept drift paired with dynamic imbalance (c).

Mixing drift properties When generating data streams, we do not have to limit our-
selves to just one modification of their properties. One may easily prepare a stream with
many drifts, any dynamics of changes, a selected type of drift and a diverse, dynamic im-
balanced ratio. The last example of a data stream is such a proposition, namely, DISCO
(Dynamically Imbalanced Stream with Concept Oscillation). Illustration of the DISCO
stream is presented in Figure 2.8

Impact The articles conducted so far using stream-learn package deal with application
of preprocessing in the incremental imbalanced data stream classification methods [98§],

and exploring the possibilities of employing the Dynamic

stream generation procedure, it also allows for a broad spectrum of drift detection anal-

active learning techniques
Ensemble Selection Eﬂ,

, |. Thanks to the precise, replicable and user-friendly

yses, depending not only on types of drifts but also on the dynamics of their changes.
Finally, it also implements online bagging methods (UOB, 0OB), which, to the knowledge
of the authors, have not yet had open and stable implementation. Additionally, thanks to
the implementation of the ARFF files parser, the stream-learn allows for convenient work

with real data streams, which may help to solve actual problems in real-life scenarios.
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Algorithms for imbalanced data

classification

In this chapter, methods dedicated to the task of difficult stationary data classification
will be presented. Ensemble methods remain one of the leading approaches in the difficult
data classification problem. Therefore, there is a need to introduce new classifier selection

methods, as well as new approaches to classifier combination.

First, three methods focusing on clustering-based ensemble pruning are presented. These
types of approaches look for the group of similar classifiers which are replaced by their
representatives. A novel pruning criterion, based on well-known diversity measures, is
proposed. The first method selects the model with the best predictive performance
from each cluster to form the final ensemble, the second one employs the multistage
organization, where instead of removing the classifiers from the ensemble each classifier
cluster makes the decision independently, while the third proposition combines multistage
organization and sampling with replacement. Next, two methods, using the similarity
(distance) to the reference instances and class imbalance ratio to select the most confident
classifier for a given observation are presented. Both approaches come in two modes,
first one based on the k-Nearest Oracles (KNORA) and the second one also considering

classifier mistakes.

61
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3.1 Dawversity Ensemble Pruning

This section proposes the Diversity Ensemble Pruning (DEP) algorithm. Clustering-based
ensemble pruning methods, despite possessing a separate taxonomy, are strongly related
to the notion of static classifier selection. The main novelty of the presented approach is
the clustering criterion based on the influence of individual base classifiers on the entire
ensemble diversity. Thanks to this, it is possible to group the base models in a one-
dimensional diversity space. This algorithm, originally proposed by the author of the
following thesis to deal with balanced problems @], has been experimentally evaluated
for the imbalanced data classification task. The goal here is to test whether classifier
selection methods, which employ diversity measures in order to find the most competent

models in a given region of the feature space, can improve the ensemble’s ability to detect

minority class instances without the use of data preprocessing techniques.

Clustering criterion

Here, the measure used for creating the space for the clustering-based pruning is pro-
posed. As the non-pairwise and averaged pairwise diversity measures consider all the
base models together and calculate one value for the entire ensemble, thus they could
not be used for pruning, because they do not present an impact of a particular base clas-
sifier on the ensemble diversity. Therefore a novel measure H as the clustering criterion
is proposed, which is the difference between the value of diversity measure for the whole

ensemble II and the value of diversity for the ensemble without a given classifier ¥; .

H(U;) = Div(Il) — Div(Il — T;). (3.1)

Thanks to this proposition the impact of each base learner on the ensemble diversity is

presented in a one-dimensional space, shown in Fig. 311

Diversity based one-dimensional clustering space and cluster pruning

The chosen clustering algorithm is applied to the obtained clustering space. The pruned
ensemble consists of the base models with the highest balanced accuracy score selected
from each cluster. Then, the final decision is made based on support accumulation of

selected prototype classifiers using the sum rule @] shown in Equation 231 on p. B2

The k-means clustering algorithm @, ] has been employed to find a set number
of clusters in the clustering space constructed by the proposed H measure. From each
group a representative classifier with the highest predictive performance has been chosen.
The goal is to construct an ensemble containing strong, yet diverse base models, as these
two characteristics are distinguishing features of a well-performing classifier ensemble.

Pseudocode for the proposed method is presented in Algorithm [
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Figure 3.1: Histograms and density estimation plots for H measure based on each ensemble diversity
metric calculated on the glass2 dataset.

Algorithm 1 Pseudocode of the proposed DEP algorithm

Input:

IT={¥,Vy,...,U,} — classifier pool,

¢ — number of clusters,

LS — learning set,
Symbols:

H — set of H measure values for each base classifier,

C — set of clusters,

S — set of evaluation metric values for each base classifier,
Output:

IIg — pool of selected classifiers.

cH— g+ F,S+ o

: for each ¥, in IT do
H < H; = DIv(IL, £LS) — p1v((II — ¥;), LS)
S < BAC; = EVALUATE(Y;, LS)

end for

C = K-MEANS(H, ¢)

: for each cluster C; in C do
IIs < seLect(II, Cj, S)

end for

© PP Gg Ry

The description of the functions used in the pseudocode is as follows:
e DIV() — calculates the ensemble diversity of a given classifier pool II based on the
provided learning set LS.

e EVALUATE() — calculates the balance accuracy score on learning set LS for each

base classifier ¥; in order to use it later in the selection process.
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e K-MEANS() — carries out the clustering process of a given one-dimensional diversity
space H into c¢ clusters using the k-means algorithm. Returns information about

the cluster each base classifier belongs to.

e SELECT() — from each cluster C; selects a prototype classifier with the highest

balanced accuracy score to be a part of the new classifier pool Ilg.

Computational and memory complexity analysis
The proposed method includes the stage of determining the H measure value of each base
classifier, the clustering of models in the diversity space and the selection of prototype

classifiers.

In order to obtain the H measure value for each base classifier, first, the ensemble
diversity must be calculated. The complexity of this process is O(n) or O(n?), where
n is the number of base classifiers, depending on whether the non-pairwise or pairwise

measure is used. Then, the H measure calculation process has the complexity of O(n).

The k-means algorithm was used for clustering in diversity space. Therefore, the com-
plexity of clustering is O(ncde), where ¢ is the number of clusters, d is the number of
data dimensions, and e describes the number of iterations/epochs of the algorithm [26].

As the clustering space is one-dimensional, complexity is reduced to O(nce).

3.1.1 Experimental evaluation

This subsection presents the motivation, goals and set-up of the performed experiments,

as well as their results.

Research questions

The conducted research aims to answer two main questions:

Q1. Is the static classifier selection able to improve the results obtained by combining

the entire classifier pool for the task of imbalanced data classification?

Q2. Can the use of static classifier selection in the problem of imbalanced data classifi-

cation result in performance comparable with the use of preprocessing techniques?

Goals of the experiments
Ezxperiment 1 — Parametrization

The aim of the first experiment is to determine the number of clusters for which the
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methods based on each of the measures of diversity and the base classifier performs
best. Parameterization is carried out on the basis of the balanced accuracy score, and
the best pairs of the diversity measure and the number of clusters are used in the next

experiments.

Experiment 2 — Comparison with standard combination

The aim of the second experiment is to compare the previously selected methods with
a combination of the entire classifier pool. Support accumulation and majority voting of
all 50 base models were used as reference methods. The best of the proposed methods

is then used in Experiment 3.

Experiment 8 — Comparison with preprocessing techniques

In the third experiment, the method selected in Experiment 2 is compared with the
combination of the whole classifier pool generated using preprocessing methods. Pre-
processing is performed separately for each of the bootstraps generated by Stratified
Bagging.

Experimental set-up

The research was carried out on 41 imbalanced datasets presented in Table 223l on p. (4l
However, it should be noted that the experiments could only be carried out on those
datasets for which the k-means clustering algorithm was able to find the desired number

of clusters (from 2 to 7) for a set classification algorithm and diversity measure.

The evaluation of the proposed methods is based on six metrics widely used in the case
of imbalanced classification problems. Three popular classification algorithms were used
as base models, ensemble diversity was calculated using five different measures, and
four preprocessing techniques were used as reference methods. Detailed information is

presented below:

e Evaluation measures — balanced accuracy score (BAC), Gmeans, Fy score, precision,

recall, and specificity,

e Classification algorithms — Gaussian Naive Bayes classifier (GNB), k- Nearest Neigh-

bors classifier (kNN), and Classification and Regression Tree (CART),

e Ensemble diversity measures — The entropy measure E, Kohavi- Wolpert variance
(KW), measurement of interrater agreement k, the averaged Q statistics (Qay),

and the averaged disagreement measure (DiSqy),
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e Reference methods:

— Stratified Bagging without preprocessing — Magority Voting (MV), Support
Accumulation (SACC),

— Stratified Bagging paired with preprocessing (SACC only) — Random Oversam-
pling (ROS), SMOTE, SVM-SMOTE (SVM) and Borderline-SMOTE (B2).

The fixed size of the classifier pool was set to 50 base models, generated using a strat-
ified version of Bagging @] This Bagging generates each bootstrap sampling with
replacement majority and minority classes separately while maintaining the original im-
balance ratio. The size of each bootstrap is set to half the size of the original training
set. The proposed approaches were evaluated on the basis of 5 times repeated 2-fold
cross-validation. The ensemble’s decision is based on support accumulation. Statistical
analysis of the obtained results was performed using the Wilcoxon global rank test [62].
All experiments have been implemented in Python programming language and can be

repeated using the code on Githu.

Experiment 1 — Parametrization

Table [B.1] presents the results of the cluster number parametrization for each classifier
diversity measure in relation to the type of base classifier. The digit after CL denotes the
set number of clusters. The numbers under the average rank of each method indicate,

which algorithms were statistically significantly worse than the one in question.

In the case of GNB, there is a clear tendency for methods using 2 or 3 clusters to achieve
the best results, regardless of the diversity measure used. The ENN classifier performs
best when k-means divides clustering space into two groups. A more interesting situation
can be observed in the case of the CART classifier, which performs best in the case of an

odd number of clusters, with an emphasis on 3 and 5 groups.

Based on the results obtained and the statistical tests conducted, the following pairs of

the measure of diversity and number of clusters were selected for the next experiment:

e GNB — E: 2, k: 2, KW: 2, Disgy: 2, Qau: 3,
o ENN — F: 2, k: 2, KW: 2, Disgy: 2, Quu: 4,
e CART — E: 5, k: 3, KW: 3, Disgyp: 3, Qav: 5.

Experiment 2 — Comparison with standard combination
Figure shows radar plots with the average ranks achieved by each method on all

evaluation metrics.

"https://github.com/w4k2/iccs21-ensemble-pruning
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Table 3.1: Results of Wilcozon statistical test on global ranks for each measure of diversity and number
of clusters. Calculated based on BAC. The higher the average rank value, the better.

GNB
DEP-CL2 DEP-CL3 DEP-CL4 DEP-CL5 DEP-CL6 DEP-CL7
(1) (2) (3) 4) (5) (6)
E 4.696 4.089 3.804 2.679 3.179 2.554
3,4,5,6 4,5, 6 4,6 — — —
3 4.679 4.018 3.446 3.036 3.000 2.821
3,4,5,6 4,5, 6 — — — —
KW 4.679 4.018 3.464 3.054 2.946 2.839
3,4,5,6 4,5, 6 — — — —
Disgy 4.67 4.018 3.464 3.054 2.946 2.839
3,4,5,6 4,5, 6 — — — —
Qav 4.08 4.339 3.286 3.375 3.125 2.786
5, 6 3,4,5,6 — — — —
kNN
DEP-CL2 DEP-CL3 DEP-CL4 DEP-CL5 DEP-CL6 DEP-CL7
(1) (2) (3) 4) (5) (6)
E 4.054 3.893 3.286 3.482 3.250 3.036
6 6 — — — —
k 4.268 3.607 2.857 3.679 3.000 3.589
3,5 — — — — —
KW 4.268 3.607 2.857 3.679 3.000 3.589
3,5 — — — — —
Disqu 4.268 3.607 2.857 3.679 3.000 3.589
3,5 — — — — —
Qav 3.339 3.393 3.929 3.839 3.179 3.321
CART
DEP-CL2 DEP-CL3 DEP-CL4 DEP-CL5 DEP-CL6 DEP-CL7
(1) (2) (3) 4) (5) (6)
E 2.103 4.241 3.172 4.310 3.034 4.138
— 1,3,5 1 1,3,5 1 1,3,5
k 2.276 4.138 3.138 3.983 3.638 3.828
— 1,3 1 1,3 1 1
KW 2.276 4.155 3.172 4.017 3.672 3.707
— 1,3 1 1,3 1 1
Disqu 2.276 4.155 3.172 4.052 3.672 3.672
— 1,3 1 1,3 1 1
Qav 1.948 4.448 3.069 4.672 3.328 3.534
— 1,3,5, 6 1 1,3,5,6 1 1

For the gaussian naive bayes classifier, the advantage of the proposed methods over the
combination of the entire available classifier pool can be observed. The only exception is
recall, where DEP-E2 is comparable to the reference methods, while the other proposed

approaches display a slightly lower average rank value.

These observations are confirmed by Table It presents the results of the performed
statistical analysis, on the basis of which it can be concluded that the proposed methods
achieve statistically significantly better average ranks than the combination of the entire
classifier pool for each of the metrics, except recall, where no statistically significant
differences were reported. Worth noting is also the identical performance of methods

based on measures k, KW, and Disg,.

In the case of the kNN classifier, the achieved results again speak in favor of the proposed
methods. Precision achieved by support accumulation of the entire pool of classifiers
is comparable to that achieved by the ensemble pruning algorithms. However, the ad-

vantage obtained in terms of recall while maintaining similar precision proves that the
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Figure 3.2: Visualization of the mean ranks achieved by each method.

proposed methods are oriented towards recognizing the minority class. This is especially

visible in the case of measures k, KW and Disg,, which again show exactly the same

performance.

The results of the statistical analysis for kNN classifier are also slightly more interest-

ing. There is a statistically significant advantage of the proposed solutions over the

combination of the entire pool in the case of BAC, Gmeans and recall (at the expense of

specificity). When it comes to F} score, the ensemble pruning algorithms are statistically
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Table 3.2: Results of Wilcozon statistical test on global ranks for proposed methods in comparison to
the combination of the whole classifier pool. The higher the average rank value, the better.

GNB
MV SACC DEP-E2 DEP-k2 DEP-KW2  DEP-DIS2 DEP-Q3
(1) (2) (3) (4) (5) (6) (7)
BAC 1.839 2.018 5.125 4911 4911 4911 4.286
— — 1,2 1,2 1,2 1,2 1,2
Gmeans 1.696 2.196 4.661 5.054 5.054 5.054 4.286
— 1 1,2 1,2 1,2 1,2 1,2
Fy score 2.196 2.625 4.804 4.589 4.589 4.589 4.607
— — 1,2 1,2 1,2 1,2 1,2
precision 2.607 3.000 4.518 4.446 4.446 4.446 4.536
— — 1,2 1,2 1,2 1,2 1,2
recall 4.393 4.304 4.143 3.839 3.839 3.839 3.643
specificity 2.429 3.000 4.589 4.643 4.643 4.643 4.054
— 1 1,2 1,2 1,2 1,2 1,2
kNN
MV SACC DEP-E2 DEP-k2 DEP-KW2  DEP-DIS2 DEP-Q4
(1) (2) (3) (4) (5) (6) (7)
BAC 2.393 2.696 4.446 4.732 4.732 4.732 4.268
— — 1,2 1,2 1,2 1,2 1,2
Gmeans 2.607 2.839 4.571 4.732 4.732 4.732 3.786
— — 1,2 1,2 1,2 1,2 1,2
Fy score 3.143 3.482 4.286 4.268 4.268 4.268 4.286
— — 1 1 1 1 1
precision 3.696 4.375 4.214 3.768 3.768 3.768 4.411
recall 2.250 2.411 4.732 4.964 4.964 4.964 3.714
— — 1,2,7 1,2,7 1,2, 7 1,2, 7 1,2
specificity 4.750 5.036 3.589 3.214 3.214 3.214 4.982
4,5,6 3,4,5,6 — — — — 3,4,5,6
CART
MV SACC DEP-E5 DEP-k3 DEP-KW3  DEP-DIS3 DEP-Q5
(1) (2) (3) (4) (5) (6) (7)
BAC 2.586 2.586 4.448 4.259 4.259 4.259 5.603
— — 1,2 1,2 1,2 1,2 all
Gmeans 2.224 2.224 4.362 4.569 4.569 4.569 5.483
— — 1,2 1,2 1,2 1,2 all
Fy score 2.500 2.500 4.328 4.328 4.328 4.328 5.690
— — 1,2 1,2 1,2 1,2 all
precision 3.569 3.569 4.207 3.759 3.759 3.759 5.379
— — — — — — all
recall 2.603 2.603 4.448 4.483 4.483 4.483 4.897
— — 1,2 1,2 1,2 1,2 1,2
specificity 3.879 3.879 3.810 3.552 3.552 3.552 5.776

— — — — — — all

significantly better than majority voting, but the result obtained by them is comparable

to support accumulation.

Particularly promising results can be observed when using CART as the base classifier.
In this case, the measure of diversity ()., performs best. Based on the statistical anal-
ysis presented in Table B.2] it achieves statistically significantly better results than the
combination of the entire classifier pool, as well as the pruning algorithms using other
measures of diversity for the clustering space construction. This is true for every metric

except recall.

Based on the results of the statistical analysis, the GNB DEP-E2, kNN DEP-DIS2, and CART
DEP-Q5 methods were selected for the next experiment. These approaches displayed the

highest average ranks as well as a good ability to recognize the minority class.
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Experiment 3 — Comparison with preprocessing techniques

Figure B3] shows the results of comparing the methods selected in Experiment 2 with

the approaches employing preprocessing techniques.
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Figure 3.3: Visualization of the mean ranks achieved by each method.

2

When the base classifiers are GNB and kNN, it can be noticed that, despite achieving

average rank values for each of the metrics, the proposed methods are never statistically

significantly worse than the reference approaches using preprocessing (Table B3]). Ad-

ditionally, GNB DEP-E2 shows statistically higher precision than that achieved by using
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Table 3.3: Results of Wilcozon statistical test on global ranks for the selected methods in comparison
to the preprocessing techniques. The higher the average rank value, the better.

GNB
ROS SMOTE SVM B2 DEP-E2
(1) (2) (3) (4) (5)
BAC 3.125 3.232 3.286 2.286 3.071
4 4 4 - -
Gmeans 3.089 3.286 3.268 2.321 3.036
4 4 4 - =
Fy score 2.768 3.429 2.625 2.750 3.429
J— 3 J— J— J—
precision 2.518 3.446 2.446 3.161 3.429
- 1,3 - - 1,3
recall 3.982 2.500 3.464 2.429 2.625
2,4, 5 - 2,4 — —
specificity 2.054 3.768 2.607 3.250 3.321
- 1,3 — 1 1
ENN
ROS SMOTE SVM B2 DEP-DIS2
(1) ) 3) (4) (5)
BAC 2.946 3.268 3.321 2.786 2.679
Gmeans 2.911 3.304 3.268 2.911 2.607
Fy score 3.304 3.018 3.482 2.232 2.964
4 4 4 = =
precision 3.446 2.839 3.232 2.054 3.429
2, 4 4 4 — 4
recall 2.446 3.411 3.000 3.536 2.607
— 1 1 1 —
specificity 3.857 2.589 3.089 1.357 4.107
2,3, 4 4 2, 4 - all
CART
ROS SMOTE SVM B2 DEP-Q5
(1) (2) (3) (4) (5)
BAC 2.052 2.672 3.276 3.793 3.207
- — 1,2 1,2 1
Gmeans 1.897 2.655 3172 4.000 3.276
= 1 1 1,23 1
Fy score 2.448 2.759 3.379 2.898 3.586
— i 1,92 = 1,4
precision 3.034 2.897 3.328 2.207 3.534
4 4 4 - 4
recall 1.948 2.603 3.190 4.207 3.052
= 1 1,2 all —
specificity 3.966 3.138 3.103 1.483 3.310
2,3, 4 4 4 — 4

Random Owversampling and SVM-SMOTE, and ENN DEP-DIS2 achieves better precision

than the ensemble using Borderline-sMOTE for data preprocessing.

The ensemble pruning methods seem to perform better when using the CART decision
tree as the base classifier. Again, none of the reference methods achieved statistically
significantly better average ranks than the proposed approach. At the same time, how-
ever, CART DEP-Q5 achieves a statistically significantly better rank value than ROS for
BAC, Gmeans and F} score. This method is also statistically significantly better than

Borderline-sMOTE in terms of F; score and specificity.

Observations
Based on the results of Experiment 1, it can be concluded that the classifier pool gen-

eration using Stratified Bagging probably does not allow for achieving a high ensemble
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diversity in the case of GNB and kNN base classifiers. This is indicated by the fact that
the methods using these classifiers perform best when the clustering space is divided into
just two groups. Decision trees, which show a greater tendency to obtain diverse base
models, do much better in this respect. It is also worth noting that in the case of CART,
due to no tree depth limitation, the results of the majority vote were in line with the

accumulation of support.

Regardless of the base classifier used, the results obtained with the use of the measures
of diversity k, KW, and Dis,, were exactly the same. On this basis, it can be concluded
that the diversity spaces generated on their basis coincide. An example of this can be seen
in the example shown in Figure 1], where all three spaces have the same distribution
density (where the space based on measurement of interrater agreement k is a mirror

image of the spaces based on KW and Disgy).

Experiment 2 proved that by a skillful selection of a small group of classifiers, in the
imbalanced data classification problem, it is possible to achieve a better performance

than that achieved by combining the decisions of the entire classifier pool.

Experiment 3 was able to confirm that thanks to employing the classifier selection meth-
ods to the problem of imbalanced data classification, it is possible to obtain results sta-
tistically not worse (and sometimes statistically significantly better) than those achieved

by the ensembles using preprocessing techniques.

Although, in the case of decision trees, conducted statistical tests indicate that the most
suitable diversity measure for the problems considered during experimentation may be
the averaged @ statistics, it can not definitively be considered the best. As stated in ],
after studying various diversity measures, there is no definitive connection between the
measures and the performance improvement. Nonetheless @4, was recommended only

based on ease of interpretation and calculation.

Answers to research questions

The answers to the previously formulated research questions are as follows:

Q1. Is the static classifier selection able to improve the results obtained by combining

the entire classifier pool for the task of imbalanced data classification?

Al. The conducted experiments have shown that the use of a static classifier selec-
tion, based on ensemble diversity, is able to statistically significantly improve the

ensemble performance in the task of the imbalanced data classification.

Q2. Can the use of static classifier selection in the problem of imbalanced data classifi-

cation result in performance comparable with the use of preprocessing techniques?
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A2. The obtained results confirmed that classifier selection algorithms may show sta-
tistical dependency to the approaches using preprocessing techniques in the task

of imbalanced data classification.

3.2 Clustering-based multistage organization

The following section introduces two proposals for the extension of the multistage ma-
jority voting organization (MOMV) originally proposed by Ruta and Gabry$ | and
described in more detail in Chapter 2l Both approaches are strongly based on the clas-
sifier clustering in one-dimensional diversity space, which was introduced in Section B
and follow the same procedure of calculating the H measure (Equation BI]). Although
the multistage organization is not the main subject of the thesis, it was considered an

interesting complement to the proposed DEP algorithm.

Two-step majority voting organization (TSMV)

DECISION

Figure 3.4: Ezample of a two-step majority voting organization with g classifiers divided into g clusters.
Layer 2 s the result of majority voting of each cluster and the final decision is made by the second majority
voting.

The first proposed method, called Two-step Majority Voting Organization (TSMV), is a
modification of the MOMV structure described in @] Instead of allocating outputs to
different groups by permutation, the base models in each cluster are treated as a separate
ensemble combined by majority voting. The calculation of H measure as well as claster-
izaton process are conducted in the same fashion as in the PDE. As the remainder, the

procedure is described in Algorithm 2l Then, predictions from all clusters are collected
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and the majority voting rule is applied for the second time, in order to obtain a final
decision. This process is depicted in Figure [34] and the pseudocode for the prediction
process of TSMV is presented in Algorithm [3l

CLUSTER 3

LNIWAOVIdad
HLIM DNITdNVS

DECISION !

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.5: Ezample of two-step majority voting organization with g classifiers divided into g clusters,
using sampling with replacement. The number of groups and classifiers in each group in the first layer
is equal to the number of clusters found. Layer 2 and the final decision are also made according to the
magjority voting.

Algorithm 2 Pseudocode of the clustering process for TSMV and RSMO methods

Input:

IT={¥,Vy,...,U,} — classifier pool,

¢ — number of clusters,

LS — training set,
Symbols:

‘H — set of H measure values for each base classifier,
Output:

C={C1,Cy,...,C.} — set of clusters.

H+— o
for each ¥, in II do
H < H; = piv(IL, £LS) — piv((II — ¥;), LS)
end for
C = K-MEANS(H, ¢)

The second proposed method, called Random Sampling Multistage Organization (RSMO),
is a modification pf TsMV introducing sampling with replacement before the first voting
step. This approach is based on the assumption that classifiers belonging to the same
cluster make similar decisions, so they don’t have to be all used during the the classifi-

cation process. In RSMO, the first layer of voting is constructed by generating a number
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Algorithm 3 Prediction pseudocode of the TSMv

Input:
IM={Vy,Vy,...,¥,} - classifier pool,
C={C1,Cy,...,C.} —set of clusters.
TS — testing set,
Symbols:
VY — set of majority voting results.
Output:
Decision — classification results.

1: for each cluster C; in C do

2 ch = {VZ € Cj, \Ifz}

3: V < MAJORITYVOTING(II¢;, TS) > First voting
4: end for

5: Decision = MODE()) > Second voting

of groups equal to the number of clusters c. Each group contains one classifier sampled
from each of the clusters found. Example of random sampling multistage organization

is shown in Figure and the pseudocode for its prediction process is presented in
Algorithm [3

Algorithm 4 Prediction pseudocode of the RSMO

Input:
IM={Vy,Vy,...,¥,} - classifier pool,
C={C1,Cy,...,C.} —set of clusters.
TS — testing set,
¢ — number of clusters,
Symbols:
V — set of majority voting results.
Output:
Decision — classification results.

1: for each cluster C; in C do

2 for k in range(c) do

3: g, + SAMPLING(II, Cy,) > Sampling with replacement
4 end for

5 V + MAJORITYVOTING(Ilg;, T'S) > First voting
6: end for

7. Decision = MODE(V) > Second voting

The following functions are used in the presented pseudocodes:

e DIV() — calculates the ensemble diversity of a given classifier pool II based on the

provided learning set LS.
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e K-MEANS() — carries out the clustering process of a given one-dimensional diversity
space H into c¢ clusters using the k-means algorithm. Returns information about

the cluster each base classifier belongs to.

e MAJORITYVOTING() — uses all classifiers belonging to a given pool Il¢; to classify

the instances in the testing set TS using magjority voting.
e MODE() — returns the modal (most common) value in a set V.

e SAMPLING() — select, using sampling with replacement, a single classifier ¥; from a

given cluster.

Computational and memory complexity analysis
Similar to the PDE methods proposed in Section Bl TsMv and RSMO include the stage

of the H measure calculation as well as clustering of base models in the prepared space.

The computational complexity of diversity calculation is again O(n) or O(n?), where
n is the number of base classifiers, depending on whether the non-pairwise or pairwise

measure is used. The complexity of H measure calculation process is O(n).

The complexity of the k-means clustering algorithm is O(ncde), where c¢ is the number of
clusters, d is the number of data dimensions, and e describes the number of iterations/e-

pochs @] Complexity is reduced to O(nce), as the clustering space is one-dimensional.

During the prediction step, TSMV first performs majority voting for each classifier pool
II¢, with complexity O(ng,+ | M |), where n¢, denotes number of base models in pool
I, and | M | denotes the number of classes. In the case of binary classification | M | can
be omitted, resulting in O(n¢,) complexity. Then, the mode operation with complexity

O(c) is used to obtain the final decision.

For RSMO, sampling with replacement is performed for each cluster C; with complexity
O(] C; |), where | C; | is a cardinality of cluster C;. Then, for each classifier pool Il¢;,
magority voting is carried out with complexity O(c+ | M |). Finally, Mode operation

with complexity O(c) is again employed to obtain prediction.

3.2.1 Experimental evaluation

Here, the motivation, goals and set-up of the performed experiments are presented.

Research questions

The conducted research aims to answer the following main questions:
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Q1. Can the use of a clustering-based two-stage majority voting structure improve the

performance of the imbalanced data classification?

Q2. Can the introduction of sampling with replacement before the first voting stage

allow to increase the generalization ability of the MOMV structure?

Q3. Can the proposed multistage majority voting organization compete with methods

employing preprocessing techniques?

Goals of the experiments
Ezperiment 1 — Comparison with standard combination
The aim of the first experiment is to check how the proposed two-step majority voting

methods compare to a simple, one-step, combination of a classifier pool.

Experiment 2 — Comparison with preprocessing techniques
In the second experiment, the methods selected in Experiment 1 will be compared with

preprocessing-based reference methods.

Experimental set-up

The research was carried out on 41 imbalanced datasets presented in Table 223l on p. (4l
Since the TSMV and RSMO algorithms are based on the same clustering approach as PDE,
again the experiments could only be carried out on those datasets for which the k-means
clustering was able to find the set number of clusters (ranged from 2 to 7) for a set pair

of diversity measure and classification algorithm.

Since the evaluated methods are strongly based on the one-dimensional diversity space
introduced in Section B.1], the experimental set-up is almost identical to that described
for PDE algorithm. However, taking into account the fact that multistage majority voting
organization is not the main interest of this thesis, but only an extension of the previously
studied method, the experimental evaluation was reduced to two base classifiers. Details

on used set-up are listed below:

e Evaluation measures — balanced accuracy score (BAC), Gmeans, Fy score, precision,

recall, and specificity,

e Classification algorithms — Gaussian Naive Bayes classifier (GNB) and Classification

and Regression Tree (CART),

e Ensemble diversity measures — The entropy measure FE, Kohavi- Wolpert variance
(KW), measurement of interrater agreement k, the averaged Q statistics (Qay),

and the averaged disagreement measure (Disgqy),
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e Reference methods:

— Stratified Bagging without preprocessing — Magority Voting (MV), Support
Accumulation (SACC),

— Stratified Bagging paired with preprocessing (SACC only) — Random Oversam-
pling (ROS), SMOTE, SVM-SMOTE (SVM) and Borderline-SMOTE (B2).

The fixed size of the classifier pool was set to 50 base models, generated using a strat-
ified version of Bagging |. This Bagging generates each bootstrap sampling with
replacement majority and minority classes separately while maintaining the original im-
balance ratio. The size of each bootstrap is set to half the size of the original training
set. The proposed approaches were evaluated on the basis of 5 times repeated 2-fold
cross-validation. The ensemble’s decision is based on support accumulation. Statistical
analysis of the obtained results was performed using the Wilcoxon global rank test @]

The cluster numbers for each diversity measure were selected in the preliminary research:

TSMV GNB — E: 4, k: 4, KW: 4, Disgy: 4, Quu: 6,

RSMO GNB — E: 6, k: 6, KW: 6, Disgyp: 4, Qau: D,

TSMV CART — E: 5, k: 5, KW: 5, Disgy: 5, Qau: 5,

RSMO CART — E: 7, k: 7, KW: 7, Disgy: 7, Qav: 3.

All experiments have been implemented in Python programming language and can be

repeated using the code on Githubd.

Experiment 1 — Comparison with standard combination

Figure and Table 3.4 show the results of using two-step mojority voting organization,
both without (TSMV) and with sampling (RSMO), compared to the reference methods
for GNB classifier. In the case of TMSV, the results are statistically significantly better
than those of the standard combination for all metrics except recall. Unfortunately, the
ability of the proposed methods to detect the minority class turned out to be statistically
significantly worse than that of the reference methods. Noteworthy are the particularly

poor results of the method based on the Qg, diversity measure.

The results are different when sampling with replacement is introduced to the two-step
majority voting. The most significant change occurs for the approach using the Qg

diversity measure, which from the worst has become the most balanced for each of

*https://github.com/w4k2/iccs21-ensemble-pruning
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the evaluation metrics. The most important thing is that it has become statistically
comparable with the reference methods in terms of the ability to recognize the minority

class.

As in the case of GNB, when the CART decision tree is used as the base classifier, the
most interesting relationships are represented by the methods based on the averaged
Q statistics. Both Figure B.7 and Table show that even without sampling with
replacement, the Q,,-based method shows the greatest potential in terms of mean ranks.
It is, as the only of the proposed approaches, statistically significantly better in terms of
BAC than the reference ensemble methods. Additionally, it is statistically significantly
the best when it comes to Fy score, precision and specificity. At the same time, its
average rank values in terms of Gmeans and recall are statistically comparable to all

other methods.

However, the introduction of sampling with replacement causes that the RSMO approach
using @4, for the clustering space definition to become statistically significantly better

than most of the other methods — TSMV, MV and SACC — in terms of Gmean, and recall.

On the basis of the obtained results, the following methods were selected for Experiment
2:

e GNB — TSMV-DIS4 and RSMO-Q5,

® CART — TSMV-Q4 and RSMO-Q3.

TSMV GNB RSMO GNB
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Figure 3.6: Average rank values for each of the tested methods regarding GNB.
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Table 3.4: Results of Wilcozon statistical test on global ranks for proposed methods in comparison to
the combination of the whole classifier pool regarding GNB classifier. The higher the average rank value,
the better.

| TSMV GNB
MV SACC E4 k4 KW4 DIS4 Q6
(1) (2) (3) (4) (5) (6) (7)
BAC 2.607 2.875 4.339 4.946 4.946 4.946 3.339
— — 1,2 1,2,7 1,2,7 1,2,7 —
Gmeans 2.304 2.768 4.571 5.071 5.071 5.071 3.143
— 1 1,2,7 1,2,7 1,2,7 1,2,7 —
F1 score 2.018 2.518 4.286 5.036 5.036 5.036 4.071
- 1 1,2 1,2 1,2 1,2 1,2
precision 1.714 2.214 4.143 5.089 5.089 5.089 4.661
— 1 1,2 1,2,3 1,2,3 1,2,3 1,2
recall 5.250 5.107 4.018 3.625 3.625 3.625 2.750
3,4,5,6,7 3,4,5,6,7 7 7 7 7 -
specificity 1.357 1.929 4.125 5.196 5.196 5.196 5.000
— 1 1,2 1,2,3 1,2,3 1,2,3 1,2
| RSMO GNB
MV SACC E6 k6 KW6 DIS4 Q5
(1) (2) (3) (4) (5) (6) (7)
BAC 2.750 3.232 4.339 4.446 4.304 4.518 4.411
— — 1,2 1,2 1,2 1 1,2
Gmeans 2.518 3.071 4.250 4.714 4.393 4.875 4.179
— — 1,2 1,2 1,2 1,2 1,2
F1 score 2.268 2.643 4.500 4.714 4.196 5.125 4.554
— — 1,2 1,2 1,2 1,25 1,2
precision 1.929 2.357 4.286 4.768 4.482 5.786 4.393
— — 1,2 1,2 1,2 all 1,2
recall 5.286 5.179 3.839 3.518 3.107 2.339 4.732
3,4,5,6  3,4,5,6 5,6 6 6 — 3,4,5,6
speci ficity 1.607 2.179 4.196 4.929 4.607 6.500 3.982
— 1 1,2 1,2,3,7 1,2 all 1,2
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Figure 3.7: Average rank values for each of the tested methods regarding CART.
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Table 3.5: Results of Wilcoxon statistical test on global ranks for proposed methods in comparison to
the combination of the whole classifier pool regarding CART classifier. The higher the average rank value,
the better.

| TSMV CART
MV SACC E5 k5 KW5 DIS5 Q5
(1) (2) (3) (4) (5) (6) (7)
BAC 3.552 3.552 4.017 4.103 4.052 4.052 4.672
— — — — — — 1,2
Gmeans 3.517 3.517 4.086 4.155 4.103 4.103 4.517
F1 score 3.276 3.276 4.293 3.966 3.914 3.914 5.362
— — — — — — all
precision 3.000 3.000 4.397 3.914 3.862 3.862 5.966
— — 1,2 1,2 1,2 1,2 all
recall 4.224 4.224 3.862 3.983 3.983 3.983 3.741
specificity 2.793 2.793 4.069 4.190 4.138 4.138 5.879
— — 1,2 1,2 1,2 1,2 all
| RSMO CART
MV SACC E7 K7 KW7 DIS7 Q3
(1) (2) (3) (4) (5) (6) (7)
BAC 3.569 3.569 3.638 3.603 4.500 3.983 5.138
— — — — 1,2 — 1,2,3,4,6
Gmeans 3.483 3.483 3.707 3.672 4.569 4.052 5.034
— — — — 1,2 — 1,2,3,4,6
F1 score 3.655 3.655 3.293 3.776 4.362 3.845 5.414
— — — — 3 — all
precision 3.741 3.741 3.379 3.862 4.086 3.914 5.276
— — — — — — all
recall 3.448 3.448 3.621 3.759 4.466 4.328 4.931
— — — — 1,2 — 1,2,3,4
speci ficity 3.828 3.828 3.707 3.724 3.879 3.828 5.207
— — — — — — all

Experiment 2 — Comparison with preprocessing techniques

The results of the statistical analysis for the comparison of the TSMV and RSMO with
the preprocessing-based approaches are presented in Tables and 371 Worth noting
is the great similarity of both the average rank values and the statistical relationships
displayed in comparison with the reference methods by the both algorithms. The average

rank values for each of the metrics are shown in Figures [3.§ and

When the base classifier is GNB, the proposed methods achieve results comparable to
Borderline-sSMOTE, however, they are statistically significantly worse in terms of recall
than Random Oversampling and SVM-SMOTE. When the CART decision tree is used as
base model for TSMV and RSMO, the the achieved results are statistically significantly
better in terms of precision than the reference methods. However, the proposed methods
are statistically significantly inferior to Bordeline-SMOTE in terms of both Gmeans and

recall.



Chapter 3. Algorithms for imbalanced data classification 82

TSMV GNB RSMO GNB
BAC BAC

P
& 3
o %
& %
&
2
2
)
% &
[

Precision Precision
— ROS  -e:e- SUM s TSMV-DIS4 — ROS  se:ee SVM === RSMO-Q5
—=- SMOTE =—-- B2 —=- SMOTE =—-- B2

Figure 3.8: Average rank values for each of the tested methods regarding GNB.

Table 3.6: Results of Wilcozon statistical test on global ranks for the selected methods in comparison
to the preprocessing techniques. The higher the average rank value, the better.

GNB
ROS SMOTE SVM B2 TSMV-DIS4
(1) (2) 3) (4) (5)
BAC 3.196 3.304 3.357 2.357 2.786
4 4 4 - —
Gmeans 3.161 3.321 3.304 2.393 2.821
4 4 4 - _
Fy score 2.768 3.464 2.625 2.893 3.250
— 3 — — —
preciston 2.518 3.375 2.518 3.232 3.357
- 1,3 - _ _
recall 4.036 2.589 3.500 2.464 2.411
2,4,5 - 2,4,5 - _
speci ficity 2.018 3.732 2.643 3.250 3.357
- 1,3 - 1 1
ROS SMOTE SVM B2 RSMO-Q5
(1) (2) 3) (4) (5)
BAC 3.196 3.268 3.321 2.357 2.857
4 4 4 — —
Gmeans 3.196 3.321 3.268 2.429 2.786
4 4 4 — —
Fy score 2.839 3.500 2.661 2.893 3.107
_ 3 _ _ _
precision 2.518 3.411 2.518 3.232 3.321
_ 1,3 _ _ _
recall 4.071 2.482 3.464 2.393 2.589
all — 2,4,5 — —

speci ficity 2.054 3.804 2.714 3.357 3.071
— 1,3 — 1 —
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Figure 3.9: Average rank values for each of the tested methods regarding CART.

Table 3.7: Results of Wilcozon statistical test on global ranks for the selected methods in comparison
to the preprocessing techniques. The higher the average rank value, the better.

CART
ROS SMOTE SVM B2 TSMV-Q5
(1) (2) (3) (4) (5)
BAC 2.155 2.776 3.448 3.828 2.793
— 1 1,2 1,2 —
Gmeans 1.966 2.759 3.345 4.069 2.862
— 1 1 all —
F1 score 2.517 2.828 3.517 2.897 3.241
J— J— 1, 2 J— J—
precision 3.034 2.897 3.379 2.138 3.552
4 4 4 — 4
recall 2.000 2.707 3.345 4.276 2.672
— 1 1,2 all —
speci ficity 3.931 3.103 3.069 1.483 3.414
2,3,4 4 4 — 4
ROS SMOTE SVM B2 RSMO-Q3
(1) (2) (3) (4) (5)
BAC 2.086 2.707 3.310 3.828 3.069
— — 1,2 1,2 —
Gmeans 1.966 2.724 3.310 4.000 3.000
— 1 1 1,23 —
F1 score 2.552 2.828 3.483 2.862 3.276
_ _ 1,2 _ _
precision 3.069 2.931 3.414 2.224 3.362
4 4 4 — 4
recall 2.017 2.672 3.293 4.207 2.810
— 1 1,2 all

speci ficity 4.069 3.207 3.241 1.517 2.966
— 4
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Observations

From the obtained results, it can be concluded that the use of the multistage majority
voting organization may allow, in the case of imbalanced data classification task, to
improve the ensemble performance when compared to the traditional combination of the
classifier pool. This is due to the division of classifiers into clusters containing models
that make similar errors on problem instances. Thanks to this, after the first voting
level, the predictions reflecting the expert knowledge of the base models in each of the

recognized feature space regions are obtained.

The introduction of sampling with replacement in order to further diversify the ensembles
during the first voting stage while reducing the number of models making similar decisions
allows for the improvement of the achieved results. This method can be regarded as
related to the static selection of classifiers. Both in the case of GNB and CART, it led
to an increase in the ability of the proposed methods to detect minority class, which is

particularly visible in the case of algorithms based on the averaged @ statistics.

Compared to classifier ensembles employing preprocessing techniques, the proposed meth-
ods are characterized by a lower ability to detect the minority class. It is worth noting,

however, that only in a few cases these differences were statistically significant.

Answers to research questions

The answers to the previously formulated research questions are as follows:

Q1. Can the use of a clustering-based multistage majority voting organization improve

the performance of the imbalanced data classification?

Al. The conducted experiments confirmed that the use of methods based on a multi-
stage majority voting organization may lead to the improvement of the ensemble

methods performance in the imbalanced data classification task.

Q2. Can the introduction of sampling with replacement before the first voting stage of

TSMV allow to increase the ability to detect minority class?

A2. The obtained results confirmed that the addition of sampling with replacement to
the the TsmMv algorithm (RSMO) allows to improve the detection ability of minority

class objects.

Q3. Can the proposed algorithms compete with methods employing preprocessing tech-

niques?

A3. The results of the conducted research confirmed that in most cases the proposed
TSMV and rsmo algorithms are not statistically significantly worse than ensemble

methods using preprocessing techniques.



Chapter 3. Algorithms for imbalanced data classification 85

3.3 Distance-Based Dynamic Classifier Selection

This section proposes two dynamic classifier selection algorithms for the imbalanced
data classification task. These are respectively the Dynamic Ensemble Selection using
Euclidean distance (DESE) and the Dynamic Ensemble Selection using Imbalance Ratio
and Euclidean distance (DESIRE). The introduction of these methods is motivated by the
— indicated in the literature — shortage of dynamic classifier selection approaches dedi-
cated to the task of unbalanced data classification [59]. Imbalanced learning continues
to be an important problem in pattern recognition, especially in the case of real-world
data. As the methods of dynamic selection of classifiers perform a local classification —
based on the local area of competence often defined as the nearest neighborhood of the
classified instance — they may allow reducing the bias in relation to the majority class.
Nevertheless, there are currently very few DES algorithms dedicated for the problem of

imbalanced data classification.

The generation of the classifier pool is based on the Bagging approach @], and more
specifically on the Stratified Bagging, in which the samples are drawn with replacement
from the minority and majority class separately in such a way that each bootstrap
maintains the original training set class proportion. This is necessary due to the high
imbalance, which in the case of standard Bagging can lead to the generation of training

sets containing only the majority class.

Both proposed methods are derived in part from algorithms based on local oracles,
and more specifically on KNORA-U ], which gives base classifiers weights based on
the number of correctly classified instances in the local region of competence and then
combines them by weighted majority voting. The computational cost in this type of
method is mainly related to the size of the classifier pool and the DSEL size, as the
k-Nearest Neighbors technique is used to define local competence regions, which can
be costly for large datasets. Instead of voting, DESE and DESIRE are based on support
functions and they calculate weights for each classifier for both the minority and majority
classes separately. These weights are calculated on the basis of the Fuclidean distance (Lo
norm) between the classified sample and its neighbors in the local region of competence.
The literature indicates, with respect to the commonly used L; norms, the potential
usefulness of norms with the lower & value for problems with high dimensionality [3].
Examples of such metrics are the Manhattan distance (L1 norm) or a fractional distances,
in which case k may be less than 1. However, due to the relatively small dimensionality of
the chosen datasets as well as popularity and frequent use in distance-based algorithms,

the Euclidean distance was chosen as the base distance metric for the DESE and DESIRE.
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Proposed methods come in two variants: Positive (denoted as P), where weights are
modified only in the case of correct classification, and PositiveédNegative (denoted as
PN), where, in addition to correct decisions, weights are also affected by incorrect ones.

The exact way of weights calculation is presented in Algorithm [l

Algorithm 5 DESE and DESIRE weight calculation methods

Input:
II — classifier pool,
TS — testing set,
DSEL — Dynamic Selection Dataset,
k — number of nearest neighbors,
min, maj — respectively the percentage of minority and majority classes in the train-
ing set,
W < & — empty weights array of shape (n,n,2).
Symbols:
LRC; — nearest neighborhood of sample x;,
TP,FN — true positive and false negative,
n — number of base classifiers,
Output:
W — weights array of shape (n,n,2).

1: for each sample z; in 7S do
2 LRC; < the k nearest neighbors of x; in DSEL
3 for each Classifier ¥; in II do
4 Predict < PREDICT(LRC;, V)
5: for each neighbor in LRC; do
6 if Predict[neighbor] = TP then

;s _ [|zi—neighbor|| for pes
7 W1y, 01+ = {1, Shcighbor omin for peeins
8
9

else if Predict[neighbor] = TP then Positive
W[], i, 1]_|_ _ {”rz ||zi—‘neighbor|| fpr DESE

;—neighbor||*maj for DESIRE

10: else if Predictineighbor] = FN then PositiveéNegative
. |lzi—neighbor|| for DESE

11: j’ 2 1 - {||:cz—neighbor||*min for DESIRE

12: else if Predict[neighbor] = FN then
. ||z;—neighbor|| for DESE

13: j’ 2 0 - {||:cz—neighbor||*maj for DESIRE

14: end for

15: end for

16: end for

For each instance, the proposed algorithms perform the following steps:
e In step 2, the k-Nearest Neighbors of a given instance x; are found in DSEL, which
form the local region of competence LRC);.
e In step 4, each classifier ¥; from the pool classifies all samples belonging to LRCj.

e In steps 5-13, the classifier weights are modified separately for the minority and

majority class, starting from the value of 0. The PositiveésNegative variant uses
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all four conditions, while the Positive variant is based only on the conditions in
lines 6 and 8. In the case of DESE, the modifications are based on the Euclidean
distance between the classified sample and its neighbor from the local competence
region, and in the case of DESIRE, the Fuclidean distance is additionally scaled by
a percentage of the minority or majority class in such a way that more emphasis

is placed on the minority class.

Finally, the weights obtained from DESE or DESIRE are normalized to the [0, 1] range and
multiplied by the ensemble support matrix. The combination is carried out according to
the maximum rule |76], which chooses the classifier that is most confident of itself. This
combination rule, despite its potentially sound grounds, is rarely used in practice due to
its high sensitivity to overfitting. Using the most confident classifier may mean choos-
ing an over-trained model whose generalization ability has been significantly impaired.
However, if the dimensionality of the analyzed problem is relatively low, the possibility
of overfitting is accordingly reduced. This is due to the potentially lower number of noisy

features and low sparsity of the feature space.

Computational and memory complexity analysis

The proposed method for each sample x; € TS finds its local neighborhood in DSEL
using the k- Nearest Neighbors algorithm. Each distance computation has the complexity
of O(d), where d is the problem’s dimensionality. Distance is calculated from z; to
each instance in DSEL which results in O(d | DSEL |) runtime, where | DSEL | is a
cardinality of DSEL. Then, kNN selects k neighbors for each sample in DSEL, which
requires O(| DSEL). This, in total, results in the computation complexity of O(d |
DSEL | +k | DSEL)).

Next, each classifier ¥; € II labels & neighbors of x; and based on the classification
results uses the calculated distance to establish the weight for a given classifier. This

step has the computational complexity of O(nk).

3.3.1 Experimental evaluation

This subsection presents the motivation, goals and set-up of the performed experiments,

as well as their results.
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Research questions

The experiments were designed to answer the following questions:

Q1. Does taking into account the Fuclidean distance to a given neighbor of a classified
sample in the process of local competency estimation allow the algorithm to deal

with the imbalanced data classification problem?

Q2. Does the introduction of the weighting of the Euclidean distance using the imbal-
ance ratio in such a way as to put more emphasis on the minority class lead to an

increase in the algorithm’s ability to detect a given class?

Goals of the experiments

Ezperiment 1 — Fuclidean distance-based approach

The main goal of the first experiments was to compare the performance of proposed
dynamic selection methods, weighted based on Euclidean distance, with the state-of-art

ensemble methods paired with preprocessing.

Experiment 2 — Scaled Euclidean distance-based approach
The aim of the second experiment was to check how the previously proposed method
would behave after taking into account during weights calculation process the difference

between the majority and minority classes.

Experimental set-up

The experiments were carried out on 41 imbalanced datasets presented in Table 23] on
p. @4 The evaluation of the proposed methods is based on five metrics widely used in
the case of imbalanced classification problems. Three popular classification algorithms
were used as base models, and Random QOversampling was employed to investigate the
impact of simple data preprocessing on the proposed ensemble methods. Classifier pools
of four different sizes were generated using Stratified Bagging. As a reference method, a
single classifier, as well as Stratified Bagging (SB) and dynamic selection in the form of
the KNORA-U algorithm were selected. This choice is aimed at comparing the proposed
methods with a combination of the entire classifier pool, as well as with the state-of-
the-art dynamic selection method in the task of imbalanced data classification. Both
proposed and reference methods occur in versions with preprocessing (in the form of
Random Oversampling) and without it, the use of oversampling is denoted by the letter

0 added to the method’s acronym. Detailed information is presented below:

e Evaluation measures — balanced accuracy score (BAC), Gmeans, Fy score, precision,

and recall,
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e Classification algorithms — Gaussian Naive Bayes classifier (GNB), k- Nearest Neigh-

bors classifier (kNN), and Classification and Regression Tree (CART),
e Data preprocessing — Random Oversampling (ROS).
e (lassifier pool size — consecutively 5, 15, 30 and 50 base models,

e Reference methods — a single model (GNB\CART\KNN), Stratified Bagging (SB),
Stratified Bagging with ROS (SBO), KNORA-U, and KNORA-U with ROS (KNORA-

Uo).

The evaluation was carried out using 10 times repeated 5-fold cross-validation. Due to
the small number of instances in the datasets, DSEL is defined as the entire training
set. All experiments have been implemented in Python and can be replicated using the

code available on Github.

The radar diagrams show the average global ranks achieved by each of the tested algo-
rithms in terms of each of the 5 evaluation metrics, while the tables show the results
of the Wilcoxon rank-sum (p = 0.05) statistical test for a pool size of 5 base classifiers.
The numbers under the average rank of each method indicate the algorithms which are

statistically significantly worse than the one in question.

Experiment 1 — Euclidean distance-based approach

Figure B.10 shows how the average ranks for DESE and the reference methods change
with respect to different metrics as a function of ensemble size. The proposed methods
(in particular DESE-PO) for 5 base models achieve higher ranks with respect to each
metric with an exception of recall. While the single classifier and bagging prefer recall,
DESE-PO and DESE-P precision. As the number of base classifiers increases, BAC and
Gmeang-based rankings deteriorate to KNORA-U levels, while F} score remains high due

to high precision.

Table B.8 presents the results of the statistical analysis, which shows that the DESE-PO
method performs statistically significantly better than all reference methods with respect

to every metric except recall.

When the base classifier is CART, as seen in Figure 311} for the smallest pool, DESE-P
(both without and with oversampling) ranks higher than the reference methods with
respect to each of the five metrics. As the number of base models increases, KNORA-

UO and SBO stand out with respect to precision, DESE-PO performs better with respect

*https://github.com/w4k2/iccs20-desire
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to other metrics, and DESE-PNO achieves the highest average ranks in terms of BAC,
Gmeang and recall despite the low Fy score and precision. Table confirms that for
the five basic classifiers, DESE-PO is statistically significantly better than all reference
methods, while DESE-PNO performs statistically significantly better than DESE-PO with

respect to recall, Gmeans and BAC.

Figure and table B-I0l show that the proposed methods using oversampling are not
statistically different from the reference methods, except for a single classifier that excels
in precision, but at the same time achieves the worst mean ranks based on the remaining
metrics. Together with the increase in the number of base classifiers, KNORA-U and SBO

achieve higher mean ranks than DESE-PO and DESE-PNO.

Mean ranks for GNB, pool size = 5 Mean ranks for GNB, pool size = 15
F1 score F1 score

—— GNB === KNORA-UQO ==—- DESE-PO —-—- DESE-PNO —— GNB === KNORA-UQO ==- DESE-PO —-—- DESE-PNO
——- SBO —— DESE-P —— DESE-PN ——- SBO —— DESE-P —— DESE-PN

Mean ranks for GNB, pool size = 30 Mean ranks for GNB, pool size = 50

F1 score F1 score

B4c
ucﬂﬂ‘)aJ ¢

~
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2 e,
Qe e

[
e
S5

—— GNB ----- KNORA-U0 ——- DESE-PO —-—- DESE-PNO —— GNB ----- KNORA-UO ——- DESE-PO —-—- DESE-PNO
==+ SBO —— DESE-P —— DESE-PN ==+ SBO —— DESE-P —— DESE-PN

Figure 3.10: Mean ranks for GNB classifier.



value, the better.

Chapter 3. Algorithms for imbalanced data classification

91

Table 3.8: Statistical tests on mean ranks for GNB with pool size = 5. The higher the average rank
GNB SBO KNORA-UO DESE-P DESE-PO DESE-PN DESE-PNO
(L (2 (3) 4) (5) (6) (M
F1 score 2.146 2.085 3.500 5.549 5.963 4.159 4.598
- - 1,2 1,2,3,6,7 1,2,3,6,7 1,2,3 1,2,3
precision 1.829 1.756 3.220 6.256 5.866 4.720 4.354
- - 1,2 all 1,2,3,6,7 1,2,3 1,2,3
recall 4.207 5.159 4.902 2.134 3.744 3.329 4.524
4 4,5,6 4,5,6 - 4 4 4,5,6
Gmeans 2.341 2.695 4.183 4.695 5.890 3.622 4.573
- - 1,2 1,2,6 all 1 1,2,6
BAC 2.317 2.634 3.963 4.720 5.976 3.671 4.720
- - 1,2 1,2,6 all 1,2 1,2,6
Mean ranks for CART, pool size = 5 Mean ranks for CART, pool size = 15
F1 score F1 score
(9]

KNORA-UQ ==- DESE-PO —-—- DESE-PNO
—— DESE-P —— DESE-PN
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F1 score
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Table 3.9: Statistical tests on mean ranks for CART with pool size = 5. The higher the average rank
CART SBO KNORA-UO DESE-P DESE-PO DESE-PN DESE-PNO
(L (2 (3) 4) (5) (6) (M
F1 score 2.683 2.841 2.988 5.329 5.561 4.256 4.341
- - - 1,2,3,6,7 1,2,3,6,7 1,2,3 1,2,3
precision 2.634 3.976 4.195 5.695 5.134 3.195 3.171
- 1 1,6,7 all 1,2,3,6,7 - -
recall 3.293 2.622 2.695 3.890 4.463 5.366 5.671
2,3 - - 2,3 1,2,3,4 1,2,3,4,5 1,2,3,4,5
Gmeans 3.098 2.671 2.817 4.061 4.634 5.232 5.488
- - - 2,3 1,2,3,4 1,2,3,4 1,2,3,4,5
BAC 3.098 2.585 2.732 4.280 4.829 5.085 5.390
- - - 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4,5
Mean ranks for KNN, pool size = 5 Mean ranks for KNN, pool size = 15
F1 score F1 score
(9]
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Figure 3.12: Mean ranks for kNN classifier.
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Table 3.10: Statistical tests on mean ranks for kNN with pool size = 5. The higher the average rank
value, the better.

kNN SBO KNORA-UO DESE-P DESE-PO DESE-PN DESE-PNO

(1) (2) (3) (4) (5) (6) (7)

Fy score 3.585 4.305 3.476 4.549 4.390 3.744 3.951
- 3 - 1,6 - - -

precision 5.317 3.963 3.049 4.976 3.659 3.878 3.159
3,5,6,7 3,7 - 2,3,5,6,7 - 7 -

recall 1.427 5.232 5.366 2.463 4.939 3.305 5.268

- 1,4,6 1,4,6 1 1,4,6 1,4 1,4,6

Gmeans 1.537 5.061 4.866 2.720 5.110 3.427 5.280

- 1,4,6 1,4,6 1 1,4,6 1,4 1,4,6

BAC 1.659 5.012 4.841 2.780 5.024 3.415 5.268

- 1,4,6 1,4,6 1 1,4,6 1,4 1,4,6

Experiment 2 — Scaled Euclidean distance-based approach
The results in Figures BI3H3.15 and Tables BIIH3. 13l show the average ranks for the
proposed DESIRE method, which calculates weights based on the Fuclidean distances

scaled by the percentages of the minority and majority classes in the training set.

In the case of GNB as the base model (Figure BI3]), the DESIRE-PO method achieves the
best results compared to reference methods in terms of mean ranks based on Fj score,
precision, Gmeangs and BAC. When the ensemble size increases, the proposed method is
equal to KNORA-UO in terms of BAC and Gmeang but retains the advantage in terms
of F1 score and precision. Moreover, the more base classifiers used, the smaller the
differences between DESIRE with preprocessing and the version without preprocessing.
Table [B.I1] presents the results of the statistical analysis, which shows that DESIRE-PO
is statistically better than all reference methods when the number of base classifiers is

small.

Figure shows that for a small classifier pool, DESIRE-PO achieves higher ranks than
reference methods in terms of each evaluation metric, and as the classifier number in-
creases, it loses significantly in precision compared to SBO and KNORA-UO. DESIRE-PNO
has a high recall, which unfortunately is reflected by the lowest precision and Fy score.
Table shows that for 5 base classifiers, DESIRE-C both with and without prepro-
cessing is statistically significantly better than reference methods in terms of all metrics

except one, Gmean, in the case DESIRE-P and recall for DESIRE-PO.

When the base classifier is kNN (Figure B.I5)), as in the case of DESE, DESIRE-PO is not
statistically worse than SBO and KNORA-UO (Table B.I3]) and as the number of classifiers
in the pool increases, the average global ranks significantly deteriorate compared to

reference methods.
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Mean ranks for GNB, pool size = 15s
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Figure 3.13: Mean ranks for GNB classifier.

DESIRE-PNO

GNB SBO KNORA-UO DESIRE-P  DESIRE-PO  DESIRE-PN  DESIRE-PNO
(L (2 (3) 4 (5) (6) (M
Fy score 2.341 2.280 4.159 5.634 6.098 3.878 3.610
- - 1,2 1,2,3,6,7 1,2,3,6,7 1,2 1,2
precision 2.244 2.098 3.902 6.341 6.098 3.976 3.341
- - 1,2 1,2,3,6,7 1,2,3,6,7 1,2,7 1,2
recall 4.037 4.890 4.427 1.939 3.305 4.183 5.220
4 4,5 4,5 - 4 4,5 1,3,4,5,6
Gmeans 2.341 2.793 4.622 4.829 5.976 3.610 3.829
- - 1,2,6 1,2,6,7 all 1 1,2
BAC 2.341 2.634 4.427 4.829 6.061 3.610 4.098
- - 1,2,6 1,2,6 all 1,2 1,2
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Mean ranks for CART, pool size = 5s
F1 score

Mean ranks for CART, pool size = 15s
F1 score
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Figure 3.14: Mean ranks for CART classifier.

value, the better.

Table 3.12: Statistical tests on mean ranks for CART with pool size = 5. The higher the average rank

CART SBO KNORA-UO DESIRE-P DESIRE-PO DESIRE-PN  DESIRE-PNO
(L (2 3) 4 (5) (6) (M
Fy score 3.415 3.768 3.915 5.622 5.768 2.524 2.988
6 6 6,7 1,2,3,6,7 1,2,3,6,7 - -
precision 3.683 4.659 4.878 5.793 5.256 1.793 1.939
6,7 1,6,7 1,6,7 all 1,6,7 - -
recall 3.146 2.488 2.561 3.793 4.110 5.817 6.085
2,3 - - 2,3 1,2,3 1,2,3,4,5 1,2,3,4,5
Gmeans 3.049 2.598 2.744 4.280 4.817 5.183 5.329
- - - 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4
BAC 3.073 2.537 2.683 4.744 5.110 4.695 5.159
- - - 1,2,3 1,2,3 1,2,3 1,2,3
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Mean ranks for KNN, pool size = 5s
F1 score

Mean ranks for KNN, pool size = 15s
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Figure 3.15: Mean ranks for kNN classifier.

value, the better.

Table 3.13: Statistical tests on mean ranks for kNN with pool size = 5. The higher the average rank

kNN SBO KNORA-UO DESIRE-P DESIRE-PO DESIRE-PN  DESIRE-PNO
(L (2 3) 4 (5) (6) (M
Fy score 3.902 4.963 4.134 4.780 4.878 2.878 2.463
6,7 1,3,6,7 6,7 6,7 6,7 - -
precision 5.354 4.695 3.854 5.207 4.293 2.732 1.866
5,6,7 3,6,7 6,7 3,5,6,7 6,7 7 -
recall 1.354 4.695 4.841 2.341 4.146 4.500 6.122
- 1,4 1,4 1 1,4 1,4 all
Gmeansg 1.451 4.866 4.500 2.683 4.610 4.524 5.366
1,4 1,4 1 1,4 1,4 1,3,4,5,6
BAC 1.561 4.841 4.573 2.768 4.744 4.354 5.159
- 1,4 1,4 1 1,4 1,4 1,4,6
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Observations

The results presented confirm that dynamic selection methods specifically adapted for
classifying imbalanced data can achieve statistically better results than ensemble methods
coupled with preprocessing, especially when the pool of base classifiers is relatively small.
This may be because Bagging has not yet stabilized while the proposed method selects
the best single classifier. The Positive approach, in which the weights of the models were
changed only when the instances belonging to the local competence region were correctly
classified, proved to be more balanced with respect to all 5 evaluation measures. This
could indicate excessive weight penalties for misclassification in the PositiveédNegative
approach. When kNN is used as the baseline classifier, the proposed methods performed
statistically similar to KNORA-U for a small pool, and they ranked statistically worse
compared to the reference methods for a larger number of classifiers. This is probably
due to the method used to compute the support in the kNN, which is not suitable for the
algorithms proposed in this work. For GNB and CART, DESE-P and DESIRE-P achieved
results that are statistically better or similar to the reference methods, often without the

use of preprocessing, since it has a built-in mechanism to handle the imbalance.

Answers to research questions

The answers to the previously formulated research questions are as follows:

Q1. Does taking into account the Euclidean distance to a given neighbor of a classified
sample in the process of local competency estimation allow the proposed algorithm

to deal with the imbalanced data classification problem?

Al. The obtained results confirmed that taking into account the Fuclidean distance to a
given neighbor of a classified sample in the process of local competency estimation
may allow the proposed algorithm to deal with the imbalanced data classification

problem.

Q2. Does the introduction of the weighting of the Euclidean distance using the imbal-
ance ratio in such a way as to put more emphasis on the minority class lead to an

increase in the algorithm’s ability to detect a given class?

A2. The conducted experiments confirmed that, in the case of All variant, the intro-
duction of the weighting based on imbalance ratio may lead to an increase in the

algorithm’s ability to detect a minority class instances.






Chapter 4

Algorithms for imbalanced data

stream classification

This chapter is focusing on combining two of the important research topics associated
with data analysis, i.e., data stream classification as well as data analysis with imbalanced
class distributions. It introduces new algorithms designed specifically for these kinds of
tasks, employing methods of Dynamic Ensemble Selection. Simultaneously introducing

new ways to use DES algorithms in the imbalanced data stream classification.

First, the novel highly imbalanced data stream classification method, employing a clas-
sifier selection approach in order to focus on the detection of the minority class, which

can update its model when new data arrives is proposed.

Next, two novel frameworks employing integrating data preprocessing and dynamic en-
semble selection methods for imbalanced data stream classification are introduced. In
the first case, single pattern recognition models are used as base classifiers, while the

second approach employs Stratified Bagging for base classifier generation.

99
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4.1 Mainority Driven Ensemble

In this section, the algorithm Minority Driven Ensemble (MDE) is proposed to address
the problem of classifying highly imbalanced data streams with concept drift. The pro-
posed MDE method was intended to fill the gap in algorithms for classifying imbalanced
data streams that was hinted at in Chapter [[I Many real-world data streams have high
Imbalance Ratio , and existing methods dedicated to this problem often have high com-
putational complexity. Therefore, the assumption in the design of MDE was to achieve
relatively low computational complexity by using a simple approach to building and
maintaining an ensemble of classifiers and the absence of data preprocessing techniques
in the form of undersampling or oversampling. The ensemble construction in MDE is
based on the SEA algorithm, and the prediction process uses a novel combination rule
based on the notion of classifier selection. Therefore, the proposed method fits the ap-

proaches from the inbuilt mechanism group.

Ensemble construction

The proposed algorithm does not detect a concept drift occurrence, but instead employs
a mechanism allowing it to construct self-adapting classifier ensemble. For each data
stream chunk DSy, the k-Nearest Neighbors classifier is trained based on the data de-
voided of outliers according to 5-neighbor taxonomy | (i.e., samples from minority

class for which five nearest neighbors are majority class examples).

If the fixed ensemble size N4z s exceeded, the worst rated individual classifier according
to the Balanced Accuracy Score (BAC) is removed from the classifier pool II. Additionally,
at each step all models with BAC are lower than 0.5 4+ a, where « is the algorithm’s
parameter responsible for the outdated models removing rate, are removed from II. The
pseudocode of the presented method is shown in Algorithm [Bl The description of the

functions used in the training phase pseudocode is as follows:
e REMOVEOUTLIERS() — removes the outliers from the current data chunk DSy
according to 5-neighbor taxonomy.
e TRAIN() — builds new classifier U;, on the current data chunk DSy.

e EVALUATE() — calculates the balance accuracy score on current data chunk DSy

for each base classifier ¥; € II in order to use it later in the pruning process.
e PRUNETHRESHOLD() — removes from pool IT all models with BAC lower than .

e PRUNEWORST() — removes from pool IT the model with the lowest BAC.
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Algorithm 6 Training phase of the MDE algorithm

Input:
Stream = {DS1,DSs, ..., DS, DSky1, ...} — data stream,
Numaz — Maximal number of base models,
a — outdated models removing rate,
Symbols:
II — classifier pool,
Sy — set of evaluation metric values for each base classifier,

11+ o
2: for each k, DS, = {z},22,..., 20} in Stream do
3: S+ o
4: if k == 0 then
5: DS}, <~ REMOVEOUTLIERS(DS)
6: U < TRAIN(DSy)
7 II + v,
8: else
9: Sk = EVALUATE(IL, DSy,)
10: if | II|> 1 then
11: IT <~ PRUNETHRESHOLD(IL, Sk, )
12: if [ II |> nypae — 1 then
13: IT <~ PRUNEWORST(IL, Sk)
14: DS), < REMOVEOUTLIERS(DSy)
15: U < TRAIN(DSy)
16: II + v,
17: end for
Prediction

During the prediction process if at least one individual classifier returns a non-zero sup-
port for minority class —i.e., among k nearest neighbors, at least one belongs to minority

class — then the instance is classified as the minority class example.

The concept of the proposed combination rule is presented in Figure L1l The first three
subplots present the decision border implementing the principle of minimum support
for three subsequent processed data chunks during subtle changes in the minority class
distribution. The last subplot (on the right) shows the illustration of the mentioned

above combination rule.
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Algorithm 7 Prediction phase of the MDE algorithm

Input:
Stream = {DS1,DS,, ..., DSk, DSk+1, ...} — data stream,
IT={¥,Vy,...,U,} — classifier pool,

Output:

Decision — classification results.

1: for each k, DSy = {z},23,. .. ,ka} in Stream do

2: esmyj, = ENSEMBLESUPPORTMATRIX (I, DS})

3: msk = MAJORITYSUPPORT (esmy;)

4 mmsg = MINMAJORITYSUPPORT (msy)

5: Decision = INT(mmsy) > If support is less than 100% then 0, otherwise 1
6: end for

The description of the functions used in the prediction phase pseudocode is as follows:
e ENSEMBLESUPPORTMATRIX() — returns an array of shape (||II||, N,2) containing
base classifiers’ supports for each of N samples in a given da chunk DSy,
e MAJORITYSUPPORT() — returns only the majority class support from esmy,
e MINMAJORITYSUPPORT() — returns the minimum of msy,

e INT() - return an integer object constructed from given values of minimal majority

support mmsg.

Figure 4.1: Binary prediction as non-zero support for a minority class (three on the top) and a mazi-
mum from the pool (on the bottom).
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Computational and memory complexity analysis

Both the removal of outliers and the classification process are performed using the k-
Nearest Neighbors based on the Fuclidean distance. Each distance computation has the
complexity of O(d), where d is the problem’s dimensionality. Distance is calculated from
each classified instance in DSy, to all samples used to train a given kNN classifier ¥,
which results in O(dN) runtime, where N is a cardinality of each data chunk. Then,
kNN selects k neighbors for each sample in DSy, which requires O(kN). This, in total,
results in the computation complexity of O(dN + kN).

During the prediction process, for each of N problem instances in a given data chunk
DSk, MDE calculates the minimal majority support in order to find a model with a non-
zero support for minority class. This operation is a modification of support accumulation

combination rule and has a computational complexity of O(n).

4.1.1 Experimental evaluation

This subsection presents the motivation, goals and set-up of the performed experiments,

as well as their results.

Research questions

The experiments were designed to answer the following questions:

Q1. Can the use of the proposed strategy based on non-zero support for a minority
class lead to better results in the case of highly imbalanced data stream than those

obtained by classical Dynamic Ensemble Selection algorithms?

Q2. Is the proposed method, based largely on the neighborhood defined by the ANN

classifier, resistant to label noise and concept drift occurrence?

Goals of the experiments

Ezxperiment 1 — Hyperparameters optimization

The main goal of the first experiment was to tune the two hyperparameters of MDE:
® N — ensemble size,
e o — pruning parameter responsible for the outdated models removing rate.

Both mean BAC values and statistical dependence for multiple values of these two pa-

rameters were reported.
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Experiment 2 — Comparative analysis of classifier selection methods

During the second experiment, the performance of MDE was compared to the four ref-
erence Dynamic Selection (DS) techniques implemented in DESIib |57]. The comparison
was made in terms of Imbalance Ratio value, concept drift type and the level of label

noise.

Experimental set-up

The experiments were carried out based on 96 diverse data streams generated using the
stream-learn |141] package. Each of the streams contains the total of 100 ooo instances,
divided into 200 chunks of 500 objects described by 8 features, and contains 5 concept
drifts. The variety of generated data streams was obtained by generating 3 replication

of each combination of the following parameters:

e the imbalance ratio — successively 10, 20, 30 and 40% of the minority class,
e the level of label noise — successively o, 10, 20 and 30%,

e the type of concept drift — gradual or sudden.

Additionally, during Experiment 2, the proposed method was evaluated on the 5 real
data streams described in Table 1]

Table 4.1: Real data streams characteristics.

Data stream #Samples #Features IR
covtype Norm-1-2vusAll 266 000 54 4
poker-lsn-1-2vsAll 360 000 10 10
INSECTS-abrupt_imbalanced_ norm 300 000 33 19
INSECTS-gradual_imbalanced_ norm 100 000 33 19
INSECTS-incremental imbalanced norm 380 000 33 19

The evaluation of MDE is based on six metrics widely used in the case of imbalanced clas-
sification problems. As a reference methods, two Dynamic Ensemble Selection and two
Dynamic Classifier Selection algorithms were selected. The number of nearest neighbors
k used to define the local area of competence for Dynamic Selection methods was set at
7. This choice is aimed at comparing the proposed MDE methods with the state-of-the-
art Dynamic Selection approaches in the task of imbalanced data stream classification.

Detailed set-up is presented below:

e Evaluation measures — balanced accuracy score (BAC), Gmeans, Fy score, precision,

recall, and specificity,
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e Reference methods:

— DES — KNORA-Eliminate (KNORA-E) and KNORA-Union (KNORA-U),

— DCS — Modified Classifier Ranking (Rank) and Local classifier accuracy (LCA).

The evaluation was carried out using Test-Then-Train protocol. The dynamic selection
dataset (DSEL) for the DS methods was defined as the previous data chunk with the
Random Qwversampling performed on it. Conducted experiments as well as the MDE
algorithm were implemented in Python prOjjamming language and may be repeated

according to source code published on Githull.

Experiment 1 — Hyperparameters optimization

The following experiment was performed on the data stream with an Imbalance Ratio of
1:9 and 1% global label noise. Sudden and gradual concept drifts were tested separately.
The results of hyperparameter optimization are shown in Figure 2] which shows the
relationship between the parameter o (X-axis) and the ensemble size (Y-axis). Each
value corresponds to the mean BAC obtained from MDE for given values of 1,4, and
a. The colors correspond to the statistical dependencies between the mean BAC values,

according to the Wilcozon rank-sum test.
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Figure 4.2: Optimization of MDE hyperparameters for sudden and gradual concept drift in relation to
the Balanced Accuracy Score.

Increasing the size of the ensemble initially stabilizes the BAC, but over time degrades
the ability of the ensemble to respond to the concept drift. Increasing the removal rate «
parameter initially compensates for the degradation of the concept drift response time,

but at the same time negatively affects the BAC value.

The Nyer = 3 and the o = 0.05 were chosen for further experiments.

"https://github.com/w4k2/classifier-selection
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Experiment 2 — Comparative analysis of classifier selection methods
Figure 3] shows the influence of random over-sampling on reference methods perfor-
mance on data streams with high Imbalance Ratio (1 : 9). The use of oversampling

equates the performance of all tested DS methods.
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Figure 4.3: Reference methods performance with (left) and without oversampling (right).

Figure 4] shows how the performance of the methods depends on the Imbalance Ratio.
The proposed MDE is very effective for highly imbalanced data streams (10%, 20% of
minority class samples). Increasing the percentage of minority class to 30% reduces
the differences between MDE and the reference methods. In the cases of low imbalance
data (40% of minority class), MDE performs worse than the reference Dynamic Selection

methods.
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Figure 4.4: Influence of imbalance scale on the quality of classification.

The aim of the experiment is to demonstrate the ability of the proposed method to

classify highly imbalanced data, so all further results are presented for streams with a
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percentage of a minority class not greater than 20%.

Figure @5 presents the relation between the classification quality and the type of concept
drift. The type of the concept drift does not affect the relation between the analyzed

classification methods. In either case MDE outperforms the benchmark classifiers.
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Figure 4.5: Influence of concept drift type on the quality of classification.

Figure[L.6shows the relation between the performances of the individual methods and the
label noise ratio. The increase of noise has a negative effect on the overall generalization
ability.
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Figure 4.6: Influence of label noise on the quality of classification.

The statistical analysis of the experimental evaluation is presented in Table It
confirms that MDE performs better than the benchmark classifier selection methods in
most cases. Only for slightly imbalanced data, i.e., when Imbalance Ratio is small
(30% of minority examples), MDE is not statistically significantly better than KNORAU
and KNORAE. For nearly balanced data streams (40% of minority examples), RANK,

KNORAU, and KNORAE are better than MDE.
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Table 4.2: Presentation of statistical dependency of methods in all analyzed contexts. Bold points the
highest BAC value for a given context.

value MDE K-E K-U Rank LcCA

Minority class percentage

10% 0.697 0.632 0.637 0.631 0.634
20% 0.780 0.738 0.741 0.736 0.735
30% 0.796 0.794 0.794 0.792 0.786
40% 0.788 0.821 0.821 0.820 0.811

Drift types

incremental 0.731 0.675 0.680 0.675 0.674
sudden 0.747 0.694 0.698 0.693 0.694

Label noise

0% 0.851 0.770 0.776 0.769 0.773
10% 0.753 0.700 0.704 0.699 0.699
20% 0.701 0.656 0.659 0.655 0.654
30% 0.651 0.614 0.617 0.613 0.611

Additionally, Figure [£.7] shows the results achieved by MDE in comparison with reference
methods for the task of the real imbalanced data stream classification. Radar charts
show the averaged values of the evaluation metrics achieved by each method, while the

runs depict balanced accuracy values over the entire length of the data stream.

It is worth noting that in the case of the covtypeNorm stream, which is characterized
by the lowest Imbalance Ratio among all real data streams, MDE achieves the results at
the level of the reference methods and, additionally, does not display a visible decrease
presented by the reference methods at the end of the presented run. There is also a
decrease in the precision value at the expense of a slight increase in recall, which indicates

that the method prefers the minority class.

In the case of a poker stream, where the Imbalance Ratio is higher, the potential of the
proposed method can be seen. Despite the precision value at the level of the reference
methods, the MDE presents a much better ability to detect minority class at the cost
of a decrease in specificity. Additionally, the presented method achieves a much higher
Gmeang value, and a slightly better Fy score, and Balanced Accuracy Score. The pre-
sented run shows that MDE, in the case of poker stream, can achieve up to 80% Balanced

Accuracy Score.
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Figure 4.7: Results of the MDE comparison with reference methods for real data streams.

The results achieved on the INSECTS streams, which display the highest imbalance, are

also interesting. In the case of the stream with gradual concept drift, it can be seen that
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the proposed method achieves significantly higher results in terms of BAC, Gmeang, F}
score, and recall, with the specificity value equal to the reference methods. All this is
achieved at the cost of a slight decrease in precision. The presented run shows that MDE

maintains a high value of Balanced Accuracy Score along the entire length of the stream.

The potential of the method is visible especially in the results obtained on INSECTS
streams containing sudden and incremental concept drift. Despite their difficulty and
the fact that the reference methods achieve results close to the random classifier, MDE
is able to break out of this minimum at times, showing its potential to deal with even

extremely difficult problems.

Observations

Based on the conducted experiments, it can be assert that, especially for highly imbal-
anced data streams, MDE is statistically significantly better that state-of-the-art classifier
selection methods. Additionally, MDE is quite robust to label noise and does not allow
for significant deterioration of its classification performance in the case of concept drift
appearance. It is also worth noting that the behavior displayed by MDE on synthetic
streams was confirmed in experiments using real data streams. In their case, MDE also
showed the potential to deal with highly imbalanced problems. Interestingly, in the case
of the covtypeNorm stream, the generalizing ability of the proposed method did not seem

to deteriorate, as in the case of synthetic streams with a lower I'mbalance Ratio.

Answers to research questions

The answers to the previously formulated research questions are as follows:

Q1. Can the use of the proposed strategy based on non-zero support for a minority
class lead to better results in the case of highly imbalanced data stream than those

obtained by classical Dynamic Ensemble Selection algorithms?

Al. The obtained results confirmed that the MDE algorithm may outperform the state-
of-the-art Dynamic Selection methods in the task of highly imbalanced data stream

classification.

Q2. Is the proposed method, based largely on the neighborhood defined by the ENN

classifier, resistant to label noise and concept drift occurrence?

A2. The conducted experiments confirmed the resistance of the MDE to both global

label noise and concept drift occurrence.
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4.2 Dynamic Ensemble Selection for Imbalanced Stream

Classification

This section introduces the Dynamic Ensemble Selection for Imbalanced Stream Clas-
sification (DESISC) framework for the task of drifting imbalanced data stream classi-
fication. The ensemble’s construction is based on the Streaming Ensemble Algorithm
(SEA) concept |, with an additional threshold-based pruning, and various oversam-
pling techniques are used to deal with class imbalance. The motivation for this proposal
was, among others, the shortage of methods dedicated to the imbalanced data stream
classification stream, presented in Chapter 1. An additional goal was to propose a novel
use of Dynamic Ensemble Selection in combination with preprocessing for imbalanced
classification, which so far has been considered in the literature rarely and only for static
data |. By using Dynamic Selection, taking into account the local competencies of
the base classifiers, DESISC has a chance to deal not only with imbalance but also with

the concept drift phenomenon, even without the use of preprocessing techniques.

DESISC framework

Each based model Wy learns from the LS} training set which is obtained by prepro-
cessing DSy. DSEL) denotes dynamic selection dataset for the kth data chunk and it
is considered as previously preprocessed DSy_;. Each new trained classifier (one per
each data chunk) is added to the ensemble until the maximum ensemble size N4, iS
achieved. Then if new model is added, each classifier in the ensemble is evaluated (ac-
cording to BAC) and the worst one is removed. Additionally, at each step, all models
which BAC scores are lower than a given threshold o are removed from the ensemble.
Pruning process is performed before adding kth classifier to the pool. The concept be-
hind the proposed framework is presented in Figure .8 and the pseudocodes for training

and prediction phase is shown in Algorithms [§ and [@

In the pseudocodes, the following functions were used:

PREPROCESS() — generates the learning set £S; by applying the chosen prepro-
cessing method to the kth data chunk,

e TRAIN() — builds a new base classifier W, on the learning set LSy generated by

applying preprocessing to the kth data chunk,

e EVALUATE() — calculates the balance accuracy score on current data chunk DSy

for each base classifier ¥; € II in order to use it later in the pruning process.

e PRUNETHRESHOLD() — removes from pool II all models with BAC lower than «,
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Figure 4.8: The framework for training base classifiers and to prepare a DSEL for dynamic selection
process. Here, LSy is the learning set produced by preprocessing data chunk DSy and ¥y is the base
classifier trained on the kth data chunk. 11 denotes the classifier pool.

e PRUNEWORST() — — removes the worst-performing base classifier from the pool IT
if the fixed maximum classifier pool size (Nmq.) is exceeded after adding a new

model,

e PREDICT() — uses a given classifier pool (or list of ensembles in case of dynamic

selection) to classify each instance in given data chunk,

e DYNAMICSELECTION() — uses a given dynamic ensemble selection method to gen-
erate a list of ensembles for classifying each test instance. In this work Dynamic
Ensemble Selection can be performed on two levels - bagging classifier level or base

estimators level.

In the beginning the classifier pool II is empty. The first classifier ¥ is generated using
the preprocessed zero chunk (Algorithm [ steps 4, 5 and 6). When the first data chunk
arrives, the Wy is used to classify it. Then, the learning set LS is stored as the DSEL for
the Dynamic Ensemble Selection process performed when next chunk arrives (Algorithm
step 5 and 6). £S7 is also used to train second base model (Algorithm [§ steps 4, 5 and

6). Then, with the arrival of each chunk, the following steps are performed:
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Algorithm 8 Training phase of the DESISC framework

Input:
Stream — data stream,
Nmaz — Maximum fixed size of the classifier pool,
«a — pruning threshold,
Symbols:
Sy, — set of evaluation metric values for each base classifier,
DSy, — data chunk,
U, — bagging classifier,
IT — bagging classifiers pool.

1 I+ o

2: for each k, DS, = {z},22,..., 20} in Stream do

3: if k <=1 then > First data chunk.
4: LSy = PREPROCESS(DS};)

5: Uy, < TRAIN(LSE) > Bagging classifier generation
6: I+ vy, > Adding bagging classifier to the pool
7 else > Third and all subsequent data chunks.
8: Sk = EVALUATE(IL, DSy,)

9: if |II |> 1 then > Removing worst classifier if 1,4, is exceeded.
10: IT + PRUNETHRESHOLD (II, S, «)
11: if | I |> npee — 1 then > Removing worst classifier if 1,4, is exceeded.
12: IT + PRUNEWORST(II, Sk )

13: LSy = PREPROCESS(DS},)

14: U, <~ TRAIN(DSy)

15: II + U

16: end for

Algorithm 9 Prediction phase of the DESISC frameworks

Input:
Stream — data stream,
II — pool of bagging classifiers.
Symbols:
DS}, — data chunk,
IIp, — classifier ensemble selected using dynamic selection,
DSELy, — dynamic ensemble selection dataset for the kth data chunk.

1: for each k, DSy = {z},23,...,2Y} in Stream do

2 if K ==0 then > First data chunk
3 Pass > No prediction
4 else if £k == 1 then > Second data chunk
5: Decision < PREDICT (DS, IT) > Prediction using the whole pool
6 DSELj 41 < PREPROCESS(DSy) > Storing DSEL for next step
7 else > Third and all subsequent data chunks
8 IIp, < DYNAMICSELECTION(II, DSELy, DSy) > Dynamic selection
9: Decision < PREDICT(DSy, Ip,) > Prediction using selected pool
10: DSELj 41 < PREPROCESS(DSy)

11: end for
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1. Previously stored learning set is used as DSEL for the dynamic selection process
to create the list of ensembles for classifying each instance in DSy (Algorithm
step 8).

2. The ensembles selected by the chosen DES method are used to classify all instances

int he current data chunk (Algorithm [ step 9).

3. The current data chunk DSy is preprocessed and stored as DSEL for the next
Dynamic Ensemble Selection process (Algorithm [ step 10).

4. All base models in classifier pool II are evaluated based on BAC in order to use this

information for ensemble pruning (Algorithm [ step 8).

5. All base classifiers with BAC lower than a given threshold « are removed the the

ensemble (Algorithm [8 steps 9 and 10).

6. The worst performing classifiers is removed from the ensemble is the maximal pool

size Ny 1s exceeded (Algorithm B steps 11 and 12).

7. Using preprocessing, the learning set LSy, is generated, on the basis of which a new
classifier is build and then added to the pool IT (Algorithm [ steps 13, 14 and 15).

Computational and memory complexity analysis

Because the assumption of limited resources is crucial for the data stream processing,
then let us estimate the computational complexity of the proposed framework. The
proposed chunk-based framework for the imbalanced data stream classification is based
on the methods of dynamic classifier selection as well as on preprocessing techniques
(both oversampling and undersampling). For this reason, the key factors affecting the
computational complexity of the presented approaches are, respectively, the number of
models in the classifier pool for dynamic selection methods and the number of problem

instances in a single data chunk in the case of preprocessing techniques.

Based on preliminary observations, it was established that the Dynamic Ensemble Se-
lection methods (both KNORA-U and KNORA-E) have a linear time complexity of O(n)
depending on the number of base classifiers in the pool. The preprocessing techniques
used in the work have, respectively, the logarithmic complexity of O(log n) (ROS and
RUS), the quadratic complexity of O(n?) (Borderline2-SMOTE) @], and the complexity
of O(n log n) (CNN). SMOTE has the computational complexity of O(n logs n) |.
Additionally DES-KNN performs calculation of pairwise disagreement measure (O(n?)),

and DES-CL employs the k-means clustering algorithm. The k-means computational
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complexity is O(necde), where ¢ is the number of clusters, d is the number of data di-
mensions, and e describes the number of iterations/epochs [26]. Complexity is reduced

to O(nce), as the clustering space is one-dimensional.

Because a fixed size of the data chunk N is always set, the complexity of the proposed
algorithms depends only on the number of classifiers from which the selection is made
(denoted as | IT |).

4.2.1 Experimental evaluation

Here, the motivation, goals and set-up of the performed experiments are presented.

Research questions

The experiments were designed to answer the following questions:

Q1. Can the use of Dynamic Selection, taking into account the local competencies of the
base classifiers, improve the ensemble’s performance in the case of the imbalanced

data stream with concept drift?

Q2. Can combining DES with data preprocessing improve the ensemble’s performance

in the case of the imbalanced data stream with concept drift?

Q3. Which DES methods and preprocessing techniques are best suited for the classifi-

cation of a data stream with a given concept drift type and Imbalance Ratio?

Goals of the experiments

Ezperiment 1 — Imbalance Ratio tmpact

The aim of the first experiment is to test how DSEISC, with different combinations of
Dynamic Ensemble Selection methods and preprocessing techniques, behaves when clas-

sifying data streams with various Imbalance Ratios.

Experiment 2 — Concept drift type tmpact
The aim of the first experiment is to evaluate how DSEISC, with different combinations
of Dynamic Ensemble Selection methods and preprocessing techniques, behaves when

classifying data streams with various types of concept drift.

Experimental set-up
The proposed framework was evaluated using 72 artificially generated data streams.

Each stream is composed of one hundred thousand instances divided into 200 chunks of
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500 objects described by 8 features, and contains 5 concept drifts. The base concepts
were generated using the stream-learn package. The variety of streams was ensured by
generating 3 replications with different random seed for each combination of the following

parameters:

e the imbalance ratio — successively 10, 20, 30 and 40% of the minority class.
e the level of label noise — successively o, 10 and 20%.

e the type of concept drift — sudden or incremental.

As the experimental protocol, the Test-Than-Train framework ] was used, i.e., every
classification model is trained on a recent data chunk, but it is evaluated on the basis of
the following one. Evaluation of the DESISC was based on wetrics typical for imbalanced
data classification problem. The value of pruning threshold o was set to .55, i.e., all
base classifiers which BAC lower than .55 were removed from ensemble. This value was
chosen in order to leave in the classifier pool only the models that performed slightly
better than the random classifier. The maximum size of the classifier pool 1., was set
to 20. Neighborhood size for Dynamic Ensemble Selection methods was k = 7. Set-up

details are listed below:
e Evaluation measures — Balanced Accuracy Score (BAC) and Geometric mean score
(Gmeans),
e Base classifier — Classification and Regression Tree (CART),

e Dynamic Selection Methods — KNORA-Eliminate (KNORA-E), KNORA-Union (KNORA-

U), DES-kNN, DES-Clustering (DES-CL),

e Data preprocessing techniques — SMOTE, SVM-SMOTE, Bordeline-SMOTE in two

variants (B1-SMOTE & B2-SMOTE), Safe-level SMOTE (SL-SMOTE), and ADASYN,
e Reference method — DESISC without DES and preprocessing, leaving a classifier pool

combined using support accumulation (SACC).

Experiments were implemented in Python prb(Egramming language and may be repeated

according to source code published on Githubd.

"https://github.com/w4k2/ECML19- IoT-DES-preproc
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Experiment 1 — I'mbalance Ratio impact

The results of Experiment 1 according to BAC (a) and Gmeans (b) for different IR values
are presented in Tables 3l and 4 and in Figures 912, Bold indicates the statistically
significant best combination method, while brackets indicate the statistically significant
best preprocessing algorithm for a given combination strategy. Small numbers below the
results indicate the indices of methods that are statistically significantly outperformed by
the considered combination strategy (best in row), while small letters represent prepro-
cessing methods that are statistically significantly outperformed by the considered one
(best in column). Statistical analysis was performed using the Wilcozon Signed Rank
Test (p < .05). The radar charts show how each data preprocessing technique affected
the performance of a particular Dynamic Ensemble Selection method, and are followed
by the classification results for the best performing Dynamic Selection methods in con-
junction with the most effective data preprocessing techniques. The methods presented
were selected based on statistical evaluation and are compared with the support accu-
mulation of the entire classifier pool and with the results obtained using only Dynamic

Ensemble Selection or preprocessing.

10% of minority class - BAC 10% of minority class - G-mean
Naive Naive
5 5
@ % @ %
& Z & Z
a 2 a 2
3 % 3 %
N N
S ™ & o
@ @
Q Q

9, N 9, N
& 9 & 9
4’4,4/ ‘(\\\QQ} 4’4/4/ ‘(\\\QQ}
—— None —-—- SVM-SMOTE -—-- B2-SMOTE —— ADASYN —— None —-—- SVM-SMOTE —-- B2-SMOTE —— ADASYN
—— SMOTE —— B1-SMOTE = ----- SL-SMOTE —— SMOTE —— B1-SMOTE  ----- SL-SMOTE

Naive-None KNN-None ___ KNORAU-SVM __ Naive-B2 KNNB2 Naive-None KNN-None ___ KNORAU-SVM _ Naive-2 KNN-B2
0.650 0743 0.771 068 0763 0544 0705 0.742 0598 0752
Naive-SVM KNN-SVM KNORAU-B2 KNORAU-B2

0677 — 0770 “TT 072 751

KNORAU-None KNORAU-None Naive-SVM KNN-SVM
0.729 0.676 0.591 0752

0.9 0.9

Balanced accuracy

o 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
chunks chunks

Figure 4.9: Comparison of different sampling approaches for different classifier ensembles with respect
to performance measures (BAC and Gmeans) for imbalance ratio 1 : 9.
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Table 4.3: Results of the Wilcozon Signed Rank Test for various Imbalance Ratios in relation to BAC.

19 TR SACC KNORA-E KNORA-U DES-kNN DES-C1
’ (1) (2) (3) (4) (5)
None (a) 0.650 0.717 0.729 0.743 0.725

1 1,2,5 All 1,2
9 - - / -
SMOTE () 0.664 0.741 0.768 0.762 0.754
1 All 1,2,5 1,2
a,d,f.g ae,f,g a,d,f a,f,g a,d.f.g
SVM-SMOTE () 0.677 [0.751] 0.771 [0.770] [0.762]
1 All 1,2,5 1,2
a,b,d,f,g All ab,d,f,g All All
B1-SMOTE (4) 0.657 0.741 0.763 0.762 0.750
- 1 All 1,2,5 1,2
a,f,g a,e, f,g a,f a,f,g a,f
B2-SMOTE (c) [0.681] 0.738 [0.772] 0.763 0.755
- 1 All 1,2,5 1,2
All a,f All a,b,f,g a,b,d,f,g
SL-SMOTE (f) 0.651 0.718 0.740 0.741 0.728
- 1 1,2,5 1,2,5 1,2
9 - a o :
ADASYN (g4) 0.649 0.738 0.768 0.758 0.752
- 1 All 1,2,5 1,2
- a,f a,d,f a,f a,d,f
2:8 IR SACC KNORA-E KNORA-U DES-kNN DES-C1
’ (1) (2) (3) (4) (5)
None (q) 0.744 0.779 0.809 0.814 0.800
- 1 1,25 all 1,2
! f
SMOTE () 0.757 0.793 0.829 0.820 0.815
- 1 All 1,2,5 1,2
a,d,f.g a,e f,g a,f ae,f,g a,dye, f,g
SVM-SMOTE (.) 0.771 [0.801] [0.833] [0.826] [0.820]
1 All 1,2,5 1,2
a,b,d,f,g All All All All
B1-SMOTE (4) 0.754 0.793 0.829 0.820 0.813
- 1 All 1,2,5 1,2
a,f,g a,e,f,g a,f a,be, f.g a,e,f
B2-SMOTE (e) [0.773] 0.782 0.830 0.814 0.811
- 1 All 1,2,5 1,2
All a,f ab,d,f.g f a,f
SL-SMOTE (y) 0.747 0.776 0.819 0.805 0.800
- 1 All 1,2,5 1,2
a,g - a - a
ADASYN (4) 0.744 0.788 0.830 0.814 0.813
- 1 All 1,2 1,2
- ase, f a,b,d,f f ae f
37 IR SACC KNORA-E KNORA-U DES-kNN DES-CI1
) (1) (2) (3) (4) (5)
None (q) 0.800 0.806 0.846 0.844 0.834
- 1 All 1,2,5 1,2
ef e, f.g f
SMOTE (3) 0.806 0.815 0.856 0.846 0.841
- 1 All 1,2,5 1,2
a,f,g a,d,e,f,g a,f a,d,e,f,g a,d,e,f,g
SVM-SMOTE () 0.816 [0.819] [0.858] [0.847] [0.843]
- - All 1,2,5 1,2
ab,d,f,g All All All All
B1-SMOTE (4) 0.808 0.813 0.856 0.844 0.839
- 1 All 1,2,5 1,2
ab,f.g ae,f.g ab.e,f e.f.g ae,f
B2-SMOTE (¢) [0.819] 0.800 0.855 0.836 0.835
2 - All 1,2 1,2
All - a,f f a,f
SL-SMOTE () 0.802 0.801 0.850 0.833 0.831
2 All 1,2,5 1,2
a,g - a - -
ADASYN (g4) 0.800 0.809 0.856 0.838 0.839
1 All 1,2 1,2,4
- ae,f ab.e,f e.f ae,f
16 IR SACC KNORA-E KNORA-U DES-kNN DES-C1
) (1) (2) (3) (4) (5)
None (4) 0.827 0.819 0.864 [0.857] 0.851
2 - All 1,2,5 1,2
- e.f.g - All ef
SMOTE (3) 0.828 0.823 0.867 0.856 0.853
2 - All 1,2,5 1,2
a,f,g a,d,e,f,g a,f c,d,e,f,g a,d,e,f,g
SVM-SMOTE (c) 0.834 [0.823] [0.868] 0.856 [0.853]
2 - All 1,2,5 1,2
a,b,d,f,g All All de,f.g All
B1-SMOTE (4) 0.832 0.821 0.867 0.854 0.852
2 - All 1,2,5 1,2
a,b,f.g ae,f.g abe,f e.f.9 ae,f
B2-SMOTE (c) [0.836] 0.811 0.866 0.848 0.848
2 All 1,2 1,2
All - a,f - f
SL-SMOTE (y) 0.827 0.815 0.864 0.849 0.847
2 All 1,2,5 1,2
_ . _ . _
ADASYN (g4) 0.827 0.818 0.868 0.852 0.852
2 All 1,2 1,2
- e f abe,f ef ae,f
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Table 4.4: Results of the Wilcozon Signed Rank Test for various Imbalance Ratios in relation to
Gmeans.

1:9 IR SACC KNORA-E KNORA-U DES-kNN DES-C1
(1) (2) (3) (4) (5)
None (q) 0.544 0.683 0.676 0.705 0.679
- 1.3,5 1 All 1,3
SMOTE (3) 053/69 0.729 0.742 0.748 0.733
- 1 1,2,5 All 1,2
a,d,f.g a,d,f a,d,f a,d, f a,d,f
SVM-SMOTE () 0.591 [0.735] 0.742 [0.752] 0.738
1 1,2,5 All 1,2
a,b,d,f,g All a,d,f ab,d,f,g a,b,d,f,g
B1-SMOTE (4) 0.555 0.724 0.734 0.744 0.726
1 1,2,5 All 1,2
a,f,g a,f a,f a,f a,f
B2-SMOTE (c) [0.598] 0.729 [0.751] [0.752] [0.740]
1 1,2,5 1,2,5 1,2
All a,d,f All ab,d,f,g All
SL-SMOTE () 0.544 0.702 0.705 0.723 0.702
- 1 1,25 All 1
g a a a a
ADASYN (g) 0.542 0.729 0.745 0.748 0.734
- 1 1,25 All 1,2
a,d,f a,b,c.d,f a,d,f a,d,f
2:8 IR SACC KNORA-E KNORA-U DES-kNN DES-C1
’ (1) (2) (3) (4) (5)
None (a) 0.704 0.768 0.792 0.803 0.783
1 1,2,5 All 1,2
_ _ _ 5 _
SMOTE () 0.724 0.789 0.820 0.816 0.807
1 All 1,2,5 1,2
a,d,f.g ae,fg a,f ae,f,g a,d,f
SVM-SMOTE () 0.744 [0.797] [0.825] [0.822] [0.813]
1 All 1,2,5 1,2
a,b,d,f,g All a,b,d,f,g All All
B1-SMOTE (4) 0.719 0.789 0.821 0.817 0.805
- 1 All 1,2,5 1,2
a,f,g ae f,g ab, f ab.e,f,g a,f
B2-SMOTE (c) [0.746] 0.780 [0.825] 0.812 0.806
- 1 All 1,2,5 1,2
All a,f a,b,d,f,g a,f a,d,f
SL-SMOTE (f) 0.708 0.772 0.809 0.802 0.792
- 1 All 1,2,5 1,2
a,g a a a
ADASYN (g) 0.704 0.786 0.822 0.811 0.807
- 1 All 1,2,5 1,2
- ae,f a,b,d,f a,f a,d,f
P SACC KNORA-E KNORA-U DES-kNN DES-C1
’ (1) (2) (3) (4) (5)
None (a) 0.786 0.803 0.840 0.841 0.828
1 1,2,5 All 1,2
- ef - e.f.g N
SMOTE () 0.794 0.814 0.852 0.844 0.838
1 All 1,2,5 1,2
a,f,g a,de,f,g a,f a,d.e,f,g a,de,f,g
SVM-SMOTE (c) 0.807 [0.817] [0.855] [0.846] [0.841]
1 All 1,2,5 1,2
a,b,d,f,g All All All All
B1-SMOTE (4) 0.797 0.811 0.853 0.843 0.836
- 1 All 1,2,5 1,2
a,b,f.g ae fg ab,f ae.f.g ae,f
B2-SMOTE (c) [0.810] 0.799 0.853 0.835 0.833
2 - All 1,2,5 1,2
All - ab,f f a.f
SL-SMOTE (y) 0.790 0.799 0.847 0.831 0.828
- 1 All 1,2,5 1,2
a,g - a - -
ADASYN (4) 0.786 0.808 0.853 0.837 0.836
- 1 All 1,2 1,2
- ae,f ab,f e, f ae,f
16 IR SACC KNORA-E KNORA-U DES-kNN DES-C1
’ (1) (2) (3) (4) (5)
None (a) 0.822 0.818 0.862 [0.856] 0.849
2 All 1,2,5 1,2
- ef - All e f
SMOTE () 0.824 0.822 0.865 0.855 0.851
2 All 1,2,5 1,2
a,f,9 a,d,e f,g a,f c,d,e,f,g a,dye,f
SVM-SMOTE () 0.831 [0.823] [0.867] 0.854 [0.852]
2 - All 1,2,5 1,2
a,b,d,f,g All All die,f,g All
B1-SMOTE (4) 0.828 0.820 0.866 0.853 0.850
2 - All 1,2,5 1,2
ab,f.g ae f.g abe,f e.f.g ae,f
B2-SMOTE (¢) [0.833] 0.810 0.865 0.847 0.847
2 - All 1,2 1,2,4
All - a,f - f
SL-SMOTE () 0.822 0.814 0.863 0.848 0.845
2 All 1,2,5 1,2
- e a e -
ADASYN (g4) 0.822 0.817 0.866 0.851 0.850
2 All 1,2 1,2

- ef abe,f e.f ae,f
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Figure 4.10: Comparison of different sampling approaches for different classifier ensembles with respect
to performance measures (BAC and Gmeans) for imbalance ratio 2 : 8.

Based on the statistical analysis we can see that for the 1 : 9 imbalance ratio, according
to BAC, DES-KNN was the best performing method without the use of any preprocessing.
In cases where DES was coupled with preprocessing methods, KNORA-U performed best
except for the use of SL-SMOTE, where it was not statistically better than DES-KNN.
According to Gmeang for 1 : 9 IR DES-KNN was statistically the best dynamic ensemble
selection method. For the Borderline2-SMOTE preprocessing method, both DES-KNN and
KNORA-U performed statistically similar. The best preprocessing methods were svM-

SMOTE and Borderline2-SMOTE.

For the 2 : 8 IR, both in terms of BAC and Gmeans, KNORA-U performed best when
paired with any preprocessing method. If no data preprocessing was used, DES-KNN
performed statistically significantly best. As for the preprocessing methods, in most

cases SVM-SMOTE was statistically significant, Borderline2-SMOTE performed best for

Support Accumulation of the whole classifier pool.

For the 3 : 7 imbalance ratio, KNORA-U again proved to be the statistically significantly

best Dynamic Ensemble Selection method. The only exception (according to Gmeans)
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Figure 4.11: Comparison of different sampling approaches for different classifier ensembles with respect
to performance measures (BAC and Gmeans) for imbalance ratio 3 : 7.

was the case where no preprocessing was used, then DES-KNN works best. By both
measures, the best data preprocessing method for DES was SVM-SMOTE. Borderline2-

SMOTE again performed the best for support accumulation.

In the case of 4 : 6, IR was the statistically significantly best KNORA-U method in
each case according to both BAC and Gmeangs. Borderline2-SMOTE worked best for
support accumulation and in the remaining cases SVM-SMOTE was statistically the best

preprocessing method.

Experiment 2 — Concept drift type impact

Evaluation of the DESISC in the case of different concept drift types (sudden or incre-
mental) focused on the streams with high imbalance ratios (i.e., 1:9 and 2 : 8), typical
for the real-life decision tasks. The comparison is shown in Figure and 4141 The
results of statistical analysis conducted in Experiment 2 is presented in Tables and
46l Bold indicates the statistically significantly best combination method, while brackets

are used to denote the statistically significantly best preprocessing algorithm for a given
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Figure 4.12: Comparison of different sampling approaches for different classifier ensembles with respect
to performance measures (BAC and Gmeans) for imbalance ratio 4 : 6.

combination strategy. Small numbers under the results indicate the indexes of methods
that are statistically significantly outperformed by the considered combination strategy
(best in row), while small letters stand for preprocessing methods that are statistically
significantly outperformed by the considered one (best in column). Statistical analysis

was conducted using the Wilcozon Signed Rank Test (p < .05).

For sudden drift, in terms of both measures, DES-KNN was statistically the best with-
out the use of any preprocessing method and KNORA-U was statistically leading when
paired with every oversampling method. Borderline2-SMOTE was the best for support
accumulation and for KNORA-U according to Gmeang, for the rest of Dynamic Ensemble

Selection methods SVM-SMOTE performed the best.

Finally, for incremental drift, according to BAC, DES-KNN performed statistically sig-
nificantly best without the use of preprocessing and for the SL-SMOTE while KNORA-U
was the best for other oversampling techniques. SVM-SMOTE was the best preprocessing
method for KNORA-E, DES-KNN and DES-Clustering and Borderline2-SMOTE performed

the best coupled with support accumulation and KNORA-U. According to Gmeans,
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Figure 4.13: Comparison of different sampling approaches for different classifier ensembles with respect
to performance measures (BAC and Gmeans) for sudden drift.

KNORA-U was statistically leading DES method for Borderline2-SMOTE and ADASYN while
DES-KNN was statistically significant for all other preprocessing techniques. SVM-SMOTE
worked best with KNORA-E and DES-KNN, Borderline2-sMOTE proved to be statistically

significant for support accumulation, KNORA-U and DES-Clustering.

Observations

n general, the order of the approaches presented in terms of performance, beginning with
the worst, is as follows: (7) support accumulation without using preprocessing methods,
(i) support accumulation combined with preprocessing, (i7) dynamic ensemble selection
methods without preprocessing, (iv) DES methods coupled with preprocessing methods.
The lower the imbalance ratio, the smaller the differences between the approaches, but
the order is maintained. The conducted experiments showed that the best performing
DES method among the considered strategies across all tested imbalance ratios is the
KNORA-U, which uses the weighted voting scheme. Since the KNORA-Union method

selects all the base models that are able to correctly classify at least one instance in
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Figure 4.14: Comparison of different sampling approaches for different classifier ensembles with respect
to performance measures (BAC and Gmeans) for incremental drift.

the local competence region and then combines them based on the weighted voting,
where the number of votes equals the number of correctly detected samples, it allows
us to select both an accurate and a diverse ensemble. Since these two properties are
the determinants of a good classifier ensemble model, they may be the reason for high
results of this Dynamic Ensemble Selection method. Worth mentioning is also the DES-
KNN, which is doing well for high imbalance ratios, especially for the 10% of minority
class and for incremental drift in terms of Gmeans. DES-KNN performs the best for
high 1R (10 and 20% of minority class) in case of not using any preprocessing method.
The worst performing DES method, for low IR (30 and 40%) worse even than support
accumulation, was KNORA-E. This may be due to the fact, that the local oracles are
found only for competence regions with a significantly reduced size, which negatively

affects the performance.

Based on the results achieved by DES-KNN and DES-Clustering methods it may suspected
that the k-Nearest Neighbors technique is better suited for defining the local region of

competence in case of imbalanced data streams than the clustering technique. Despite
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Table 4.5: Results of the Wilcozon Signed Rank Test for various types of concept drift in relation to

BAC.

Sudden drift SACC KNORA-E KNORA-U DES-kNN DES-CI
1) @ ® (@) ©)
None (a) 0.717 0.756 0.780 0.784 0.774
- 1 1,2,5 All 1,2
g f - I i
SMOTE () 0.732 0.771 0.803 0.793 0.790
- 1 All 1,2,5 1,2
a,d,f,g ae.fq a,d,f,g ae.f.q a,d.e,f,
SVM-SMOTE (.) 0.746 0.780] [0'507] [07800] 0797
1 All 1,2,5 1,2
ab,d, f,g All All All All
B1-SMOTE () 0.757 0771 0.801 0.794 0.788
1 All 1,2,5 1,2
a,f,g a,e,f.g a,f a,e,f,q a,e,frg
B2-SMOTE (..) [0.749] 763 0.805 0.789 0.786
1 All 1,2,5 1,2
All a,f a,b,d,f,g a,f,9 af
SL-SMOTE () 0.721 07753 0.792 0.776 0.773
1 All 1,2,5 1,2
ag o
ADASYN (4) 0.716 0.767 0.802 0.788 0.787
1 All 1,2 1,2
- a.e,f a,d,f a,f a,f
Ineremotal drift sacc KNORA-E KNORA-U DES-kNN DES-CI
(1) 2) (3) (4) (5)
None (a) 0.677 0.741 0.757 0.773 0.751
1 1,2,5 All 1,2
SMOTE () 0.689 0.762 0.793 0.8 0.778
- 1 All 1,2,5 1,2
a,d,f.g a,e, f,q ad,f a,f,g a,d,f
SVM-SMOTE (.) 0.70% o771 0.796 [0.796] [0.785]
- 1 All 1,2,5 1,2
ab,d,f,g All a,b,d,f.g All All
B1-SMOTE (4) 684 0762 0791 0.789 0775
- 1 All 1,2,5 1,2
a,f,g a,e, f,g a,f a,e, f,g a,f
B2-SMOTE (.) [0.704] 757 [0:797] 0.789 0.780
- 1 All 1,2,5 1,2
All af All a.f.g a,b,d,f.g
SL-SMOTE (;) 0.677 0:711 0.767 0.770 0.756
- 1 1,2,5 All 1,2
g . .
ADASYN (y) 0.676 0.759 0.795 0.784 0.778
- 1 All 1,2,5 1,2
- ae,f ab,d,f a,f a,d, f
Table 4.6: Results of the Wilcozon Signed Rank Test for various types

Gmeans.

of concept drift in relation to

Sudden drift SACC KNORA-E KNORA-U DES-KNN DES-C1
(1) (2) (3) (4) (5)
None (o) 0.657 0.735 0.750 0.762 0.748
- 1 1,2,5 All 1,2
SMOTE (3) 0.679 0.764 0.787 0.784 0.777
1 All 1,2,5 1,2
a,d,f,g a,d.e, f.g a,d,f a,d.e, f,g a,d,f
SVM-SMOTE (..) 0.700 [0.771] 79 [0.789] [0.783]
- 1 All 1,2,5 1,2
a,b,d,f.g All ab,d,f.g All All
BI-SMOTE () 672 0.761 0.783 0.783 0.773
- 1 All 1,2,5 1,2
a,f,g a.e,f a,f a,f,g a,f
B2-SMOTE () [0.706] 0.758 [0.793] 0.783 0.778
- 1 All 1,2,5 1,2
All a,f All a,d,f.g a.d,f.g
SL-SMOTE () 0.662 0.745 0.775 0.767 0.761
- 1 All 1,2,5 1,2
a9 a o a “
ADASYN (,) 0.656 0.761 0.788 0.781 0.776
- 1 All 1,2,5 1,2
- a,e, f a,b.d,f a.f a,d,f
Incremetal drife SACC KNORA-E KNORA-U DES-kNN DES-C1
(1) (2) (3) (4) (5)
None (a) 0.592 0.717 0.718 0.746 0.714
- 1 1,2,5 All 1
SMOTE (,) 0.613 0.754 0.775 0.780
- 1 1,2,5 All
a,d,f.g a,de,f, a,d,f a,d,f.g
SVM-SMOTE (..) 0.635 fo.761] 0.777 [0.784]
- 1 1,2,5 All
a,bd,f,g All ab,d,f All
BI-SMOTE () 0,602 0.752 0.772 0.778
1 1,2,5 All
a,f.g ae,f a,f a,f
B2-SMOTE (.) [0.638] 0.751 [0.783] 0.782
- 1 All 1,2,5
All a,f All a,b,d,f,g
SL-SMOTE (y) 0.591 0.729 0.739 0.757
- 1 1,2,5 All
a o a
ADASYN (y) 0.590 0.753 0.779 0.779
1 All 1,2,5
a,e, f a,b,c,d, f a,f
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the higher computational cost, kNN allows for more precise estimation of the region of
competence which leads to more possible ensemble configurations for classifying new

instances.

On the other hand, SVM-SMOTE and Borderline2-sMOTE have proven to be the preferred
preprocessing strategies for the used dynamic ensemble selection methods. The combi-
nation of KNORA-U or DES-KNN with one of those preprocessing methods always leads

to the best classification performance.

Answers to research questions

The answers to the previously formulated research questions are as follows:

Q1. Can the use of Dynamic Selection, taking into account the local competencies of the
base classifiers, improve the ensemble’s performance in the case of the imbalanced

data stream with concept drift?

Al. The obtained results and statistical analysis confirmed, that the use of Dynamic
Selection may improve the ensemble’s performance when dealing with the drifting

imbalanced data stream classification task.

2. Can combining DES with data preprocessing improve the ensemble’s performance
g prep g p p

in the case of the imbalanced data stream with concept drift?

A2. The conducted experiments confirmed, that combining DES with preprocessing
improves DESISC performance when compared to the methods employing only one

of these concepts.

Q3. Which DES methods and preprocessing techniques are best suited for the classifi-

cation of a data stream with a given concept drift type and Imbalance Ratio?

A3. The results obtained showed that regardless of the Imbalance Ratio and the type of
concept drift, the statistically significantly best performing DES method was almost
always KNORA-U. The only exceptions were IR of 1 : 9 and incremental concept
drift, where in terms of Gmeans, DES-KNN performed best. The best preprocessing
techniques, regardless of the Imbalance Ratio and the type of concept drift, turned

out to be SVM-SMOTE or B2-SMOTE.



Chapter 4. Algorithms for difficult data stream classification 127

4.3 DES and Stratified Bagging for Imbalanced Stream Clas-

sification

This section proposes an extension of the previously introduced DESISC framework with
the generation of base classifiers using stratified bagging. This idea alludes to the article
in which Roy et al. proposed a combination of DES and preprocessing for the classification
of static imbalanced data |. Here, however, due to the promising results achieved
by DSEISC, it was decided to use a bootstrapping approach to classify highly imbalanced
data streams with concept drift occurrence. The motivation to use Stratified Bagging
to generate a classifier pool was the potential possibility of obtaining a more diverse
pool of base models, which may increase the chances of Dynamic Ensemble Selection
methods to find experts in local regions of the feature space. This led to the proposition
of a framework called Dynamic Ensemble Selection for Imbalanced Stream Classification

using Stratified Bagging (DESISC-SB).

DESISC-SB framework

Here, the previously proposed DESISC framework is combined with the Stratified Bagging.
This is to allow the generation of classifier ensemble based on each individual highly im-
balanced data chunk. The use of bootstrapping in the process of classifier pool generation
enables Dynamic Ensemble Selection on two levels: (i) bagging classifiers level and (ii)

all base classifiers level.

Each bagging classifier Wy consists of n base estimators. Let ¢ denote the ith base
model forming the kth bagging classifier. Each base classifier 1% is build using the
LS¢ learning set which is produced by preprocessing the ith stratified bootstrap SB%
from DSj,. Details are provided in the STRATIFIEDBAGGING (DS}) method description.
DSELy stands for the dynamic selection dataset for the kth data which in this case in
the previously preprocessed data chunk DS;_1. One bagging classifier Wy is generated
based on each incoming data chunk DSy and added to the bagging classifier pool II.
As the proposed framework is based on the Streaming Ensemble Algorithm (SEA) ,
when the maximum bagging classifiers pool size (nmqz) is exceeded after adding a new
model, the worst one, according to the balanced accuracy metric, will be removed from
the pool. The DESISC-SB framework is presented in Figure and the pseudoode is
shown separately for the training and prediction phase in Algorithms [0 and [I11

Let us shortly describe the methods used in pseudocode:

e PREPROCESS() — applies the chosen preprocessing technique to the provided data,
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Figure 4.15: The framework for generating the classifier pool and preparing DSEL for the dynamic
selection process. The red arrows follow the training phase (Algorithm [I0l), while the orange arrows
depict the prediction phase (Algorithm [L1]).

e STRATIFIEDBAGGING() — generates the bagging classifier for kth data chunk. Each
bootstrap is generated by sampling with replacement both minority and majority
classes separately in such a way that preserves the number of instances of both
classes in the original data chunk. The final decision of ¥y is made based on the
aggregation of the support functions of n individual classifiers according to the sum
rule [76]. When coupled with preprocessing techniques, PREPROCESS() method is
called on each bootstrap according to Figure .13

e PREDICT() — uses a given classifier pool (or list of ensembles in case of dynamic

selection) to classify each instance in given data chunk,

e DYNAMICSELECTION() — uses a given dynamic ensemble selection method to gen-
erate a list of ensembles for classifying each test instance. In this work DES can be

performed on two levels - bagging classifier level or base estimators level,

e PRUNEWORST() — removes the worst-performing base classifier from the pool if the

maximum bagging classifier pool size (145 ) is exceeded after adding a new model.
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Algorithm 10 Training phase of the DESISC-SB framework

Input:

Stream — data stream,

Nmae — Maximum fixed size of the bagging classifier pool,
Symbols:

Sy — set of evaluation metric values for each base classifier,

DSj, — data chunk,

U, — bagging classifier,

II - bagging classifiers pool.

1. I+ 2

2: for each k, DSy, = {zi,22,...,2) } in Stream do

3: if k <=1 then > First data chunk.
4: Uy, < STRATIFIEDBAGGING(DS) > Bagging classifier generation
5: I+ vy, > Adding bagging classifier to the pool
6: else > Third and all subsequent data chunks.
7: Sk = EVALUATE(IL, DSy,)

8: if | II |> npee — 1 then > Removing worst classifier if 1,4, is exceeded.
9: IT + PRUNEWORST(II, Sk )

10: U}, < STRATIFIEDBAGGING (DSy,)

11: II + v,

12: end for

Algorithm 11 Prediction phase of the DESISC-SB frameworks

Input:
Stream — data stream,
II — pool of bagging classifiers.
Symbols:
DS}, — data chunk,
Ilp, - classifier ensemble selected using dynamic selection,
DSELy, — dynamic ensemble selection dataset for the kth data chunk.

1: for each k, DSy = {z},23,...,2Y} in Stream do

2: if k == 0 then > First data chunk
3: Pass > No prediction
4: else if k == 1 then > Second data chunk
5: Decision < PREDICT (DS, II) > Prediction using the whole pool
6: DSELj11 < PREPROCESS(DSy) > Storing DSEL for next step
7 else > Third and all subsequent data chunks
8: IIp, < DYNAMICSELECTION(II, DSEL, DS),) > Dynamic selection
9: Decision < PREDICT(DSy, Ip,) > Prediction using selected pool
10: DSELj11 < PREPROCESS(DSy)

11: end for

The step by step description is as follows. At the start. the classifier pool II is empty
and the first bagging classifier (V) is generated using STRATIFIEDBAGGING () method
on the first data chunk (Algorithm [I0] steps 4 and 5). When the second chunk arrives,
it is classified using the PREDICT() function (Algorithm [I1] step 5) and then used to
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generate a new bagging model Wy, which is added to the ensemble (Algorithm [I0] steps
4 and 5). DSy is preprocessed using PREPROCESS() method and stored as the DSEL for
the dynamic selection process in the future (Algorithm [Tlstep 6). Then, with the arrival

of each new data chunk, following steps are performed:

e In Algorithm [I1] step 8, previously stored DSEL is used in the dynamic selection

process for each instance in DSy (DYNAMICSELECTION() method),

e In Algorithm [I1] step g, the list of ensembles selected by DES method is used to

classify all the instances in the current data chunk,

e In Algorithm [I0] steps 8 and g, the PRUNEWORSTCLASSIFIER() method is used to

prune the classifier pool if the fixed size 1,4, is exceeded,

e In Algorithm [[0lsteps 10 and 11 a new bagging classifier W, is generated using kth
data chunk and added to the pool II,

e Finally, in Algorithm [I] step 10, the current data chunk DSy, is preprocessed and

stored in order to use it as DSEL in the next iteration.

Computational and memory complexity analysis

The computationl complexity of DESISC-SB framework is largely adequate to the com-
plexity of DESISC, as it is also based on the methods of Dynamic Ensemble Selection
as well as on preprocessing techniques (both oversampling and undersampling). The
key factors affecting the computational complexity of the presented approaches are, re-
spectively, the number of models in the classifier pool for Dynamic Selection algorithms
and the number of problem instances in a single data chunk in the case of preprocessing

techniques.

Based on preliminary observations, it was established that the DES methods (both
KNORA-U and KNORA-E) have a linear time complexity of O(n) depending on the num-
ber of base classifiers in the pool. The preprocessing techniques used in the work have,
respectively, the logarithmic complexity of O(log n) (ROS and RUS), the quadratic com-
plexity of O(n?) (Borderline2-SMOTE) |, and the complexity of O(n log n) (CNN).

Stratified Bagging performs sampling with replacement for each class with computational
complexity of O(| i | n), where | i | is the cardinality of the ith class and n denotes the

number of bootstraps (number of base models in bagging classifier) B]

Because a fixed size of the data chunk N is always set, the complexity of the proposed
algorithms depends only on the number of classifiers from which the selection is made

(denoted as | IT |). Methods that perform dynamic selection at the level of base classifiers
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have a linearly higher computational complexity than those that do it at the level of

bagging classifiers.

4.3.1 Experimental evaluation

Here, the experimental set-up plan for the DSEISC-SB-SB framework will be presented
along with the motivation, objectives of the individual experiments, and the results

obtained.

Research questions

The experiments were designed to answer the following questions:

Q1. Which Dynamic Ensemble Selection methods perform best while dealing with the

concept drift occurrence?

Q2. Does performing Dynamic Ensemble Selection at the level of all generated base
models (including those forming individual bagging classifiers) allow dseisc-sb to
achieve better performance when compared to Dynamic Selection performed only

at the level of bagging classifiers?

Q3. Can methods combining data preprocessing and Dynamic Ensemble Selection out-
perform state-of-the-art batch-based and online classifiers for difficult data stream

classification task?

Goals of the experiments

Ezxperiment 1 — Dynamic selection level

The main purpose of the first experiment is, due to a large number of methods, the
pre-selection of further used dynamic ensemble selection approaches. Dynamic selection
without the use of preprocessing techniques is evaluated for the potential to classify
highly imbalanced data. Based on the results obtained from this shortened experiment
in which the results are presented only for the highest tested Imbalance Ratio and stream-
learn generated data streams, a pool of classifiers will be selected, on which DES methods
will be used later for a given type of base classifier (i.e., bagging level or the level of all

base classifiers present in the pool).

Experiment 2 — Pairing DES with preprocessing techniques
The second experiment aims to examine how two previously chosen DES methods perform
based on the preprocessing technique with which they were paired compared to using

solely dynamic selection. We divided the experiment into two parts, i.e., oversampling
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and undersampling. After analyzing the results obtained, one preprocessing method will
be selected from both groups, which then will be used in subsequent experiments. Again,
this is a shortened experiment in which the results only for 3% of the minority class and

stream generated using the stream-learn package are presented.

Additionally, the behavior of each approach during the sudden concept drift occurrence

was analyzed. using the restoration time and mazimum performance loss metrics.

Experiment 8 — Comparison with state-of-the-art

In the third experiment, two previously selected dynamic selection methods and two
preprocessing techniques are compared with state-of-the-art online data stream classifi-
cation approaches based on the notion of offline Bagging, as well as with the chunk-based
stream classification methods. Because online methods require a base classifier capable
of incremental learning, a comparison was possible only for Gaussian Naive Bayes and

Hoeffding Tree classifiers.

In the case of this experiment, artificially generated data streams from both stream-learn
and MOA were used and full results for three imbalance ratios and three types of concept
drift are presented. Results for 10 and 20% of the minority class can be found on GitHub.
Due to the high computational complexity of Hoeffding Trees, they were tested only for

real data streams.

Experimental set-up

To evaluate the proposed framework go artificially data streams were generated with
various characteristics using stream-learn Python library |. Each data stream is
composed of fifty thousand instances (200 chunks, 250 instances each) described by 8
informative features, and contains a single concept drift (in the 10oth data chunk). The
variety of streams was ensured by generating two streams, based on the determined seeds,

for each combination of the following parameters:

e the imbalance ratio — successively 3, 5, 10, 15 and 20% of the minority class.
e the level of label noise — successively 1, 3 and 5%.

e the type of concept drift — sudden, gradual, or incremental.

The remaining 45 data streams were generated using the MOA data stream mining frame-
work [19]. While retaining the parameters mentioned above, these streams differ in the

generator used and the number of attributes:
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e the generator used — Agrawal (sudden and gradual concept drift) and Hyperplane

(incremental concept drift).

e the number of attributes — g for the Agrawal generator and 10 for Hyperplane

generator.

Additionally, this paper presents the results of experiments carried out on real data

streams presented in Table

Table 4.7: Real data streams characteristics.

Data stream #Samples #Features IR
covtype Norm-1-2usAll 266 000 54 4
poker-lsn-1-2vsAll 360 000 10 10
INSECTS-abrupt imbalanced norm 300 000 33 19
INSECTS-gradual_imbalanced_ norm 100 000 33 19
INSECTS-incremental_imbalanced_norm 380 000 33 19

Evaluation of the proposed framework was based on six metrics dedicated for imbalanced
data classification problems. The experimental protocol Test-Then-Train |135] was used,
i.e., the classification model is trained on a current data chunk and it is evaluated based on
the following one. As the base estimators, four different classification models according to
the scikit-learn implementation [187| were used. In the research on ensemble methods,
large pools of classifiers, such as 100 [60] or even 1000 [204] base models, are usually
considered. However, the interesting experiments regarding the prediction of the best
classifier pool size for Dynamic Selection methods suggested that pools containing an
average of 20 classifiers might perform best [196, [197]. Therefore, in order to improve
the performance of DSEISC-SB and to reduce its computational complexity, the maximum
size of the bagging classifier pool was set to n.,q; = 5 and each bagging classifier consisted
of n = 10 base models. Batch-based reference methods use 5 bagging classifiers, each
of which consists of 10 base models, while online reference methods maintain ensembles
consisting of 20 base classifiers. Experiments were implemented in Python pr(b)ﬁramming

language and may be repeated according to source code published on GitHu

e Evaluation metrics — Balanced Accuracy Score (BAC), Gmeans, Fy score, precision,

recall, and specificity,

e Classification algorithms — Gaussian Naive Bayes (GNB), Hoeffding Tree (HT), k-
Nearest Neighbors classifier (kNN) and Support Vector Machine (SVM),

*https://github.com/w4k2/if-des-imb-stream
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e Reference methods

— Online Bagging (OB) @], which updates each base classifier in the pool with

the appearance of a new instance using the Poisson(A = 1) distribution.

— Quversampling-Based Online Bagging (00B) and Undersampling-Based Online
Bagging (UOB) |, which integrate resampling into the Online Bagging algo-
rithm. This was achieved by making the A value dependent on the proportion

between classes.

— Learn++.NIE (Nonstationary and Imbalanced Environments) and Learn ++.CDS
(Concept Drift with SMOTE) B], which extend the Learn++.NSE (Non-Stationary

Environments) algorithm.

— Recursive Ensemble Approach (REA) B], which incorporates part of previous
minority class samples into the current data chunk and combines base models

in a dynamically weighted manner.

— Qver/UnderSampling Ensemble (OUSE) M], which uses minority class in-
stances from all previously seen data chunks and a subset of majority class

present in the most recent chunk to generate new ensemble.

— KMC ], an ensemble-based approach, which performs, on each arriving

data chunk, undersampling based on the k-Means clustering algorithm.

In total, based on the proposed framework, fifteen methods for the classification of im-
balanced data streams have been distinguished in this paper. These methods differ in the
applied preprocessing techniques and the dynamic selection methods used. We chose two

dynamic ensemble selection methods and two preprocessing techniques for experiments:

e Dynamic ensemble selection methods — KNORA-E and KNORA-U were selected due
to the relatively low complexity compared to e.g. DES-KNN, which may not be

suited for data stream environment due to costly ensemble diversity calculation.
e Preprocessing techniques

— Oversampling — Random Oversampling and Borderline2-SMOTE selected, based
on experiments carried out for DESISC, as the best performing among several
SMOTE variants when paired with DES for imbalanced data stream classifica-

tion.

— Undersampling — Random Undersampling and Condensed Nearest Neighbour.

In addition, the cases of no preprocessing applied and classic support accumulation of

the classifier pool instead of Dynamic Selection are considered. The Dynamic Ensemble
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Selection is performed in two variants — on the bagging classifiers level or the level of all
base models (including those making up each bagging classifier). The variant of Dynamic
Selection is denoted by the number after the name of DES method, 1 being bagging
classifiers and 2 being all base estimators. The neighborhood size for DES methods is

k =7, as it is the most commonly suggested value for the local region of competence

5.

Also, to reduce the amount of information, only the most interesting results are presented,
and to facilitate concluding, results for two of the four base classifiers are omitted, namely
GNB and KNN, in Experiments 1 and 2. GNB achieved results remarkably close to HT,

and KNN showed behavior quite similar to GNB and HT.

Some of the observations regarding the results obtained by the omitted models are pre-
sented in the Observations subsection. Runs smoothed using Gaussian filter (¢ = 3)
are presented for the Gmeany, as it best reflects the relationships between the methods’

performance.

Experiment 1 — Dynamic selection level

Figure @16 shows the results for the use of selected Dynamic Ensemble Selection methods
at bagging classifiers level and base classifiers level, when Hoeffding Tree (Figure [A.10h)
and Support Vector Machine (Figure £108b) were used as base models. In case of HT,
radar diagrams show slight differences in terms of each metric when compared to the
basic SEA as data streams with a high Imbalance Ratio are analyzed without using any
preprocessing techniques. Despite this, KNORAE2 has an advantage in terms of Gmeans,

Fi score and BAC.

More significant differences are visible in the presented runs, in which significantly better
response to the concept drift when the KNORAE method is used (both at the level of
bagging and base models) can be observed. This may be because this algorithm can
select base classifiers that are local oracles in a given fragment of the feature space,
which in the event of a concept change allows us to keep only the models already trained

on the given concept.

In the case of the svM classifier (Figure d.I6b), the use of DES at the base estimators level
leads to a significant deterioration of the results obtained in terms of each metric except
for specificity. This may be due to a large number of poorly differentiated classifiers in the
pool. The selection methods used at the bagging classifiers level, especially KNORAU1,

perform similar to SEA.
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Figure 4.16: Ezperiment 1 results for Hoeffding Tree and Support Vector Machine classifiers.

Based on the results obtained, the following methods of Dynamic Ensemble Selection

were selected for further experiments:

e HT - KNORAU and KNORAE on the base classifiers level (KNORAU2, KNORAE2).

e SMV -KNORAU and KNORAE on the bagging classifiers level (KNORAU1, KNORAE1).

Experiment 2 — Pairing DES with preprocessing techniques
The following are the results of combining selected methods of Dynamic Ensemble Se-

lection with preprocessing techniques. The experiment was divided into parts related to

oversampling and undersampling.
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Figure 4.17: Ezperiment 2.1 results for Hoeffding Tree and Support Vector Machine classifiers.

Table 4.8: Gmeans-based performance metrics regarding sudden drift for Ezperiment 2.1.

Performance metric NON-U ROS-U B2-U NON-E ROS-E B2-E
HT

performance loss 0.851 0.481 0.473 0.720 0.571 0.516

restoration time 0.023 0.012 0.013 0.017 0.010 0.009
SVM

performance loss 0.667 0.167 1.000 0.833 0.167 1.000

restoration time 0.012 0.008 0.010 0.008 0.007 0.010

Figure 417 shows the results of the combination of DES and preprocessing techniques in
cases where HT or sVM was used as the base classifier. For HT the use of preprocessing
leads to an increase in the recall at the expense of precision and an increase in balanced

accuracy and Gmeans. On the presented runs, it can be seen that the use of preprocessing
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in conjunction with DES allows for much smaller losses in Gmeans at the time of the
concept drift. This is particularly visible in the case of the Random Oversampling coupled

with KNORAU2. Here, ROS proved to be a better oversampling method.

When svM was employed as the base classifier (Figure .I7b), the use of ROS caused the
deterioration of all metrics except specificity, because duplicate instances cause a stronger
shift in the decision boundary. The use of B2-SMOTE leads to a significant reduction in
preciston and a slight decrease in the F) score, while the other metrics are comparable

to pure Dynamic Selection.

Table [A.§] contains performance loss and restoration time values in terms of Gmeang av-
eraged over all runs, referring to sudden concept drift. In the case of HT, methods paired
with Borderline2-sMOTE generally achieve the smallest performance loss and restoration
time values. This may be due to the generation of artificial minority samples near the
decision boundary. In the case of svM classier, DES (according to the presented metrics)

performs best when combined with ROS.

It should be noted that better performance in terms of performance loss and restoration
time does not necessarily mean better classification performance. This can be observed

especially in the case of SVM.

Undersampling

Table 4.9: Gmeans-based performance metrics regarding sudden drift for Ezperiment 2.2.

Performance metric NON-U RUS-U CNN-U NON-E RUS-E CNN-E
HT

performance loss 0.851 0.578 0.663 0.720 0.466 0.598

restoration time 0.023 0.017 0.021 0.017 0.008 0.009
SVM

performance loss 0.667 0.833 0.500 0.833 0.924 0.500

restoration time 0.012 0.012 0.010 0.008 0.010 0.008

Figure shows the results regarding the use of undersampling in combination with
Dynamic Ensemble Selection for HT and SVM base classifiers. As can be seen, for Ho-
effding Trees, the use of both Random Undersampling and Condensed Nearest Neighbor
leads to a noticeable improvement in recall, balanced accuracy and Gmeans, while reduc-
ing precision. In addition, RUS also leads to deterioration of F} score and specificity. As
in the case of oversampling techniques, the profit from undersampling is best seen at the
moment of the concept drift occurrence, where only a slight decrease in Gmean, can be

observed. Despite the advantage of RUS in terms of this metric, a better undersampling
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Figure 4.18: Ezperiment 2.2 results for Hoeffding Tree and Support Vector Machine classifiers.

method for HT classifier was CNN, as it led to balanced results in terms of each of the

evaluation metrics.

For svMm (Figure I8 b), employing RUS leads to better results, while the use of CNN
practically does not cause difference when compared to the methods without preprocess-
ing. This is due to the internal design of this undersampling method, which does not

change the decision boundary.

Table presents the performance loss and restoration time values for undersampling
methods. In the case of HT, RUS achieves the best values of these metrics. In the case of
SsvM classifier, CNN allowed DES techniques to achieve the lowest performance loss and

restoration time, but simultaneously, it led to the worst classification performance.

Based on the results obtained for the HT classifiers, Random Owersampling and Con-

densed Nearest Neighbor were selected as the preprocessing methods for Experiment 3.
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Same for Gaussian Naive Bayes, for which the results were omitted due to the high

similarity to the Hoeffding Tree.

Experiment 3 — Comparison with state-of-the-art

Online reference methods
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Results of the experiment regarding online reference methods for various imbalance ratios.



Chapter 4. Algorithms for difficult data stream classification 141

GNB sudden GNB gradual GNB incremental

Balanced accuracy Balance

accuracy Balanced accuracy

<
2
2
%
Q,\G/
&
[N
precision precision precision
—— 0B —— ROS-KNORAU2 —— ROS-KNORAE2 —— 0B —— ROS-KNORAU2 —— ROS-KNORAE2 —— 0B —— ROS-KNORAU2 —— ROS-KNORAE2
—=—- 00B ——- CNN-KNORAU2 —-—- CNN-KNORAE2 —=—- 00B —-—- CNN-KNORAU2 —-—- CNN-KNORAE2 —=—- 00B —-—- CNN-KNORAU2 —-—- CNN-KNORAE2
..... VOB ceees UOB ceees UOB
T e.27m 0.522 77 0.659 77 0.663 T 0.257 0.546 7 0.570 77 e.591 T 0.320 0.647 77 0.599 77 8.613

T T T T 1 0.0+ T T T T T T T 1 . T T T T 1
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

chunks chunks chunks
(a) GNB

HT sudden HT gradual HT incremental

Balanced accuracy Balancéd accuracy Balanced accuracy

<
2
2
%
Q,\G/
&
<&
precision precision precision
—— 0B —— ROS-KNORAU2 —— ROS-KNORAE2 —— 0B —— ROS-KNORAU2 —— ROS-KNORAE2 —— 0B —— ROS-KNORAU2 —— ROS-KNORAE2
—=—- 00B ——- CNN-KNORAU2 —-—- CNN-KNORAE2 —=—- 00B —-—- CNN-KNORAU2 —-—- CNN-KNORAE2 —=—- 00B —-—- CNN-KNORAU2 —-—- CNN-KNORAE2
..... VOB ceees UOB T}
T 0.611 0.759  T77 0.646 =7 0.655 T 0.525 0.744 77 0.548 77 e.579 T 0.439 0.746 77 0.602 77 0.617
TTT e.748 T 0.700 T 0.637 TTT 0713 T 0.647 T 0.569 TTT e.625 T 0.689 ~  0.613

+ T T T T T T T v 0.0+ T T T T T T T v 0.0+ T T T T T T T v
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
chunks chunks chunks

(b) HT

Figure 4.20: Results of the experiment regarding online reference methods for various concept drift
types.

Figure .19 shows a comparison of a combination of previously selected dynamic se-
lection methods and preprocessing techniques with state-of-the-art online bagging-based
methods. As these methods need base models capable of updating incrementally, this

experiment was performed only for Gaussian Naive Bayes and Hoeffding Tree.

Gaussian Naive Bayes (Figure [£.19] a) is not suitable for online methods in the case of

concept drift as Gmeans significantly decreases, because the classifier still remembers
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the old concept. Online Bagging is not able to rebuild after drift occurrence, while 0OB
and UOB note a lower decline and are slowly recovers thanks to built-in oversampling and
undersampling methods. When it comes to the combination of DES and preprocessing,
the relationships between the methods persist, but decrease with the Imbalance Ratio.
UOB rises faster than 00B at 3 and 5% of the minority class, but when the Imbalance

Ratio is lower both methods converge.

In the case of HT (Figure b), it can be seen that the use of trees in online methods
leads to a much smaller decrease in the Gmean, value at the moment of concept drift
and leads to faster recovery. This is due to the construction of the Hoeffding Tree
recognition model. 0OB and UOB achieve better results than methods combining DES and
preprocessing in terms of balanced accuracy, Gmeans and recall. In addition, UOB leads
when it comes to F} score and precision, OOB achieves worse F; score and specificity.
As in the case of GNB, when the Imbalance Ratio decreases, the results achieved by

individual methods begin to converge. The OB improvement is particularly noticeable.

Figure shows a comparison of selected batch methods with online methods in terms
of concept drift type. It can be seen that the relationships shown in Figure are also
true in this case. It is noteworthy that although in the case of using Hoeffding Tree as
the base classifier 0OB and UOB perform comparably or better than the proposed batch
methods, they note a more significant decrease in Gmeans and a slower recovery after
sudden concept drift. Therefore, it can by assumed that in the case of a large number of
sudden drifts occurring in the data stream, the use of batch methods based on Hoeffding

Trees may prove more profitable than online methods.

Figures [4.21] and show the results of the comparison of the proposed methods with
online state-of-the-art approaches for two selected real data streams, on which the re-
lationships similar to those occurring in the case of synthetic data can be observed.
When the base classifier is GNB, online bagging-based methods note a significant decrease
when the concept drift occurs, which is not noticeable when using the HT classifier. We
also see that in the poker-Isn-1-2vsAll stream, which is much more difficult than the
covtypeNorm-1-2vsAll stream due to a large number of concept drifts, online methods
employing decision trees perform better than batch methods. Similar dependencies can
be observed for the three difficult streams from the INSECTS set presented in Figure
23l In the case of GNB, the proposed DSEISC-SB framework performs better than on-
line reference methods. When the base classifier is Hoeffding Tree, the reference methods
turn out to be better than DSEISC-SB in the case of sudden and gradual concept drift.
For the incremental concept drift, the results of the proposed method are comparable

with those of the reference methods.
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Figure 4.21: Results of the experiment regarding online reference methods for covtypeNorm-1-2vsAll.

It is worth noting that, while batch methods using GNB and HT achieved very similar
results in the case of synthetic streams, this is no longer the case with real data. It
can be seen that methods employing HT as the base classifier note a larger decrease in
predictive ability as the concept drift occurs. This may be due to trees being overfitted
because of the greater number of instances in each data chunk (1000 instances for real

streams and 250 for synthetic streams).
Chunk-based reference methods

Figure shows the results of the comparison of the proposed methods with reference
state-of-the-art chunk-based approaches. As the base classifier, Gaussian Naive Bayes
was employed, as in its case, the use of a batch framework based on preprocessing and
dynamic classifier selection is more justified than in the case of Hoeffding Trees (as shown
in Figures and [£.20).
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Figure 4.22: Results of the erperiment regarding online reference methods for poker-lsn-1-2vsAll.

In each case, both for different Imbalance Ratio values and for different types of concept
drift, the REA method performs by far the worst, obtaining the lowest values of reported
metrics (except specificity), and also has the most significant decrease at the time of

concept drift occurence, from which it rises very slowly.

The OUSE approach is the best in the case of the highest tested Imbalance Ratio (3%
of minority class) and is distinguished by a high recall that is achieved at the cost of
low specificity and precision. Although it displays the capacity to cope with the concept

drift occurrence, OUSE performs worse as the Imbalance Ratio decreases.

Among the reference methods that can be compared with the approaches proposed in
this work are Learn++.NIE, Learn++.CDS and KMC. Regardless of the Imbalance Ratio
and type of drift, they exhibit behavior comparable to the proposed framework. This is
especially true for Learn++.CDs, which performs particularly well for the highest Imbal-

ance Ratio studied in this experiment, in which in terms of Gmean; it beats all proposed
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Figure 4.23: Results of the experiment regarding chunk-based reference methods for the Gaussian Naive
Bayes classifier.

methods except ROS-KNORAU2, while noting a low precision value and thus Fi score. It is
worth noting that with the decreasing Imbalance Ratio, Learn++.NIE and Learn+-+.CDS

appear to deteriorate compared to methods combining DES and preprocessing techniques.

The kMC method behaves similarly to Learn++.CDS, but achieves lower specificity and

higher recall. It performs particularly well in terms of Gmeans and BAC in the case
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Figure 4.24: Results of the erperiment regarding chunk-based reference methods for the Gaussian Naive
Bayes classifier.

of the incremental drift occurrence in the data stream, where it achieves metric values
comparable with the best of the proposed methods (i.e. ROS-KNORAU2). At the same
time, however, it displays lower F} scores than approaches employing Dynamic Classifier

Selection.

Figures [1.25] A.26] and show results comparing the performance of the proposed

methods with state-of-the-art batch-based approaches for real data streams. The results
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Figure 4.25: Results of the experiment regarding chunk-based reference methods for covtypeNorm-1-
2usAll.

obtained coincide with the observations drawn on the basis of experiments carried out
on synthetic data streams. The proposed approaches combining preprocessing and DES
achieve better results than comparative methods and are more stable. Again, the use
of HT classifier for batch methods at chunk size 1000 size leads, especially in the case of
more difficult data sets, to deterioration of classification quality and stronger reactions

to the occurrence of concept drift.

Observations

Based on the conducted experiments, it can be seen that the results for the methods
of batch data stream processing were almost identical for artificially generated streams
when the base classifiers were Gaussian Naive Bayes and Hoeffding Tree, and each chunk

contained 250 samples. The difference between these two base classifiers can bee observed
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Figure 4.26: Results of the experiment regarding chunk-based reference methods for poker-lsn-1-2vusAll.

in the case of real data streams when the fixed chunk size was 1000. This may be due

to the overfitting of the decision trees.

It can be observed that the use of the dynamic selection method KNORA-E allows the
proposed framework for faster restoration in the event of concept drift (especially sud-
den). This is particularly evident in Experiment 1, in which any preprocessing technique
has not been used. These observations have been confirmed by performance loss and
restoration time measures and that was most likely due to the fact that this approach to
DES allows for selecting only the classifiers learned on the new concept as soon as in the

second data chunk of its presence.

When the svM was used as the base classifier for the proposed framework, the selection
at the level of base models of all bagging sub-ensembles led to a significant deterioration

of the achieved results. This may be due to the large pool of not diverse classifiers
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Figure 4.27: Results of the erperiment regarding chunk-based reference methods for the Gaussian Naive

Bayes classifier.

and suggests that in the case of svM, stratified bagging may not be a good method to

diversify individual base classifiers.

The combination of sVM with oversampling in both cases led to a deterioration in its

performance compared to the version without preprocessing. Borderline2-SMOTE, due to
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its characteristics, shifted the decision boundary in favor of the minority class, leading to
a decrease in precision. Random oversampling, on the other hand, significantly worsened
the results achieved in terms of all measured metrics, except for specificity, because

duplicate minority class instances resulted in a strong shift of the decision boundary.

When undersampling methods were employed, the use of Random undersampling allowed
for a more accurate adjustment of the decision boundary and thus a significant improve-
ment in recall, F1 score, Gmeans and BAC at the expense of hindering precision. The
use of CNN resulted in a similar behavior as in the absence of preprocessing. This is due
to the internal structure of this undersampling method, which leaves instances close to

the decision boundary, and thus leads to only minor changes.

When it comes to online methods (i.e., OB, 00B and UOB), the use of the Gaussian Naive
Bayes classifier leads to a significant deterioration of methods at the moment of concept
drift occurrence and difficulties with recovering after the drift. 0©0OB and UOB mitigate
these effects due to built-in resampling mechanisms, but they still struggle due to the

fact that GNB remembers the previous concept.

Decision trees do much better in online methods because they have the opportunity to
achieve optimal predictive ability (as seen before concept drift occurs) and they also
cope better with recovery after drift. Generally, when Hoeffding Trees are used, online
methods work better than the proposed batch methods, except for the moment when
sudden drift occurs, in which case online methods rebuild more slowly than chunk-based
ones because the classifiers trained on the old concept are not removed. Theoretically,
with many sudden drifts in a single data stream, chunk-based methods can have an

advantage over online ones, even when using decision trees as base estimators.

REA is by far the worst-performing one of the chunk-based reference methods, especially
in the case of concept drift occurrence. In this approach, added to the training sets are
minority class samples from the old concept, which makes it difficult for the method to
recover after drift. Besides, all models are subject to weighted combination, as there is

no forgetting mechanism.

OUSE builds a new ensemble on each of the data chunks so that the classifiers relate to the
current concept. Despite using all minority class instances that have ever appeared in the
stream, the profit from balancing the problem using real samples, in the case of a high
Imbalance Ratio, outweighs the loss resulting from using some of the instances from the
old concept. However, as the Imbalance Ratio decreases, and thus the number of instances

from the old concept in training set increases, the algorithm begins to deteriorate.

The kKMC method presents an approach similar to the ones proposed in DESISC and

DESISC-SB. As a base, it uses the SEA algorithm in which the ensemble is pruned using
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the AUC metric. Additionally, it uses the undersampling method based on the k-Means
algorithm. It achieves particularly promising results in case of the incremental concept
drift occurrence. This may be due to the fact that it does not use real majority class
instances but its clusters centroids that might better reflect the slowly occurring minor

concept changes.

Learn++.DCs performs comparatively with the proposed methods in terms of Gmeang
and BAC, but at the expense of precision and Fy score. It is somewhat comparable
to the proposed framework, as it also uses preprocessing, but the Dynamic Classifier
Selection is replaced by a weighted combination. However, the method deteriorates
compared to those proposed as the Imbalance Ratio decreases. Learn++.NIE is also
quite similar to the proposed framework in that it uses the bagging sub-ensembles that
train each of the base classifiers on the whole minority class from the given data chunk
and part of the majority class. It is done in such a way, that no information about
the majority class is lost. Sub-ensembles are then integrated utilizing the recall-based
weighted combination. In the case of both methods, the main difference between them
and the proposed framework is the use of dynamic selection, which seems to perform

better than the weighted combination.

Answers to research questions

The answers to the previously formulated research questions are as follows:

Q1. Which Dynamic Ensemble Selection methods perform best while dealing with the

concept drift occurrence?

Al. Based on the results obtained in Experiment 1, it can be concluded that KNORA-E is
the Dynamic Selection method that best copes with the concept drift phenomenon.
This is due to the approach to classifier selection that prefers only local oracles,
which allows for quick recovery of the generalization ability after the concept drift

occurrence.

Q2. Does performing Dynamic Ensemble Selection at the level of all generated base
models (including those forming individual bagging classifiers) allow dseisc-sb to
achieve better performance when compared to Dynamic Selection performed only

at the level of bagging classifiers?

A2. Conducted experiments confirmed, that performing Dynamic Ensemble Selection
at the level of all generated base models leads to better performance when compared
to Dynamic Selection performed only at the level of bagging classifiers. This is due

to the larger and more diverse pool of available models.
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Q3. Can methods combining data preprocessing and Dynamic Ensemble Selection out-
perform state-of-the-art batch-based and online classifiers for difficult data stream

classification task?

A3. The results obtained in Experiment 3 confirmed, that the DSEISC-SB framework
may outperform both bath and online-based state-of-the-art imbalanced data stream

classification algorithms.



Chapter 5

Limited access to labels

A significant problem when building classifiers based on data stream is information about
the correct label. Most algorithms assume access to this information without any restric-
tions. Unfortunately, this is not possible in practice because the objects can come very
quickly and labeling all of them is impossible, or we have to pay for providing the correct
label (e.g., to human expert). Hence, methods based on partially labeled data, including
methods based on an active learning approach, are becoming increasingly popular, i.e.,
when the learning algorithm itself decides which of the objects are interesting to improve

the quality of the predictive model effectively.

This chapter introduces the new method for active learning of data stream classifier. The
BALS algorithm in based on the notion, that the classifier should receive - in addition
to selected labeled objects by the active learning strategy - a pool of randomly selected

objects from each data chunk.

Then, the behavior the DESISC-SB framework combining DES and preprocessing for im-
balanced data stream classification under the limited access to labels scenario is evalu-
ated. Best performing variant of DESISC-SB is coupled with random labeling and active
learning strategy in order to see what is the effect of limited labeling on ensemble methods

for imbalanced data stream classification.

153
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5.1 Budget Active Labeling Strategy

The problem of limited label access is important due to its prevalence in real data. When
dealing with data streams the problem is not only the cost of obtaining labels but also the
speed at which the data arrives, which may prevent labeling the number of samples that
would allow the model to achieve the expected classification performance. Recent works
in this field noticed that in the event of rapid changes, using labeling strategies only for
data close to decision boundaries may not be enough to adapt the classifier to the new
distribution sufficiently (especially in the case where the changes in the distributions
are very significant) [134]. Therefore, this section proposes that the classifier should
receive, in addition to selected objects labeled by the active learning strategy, a pool
of randomly selected instances from each data chunk. This proposition is called Budget

Active Labeling Strategy (BALS).

BLS

The research presented in this work is based on three approaches to classifiers’ building
on streaming data with limited labeling. The first of them is, hereinafter referred to as
the BLS, Budget Labeling. In BLS, for each data chunk, the actual labels are obtained
for a fixed percentage of randomly selected samples, denoted by the budget parameter
b. This approach is presented in Algorithm The description of the functions used in

the pseudocode is as follows:
e RANDOMBUDGET() — selects, according to the set budget b, a fixed number of
problem instances randomly chosen from current data chunk DSy.

e GETLABELS() — obtains the real labels for previously selected samples and con-

structs a learning set LS.

e UPDATECLASSIFIER() — updates the classifier ¥ with learning set LS.

Algorithm 12 Pseudocode for BLS

Input:
Stream = {DS1,DS,, ..., DSk, DSk41, ...} — data stream,
U — classification algorithm,
b — budget value.

1: for each k, DSy = {z},23,...,2Y} in Stream do

2 X, = RANDOMBUDGET(b, DSy,) > Randomly select percentage of instances
3: LS}, = GETLABELS (X)) > Get labels for the chosen instances
4 U <— UPDATECLASSIFIER (Y, LS}) > Update the classifier
5: end for
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ALS

The second approach is a simple active learning solution, further described by the ALS
acronym and presented in Algorithm I3l In the case of this method, after incrementally
training the model on the fully labeled first data chunk (steps 2 and 3), the processing of
each subsequent one begins with collecting the support of the existing model ¥ (which
forces the application of probabilistic classifier) obtained for the current data chunk DSy.
The objects are later sorted according to the distance from the decision boundary, which
for a binary problem means an absolute difference from the value of .5. Real labels are
obtained for objects for which the calculated absolute difference does not exceed the set

threshold ¢ (steps 5 and 6). In the pseudocode, the one new function was used:

e ACTIVELEARNING () —selects, according to the set threshold ¢, all problem instances

for which the distance from the decision boundary doe not exceed the set value.

Algorithm 13 Pseudocode for ALS

Input:
Stream = {DS1,DS,, ..., DSk, DSk41,...} — data stream,
¥ — classification algorithm,
t — threshold value.

1: for each k, DSy = {z},23,...,2Y} in Stream do
2 if k == 0 then
3 U + UPDATECLASSIFIER (W, DS)) > Update the classifier using whole chunk
4 else
5: X, = ACTIVELEARNING (t, DS}) > Select instances using active learning
6 LS} = GETLABELS(X};) > Get labels for the chosen instances
7 U < UPDATECLASSIFIER (U, LSk) > Update the classifier
8: end for

BALS

The Budget Active Labeling Strategy algorithms, which is the main contribution of this
section, combines both the Budget Labeling and active learning approaches described
in Algorithms [[2 and [[3l It uses an active strategy, typical for ALS (step 5), but each
performed active selection of objects is supplemented by a certain, predetermined random
samples pool, like in BLS strategy (step 6). The proposed approach thus tries to increase
the generalization ability of the used classification algorithm, by additional diversification

of samples subjected to labeling by an expert.

Computational and memory complexity analysis

The BLS algorithm uses a simple sampling without replacement in order to choose the
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Algorithm 14 Pseudocode for BALS

Input:
Stream = {DS1,DSs, ..., DS, DSky1, ...} — data stream,
U — classification algorithm,
t — threshold value,
b — budget value.

1: for each k, DSy = {z},23,...,2Y} in Stream do

2 if k == 0 then

3 U <~ UPDATECLASSIFIER (W, DS}) > Update the classifier using whole chunk
4 else

5: X, = ACTIVELEARNING (¢, DS}) > Select instances using active learning
6 X, <~ RANDOMBUDGET(b, DS);) > Randomly select percentage of instances
7 LS} = GETLABELS(X};) > Get labels for the chosen instances
8 U + UPDATECLASSIFIER (U, LSk) > Update the classifier
9: end for

random budget b of instances from each data chunk DKj. This operation has the com-
putational complexity of O(b log b). The used active learning approach calculates each
sample’s distance from the decision boundary (which an absolute difference of obtained
support and .5), which has the complexity of O(] DSy |). Then, ALS sorts the objects
according to the acquired distance and uses only those, for which the distance values
does not exceed the set threshold ¢. This operation has the computational complexity
of O(] DSy | log | DSk |). The proposed Budget Active Labeling Strategy combines both

approaches.

5.1.1 Experimental evaluation

This subsection presents the motivation, goals and set-up of the performed experiments,

as well as their results.

Research questions

The experiments were designed to answer the following questions:

Q1. Can a classifier that will have a quality comparable to the model learned on all
available objects be obtained by using a small budget combined with active learning

for data labeling?

Q2. Will such a method be better in terms of the drift response time (restoration
time) and performance deterioration, when compared to the reference methods for

dealing with limited labeling?



Chapter 5. Limited access to labels 157

Q3. WIill the observed behavior also occur when dealing with imbalanced real data

streams?

Goals of the experiments

Ezperiment 1 — Balanced synthetic data streams

The main purpose of the first experiment is to evaluate the quality of the BALS method,
when compared to the MLP trained on all available data, BLS, and ALS for the task of

balanced drifting data stream classification.

Experiment 2 — Imbalanced real data streams
The main goal of the second experiment is to observe the behavior of the tested methods,

when dealing with the imbalanced real data streams.

Experimental set-up
The analysis was based on six types of synthetic streams, replicated 10 times for sta-
bility of the achieved results. The detailed characteristics of the generated streams are

described below:

Concept drift types — sudden, gradual and incremental,

Approaches to repetitive concepts — recurrent and non-recurrent concept drift,

Data stream size — 500 000 instances (1000 data chunks, 500 instances each)

Number of concept drift per stream — g.

Additionally, during Experiment 2, the proposed method was evaluated on the 5 real
data streams described in Table [B.11

Table 5.1: Real data streams characteristics.

Data stream #Samples #Features IR
covtype Norm-1-2vusAll 266 000 54 4
poker-lsn-1-2vsAll 360 000 10 10
INSECTS-abrupt imbalanced norm 300 000 33 19
INSECTS-gradual_imbalanced_ norm 100 000 33 19
INSECTS-incremental_imbalanced_norm 380 000 33 19

The three considered methods were implemented in consistency with the scikit-learn
|[187] AP1. Evaluation was based on 7 different metrics and performed according to the

Test-Then- Train methodology. The details on experimental set-up are listed below:
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e Classification algorithm — incremental MLP probabilistic classifier with ReLu ac-
tivation function, Adam solver and one hidden layer consisting of 100 artificial

neurons,
e Methods’ parameters:

— ALS — the budget of 5, 10 and 20%,
— BLS — a single threshold of absolute distance ¢t = .2 from the decision boundary,

— BALS — threshold of absolute distance ¢ = .2 as well as the random budget of
5, 10 and 20%,

e Evaluation metrics:

— Experiment 1 — accuracy score,

— Experiment 2 — BAC, F} score, Gmeans, recall, precision, and specificity,

Experiments can be replicated according to the code available on the GitHub repositor.

Experiment 1 — Balanced synthetic data streams

The experimental studies were carried out for three different concept drift types. Figure
[B.1] presents the runs for individual approaches to the construction of the MLP-based

model for data containing sudden drifts.

As can be seen, the BLS approach to non-recurring sudden drifts is characterized by a
constant learning curve that builds the model in a similar way for each of the following
concepts. The learning curve achieved has lower dynamics than the full model (marked
with dotted lines) and in no case reaches the maximum generalization capability. The
lower learning dynamic is directly caused by the reduction of the number of learning
objects. Interestingly, there are no significant differences in quality between using 5, 10

or 20% of objects.

For recurrent drifts, there is a slight change in the behavior of the BLS approach. Achiev-
ing full discriminative ability causes the model to retain information from previous con-
cepts even after they have been changed. While in the case of the first concept drift,
which introduces a new distribution of problem classes for the first and only time, qual-
ity degradation occurs in the same way as in the full model when a sudden change occurs.

In other situations, the quality reduction is less noticeable. However, it does not decrease

"https://github.com/w4k2/bals
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Figure 5.1: Ezemplary results for the stream affected by a sudden concept drift.

significantly in subsequent iterations of recurrent drifts, and the other models achieve

higher classification quality than BLS relatively quickly each time.

The most interesting observation in this case is the behavior of the classification approach
ALS. While in the case of the first and second concepts (regardless of concept repetition)
its ability to achieve the full possible classification accuracy (relative to MLP trained on a
fully labeled data chunk) can be seen, its progressive degeneration with subsequent drifts
is equally visible. In the case of non-recurring drifts, it corresponds with the occurrence
of the third concept BLS and decreases in accuracy over time. In the case of recurrent
drifts, this degeneration occurs even faster due to the previously described remembering
of old concepts by BLS and already with the occurrence of the second concept drift it

turns out that ALS is outperformed by the competitor based on a random budget.

The observation of the BALS method for the first two concepts is identical to the ALS
approach, and in both cases leads to the achievement of the generalization ability of

the classifier built on fully labeled data. However, it is pleasantly surprising that the
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Gradual non-recurring drift
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Figure 5.2: Ezemplary results for the stream affected by a gradual concept drift.

introduction of even a small percentage of random patterns sensitizes such a method
to the degeneracy of subsequent drifts typical of BLS. The difference between the two
standard approaches (BLS and ALS) and the combined approach is not just a simple
improvement in classification accuracy. It can be seen that by introducing randomly
selected patterns, the BALS method achieves the full possible classification accuracy every

time (albeit sometimes with decreasing dynamics).

The proportional to learning time degeneration of the ALS approach is probably due to
the increasing certainty of the predictions made, in the case of analysis of the supports
achieved, which means their strong polarization, and thus a gradual, rapid reduction
of the number of objects located near the decision boundary. This means that the
solution based on support thresholding — over time — assigns fewer and fewer objects
as potentially useful for labeling. The phenomenon of this polarization is reduced by

introducing seemingly different patterns for the built recognition model, modifying the
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Incremental non-recurring drift
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Figure 5.3: Ezemplary results for the stream affected by an incremental concept drift.

statistical distribution of obtained support, which is a direct result from the new concept

signaling itself for a need for increased learning rate.

Interestingly, the percentage of random patterns added to the active labeling model
does not appear to have a significant impact on classification accuracy or learning curve
dynamics. Even a small number of such objects (5%) causes BALS to no longer exhibit

the degenerative tendencies of the pure ALS model.

The observations made for sudden drifts, including both approaches to drift recurrence,
can be directly applied to those made for gradual (Figure B.2)) and incremental drifts
(Figure 5.3]). The dynamics of the concept changes themselves do not seem to have much
influence on the relationships between the analyzed algorithms, so the conclusions made

for sudden drift can be easily generalized for all problems considered in the research.
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Experiment 2 — Imbalanced real data streams

Figure 5.4 shows the behavior of the proposed MLP model construction approaches when
classifying real imbalanced data streams. The radar diagrams show the average values

of all six analyzed metrics, while the runs are presented for the Gmeans.

In the case of the CovType stream, which has the lowest imbalance ratio of all the real
data streams analyzed, there are clear - although of undefined type - concept drifts. The
BLS method achieves the generalization capacity of the full model, but the learning curve
has lower dynamics than in the case of access to the full training set, which is again due to
the lower number of patterns used in the training process. BLS also shows a greater, but
delayed in relation to the full model, decrease in generalization ability when the concept
drift occurs (degrading to the level of a random classifier), which may be due to the
occurrence of drift in prior class probabilities and a temporary increase in the imbalance
ratio. When rebuilding the model, the BLS achieves a generation ability close to that
of the full model, which increases with the percentage of budget used. The MLP model
trained with the use of ALS performs by far the worst, remaining for most of the data
stream at the level of the random classifier. Only in the vicinity of chunk 180 does the
learning curve begin to be visible, which leads to the achieved generalization ability being
close to the full model. It may be caused by too high certainty of the prediction, which
translates into the lack of instances located within a fixed distance from the decision
boundary. The proposed BALS approach, combining ALS with a random budget, allows
to achieve full generalization capacity faster than in the case of BLS, but in the event
of concept drift it shows a faster reduction in performance. Reconstruction after drift
occurrence in the case of BALS is slower than in the case of BLS, however, a higher value

of the examined metrics is achieved.

In the case of the Poker stream, which exhibits a higher imbalance ratio of 10, the BLS - as
expected - has the lowest ability to detect the minority class. This is due to the fact that
mainly the majority class instances are drawn to the budget. The model trained with the
use of ALS, despite a poor start and remaining at the level of the random classifier during
the first 150 data chunks, at a later stage of the stream achieves the generalization ability
exceeding that achieved by the full model. It is caused by changes in the support space,
which lead to an increase in the number of problem samples occurring at a set distance
from the decision boundary. The use of the BALS strategy allows the observation of
behavior identical to that displayed when dealing with synthetic balanced data streams.
In the first half of the stream, the model trained using the BALS approach, as opposed
to BLS and ALS, performs above the random classifier level, and in the second half, it

achieves the generalizing ability that exceeds that of the full model.
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Figure 5.4: Results for real imbalanced data streams.
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In the case of INSECT data streams, which present by far the most difficult problems and
the highest imbalance ratio, the MLP models in combination with the proposed labeling
strategies are not able to cope with the classification task. The models’ performance only
exceeds that of the random classifier at the beginning of all three streams, which may
be due to a drift in prior probabilities and a lower imbalance ratio in the first twenty-
five data chunks. In the further part of the streams, the limitation of the training set
size makes it impossible to achieve the generalization ability above that of the random

classifier.

Observations

The BALS outperforms ALS algorithm due to the use of an additional fraction of la-
beled instances. However, its size was very small compared to the fraction of objects
selected according to the active learning rule. Additionally, increasing its number does

not significantly improve the quality of the proposed method.

It is obvious that the proposed model obtained slightly worse results compared to the
classifier based on a fully labeled learning set, but the time needed to reach the same

performance is very short.

Answers to research questions

Q1. Can a classifier that will have a quality comparable to the model learned on all
available objects be obtained by using a small budget combined with active learning

for data labeling?

Al. Performed experiments confirmed, that the BALS method — combining both random
and active labeling — is capable of obtaining a generalization ability at the level of
full model.

Q2. Will such a method be better in terms of the drift response time (restoration
time) and performance deterioration, when compared to the reference methods for

dealing with limited labeling?

A2. The obtained results confirmed, that the model trained using BALS approach may
display better restoration time as well as less performance deterioration than BLS

or ALS when dealing with concept drift.

Q3. Will the observed behavior also occur when dealing with imbalanced real data

streams?
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A3. The conducted experiments proved, that the BALS method can be successfully used
in the case of relatively highly imbalanced data streams, even without the use of

additional data preprocessing.

5.2 DESISC-SB framework under limited labels scenario

This section focuses on extending the DESISC-SB imbalanced data stream classification
framework with an active learning module. This is to asses the compatibility of the
proposed batch approach with active labeling methods and to evaluate its behavior,
compared to a single MLP classifier, when dealing with restricted access to labels. The
schema of the expanded framework is presented in the Figure 5.5l
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Figure 5.5: The framework extended with the active learning module for training base classifiers and
to prepare a DSEL for dynamic selection process. Here, T} is the training data produced by preprocessing
(Preproc) data chunk DSy and Wy is the base classifier trained on the kth data chunk. E denotes the
classifier pool.

The algorithms described in Section 5.1 will be reused as labeling methods. The first
is Budget Labeling (BLS) which trains each new base classifier on a fixed percentage of
randomly selected problem instances from the current chunk (Algorithm [I5]). The second

method is the ALS that has been modified. As before, this algorithm selects patterns
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that are within a certain distance from the problem’s decision boundary defined by the
threshold ¢, but this time it can also be given the budget b, which defines the percentage
of these patterns we want to label. ALS pseudocode is presented in Algorithm

As the framework is supposed to work with highly imbalanced problems, another modi-
fication has been made to labeling methods. If all the labeled instances come from the

same class, a new model is not added to the classifier pool.

Algorithm 15 Pseudocode for BLS

Input:
Stream = {DS1,DSs, ..., DS, DSky1, ...} — data stream,
U — classification algorithm,
b — budget value.

1: for each k, DSy = {z},23,. .. ,mkN} in Stream do

2: Xr = RANDOMBUDGET (b, DS}) > Randomly select percentage of instances
3: LS}, = GETLABELS(AX) > Get labels for the chosen instances
4: U <— UPDATECLASSIFIER (Y, LS}) > Update the classifier
5: end for

Algorithm 16 Pseudocode for the modified ALS
Input:
Stream = {DS1,DSs, ..., DS, DSky1, ...} — data stream,

U — classification algorithm,
t — threshold,

b — budget.
1: for each k, DSy = {z},23,...,2Y} in Stream do
2 if k == 0 then
3 U + UPDATECLASSIFIER (W, DS)) > Update the classifier using whole chunk
4 else
5: X, = ACTIVELEARNING(t,b, DS;) > Select instances using active learning
6 LS} = GETLABELS(X};)
7 U < UPDATECLASSIFIER (U, LSk) > Update the classifier
8: end for

Computational and memory complexity analysis

The computational complexity of DESISC-SB framework is based on the Dynamic Ensem-
ble Selection methods of as well as on preprocessing techniques. The key factors affecting
the computational complexity of the presented approaches are, respectively, the number
of models in the classifier pool for Dynamic Selection algorithms and the number of

problem instances in a single data chunk in the case of preprocessing techniques.

Based on preliminary observations, it was established that the KNORA-U has a linear time
complexity of O(n) depending on the number of base classifiers in the pool. The ROS
preprocessing technique has the logarithmic complexity of O(log n. Stratified Bagging
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performs sampling with replacement for each class with computational complexity of
O(| © | n), where | i | is the cardinality of the ith class and n denotes the number of

bootstraps (number of base models in bagging classifier) B]

The BLS algorithm uses a simple sampling without replacement in order to choose the
random budget b of instances from each data chunk DK;. This operation has the com-
putational complexity of O(b log b). The used active learning approach calculates each
sample’s distance from the decision boundary (which an absolute difference of obtained
support and .5), which has the complexity of O(| DSy |). Then, ALS sorts the objects
according to the acquired distance and uses only those, for which the distance values
does not exceed the set threshold ¢. This operation has the computational complexity of
O(| DSy, | log | DSy |).

5.2.1 Experimental evaluation

Here, the motivation, goals and set-up of the performed experiments are presented.

Research questions

The experiments were designed to answer the following questions:

Q1. Is the batch-based DESISC-SB framework for imbalanced data stream classification,

introduced in Section 4.2, compatible with active learning methods?

Q2. Is it possible to control the metric values obtained in the task of imbalanced data

stream classification by parametrization of the threshold ¢ in the ALS method?

Goals of the experiments
Ezperiment 1 — The impact of active learning on the DSEISC-SB framework
The aim of the first experiment is to see how the use of a data labeling strategy affects

the results achieved by the proposed framework.

Experiment 2 — The impact of the ALS distance threshold on the wvalues of evaluation
metrics

The aim of the second experiment is to check whether the obtained metric values can
be controlled by changing the distance from the decision boundary on the basis of which

the ALS selects patterns for labeling.
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Experimental set-up
The analysis was based on six types of synthetic streams, replicated 10 times for sta-
bility of the achieved results. The detailed characteristics of the generated streams are

described below:

Concept drift types — sudden, gradual and incremental,

Approaches to repetitive concepts — recurrent and non-recurrent concept drift,

Data stream size — 50 000 instances (200 data chunks, 250 instances each)

Number of concept drift per stream — g,

Global label noise — 5%,

Imbalance Ratio — 19.

Additionally, experiments were carried out on 5 real data streams, the characteristics of

which are presented in the table

Table 5.2: Real data streams characteristics.

Data stream #Samples #Features IR
covtypeNorm-1-2vsAll 266 000 54 4
poker-lsn-1-2vsAll 360 000 10 10
INSECTS-abrupt imbalanced norm 300 000 33 19
INSECTS-gradual imbalanced norm 100 000 33 19
INSECTS-incremental_imbalanced_norm 380 000 33 19

The experimental evaluation was carried out in accordance with the Test-Then-Train
methodology. The DESISC-SB framework presented in section 4.2.2 was chosen as the
classifier. Its parameters (i.e. dynamic selection method and preprocessing technique)
were selected based on the results of the experiments performed in section 4.2.3.2 and

are listed below:

Base classifier — Naive Bayes Classifier,

Dynamic Ensemble Selection — KNORA-U at the level of bagging classifiers,

Data preprocessing — Random Oversampling,

Fixed classifier pool size — 5 bagging classifiers, 10 base classifiers each (50 models

in total).
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Comparative methods:

Whole - model updated using all available data,

BLs-15 - 15% of random budget,

ALS-15 - 15% of instances closes to the decision boundary,

ALS - all instances within distance of 0.2 from the decision boundary.

The methods’ parameters were selected based on the experience gained during research
on the BALS algorithm and also taking into account the batch approach and base classifier

used.

Experiment 1 — The impact of active learning on the DSEISC-SB framework

Figure shows the results of using the proposed framework in the case of sudden
concept drifts occurrence. The first thing that stands out is that the BLS-15 result is
similar to that of the random classifier. This is due to the high imbalance ratio (5% of
minority class) in the data stream. Because of that BLS selects only instances belonging
to the majority class and the new model is not added to the pool. At the same time, we
can see that both ALS-15 and ALS are doing relatively well. Both in the case of recurring
and non-recurring drift, ALS is better at identifying the minority class, due to the lack
of a set budget. Thanks to this, it maintains a high generalization capacity and in some

cases is able to perform similarly to the model learned on all available data.

Figure 5.7 shows the results obtained in the case of gradual drift, characterized by slower
dynamics of change and the occurrence of instances from both concepts at the same
time. In this case, for non-recurring drift, we can observe a progressive deterioration of
the generalizing ability of ALS. This may be due to a small number of instances located
within a given distance from the decision boundary, which in turn leads to underfitting
in the face of a constant concept change. On the other hand, in the case of recurring
gradual drift, the ALS and ALS-15 remain on a similar level, because the ensemble always

includes models that remember the old concept.

In the case of the of incremental drift occurrence (Figure 5.8)) the observations are similar
to those regarding the gradual concept drift. The difference is that whether the drift is
recurring or non-recurring, the ALs-15 and ALS methods achieve nearly identical results.
This may be the result of more instances available to ALS as one concept blends seamlessly

into another.

Figure shows the results of combining the DESISC-SB framework with active learning

methods in a classification task of five real imbalanced data streams. Radar charts show
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Figure 5.6: Results for sudden drift.

values of six metrics averaged over the entire length of the stream, while the runs are
shown for the Gmeang metric. Due to the use of the batch-based data stream classifica-
tion approach and the GNB classifier as the base model, it was decided to abandon the

BLS approach, which in this case would remain at the level of the random classifier.

In the case of the CovType stream, the ALS-15 approach - selecting 15% of the instances
closest to the problem’s decision boundary - achieves a generalization ability worse than
the full model. At the same time, however, the selection based on the distance to decision
boundary allows for the selection of instances belonging to both classes for later data
preprocessing, and the lower performance is a direct result of the smaller training set
size. Interestingly, the model learning with the use of ALS almost immediately drops to
the level of a random classifier and stays there along the entire length of the stream.

This may be due to the support space distribution, in which, due to the high certainty of
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Figure 5.7: Results for gradual drift.

the model used, there are no instances lying within a defined distance from the decision

boundary.

For the slightly more difficult Poker stream, both the ALS and ALS-15 methods show
similar behavior. ALS-15 can achieve generalization capacity close to the full model but
also shows greater model degradation when concept drifts occur. The ALS approach is
more stable, which is due to the collection of more training patterns in the event of
concept drift, as the labeling limitation with this method does not concern the number

of patterns, but only the distance to the decision boundary.

The observations related to the classification of INSECTS streams, presenting three de-
fined types of concept drift, are particularly interesting. In the case of sudden drift, the
model learned using the ALS approach achieves the generalization ability at the level of
the full model. It may be caused by low classification certainty, and thus a large number

of patterns located at a given distance from the decision boundary. The model using
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Figure 5.8: Results for incremental drift.

the ALS-15 approach achieves slightly lower results than ALS, which is a direct result of
the smaller number of training patterns available. In the case of gradual drift, all three
approaches have very similar performance. This is due to the drift characteristics and
proves that only a small number of instances closest to the decision limit is sufficient
for building a useful model. When dealing with incremental concept drift, the model
learned using the ALS-15 approach displays a correspondingly lower generalization ca-
pacity, resulting from the smaller number of patterns used for updating the classifier. At
the same time, however, this model is relatively stable compared to the classifier trained
using the ALS method, which demonstrates greater degeneration in the event of concept
drift occurrence. This is due to the changes in the support space and the lack of patterns

that can be used during the training process.
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Experiment 2 — The impact of the ALS distance threshold on the values of
evaluation metrics

Figure 510 shows the averaged results of the evaluation metrics for each type of concept
drift, depending on the value of threshold ¢. Additionally, the X-axis shows the average
percentage of instances used in the training process, and the right Y-axis shows the

metric values achieved by the model trained on the entire available data.

Regardless of the type of drift and whether it is recurring or non-recurring, we can
observe more or less the same dependencies for each of the evaluation metrics. The
value of specificity, which is responsible for the ability to recognize the majority class,
decreases with an increase in the number of used samples, which in turn causes an increase
in the value of recall. This is a typical phenomenon in the problem of imbalanced data

classification as the two metrics are closely related.

Especially interesting is the behavior of precision metric, which increases until the value
of t is approximately .20 or .25 and then starts to decline. This is a sign that model

started to prefer the minority class.

The values of aggregated metrics, i.e. BAC, Gmeans, and F} score, result directly from
the values of the base metrics. Balanced Accuracy score and Gmeans note a continuous
increase that slows significantly when ¢ achieves the value of 0.25 or 0.3. At the same
time, the F1 score usually reaches its highest value due to the significant increase in

precision.

Observations

Based on the results obtained, it can be concluded that the proposed batch-based frame-
work for imbalanced data stream classification is compatible with active learning meth-
ods. ALS works especially well in the case of sudden drift, where about 25% of the
instances closest to the decision boundary are sufficient to achieve results similar to the

model trained using all instances of the problem.

Research on real data streams has shown that the ALS approach - using all patterns
within a given distance from the problem’s decision boundary - cannot be used in its
current form for every data stream. This is due to the high sensitivity of the method
to the distribution of patterns in the support space, which, if the classification is too
certain, leads to the lack of patterns that can be used in the model training process. To
deal with this problem, threshold t should not be set as a fixed parameter, but rather
optimized for each data chunk, to ensure that models using this approach always get a

training set containing patterns useful in the training process.
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Figure 5.10: Average metric values in relation to the set threshold t.

Answers to research questions

QL.

introduced in Section 4.2, compatible with active learning methods?

Al.

Is the batch-based DESISC-SB framework for imbalanced data stream classification,

Obtained results confirmed, that the DESISC-SB batch-based framework for imbal-

anced data stream classification is compatible with active learning approaches.

Q2.

Is it possible to control the metric values obtained in the task of imbalanced data

stream classification by parametrization of the threshold ¢ in the ALS method?

A2.

Based on the conducted experiments, it can be concluded that by appropriate

parametrization of the ALS method, it is possible to optimize the precision metric.






Chapter 6

Conclusions and Future Works

This thesis focused on the use of dynamic ensemble selection methods and data prepro-
cessing techniques in the problem of streaming and imbalanced data classification. This
work showed the potential of classifier selection methods to deal with class imbalance, but
also, most of all, proposed new effective solutions to the problem of highly imbalanced
data stream classification, up to this point rarely discussed in the literature. The stated
hypothesis — that there exist such methods employing data preprocessing and classifier
selection that can outperform state-of-the-art classifiers for difficult data classification

tasks — seems to be proven by achieving the following goals:

1. Developing an ensemble selection algorithm for imbalanced data classifi-
cation, as well as designing a dedicated combination rule.

This goal was met by developing three algorithms based on the clustering of models in
a one-dimensional space of classifier diversity. The clustering space was based on the
proposed H measure, which informs about the impact of individual classifiers on the

diversity achieved by the entire ensemble.

The Diversity Ensemble Pruning (DEP) algorithm groups the base models in the diver-
sity space and then evaluates them in terms of balanced accuracy. The pruned ensemble
consists of the classifiers with the highest BAC in each cluster. The Two-step major-
ity voting organization (TSMV) algorithm classifies imbalanced data using the two-step
voting structure, instead of pruning the ensemble. In the first stage of voting, each clus-
ter is treated as a separate classifier pool, which independently makes a decision based
on the majority voting. In the second step, the majority voting procedure is repeated,
combining the decisions obtained by the individual clusters. The Random Sampling Mul-

tistage Organization (RSMO) algorithm, which is a modification of TSVM, additionally

177
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uses sampling with replacement to reduce the number of similar classifiers used in the

decision-making process.

The computer experiments on imbalanced data, as well as statistical analysis confirmed
the usefulness of the proposed pruning method and showing it’s potential for increasing

the ensemble’s ability do detect the minority class.

The first proposition of ensemble methods based on clustering in diversity space was
published in [281]. The proposals were then extended in [283] and evaluated for the

imbalanced data classification in [276].

2. Proposing a novel distance-based Dynamic Ensemble Selection method
for imbalanced data classification.

This goal has been achieved by proposing a novel solution based on dynamic classifier se-
lection for imbalanced data classification problem. Two methods were proposed, namely
DESE and DESIRE, which use the Euclidean distance and Imbalance Ratio in the train-
ing set to select the most appropriate model for the classification of each new sample.
Research conducted on benchmark datasets and statistical analysis confirmed the use-
fulness of proposed methods, especially when there is a need to maintain a relatively low

number of classifiers.

The propositions of DESE and DESIRE were first published in [282].

3. Developing a chunk-based ensemble algorithm, aimed specifically for the
task of highly imbalanced data stream classification.

This goal was met by proposing a novel, Minority Driven Ensemble method for a chal-
lenging task of imbalanced data stream classification. MDE employs dynamic classifier
selection approach to exploit local data characteristics. The computer experiments con-
firmed the usefulness of the proposed method and on the basis of a thorough statistical

analysis.

The proposition of MDE was first published in [277].

4. Designing a novel framework combining Dynamic Ensemble Selection and
preprocessing techniques for imbalanced data stream classification.

A novel DESISC framework combining Dynamic Ensemble Selection and preprocessing
techniques (both oversampling and undersampling) was proposed for the task of highly
imbalanced data streams. The extended version of this approach, named DESISC-SB, is
based on using bagging classifiers diversified using stratified bagging, which performs sam-

pling with replacement separately from the minority and majority class. The research
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conducted on two dynamic selection methods (in two variants) and four preprocess-
ing techniques confirmed the effectiveness of the proposed solution and highlighted its
strengths in comparison with state-of-art methods. The proposed framework, compared
to the reference methods, was characterized by balanced performance in terms of all eval-
uation metrics which was stable regardless of the imbalance ratio or concept drift type.
Thus, the validity of using the Dynamic Classifier Selection methods to classify drift-
ing imbalanced data streams was confirmed. The obtained results are showing the way
for further research on employing local classifier competences for difficult data stream

classification.

The first proposition of DESISC framework was published in [280]. The extended DESISC-

sB framework was proposed in [284].

5. Proposing a strategy for learning from drifting data stream under limited
access to labels scenario.

The modification of the active learning method dedicated to non-stationary data stream
classifiers was introduced. The proposed BALS algorithm, in addition to the pool of ob-
jects selected for labeling (according to the rule that objects close to decision boundaries
have a large impact on model modification), also received a small number of randomly
selected objects from among the other instances belonging to an analyzed data chunk.
This approach caused the classifier to stabilize faster after the concept drift than BLS or

ALS. Also, the deterioration of BALS quality is lower than the reference algorithms.

The proposition of BALS was first published in [278)].

6. Evaluating the behavior of the previously proposed data stream classifica-
tion framework, taking into account the limitation in the label access.

This goal was achieved by combining the proposed framework with the active learn-
ing method based on selecting patterns located at a certain distance from the decision
boundary. The conducted research confirmed the usefulness of the framework under a

high imbalance ratio and limited access to labels.

7. Conducting an experimental evaluation of the proposed methods in com-
parison to state-of-the-art approaches.

8. Developing a Python Machine Learning library for difficult data stream
analysis.

These goals were achieved by designing an experimental environment for static classifi-

cation problems (For Chapter 3), as well as by designing the stream-learn package for
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difficult data stream classification which was used to conduct all experiments presented

in Chapters 4 and 5.

The stream-learn package has already been tested in the research process of preparing
several scientific articles, and it is an ideal tool for users who care about the simplicity of
processing, ease of the use and integration with the scikit-learn machine learning library.

The article describing package contents is available on arXiv ]

Future works

The ideas presented in this thesis may be potentially developed in the following directions:

e Future research on clustering-based methods for ensemble pruning may include ex-
ploring the different ways of calculating the proposed H measure (including both
deterministic and non-deterministic variants) and, in case of multistage organiza-
tion methods, employing different types of voting (e.g. weighted majority voting).
It would be useful to also consider ways of dealing with ties during the voting pro-
cess and, possibly, investigate the effects of data dimensionality on the performance

of the proposed algorithms.

e Future work on distance-based DES may involve the exploration of different ap-
proaches to the base classifiers’ weighting, as well as using different combination
methods and the use of proposed methods for the imbalanced data stream classi-

fication.

e The MDE algorithm can be extended for other types of base classifiers, e.g. by
taking into account the threshold for the minority class supports returned by each

of the models in the ensemble.

e Further research regarding DESISC and DESISC-SB frameworks for imbalanced data
stream classification may include problems with multiple concept drifts. A com-
prehensive analysis employing measures used to evaluate the behavior of methods
during concept drift occurrence, their extension for many concept drifts in a sin-
gle the data stream, and their statistical analysis. It is also possible to extend
the research to other methods of Dynamic Ensemble Selection and preprocessing

techniques, as well as to adapt our proposition to the multi-class classification task.

e Employing the BALS method for another classification models and classifier ensem-
bles, as well as using the information on the concept drift rapidness to establish the
proportion between the number of objects labeled by active learning and random

choosing.



Chapter 6. Conclusions and Future Works 181

e Conducting a broader experimental evaluation of the proposed framework for the

imbalance data stream classification under a scenario of restricted access to labels.

Publications

The selected parts of the thesis have been already published in:

e Pawel Zyblewski, Robert Sabourin, and Michat Wozniak. Preprocessed dynamic
classifier ensemble selection for highly imbalanced drifted data streams. Informa-
tion Fusion, 66:138 — 154, 2021 (1F: 13.669, MNisw: 200)

e Pawet Zyblewski and Michat Wozniak. Novel clustering-based pruning algorithms.
Pattern Analysis and Applications, pages 1-10, 2020 (1F: 1.512, MNisw: 70)

e Pawel Zyblewski, Robert Sabourin, and Michat Wozniak. Data preprocessing and
dynamic ensemble selection for imbalanced data stream classification. In Ma-
chine Learning and Knowledge Discovery in Databases, pages 367-379, Cham, 2020.
Springer International Publishing (CORE: A, MNisw: 140)

e Pawetl Zyblewski and Michal Wozniak. Dynamic classifier selection for data with
skewed class distribution using imbalance ratio and euclidean distance. In Inter-
national Conference on Computational Science, pages 59—73. Springer, 2020

(CORE: A, MNisw: 140)

e Pawet Zyblewski. Clustering-based ensemble pruning in the imbalanced data classi-
fication. In International Conference on Computational Science. Springer, 2021 |ac-

cepted for publication| (CORE: A, MNisw: 140)

e Pawel Zyblewski, Pawel Ksieniewicz, and Michal Wozniak. Classifier selection for
highly imbalanced data streams with minority driven ensemble. In Artificial In-
telligence and Soft Computing, pages 626-635, Cham, 2019. Springer International
Publishing (CORE: National, MNisw: 20)

e Pawel Zyblewski, Pawel Ksieniewicz, and Michat Wozniak. Combination of active
and random labeling strategy in the non-stationary data stream classification. In
International Conference on Artificial Intelligence and Soft Computing, pages 576—
585. Springer, 2020 (CORE: National, MNisw: 20)

e Pawel Zyblewski and Michal Wozniak. Clustering-based ensemble pruning and
multistage organization using diversity. In International Conference on Hybrid
Artificial Intelligence Systems, pages 287-298. Springer, 2019
(cOrE: National, MNisw: 20)
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e Pawel Ksieniewicz and Pawel Zyblewski. stream-learn—open-source python library
for difficult data stream batch analysis. arXiv preprint arXiw:2001.11077, 2020

During the work on the thesis I have also coauthored other research:

e P. Ksieniewicz, P. Zyblewski, M. Choras, R. Kozik, A. Gietczyk, and M. WozZniak.
Fake news detection from data streams. In 2020 International Joint Conference on
Neural Networks (IJCNN), pages 1-8, 2020 (CORE: A, MNisw: 140)

e Dominika Sulot, Pawel Zyblewski, and Pawel Ksieniewicz. Analysis of variance
application in the construction of classifier ensemble based on optimal feature sub-
set for the task of supporting glaucoma diagnosis. In International Conference on
Computational Science. Springer, 2021 |accepted for publication|
(CORE: A, MNisw: 140)

e Pawel Zyblewski, Marek Pawlicki, Rafal Kozik, and Michat Choras. Cyber-attack
detection from iot benchmark considered as data streams. In International Con-

ference on Computer Recognition Systems, 2021 |accepted for publication]

Additionally, at the time of completing this thesis, the following articles are undergoing

the review process:

e Pawel Ksieniewicz, Pawet Zyblewski, and Robert Burduk. Fusion of linear base

classifiers in geometric space. Knowledge-Based Systems, 2021

e Pawel Ksieniewicz, Pawet Zyblewski, Weronika Borek, Rafat Kozik, Michal Choras,
and Michat Wozniak. Alphabet flatting as a variant of n-gram feature extraction
method in ensemble classification of fake news. Engineering Applications of Arti-
ficial Intelligence, 2021

e Pawel Ksieniewicz and Pawel Zyblewski. stream-learn—open-source python library

for difficult data stream batch analysis. Neurocomputing, 2021

e Joanna Komorniczak, Pawel Zyblewski, and Pawel Ksieniewicz. Prior probability
estimation in dynamically imbalanced data streams. In The International Joint
Conference on Neural Networks, 2021
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