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With the sun in my hand

Gonna throw the sun

Way a
ross the land-

Cause I'm tired,

Tired as I 
an be

So Tired Blues by Langston Hughes
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LS learning set
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h in
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lass only

M set of 
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y

Perr probability of error

pi a prior probability of the i-th 
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lassi�ers

n number of base 
lassi�ers

Ψ 
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optimal (Bayes) 
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Risk(Ψ) average (overall) risk of 
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x feature ve
tor
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X feature spa
e
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X random variable

[ ] Iverson bra
ket [true] = 1, [false] = 0



Abstra
t

The thesis fo
uses on the use of the Dynami
 Ensemble Sele
tion algorithms in 
onjun
-

tion with data prepro
essing te
hniques in the tasks of the stream and imbalan
ed data


lassi�
ation. The aim was to present the natural ability of 
lassi�er sele
tion algorithms

to deal with data imbalan
e and to propose new, e�e
tive solutions to the rarely dis
ussed

problem of highly imbalan
ed data stream 
lassi�
ation. Based on these assumptions,

the following hypothesis was formulated

There exist su
h methods employing data prepro
essing and 
lassi�er sele
tion

that 
an outperform state-of-the-art 
lassi�ers for di�
ult data 
lassi�
ation

tasks.

The hypothesis was substantiated by a
hieving the following goals:

Goal 1 � Developing an ensemble sele
tion algorithm for imbalan
ed data


lassi�
ation, as well as designing a dedi
ated 
ombination rule.

This goal was met by developing three algorithms based on the 
lustering of models in

a one-dimensional spa
e of 
lassi�er diversity. To 
onstru
t this 
lustering spa
e, the

H measure, informing about about the impa
t of individual 
lassi�ers on the ensemble

diversity, was proposed.

The Diversity Ensemble Pruning (dep) prunes the ensemble by sele
ting, from ea
h


luster, only the model with the highest ba
 value. The Two-step majority voting or-

ganization (tsmv) algorithm 
lassi�es imbalan
ed data using the two-step voting stru
-

ture. The Random Sampling Multistage Organization (rsmo) algorithm, additionally

uses sampling with repla
ement to redu
e the number of similar models involved in the

de
ision-making pro
ess.

Goal 2 � Proposing a novel distan
e-based Dynami
 Ensemble Sele
tion

method for imbalan
ed data 
lassi�
ation.

This goal was met by proposing novel Dynami
 Classi�er Sele
tion algorithms for the

imbalan
ed data 
lassi�
ation problem. Two methods were proposed, namely Dynami
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Abstra
t 2

Ensemble Sele
tion using Eu
lidean distan
e (dese) and Dynami
 Ensemble Sele
tion

using Imbalan
e Ratio and Eu
lidean distan
e (desire), whi
h use the Eu
lidean dis-

tan
e and Imbalan
e Ratio in the training set to sele
t the most appropriate model for

the 
lassi�
ation of ea
h new sample. dese performs the sele
tion based on lo
al 
ompe-

ten
ies and distan
e to 
lassi�ed neighbors, while desire additionally s
ales the obtained

weights by Imbalan
e Ratio of the problem.

Goal 3 � Developing a 
hunk-based ensemble algorithm, aimed spe
i�
ally

for the task of highly imbalan
ed data stream 
lassi�
ation.

This goal was a
hieved by proposing the Minority Driven Ensemble (mde) algorithm.

This algorithm 
lassi�es highly imbalan
ed data streams using a de
ision rule exploiting

lo
al data 
hara
teristi
s to prefer the minority 
lass instan
es.

Goal 4 � Designing a novel framework 
ombining Dynami
 Ensemble Sele
-

tion and prepro
essing te
hniques for imbalan
ed data stream 
lassi�
ation.

This goal was a
hieved by proposing two bat
h-based approa
hes, 
ombining Dynami


Classi�er Sele
tion algorithms and prepro
essing te
hniques for the task of highly im-

balan
ed data stream 
lassi�
ation. The Dynami
 Ensemble Sele
tion for Imbalan
ed

Stream Classi�
ation (desis
) method generates a single model on ea
h data 
hunk,

while the Dynami
 Ensemble Sele
tion for Imbalan
ed Stream Classi�
ation approa
h

using Strati�ed Bagging (desis
-sb) employs a strati�ed version of Bagging for the base


lassi�er generation.

Goal 5 � Proposing a strategy for learning from drifting data stream under

limited a

ess to labels s
enario.

This goal was a
hieved by the introdu
tion of the Budget A
tive Labeling Strategy (bals)

algorithm. The proposed approa
h, in addition to the pool of obje
ts sele
ted for label-

ing based on their distan
e to the de
ision boundary, also re
eived a small number of

randomly sele
ted obje
ts.

Goal 6 � Evaluating the behavior of the previously proposed data stream


lassi�
ation framework, taking into a

ount the limitation in the label a
-


ess.

This goal was a
hieved by 
ombining the proposed desis
-sb framework with the a
-

tive learning method based on sele
ting patterns lo
ated at a 
ertain distan
e from the

de
ision boundary.

Goal 7 � Condu
ting an experimental evaluation of the proposed methods in


omparison to state-of-the-art approa
hes.

Goal 8 � Developing a Python Ma
hine Learning library for di�
ult data

stream analysis.



Abstra
t 3

Goals 7 and 8 were a
hieved by designing an experimental environment for imbalan
ed

data 
lassi�
ation, as well as by 
reating the stream-learn

1

pa
kage for di�
ult data

stream analysis, whi
h was used to 
ondu
t all experiments related to data stream 
las-

si�
ation.

Keywords

Pattern re
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tive learning; 
lassi�
ation; 
lassi�er ensemble; 
lassi�er se-

le
tion; di�
ult data; imbalan
ed data; data stream; data prepro
essing; 
on
ept drift;

a
tive learning.
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Stresz
zenie

Rozprawa doktorska kon
entruje si� na wykorzystaniu algorytmów Dynami
znej Selek
ji

Zespoªu Klasy�katorów w poª¡
zeniu z metodami przetwarzania wst�pnego w zadaniu

klasy�ka
ji staty
zny
h oraz strumieniowy
h dany
h niezbalansowany
h. Celem pra
y

byªo przedstawione naturalnej zdolno±
i algorytmów selek
ji klasy�katorów do radzenia

sobie z niezbalansowaniem dany
h oraz zaproponowanie nowy
h, efektywny
h rozwi¡za«

rzadko poruszanego w literaturze problemu klasy�ka
ji wyso
e niezbalansowany
h stru-

mieni dany
h. W opar
iu o te zaªo»enia, w pra
y sformuªowa zostaªa hipoteza, zakªada-

j¡
a, »e

Istniej¡ metody wykorzystuj¡
e zarówno wst�pne przetwarzanie dany
h, jak

i metody selek
ji klasy�katorów, które przewy»szaj¡ jako±¢ predyk
ji znany
h

z literatury metod stosowany
h w klasy�ka
ji dany
h trudny
h.

Hipoteza zostaªa uprawdopodobniona poprzez osi¡gni�
ie poni»szy
h 
elów:

Cel 1 � Opra
owanie algorytmu selek
ji zespoªu klasy�katorów na potrzeby

klasy�ka
ji dany
h niezbalansowany
h oraz zaprojektowanie dedykowanej reg-

uªy kombina
ji.

Cel zostaª zrealizowany poprzez opra
owanie trze
h algorytmów, oparty
h na grupowaniu

modeli bazowy
h w jednowymiarowej przestrzeni ró»norodno±
i klasy�katorów. Pod-

staw� do utworzenia tej przestrzeni stanowiªa zaproponowana miara H, informuj¡
a

o wpªywie posz
zególny
h klasy�katorów na ró»norodno±¢ osi¡gan¡ przez 
aªy zespóª.

Algorytm Diversity Ensemble Pruning (dep) dokonuje grupowania modeli bazowy
h

w przestrzeni ró»norodno±
i, a nast�pnie o
enia jako±¢ klasy�ka
ji posz
zególny
h klasy-

�katorów w opar
iu o zbalansowan¡ dokªadno±¢. Do �nalnego zespoªu wybierany jest,

z ka»dego klastra, model o najwy»szej warto±
i ba
. Algorytm Two-step majority voting

organization (tsmv), zamiast redukowa¢ li
zno±¢ zespoªu, dokonuje klasy�ka
ji dany
h

niezbalansowany
h z wykorzystaniem struktury gªosowania dwuetapowego. W pier-

wszym etapie gªosowania, ka»dy klaster traktowany jest jako osobny zespóª klasy�ka-

torów, który niezale»nie podejmuje de
yzj� w opar
iu o gªosowanie wi�kszo±
iowe.
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Stresz
zenie 6

W drugim etapie, ponownie poprzez gªosowanie wi�kszo±
iowe, kombinowane s¡ de
yzje

uzyskane przez posz
zególne klastry. Algorytm Random Sampling Multistage Organi-

zation (rsmo), b�d¡
y mody�ka
j¡ tsvm, wykorzystuje dodatkowo opera
j� losowania

ze zwra
aniem w 
elu zredukowanie li
zby podobny
h klasy�katorów wykorzystyway
h

w pro
esie podejmowania de
yzji.

Cel 2 � Opra
owanie algorytmuDynami
znej Selek
ji Klasy�katorów opartego

o miary dystansu, na potrzeby klasy�ka
ji dany
h niezbalansowany
h.

Cel zostaª zrealizowany poprzez opra
owanie dwó
h algorytmów Dynami
znej Selek
ji

Klasy�katorów, które o
eniaj¡ kompeten
je modeli bazowy
h w zale»no±
i od de
yzji

podj�ty
h przez nie w odniesieniu do przypadków znajduj¡
y
h si� w lokalnym s¡siedztwie

klasy�kowanej instan
ji, jedno
ze±nie uwzgl�dniaj¡
 odlegªo±¢ Euklidesow¡ do ty
h przy-

padków. Dynami
 Ensemble Sele
tion using Eu
lidean distan
e (dese) wykorzystuje do

selek
ji wyª¡
znie de
yzje klasy�katorów oraz odlegªo±
i, natomiast Dynami
 Ensemble

Sele
tion using Imbalan
e Ratio and Eu
lidean distan
e (desire) dodatkowo mody�kuje

otrzymane wagi w opar
iu o stopie« niezbalansowania klasy�kowanego problemu.

Cel 3 � Opra
owanie opartego o przetwarzanie wsadowe algorytmu klasy-

�ka
ji wyso
e niezbalansowany
h strumieni dany
h.

Cel zostaª zrealizowany poprzez zaproponowanie algorytmu Minority Driven Ensem-

ble (mde). Algorytm ten dokonuje klasy�ka
ji wyso
e niezbalansowany
h strumieni

dany
h z u»y
iem reguªy de
yzyjnej, która wykorzystuje lokaln¡ 
harakterystyk� dany
h

do preferowania klasy mniejszo±
iowej.

Cel 4 � Zaprojektowanie metody ª¡
z¡
ej Dynami
zn¡ Selek
j¡ Klasy�ka-

torów oraz przetwarzanie wst�pne dany
h, na potrzeby klasy�ka
ji niezbal-

ansowany
h dany
h strumieniowy
h.

Cel zostaª osi¡gni�ty poprzez zaproponowanie dwó
h, oparty
h o przetwarzanie wsad-

owe, podej±¢ do ª¡
zenia algorytmów Dynami
znej Selek
ji Klasy�katorów oraz te
h-

nik przetwarzania wst�pnego na potrzeby klasy�ka
ji wyso
e niezbalansowany
h stru-

mieni dany
h. Metoda Dynami
 Ensemble Sele
tion for Imbalan
ed Stream Classi�
ation

(desis
) generuje pojedyn
zy model na ka»dej nowej por
ji dany
h, pod
zas gdy pode-

j±
ie Dynami
 Ensemble Sele
tion for Imbalan
ed Stream Classi�
ation using Strati�ed

Bagging (desis
-sb) wykorzystuje do tego 
elu straty�kowan¡ wersj� Baggingu.

Cel 5 � Zaproponowanie strategii budowania modeli klasy�ka
ji w przypadku

strumieni dany
h z ograni
zonym dost�pem do etykiet.

Cel zostaª osi¡gni�ty poprzez zapoponowanie strategii odpytywania o etykiety, nazwanej

Budget A
tive Labeling Strategy (bals). Algorytm ten ª¡
zy w sobie losowe podej±-


ie do etykietyza
ji z podej±
iem wªa±
iwym algorytmom u
zenia aktywnego. Dzi�ki

temu opró
z puli instan
ji wybrany
h na podstawie i
h odlegªo±
i od grani
y de
yzyjnej,
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etykiety pozyskiwane s¡ równie» dla maªej li
zby obiektów losowo wybrany
h z aktualnej

por
ji dany
h.

Cel 6 � Ewalua
ja zaproponowanego w
zesniej frameworku klasy�ka
ji stru-

mieni dany
h, w przypadku ograni
zonego dost�pu do etykiet.

Cel zostaª osi¡gni�ty poprzez poª¡
zenie metody desis
-sb z podej±
iem do u
zenia

aktywnego, opartym na przekazywaniu do etykietyza
ji przypadków znajduj¡
y
h si�

w okre±lonej odªeglo±
i od grani
y de
yzyjnej problemu.

Cel 7 � Przeprowadzenie ewalua
ji eksperymentalnej, porównuj¡
ej zapro-

ponowane algorytmy z podej±
iami stanowi¡
ymi state-of-the-art.

Cel 8 � Opra
owanie biblioteki j�zyka Python, pozwalaj¡
ej na analiz� trud-

ny
h strumieni dany
h.

Cele 7 i 8 zostaªy osi¡gni�te dzi�ki zaprojektowaniu oraz implementa
ji ±rodowiska

eksperymentalnego w j�zyku Python, które posªu»yªo do przeprowadzenia bada« zwi¡zan-

y
h z klasy�ka
j¡ dany
h niezbalansowany
h. Dodatkowo, w trak
ie pra
y na rozpraw¡,

opra
owana zostaªa biblioteka stream-learn

2

, pozwalaj¡
a na przetwarzanie niezbalan-

sowany
h strumieni dany
h z dryfem kon
ep
ji. Biblioteka ta zostaªa wykorzystana do

przeprowadzenia wszystki
h eksperymentów zwi¡zany
h z danymi strumieniowymi.

Sªowa klu
zowe

Rozpoznawanie wzor
ów; u
zenie induk
yjne; klasy�ka
ja; zespóª klasy�katorów; se-

lek
ja klasy�katorów; przetwarzanie wst�pne dany
h; dane trudne; dane niezbalansowane;

strumienie dany
h; dryf kon
ep
ji; u
zenie aktywne.
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Chapter 1

Introdu
tion

Nowadays, many pra
ti
al 
lassi�
ation tasks require building a model from data 
on-

taining various serious di�
ulties. These 
ompli
ations may be represented by 
hara
-

teristi
s su
h as a high number of problem 
lasses [6℄, data heterogeneity [186℄, the high

dimensionality of the problem [216℄, low or very high 
ardinality of the learning set, or

data in
ompleteness [247℄. Regardless of whi
h of these di�
ulties o

urs in the ana-

lyzed data set, they 
an severely deteriorate the performan
e of the �nal model, and the

problem 
ontaining at least one of them 
an be des
ribed as the task of di�
ult data


lassi�
ation. In the following thesis, data di�
ulty is de�ned mainly by the imbalan
ed


lass distributions [133℄ and streaming data [135℄.

The nature of imbalan
ed data and data stream

The primary problem with learning from imbalan
ed data is the ability of data with

skewed 
lass distribution to signi�
antly deteriorate the performan
e of 
lassi
al learning

algorithms, as they assume a roughly equal number of samples in all 
onsidered problem


lasses [119℄. However, in many real-life tasks, samples from some 
lasses appear mu
h

more frequently than from others. In the 
ase of binary 
lassi�
ation, these 
lasses

are 
alled majority and minority 
lasses, respe
tively. Therefore, when 
onfronted with

the problem of imbalan
ed data 
lassi�
ation, the above-mentioned algorithms fail to

represent the data distributive 
hara
teristi
s and display a bias towards the majority


lass [133℄. At the same time, from the point of view of the 
lassi�
ation task, it is the

minority 
lass that is usually more important.

The problem of data stream 
lassi�
ation is interesting due to a potentially in�nite

amount of 
ontinuously arriving data, whi
h 
an appear at high speed and require a

qui
k response from the de
ision system. Data streams pose new 
hallenges for traditional

ma
hine learning algorithms, whi
h were designed with the 
lassi�
ation of stati
 data in

11



Chapter 1. Introdu
tion 12

mind and are not 
apable of adapting to the 
hara
teristi
s exhibited by the fast growing

amounts of data [135℄. The most distin
tive feature of a data stream is the phenomenon


alled 
on
ept drift, whi
h 
an 
hange the data distribution in the stream over time and

thus lead to deterioration of the 
lassi�
ation model. Con
ept drift 
an be 
ategorized as

(i) virtual or real, depending on the in�uen
e of the 
hanges on the shape of the de
ision

boundary, (ii) sudden, gradual or in
remental, depending on the dynami
s of 
hanges,

and (iii) re
urring or non-re
urring, depending on the possibility of the reappearan
e of

previously observed 
on
epts. Additional problems are memory and time 
onstraints due

to the potentially in�nite amount of data as well as potential limitations in the ability

to label all in
oming samples.

The imbalan
ed data stream 
lassi�
ation task [37℄, whi
h 
ombines both of the notions

des
ribed above, is very rarely represented in the literature. This is despite the fa
t

that real-life data streams often exhibit high and dynami
ally 
hanging 
lass imbalan
e.

When dealing with both imbalan
ed data and data stream 
lassi�
ation, one of the

most promising dire
tions is the approa
h based on 
lassi�er ensemble [150℄. Ensemble

methods, due to their �exibility, allow for easy 
ombination with data prepro
essing

in the 
ase of learning from imbalan
ed data and for the 
ontinuous adaptation of the


lassi�er pool to deal with the 
on
ept drift o

urren
e. This approa
h refers to the

need, rooted in human nature, to obtain a few opinions before making a de
ision. That

is why the foundations of the need to generate relatively strong (better than random

guess) and diverse (making mistakes on di�erent instan
es of the problem [151℄) models


an also be found in politi
al s
ien
e. It is also worth paying attention to the important

role of 
lassi�er sele
tion [59℄, both stati
 and dynami
, whi
h allows for more e�e
tive

use of the lo
al knowledge of ea
h base model.

Ensemble learning roots

Everyday de
ision making is an essential part of everyone's life. We think about trivial

things. We de
ide what to eat for dinner, what to wear for work, or what book to read

after 
oming ba
k home. However, we also 
onsider 
hoi
es that have a mu
h greater

impa
t on our lives, su
h as 
hoosing an edu
ation path, 
areer, or buying a house. In

many of these 
ases, we seek for a help in the opinion of an expert who has been gaining

experien
e in a given �eld for years and � with given probability dependent to his or hers

lifespan � is able to re
ommend us the best possible 
hoi
e.

However, it is also worth 
onsidering an alternative that has long been 
onsidered by

politi
al s
ien
e, namely the Wisdom of Crowds - initiated by Condor
et's jury theorem,

whi
h was �rst introdu
ed by Marquis de Condor
et in 1785 in an important work on
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probability, Essay on the Appli
ation of Analysis to the Probability of Majority De
isions

[48℄, whi
h was originally published in Fren
h

1

.

Condor
et's theorem provides the theoreti
al basis for demo
ra
y, des
ribing the relative

likelihood of a group of people rea
hing the right solution to a problem by 
ombining

their knowledge (by voting) and trusting the majority's de
ision. The 
on
lusion being,

that a majority of independent individuals who make 
orre
t de
isions with a probability

greater than by random 
hoi
e are more likely to make the 
orre
t 
hoi
e than ea
h of

the individual separately [212℄. Unfortunately, the assumptions made by Condor
et were

quite unrealisti
 and di�
ult to a
hieve in reality, however, there have also been some

generalizations of this theory that no longer possess these limitations [153℄.

A well-known and often-
ited example of the e�e
tiveness of theWisdom of the Crowds is

the experiment 
arried out by the English statisti
ian Fran
is Galton during a 
ompeti-

tion organized at the Plymouth fair. The aim of the 
ompetition was to guess the weight

of the slaughtered and dressed ox, and the winner was the person whose proposal was


losest to the real value. In his work Vox Populi [87℄, published in 1907, Galton des
ribed

gathering 800 voting 
ards and � after getting rid of 13 unreadable ones � 
al
ulating the

median of the remaining 787 votes in order to represent the 
ombined wisdom of ea
h

parti
ipant. The result was a response of 1.207 pounds, whi
h di�ered only by 1% from

the true weight of 1.198 pounds. After the publi
ation of Vox Populi, one of the readers

started a dis
ussion with Galton in whi
h he proposed using the average of the votes

instead of the median. It turned out that this approa
h led to a virtually perfe
t result,

di�ering from the true value by only one pound.

Surowie
ki, based on this phenomenon, 
on
luded in his book The wisdom of 
rowds

[226℄ that instead of looking for experts in a given �eld � whi
h 
an often turn out to

be a highly 
ostly pro
ess � one should rather approa
h the 
rowd that may know the

answer to the problem in question. He also referred to the show Who Wants to Be a

Millionaire in whi
h a player, if unsure about the question, 
an use one of the three

lifelines. Two of these aids are, respe
tively, a phone 
all to a friend previously sele
ted

by the 
ompetitor, who may be 
onsidered an expert, and a request for the opinion of a

random 
rowd lo
ated in a TV studio. A

ording to the data provided by Surowie
ki, the

experts answered 
orre
tly almost 65 per
ent of the time, while the audien
e pi
ked the

right answer 91 per
ent of the time. Even without knowing the level of expert knowledge

and the fa
t that these statisti
s do not relate to the same questions, there is a 
lear

similarity between this example and the resear
h 
ondu
ted by Galton.

Based on this assumption as well as Condor
et's 
riterion, the desired properties of a

de
ision-making system based on the group opinion of people 
an be listed [194℄:

1

Essai sur l'appli
ation de l'analyse à la probabilité des dé
isions rendues à la pluralité des voix
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� Diversity of opinion � ea
h member should possess di�erent information and have

a di�erent perspe
tive on the problem,

� Independen
e � ea
h member should make independent de
ision errors [236℄,

� De
entralization � ea
h member should draw 
on
lusions based on their lo
al

knowledge,

� Aggregation � an approa
h to 
ombining individual de
isions into a joint result

The 
ore of the ensemble learning approa
h and the reason for using it is perfe
tly

rendered in the quote from Marvin Minsky's book The So
iety of Mind [173℄ - "What

magi
al tri
k makes us intelligent? The tri
k is that there is no tri
k. The power of

intelligen
e stems from our vast diversity, not from any single, perfe
t prin
iple."

1.1 Motivation and 
hallenges

The following thesis aims to 
onne
t two rarely 
ombined resear
h dire
tions, i.e., non-

stationary data stream 
lassi�
ation and data analysis with skewed 
lass distributions.

Learning from non-stationary data streams remains the fo
us of intense resear
h be
ause

many real de
ision-making problems should pro
ess on streaming data [135℄. Neverthe-

less, the de
ision-making algorithms should also take into 
onsideration the dispropor-

tions among the observations from di�erent 
lasses [133℄. Be
ause real data streams

may exhibit a high and 
hanging 
lass imbalan
e ratio, whi
h 
an further hinder the


lassi�
ation task, then the high demand for this type of solution is evident.

A typi
al example of su
h a 
ase is the te
hni
al diagnosis in whi
h the fault probability

in
reases with utilization time, and it may be a result of material fatigue. Sometimes

the relationship between the minority and majority 
lasses 
hanges in a way that the

former minority be
omes the majority 
lass. We may observe this phenomenon in tasks

related to so
ial media analysis, as the popularity of topi
s dis
ussed on Twitter [223℄ or

environmental hazards dete
tion system, like oil spill dete
tion [146℄. Another real-life

example of imbalan
ed data streams is 
ontinuous medi
al s
reening

2

for a 
ondition

being usually performed on a large population of people without the 
ondition, in order

to dete
t a small minority among them (e.g., hiv prevalen
e in the usa is 
a. 0.4%) or

the 
onversion rates of online ads, estimated to be a lie between 10−3
to 10−6

. Examples


an also be found in banking (fraud dete
tion, anti-money laundry, et
.) or 
yberse
urity

(e.g., spam �ltering, or intrusion dete
tion). It is also worth noting here that �nan
ial

2

T.Faw
ett, Learning from Imbalan
ed Classes, 25th August 2017,

https://svds.
om/learning-imbalan
ed-
lasses/

https://svds.com/learning-imbalanced-classes/
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or 
yberse
urity institutions are trying to develop methods of prote
tion against these

violations. However, 
riminals 
hange their atta
k models to 
heat the se
urity measures

developed, i.e., the nature of the de
ision model 
hanges - so we are dealing with the

phenomenon 
alled 
on
ept drift.

Based on the analysis of the literature, it 
an be seen that the imbalan
ed data stream


lassi�
ation problem is poorly represented, what is more, most works do not address

the issue of the possibility of the 
on
ept drift appearing during the operation of the


lassi�
ation model. There are also only a few works that distinguish the di�eren
es

between the dynami
ally imbalan
ed data stream 
lassi�
ation problem and a s
enario

where the prior knowledge about the entire data set is given [160℄. This is a result of the

additional problems resulting from the la
k of knowledge about the 
lass distribution,

whi
h are notably present in the initial stages of the data stream 
lassi�
ation [242℄.

The proposed solutions should, therefore, have high adaptability to 
hanging parameters

of the 
lassi�
ation task, whi
h guarantees, among others, the approa
h based on 
lassi-

�er ensemble [135℄. On the other hand, su
h methods should take into a

ount the lo
al


hara
teristi
s of data distributions and the disproportions among the 
lasses. There-

fore, the natural 
andidate seems to be an approa
h based on the Dynami
 Classi�er

Sele
tion (des). Due to the fa
t that the dynami
 
lassi�er sele
tion is based only on

the lo
al neighborhood of query samples, te
hniques of this type should not be biased in

relation to the majority 
lass. Despite this, only a few works attempt to employ these

methods to the problem of imbalan
ed data 
lassi�
ation [198, 259℄.

1.2 Resear
h hypothesis, its aims and goals

This thesis aims to propose e�e
tive (regarding the quality of 
lassi�
ation as well as


omputational e�
ien
y) algorithms for the task of 
lassifying highly imbalan
ed data

stream with 
on
ept drift o

urren
e. Additionally, it intends to meet the need to develop

new Classi�er Sele
tion algorithms dedi
ated to the 
lassi�
ation of data with the skewed


lass distribution. The resear
h hypothesis is as follows:

There exist su
h methods employing data prepro
essing and 
lassi�er sele
tion

that 
an outperform state-of-the-art 
lassi�ers for di�
ult data 
lassi�
ation

tasks.
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Aims and goals

In order to 
on�rm the expressed hypothesis, the following goals have been formulated:

1. Developing an ensemble sele
tion algorithm for imbalan
ed data 
lassi�
ation, as

well as designing a dedi
ated 
ombination rule.

2. Proposing a novel distan
e-based Dynami
 Ensemble Sele
tion method for imbal-

an
ed data 
lassi�
ation.

3. Developing a 
hunk-based ensemble algorithm, aimed spe
i�
ally for the task of

highly imbalan
ed data stream 
lassi�
ation.

4. Designing a novel framework 
ombining Dynami
 Ensemble Sele
tion and prepro-


essing te
hniques for imbalan
ed data stream 
lassi�
ation.

5. Proposing a strategy for learning from drifting data stream under limited a

ess to

labels s
enario.

6. Evaluating the behavior of the previously proposed data stream 
lassi�
ation frame-

work, taking into a

ount the limitation in the label a

ess.

7. Condu
ting an experimental evaluation of the proposed methods in 
omparison to

state-of-the-art approa
hes.

8. Developing a Python Ma
hine Learning library for di�
ult data stream analysis.

1.3 Thesis stru
ture

Chapter 2 introdu
es sele
ted topi
s of pattern 
lassi�
ation, with an emphasis on in-

du
tive learning and 
lassi�
ation task. Classi�er ensemble is dis
ussed, in
luding its


omponents, ensemble diversity, and the notion of 
lassi�er sele
tion. The problem of

di�
ult data 
lassi�
ation is pre
isely de�ned, with an emphasis on imbalan
ed data 
las-

si�
ation, data stream 
lassi�
ation, and limited a

ess to labels. The Python stream-

learn library for di�
ult data stream analysis, whi
h was developed during the work

on this thesis, is also presented. Chapter 3 presents the ensemble algorithms proposals

using 
lassi�er sele
tion for imbalan
ed data 
lassi�
ation. The �rst algorithm employs

diversity-based stati
 
lassi�er sele
tion, the se
ond proposition 
ombines base models

using a multistage organization, and the third approa
h proposes Dynami
 Classi�er

Sele
tion based on Eu
lidean distan
e. Chapter 4 presents proposed algorithms for the


lassi�
ation of unbalan
ed data streams. The ensemble algorithm employing a 
lassi-

�er sele
tion approa
h in order to fo
us on the minority 
lass dete
tion is presented,



Chapter 1. Introdu
tion 17

followed by a novel framework 
ombining dynami
 
lassi�er sele
tion and data prepro-


essing. Chapter 5 deals with the problem of limited a

ess to labels when 
lassifying

data streams. First, an algorithm 
ombining a
tive learning and random labeling is

introdu
ed. Then, the imbalan
ed data stream 
lassi�
ation framework introdu
ed in

Chapter 5 is extended with an a
tive learning module and evaluated under limited a

ess

to labels s
enario. Chapter 6 
on
ludes the thesis and presents potential future resear
h

dire
tions.





Chapter 2

Sele
ted topi
s of pattern

re
ognition

This 
hapter aims to introdu
e the areas whi
h form the basis of the following thesis

and are ne
essary to properly explain the proposed ideas. First, the basi
s of pattern

re
ognition will be presented, in
luding the formulation of the 
lassi�
ation task, an

introdu
tion to 
lassi�er ensemble, as well as the notion of diversity and the Classi�er

Sele
tion, with an emphasis on the Dynami
 Ensemble Se
tion. Then, the subje
t of

di�
ult data 
lassi�
ation will be brie�y introdu
ed, in
luding data with a skewed 
lass

distribution, data stream 
lassi�
ation, as well as s
enarios with limited a

ess to labels.

Finally, the approa
h to 
lassi�er evaluation for imbalan
ed and streaming data will be

dis
ussed and the developed Python pa
kage for di�
ult data stream analysis will be

presented.

2.1 Indu
tive learning

With the advent of personal 
omputers and the spread of wireless 
ommuni
ation, large


ompanies lost their monopoly on generating and storing data. Instead, data is now

generated by virtually all internet users in their typi
al day-to-day a
tivities.

The appearan
e of a large amount of data introdu
ed problems that 
annot be solved

with a �xed algorithm 
ontaining a sequen
e of instru
tions. In su
h 
ases, we know

the input and we know what the output should be, but we do not know the pro
ess

that leads to the transition from one to the other. It is di�
ult espe
ially due to the

fa
t that the pro
ess may be in�uen
ed by fa
tors 
hanging over time. However, we


an try to 
ompensate for this la
k of knowledge with the amount of data we have and

19
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learn to distinguish between the examples des
ribed by the di�erent outputs after their

in-depth analysis. To sum up, we want the 
omputer to automati
ally �nd an algorithm

appropriate for the task at hand [200℄. Even if we are not able to 
ompletely identify

the transformation pro
ess in this way, we 
an 
onstru
t a useful approximation that,

while it does not explain everything, may be su�
ient to properly identify some of the

patterns present in the data.

This �eld is known as ma
hine learning and uses statisti
al theory to build models 
a-

pable of drawing 
on
lusions from known examples [5℄. The following thesis fo
uses,

among the di�erent learning methods, on indu
tive learning [174℄. In this approa
h, the

learner uses the available examples to generalize hypotheses for the problems in question.

Hen
e, indu
tive learning algorithms 
an at best ensure that the output hypothesis �ts

the 
on
ept with respe
t to the training data. The fundamental assumption of indu
tive

learning, formulated by Mit
hell [174℄, states that "Any hypothesis found to approximate

the target fun
tion well over a su�
iently large set of training examples will also approxi-

mate the target fun
tion well over other unobserved examples." In the indu
tive learning,

two main types of tasks 
an be distinguished:

� Supervised learning, assuming a prior knowledge, whi
h identi�es samples from

the training set as members of prede�ned 
lasses in form of the labels [116℄. These

labels, typi
ally provided by an expert, allow for learning dependen
ies between the


lass and data 
hara
teristi
s. Then, learned rules are generalized for the previously

unseen data. In the supervised learning, one 
an distinguish a 
lassi�
ation task,

in whi
h the target label is a dis
rete value, and a regression task [5℄, in whi
h the


lass is represented by a 
ontinuous value.

� Unsupervised learning, whi
h assumes that labels 
annot be a

essed. Therefore,

the obtained data is analyzed in order to understand its stru
ture and relations

between the problem instan
es. Unsupervised learning 
onsists of the (i) task of

density estimation, where e.g. with the use of 
lustering [199℄ the unlabeled obje
ts

are grouped based on their similarity, and (ii) the task of dimensionality redu
tion

[232℄, the methods of whi
h are used to extra
t and sele
t features for the purposes

of 
lassi�
ation and visualization [216℄.

Additionally, we 
an distinguish semi-supervised learning [175℄, in whi
h at the learning

stage the model re
eives both labeled and unlabeled data. This s
enario is typi
al in


ases where labels are not readily available or have a high 
ost to obtain. In the spe
ial


ase of semi-supervised learning, 
alled a
tive learning [207℄, the aim is to determine

whi
h of the unlabeled instan
es, after asking an expert about their labels and adding

them to the training set, will be able to improve the system performan
e to the point of
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being 
omparable to the standard supervised learning s
enario. Another bran
h of semi-

supervised learning is self-labeling or self-learning [230℄. In su
h approa
hes, a 
lassi�er

is trained using an initially small number of labeled samples, in order to 
lassify the

unlabeled instan
es. The most 
on�dent predi
tions are added to the training set, whi
h

is then used to retrain the model.

This dissertation deals mainly with the notion of 
on
ept learning, whi
h is a type of

supervised learning. It involves using training examples to a
quire general 
on
epts,

whi
h des
ribe some subset of obje
ts. Ea
h 
on
ept 
an be de�ned as a binary fun
tion

that divides samples into ones belonging and not belonging to the 
on
ept [254℄. Mit
hell

de�ned 
on
ept learning as "Inferring a boolean-valued fun
tion from training examples

of its input and output" [174℄.

2.2 Pattern 
lassi�
ation task

As mentioned earlier, the following thesis will fo
us on supervised learning, and more

pre
isely, on the 
lassi�
ation task. The purpose of the 
lassi�
ation is to assign a given

obje
t to one of the 
lasses prede�ned in the form of labels, and the pro
ess is 
arried

out based on the values of attributes 
hara
terizing this obje
t. To formalize this task,

we have a feature spa
e denoted by X , where x ∈ X is the feature ve
tor representing

an obje
t. Assuming, that the feature ve
tor is d-dimensional

x =









x(1)

x(2)

. . .

x(d)









, and x ∈ X = X (1) × X (2) × . . . × X (d), (2.1)

where x(l) ∈ X (l)
.

Denoting the labels set 
ontaining prede�ned 
ategories asM = {1, 2 . . . ,M}, a 
lassi-

�
ation algorithm in form of a fun
tion Ψ with domain X and 
odomain M assigns a

given obje
t to it's 
ategory during 
lassi�
ation pro
ess

Ψ : X →M. (2.2)

This de
ision is made by the 
lassi�er with the use of support fun
tions whi
h inform

about the 
han
e of the obje
t belonging to ea
h 
lass
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F = {F1, F2, . . . , FM}. (2.3)

Usually, the 
lass of a given x is determined by the highest value of obtained support

fun
tion whi
h is equivalent to the maximum rule

Ψ(x) = argmax
k∈M

(Fk(x)). (2.4)

Probabilisti
 Approa
h

Due to the fa
t that the 
lassi�er's de
ision is made by applying the maximum rule on the

support fun
tion, the problem of un
ertainty of the obje
t's belonging to the 
lass arises.

Although any 
ontinuous 
lassi�er output 
an be used [67℄, the main dis
riminant of the

support fun
tion � asso
iated with probabilisti
 models � is posterior probability [22℄.

The statisti
al de
ision theory is an e�e
tive approa
h to the un
ertainty management,

whi
h assumes that both the feature ve
tor x ∈ X and its 
lass label j ∈ M are de�ned

as observed values of random variables pair (X,J) [75, 254℄. The probability distribution

of these random variables is given by prior 
lass probabilities

pj = P (J = j), j ∈ M (2.5)

and 
lass-
onditional probability density fun
tion of X

fj(x) = f(x|j), x ∈ X , j ∈ M. (2.6)

The main goal when designing a 
lassi�
ation system should be to minimize the average

mis
lassi�
ation 
ost, whi
h 
an be de�ned on the basis of so-
alled loss fun
tion used

to measure the de
ision 
ost between the 
lasses

L :M×M→ X , (2.7)

where L(i, j) returns the loss asso
iated with the wrong assignment of the obje
t from


lass j to 
lass i. This allows for formulating the 
riterion of 
lassi�
ation task for the

optimal Bayes 
lassi�er

min

Ψ
Risk(Ψ) = Risk(Ψ∗), (2.8)

where

Risk(Ψ) = E[L(i, j)] =

∫

X

M
∑

j=1

L(Ψ(x), j)pjfj(x)dx. (2.9)
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The goal here is to minimize the Risk(Ψ∗), whi
h is de�ned as the average risk of the


lassi�er Ψ. This allows the so-
alled 
onditional risk to be minimized

ri(x) = E
J|x

[L(i, j)] =
M
∑

j=1

L(i, j)pi(x). (2.10)

Whi
h in turn leads to the following de
ision rule for the optimal Bayes 
lassi�er

Ψ∗(x) = i if

M
∑

j=1

L(i, j)pj(x) = min

k∈M

M
∑

j=1

L(k, j)pj(x), (2.11)

where the posterior probability pj(x) 
an be 
al
ulated from the Bayes formula

pj(x) =
pjfj(x)

M
∑

k=1

pkfk(x)

. (2.12)

Considering the popular 0 − 1 loss fun
tion, whi
h is often used in the pra
ti
al tasks

due to the inability to assess the loss values

L(i, j) =

{

0 if i = j

1 if i 6= j
, (2.13)

the following de
ision rule aiming to minimize the mis
lassi�
ation probability of the

optimal Bayes 
lassi�er Ψ∗

an be obtained

Ψ∗(x) = i if pi(x) = max

k∈M
pk(x). (2.14)

As the de�ned loss fun
tion is related to the 
lass with the highest posterior probability

and the 
onditional risk is de�ned as the probability of mis
lassifying a sample x, the

risk of mis
lassi�
ation probability 
an be averaged

Risk(Ψ∗) = Perr(Ψ
∗) =

M
∑

j=1

pj

∫

Dj

fj(x)dx = 1−
∫

X

max

j∈M
pjfj(x)dx = 1− Pacc(Ψ

∗).

(2.15)

Over�tting

To build a 
lassi�
ation model, the LS training set is used, whi
h groups the observations

from a given domain in the form of pairs

LS = {(x1, j1), (x2, j2), . . . , (xN , jN )}, (2.16)
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where xk denoted the feature ve
tor of the k-th learning pattern, jk is its 
orre
t label

and N is the 
ardinality of LS. Ea
h element in this set 
orresponds to a single instan
e

of a problem and its proper 
lass.

Two types of errors 
an be observed in the 
lassi�
ation task

� The training error, whi
h is de�ned as the proportion of in
orre
tly 
lassi�ed ob-

je
ts from the training set to its 
ardinality

PLS
err (Ψ) =

N
∑

k=1

[Ψ(xk) 6= jk]

|LS| . (2.17)

� The real error (also known as the generalization error), whi
h is de�ned as the

number of mis
lassi�ed obje
ts drawn from the general population

Perr(Ψ) =

∫

X

P (Ψ(x) 6= i|x)f(x)dx. (2.18)

Over�tting is a phenomenon related to the loss of the 
lassi�er's ability to generalize

the a
quired knowledge. This means that the model, instead of extra
ting knowledge

from a given data set, begins to remember individual instan
es. In this 
ase, due to too

mu
h training 
omplexity or an insu�
ient number of examples, the learner is not able

to 
orre
tly predi
t the labels of instan
es that were not present in the training pro
ess.

Due to this phenomenon, the 
lassi�
ation a

ura
y on previously unseen data de
reases,

while the a

ura
y on training data in
reases 
onsistently.

In pra
ti
e, we 
an say that the 
lassi�er Ψ over�ts the learning data LS if there exists

another 
lassi�er Ψ‘ su
h that

PVS
err (Ψ) > PVS

err (Ψ
′) and PLS

err (Ψ) < PLS
err (Ψ

′), (2.19)

where PVS
err is an error on the validation dataset (VS) whi
h 
ontains a set of examples

not presented during the training pro
edure [174℄. The 
lassi�er error 
an be broken

down into three 
omponents [125℄:

� Error, lower bounded by the error of the optimal Bayes 
lassi�er, that is spe
i�


to the problem and 
annot be eliminated.

� The error related to bias resulting from the assumptions made by the model based

on the training data.
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� The error related to varian
e related to training data.

Bias is de�ned by Mit
hell as "(. . . ) the set of assumptions that the learner uses to

predi
t outputs given inputs that it has not en
ountered.

1

", and mathemati
ally it 
an be

des
ribed as the di�eren
e between the a
tual and expe
ted outputs. Varian
e, on the

other hand, determines how mu
h the model's predi
tions vary depending on the training

data used. In the 
ase of high bias, the assumptions are too simple and the model misses

the relevant relationships present in the data, whi
h results in under�tting. High vari-

an
e 
auses the model to �t too 
losely to the training set, whi
h 
auses the previously

des
ribed over�tting phenomenon. No free lun
h theorem [251℄, formulated by Wolpert,

tells us that there is no su
h thing as one universal ma
hine learning algorithm that 
an

do best for all the problems en
ountered, as ea
h has its own domain of 
ompeten
e.

These 
ompeten
ies result from the learner's bias, whi
h, a

ording to the Ugly Du
k-

ing theorem [75℄, is ne
essary to generalize knowledge and 
arry out the 
lassi�
ation

pro
ess. Therefore, we are dealing with a bias-varian
e dilemma [93℄, in whi
h, on the

one hand, assumptions are ne
essary to train the 
lassi�er - whi
h in
reases the bias,

and on the other hand, redu
ing the bias in
reases the demand for samples and thus

in
reases the varian
e. Propositions for dealing with this problem in
lude approa
hes

su
h as 
omparative study of models using 
ross-validation, penalizing model 
omplexity

based on augmented error fun
tion [5℄, sele
ting models based on their 
omplexity [235℄

and trying to �nd the best model based on so-
alled Minimum Des
ription Length (mdl)

[193℄.

Des
ription of sele
ted 
lassi�ers

Let's introdu
e the 
lassi�
ation algorithms 
hosen from the �ve di�erent families, whi
h

will be used for experiments performed later in this thesis.

� Bayesian Classi�ers, family of probabilisti
 
lassi�ers based on Bayes' theorem

[15℄. Common examples here are the Naïve Bayes 
lassi�er, whi
h simpli�es the


onditional probability by assuming strong independen
e between the problem's

features.

� Minimal Distan
e Classi�ers, where the most popular example is the k-Nearest

Neighbors (knn) algorithm [56℄. Here, the sample 
lassi�
ation is performed by a

majority vote of its k nearest neighbors found in the learning set. The neighborhood

is determined based on the 
hosen distan
e metri
, whi
h usually is the Eu
lidean

distan
e. knn is an example of a lazy learner, whi
h delays the generalization

pro
ess until the predi
tion phase [170℄.

1

Tom M. Mit
hell, Ma
hine learning, M
Graw-Hill, New York, 1997.
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� Rule-Based Classi�ers, using the indire
t learning approa
h, in whi
h the de
ision

tree is �rst trained and then 
onverted to rules easily interpretable for humans

[254℄:

� Classi�
ation and Regression De
ision Tree (
art) [32℄, whi
h 
onstru
ts

binary de
ision tree and employs the Gini index as the impurity measure for

assigning features to the nodes.

� Hoe�ding Tree (ht) or Very Fast De
ision Tree (vfdt) [73℄, whi
h pro
esses

ea
h sample in 
onstant time and memory. It uses Hoe�ding bounds [110℄ to

ensure, that the output obtained by the in
remental learner is asymptoti
ally

nearly identi
al to that of 
onventional model.

� Neural Networks, de�ned as stru
tures 
omposed of a number of arti�
ial neu-

rons, whi
h intera
t with ea
h other on the basis of weights. M
Cullo
h and Pitts

formulated the �rst model of simple arti�
ial neuron 
apable of performing basi


logi
al operations [171℄, while Rosenblatt proposed the per
eptron, whi
h was able

to perform 
lassi�
ation based on the sum of the weighted inputs and a
tivation

fun
tion [195℄.

� Support Ve
tor Ma
hines (svm) [46℄, based on the 
on
ept introdu
ed and then

expanded by Vapnik [233�235℄. They 
onsist of a set of binary supervised learning

methods, with a goal to form the hyperplane separating data points into two sets

by mapping them into a high-dimensional spa
e.

2.3 Classi�er ensemble

The following se
tion presents the 
on
ept of a 
lassi�er ensemble. The stages of base

model generation and 
ombination are dis
ussed, while spe
ial emphasis is pla
ed on the

optional stage of 
lassi�er sele
tion - espe
ially the Dynami
 Ensemble Sele
tion.

Components of Multiple Classi�er Systems

One of the most popular and still a
tively developed approa
h to 
lassi�
ation is one

in whi
h, instead of using a single learner, we employ multiple 
lassi�
ation models,

and then we 
ombine their de
isions in order to obtain the �nal output. The aim here

is to take advantage of the strengths of ea
h 
ombined 
lassi�er and their domain of


ompeten
e. Deserathy and Sheela �rst applied this approa
h in 1979 [66℄ when they


ombined k-nn and a linear 
lassi�er, and sin
e then many studies have demonstrated

the e�e
tiveness of using multiple models instead of a single one [206℄. Su
h an approa
h

is known as a 
lassi�er ensemble or a multiple 
lassi�er system (m
s) [150℄ and its main
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omponents organized in the parallel topology [254℄, whi
h is by far the most 
ommon,

are depi
ted in Figure 2.1.

Obje
t

Classi�er #1

Classi�er #2

.

.

.

Classi�er #n

Combination rule De
ision

Figure 2.1: Parallel topology of a 
lassi�er ensemble.

A multiple 
lassi�er system 
onsists of three steps [33℄: i) Generation, ii) Sele
tion and

iii) Combination (also known as Fusion or Aggregation). It should be noted that the

sele
tion 
an be performed as a separate pro
ess or in 
onjun
tion with the 
ombination

blo
k. It is also entirely optional and not used by some of the ensemble algorithms.

The purpose of the generation stage is to train a pool of 
lassi�ers Π = {Ψ1,Ψ2, . . . ,Ψn},
where n is a number of base models. The two most important determinants of a good


lassi�er ensemble are that the base models are both diverse (as there is no reason to


ombine 
lassi�ers o�ering the same output [68℄) and a

urate, whi
h in this 
ase means

that they perform better than the random 
lassi�er.

2.3.1 Ensemble diversity

As mentioned above, one of the determinants of a valuable 
lassi�er ensemble is the

high diversity of its base models, therefore the question of how to measure this diversity

arises. A

ording to Kun
heva [150℄, there are two styles of measuring the 
lassi�er pool

diversity:

� Pairwise diversity measures 
al
ulates diversity between ea
h pair of 
lassi�ers and

then average the results to obtain value for the entire ensemble. For a 
lassi�er

pool 
onsisting of n models there are

n(n−1)
2 values of pairwise diversity. Examples

of su
h measures in
lude Q-statisti
 [266℄, disagreement measure [108, 213℄ and

double-fault measure [95℄.
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� Non-pairwise measures take into a

ount all the learners in the pool and o�er a

single diversity value for the entire ensemble. Among these types of measures, we


an distinguish the entropy measure E [61℄ and Kohavi-Wolpert varian
e [125℄.

Diversity is one of the key fa
tors for generating a valuable 
lassi�er ensemble, but the

main problem is how to measure it. Let us present the sele
ted diversity measures:

The entropy measure E [61℄ is de�ned as

E(Π) =
1

N

N
∑

j=1

(
1

n− [n/2]
)min{l(xj), n− l(xj)}, (2.20)

where N is the number of instan
es, n stands for the number of base models in the

ensemble and l(xj) denotes the number of 
lassi�ers that 
orre
tly re
ognize xj . E

varies between 0 and 1, where 0 indi
ates no di�eren
e and 1 indi
ates the highest

possible diversity.

Kohavi-Wolpert varian
e [125℄ is de�ned as

KW (Π) =
1

Nn2

N
∑

j=1

l(xj)(n − l(xj)). (2.21)

The higher the value of KW, the more diverse the 
lassi�ers in the ensemble. Also, KW

di�ers from the averaged disagreement measure Disav by a 
oe�
ient, i.e.,

KW (Π) =
n− 1

2n
Disav(Π), (2.22)

Measurement of interrater agreement k [80℄ [69℄

k(Π) = 1−
1

n

∑N
j=1 l(xj)(n− l(xj))
N(n− 1)p̄(1− p̄) , (2.23)

where p̄ is average individual 
lassi�
ation a

ura
y

p̄ =
1

Nn

N
∑

j=1

n
∑

k=1

ij,k, (2.24)

where ij,k is an element of an N -dimensional binary ve
tor ik = [i1,k, . . . , iN,k]
T
repre-

senting the output of a 
lassi�er Ψk, su
h that ij,k = 1, if Ψk re
ognizes xj 
orre
tly,

and 0 otherwise. Measurement of interrater agreement k varies between 1 and 0, where

1 indi
ates 
omplete agreement and 0 indi
ates the highest possible diversity.
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Table 2.1: A table of the relationship between a pair of 
lassi�ers.

Ψk 
orre
t (1) Ψk wrong (0)

Ψi 
orre
t (1) N11 N10

Ψi wrong (0) N01 N00

The averaged Q statisti
s [266℄ over all pairs of 
lassi�ers is given as

Qav(Π) =
2

n(n− 1)

n−1
∑

h=1

n
∑

k=h+1

Q(Ψh,Ψk), (2.25)

where

Q(Ψh,Ψk) =
N11N00 −N01N10

N11N00 +N01N10
, (2.26)

and Nab
is the number of elements xj for whi
h ij,h = a and ij,k = b. Relationship

between a pair of 
lassi�ers is denoted a

ording to Table 2.1. Q varies between −1 and
1. Classi�ers that re
ognize the same obje
ts 
orre
tly will have positive values of Q,

and those whi
h 
ommit errors on di�erent obje
ts will render Q negative.

The averaged disagreement measure [108℄ over all pairs of 
lassi�ers is given as

Disav(Π) =
2

n(n− 1)

n−1
∑

h=1

n
∑

k=h+1

Dis(Ψh,Ψk), (2.27)

where

Dis(Ψh,Ψk) =
N01 +N10

N11 +N10 +N01 +N00
. (2.28)

The averaged disagreement measure is the ratio between the number of observations on

whi
h one 
lassi�er is 
orre
t and the other is in
orre
t to the total number of observa-

tions. Dis varies between 0 and 1, where 0 indi
ates no di�eren
e and 1 indi
ates the

highest possible diversity.

It should be noted, however, that despite the multitude of available measures, none

of them 
an be 
onsidered best suited to minimize the 
lassi�
ation error. The only

re
ommendation 
an be made on the basis of the ease of interpretation of a given measure

[151℄.

Ensuring 
lassi�er diversity

Another problem that arises is how to ensure the diversity of the generated pool of


lassi�ers. A

ording to the literature, this issue 
an be approa
hed in three di�erent

ways [96, 150℄:
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� Classi�ers 
an be trained on di�erent input data. This 
an be done by using di�er-

ent data partitions, e.g. through bootstrapping approa
hes su
h as Bagging [30℄,

whi
h 
reates new training sets, based on the original one, for ea
h base model

through sampling with repla
ement. Another approa
h of this type is Boosting

[81, 83℄ whi
h in the 
ase of its most well known AdaBoost algorithm [82℄ gen-

erates subsequent training sets by in
reasing the probability of drawing instan
es

that have been in
orre
tly 
lassi�ed. Walmsley et al. proposed a 
lassi�er pool

generation method based on Bagging, in whi
h the probability of instan
e sele
-

tion during the resampling 
orresponds to the instan
e hardness [237℄. Online pool

generation method for generating lo
ally a

urate 
lassi�er pool in di�
ult regions

of feature spa
e was proposed by Souza et al. [217℄. Jamalinia et al. proposed

the Ensemble-based Arti�
ially Generated Training Samples (ebagts) algorithm,

whi
h manipulates training samples based on error-prone instan
es and feature

spa
e regions [117℄. Hido et al. proposed the Roughly Balan
ed Bagging (rbb)

[106℄, extensively studied by Lango and Stefanowski [154℄, whi
h uses sampling to

balan
e the 
lass distribution a
ross all bootstraps for the imbalan
ed data 
lassi-

�
ation task. The linear Modi�
ation of the AdaBoost algorithm was proposed by

Burduk [44℄. Burduk and Bozejko modi�ed the Gentle AdaBoost algorithm [84℄ on

the basis of s
aled distan
e from the de
ision boundary [45℄.

The base models 
an also be trained using di�erent subsets of the problem fea-

tures. This approa
h to diversi�
ation is known as Random Subspa
e [107, 108℄

(also 
alled Attribute Bagging [35℄ or Feature Bagging [157℄) and is used, among

others, by the Random Forrest algorithm to generate trees �tted on randomly


hosen attributes [31℄. Algorithms based on Random subspa
e are still quite pop-

ular and 
onstantly �nd their way into new appli
ations. Wang et al. proposed

the Deep Random Subspa
e Ensemble (drse), whi
h integrated Random Subspa
e

with deep learning methods [240℄. The Random Subspa
e based Ensemble Sparse

Representation (rs_esr) algorithm, whi
h introdu
ed the feature resampling into

sparse representation model, was proposed by Gu et al. [97℄. Blasz
zykowski and

Stefanowski proposed the Ordinal Consisten
y Driven Feature Subspa
e Aggregat-

ing (
oFeating), whi
h 
onstru
t lo
al 
lassi�ers in 
hosen regions of the feature

spa
e [24℄. Blaser and Fryzlewi
z improved the ensemble diversity by generating

ea
h base 
lassi�er using a randomly rotated feature spa
e [23℄. There are also ap-

proa
hes that train base 
lassi�ers on features derived from many di�erent feature

extra
tion methods, whi
h have been su

essfully used in the task of fa
e image


lassi�
ation [12℄.

Another way is to sele
t 
lassi�ers from the generated pool, whi
h assumes that ea
h

of the base models is an expert in a 
ertain region of the feature spa
e. The sele
tion
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an be 
ondu
ted either in a stati
 or dynami
 fashion. In the stati
 approa
h, the

models are sele
ted on
e during the training phase and the same ensemble/single


lassi�er is used to 
lassify all unknown examples [270℄. In the dynami
 approa
h, a

separate ensemble or a single model is sele
ted for ea
h unknown problem instan
e

[59℄. Su
h approa
hes are one of the main topi
s of this thesis and will be des
ribed

in detail later.

� Classi�ers 
an also be trained to re
ognize only some of the problem 
lasses. In

this 
ase, the 
ombination method used should be able to re
over the entire set

of labels before a �nal de
ision is made. These types of approa
hes are based on

the fa
t that any multi
lass problem 
an be broken down into a number of binary

problems [228℄ and propose di�erent methods to build a multi
lass 
lassi�er by


ombining two-
lass models [71℄. Some of the well known binarization strategies

are:

� One-vs-One (ovo) [103℄, whi
h trains a binary 
lassi�er for ea
h pair of


lasses.

� One-vs-All (ova) [192℄, whi
h train a binary 
lassi�er for ea
h 
lass, 
onsid-

ering all remaining 
lasses as a majority one.

� One-Against-Higher-Order (oaho) [177℄, whi
h sorts the 
lasses in des
ending

order by the number of samples and iterates starting from the largest one. A

binary 
lassi�er is generated for the 
urrent 
lass and all remaining 
lasses

with less 
ardinality.

� All-and-One (a&o) [92℄, whi
h 
ombines ovo and ova.

� The Error Corre
ting Output Codes (e
o
) [70℄, whi
h en
odes ea
h 
lass

with a 
ode-word in order to obtain the distan
e between 
lasses.

� Finally, ensemble diversity 
an be ensured by 
reating a pool 
ontaining di�er-

ent 
lassi�
ation models. This 
an be done, for example, by training di�erent

ma
hine learning algorithms (heterogeneous ensemble) on the same input data

[231℄. Another method may be to use a single 
lassi�
ation algorithm (homoge-

neous ensemble), but di�erentiate it by modifying its parameters. An example of

su
h an approa
h is the modi�
ation of the initial weights of neural network [112℄.

Approa
hes 
ombining heterogeneous ensembles with data-level diversi�
ation for

real-life appli
ations, su
h as 
redit s
oring, are also gaining popularity [258℄.
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2.3.2 Combination rule

During the 
ombination stage, the answers obtained by ea
h of the base 
lassi�ers are

pro
essed, using the 
hosen 
ombination rule [122℄, in order to rea
h a �nal de
ision.

These rules take advantage of the fa
t, that the base 
lassi�ers outputs have a 
lear

interpretation and may be represented by 
lass labels, distan
es or 
on�den
es (proba-

bilities) [76℄. Usually, the 
ombination pro
ess is be based on the 
lass labels returned

by the models or on their support fun
tions (Equation 2.3 on p. 22).

One of the most 
ommon approa
hes to 
ombination based on 
lass labels is voting. In

its simplest version, 
alled majority voting, the instan
e is assigned to the 
lass that was

most often indi
ated by the base models

Ψ(x) = argmax
i∈M

n
∑

k=1

[

Ψk(x) = i
]

, (2.29)

where [ ] denotes the Inverson's bra
ket.

There is also weighted voting, whi
h introdu
es weight wk for ea
h of the k base 
lassi�ers

in su
h a way that they may have di�erent in�uen
e on the �nal de
ision

Ψ(x) = argmax
i∈M

n
∑

k=1

[

Ψk(x) = i
]

wk. (2.30)

Another popular approa
h to the labels-based 
lassi�er 
ombination is known as Sta
ked

Generalization ((Sta
king)) [250℄. Here, the 
ombination rule (also known as meta-


lassi�er or meta-level 
lassi�er) is trained based on the predi
tions made by base models.

In order to redu
e the possibility of the meta-
lassi�er over�tting, the dataset used for


ombination rule training should be ex
luded from the dataset used for generating the

base 
lassi�ers. Usually, sta
king employs a heterogeneous 
lassi�er pool in order to

assure their diversity.

When the de
ision is made on the basis of the support fun
tions, a 
ommon approa
h is

to use the aggregation (also 
alled a

umulation or the sum rule) of supports

Ψ(x) = i if Fi(x) = max
k∈M

Fk(k, x), (2.31)

where

Fl(x) =

n
∑

l=1

wlFl,i(x) and

n
∑

i=1

wl = 1, (2.32)

where Fl(x) denotes the support fun
tion for the ith 
lass of the lth 
lassi�er, and wl is

a 
lassi�er weight.
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These weights are usually stati
 [150℄, but their values may also 
hange depending on the


lassi�er and label [257℄ or be a fun
tion of feature ve
tor [202℄. Regardless of whether the


ombination is based on the labels or support fun
tions, there exists various possibilities

of weight assigning [255℄:

� Weights dependent on 
lassi�er � a traditional approa
h where ea
h the l-th 
las-

si�er is weighted by the value wl.

� Weights dependent on 
lassi�er and feature ve
tor � where weight wl(x) is assigned

to the l-th 
lassi�er and a given sample x.

� Weights dependent on 
lassi�er and 
lass number � where value wl,i is assigned as

weight to the l-th 
lassi�er and the i-th problem 
lass.

� Weights dependent on 
lassi�er, 
lass number, and feature ve
tor � where weight

wl,i(x) is assigned to the l-th 
lassi�en, a given sample x and the i− th 
lass.

Besides the sum rule or its weighted equivalent, base 
lassi�ers 
an be aggregated using

simple operators su
h as [76℄:

� The produ
t rule, whi
h 
orresponds to the sum rule for small deviations in the


lassi�er outputs. Theoreti
ally it performs well if the base models are independent,

whi
h unfortunately is an unrealisti
 assumption.

� The maximum rule, whi
h sele
ts the 
lassi�er most 
on�dent in its own predi
tions

and 
an be interpreted as a kind of 
lassi�er sele
tion. This rule is very sensitive

to over�tting.

� The minimum rule, whi
h 
hooses the 
lassi�er with the least obje
tion to the


ertain 
lass.

� The median rule, whi
h is similar to the sum rule but may give more robust results.

Another approa
h worth mentioning is the Mixture of experts [114, 115℄, whi
h divides

the problem spa
e into a number of subspa
es and trains an expert learner of ea
h of

them. This pro
ess is managed using a gating fun
tion whi
h is trained together with

the experts and then used to dynami
ally 
ompute weights for base 
lassi�ers taking into

a

ount their lo
al 
ompeten
ies.

Alternative 
ombination proposal is a multiple-stage organization, whi
h was brie�y

mentioned by Ho et al. [109℄ and des
ribed in detail by Ruta and Gabrys [201℄, where

authors refer to su
h systems as a multistage organization with majority voting (momv)
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sin
e the de
ision at ea
h level is given by majority voting. Initially, all outputs are

allo
ated to di�erent groups by permutation and majority voting is applied for ea
h group

produ
ing single binary outputs, forming the next layer. In the next layers, exa
tly the

same way of grouping and 
ombining is applied with the only di�eren
e being that the

number of outputs in ea
h layer is redu
ed to the number of groups formed previously.

This repetitive pro
ess is 
ontinued until the �nal single de
ision is obtained.

2.3.3 Classi�er sele
tion

Classi�er sele
tion employs the overprodu
e-and-sele
t approa
h, in whi
h the models

used in the 
lassi�
ation pro
ess are sele
ted on the basis of their lo
al 
ompeten
ies.

There are two approa
hes to the sele
tion pro
ess:

� Stati
 sele
tion, presented in Figure 2.2 a, in Figure in whi
h the sele
tion pro
ess

of a 
lassi�er or an ensemble is performed during the training phase, based on the

sele
tion 
riterion estimated in the validation dataset. Then, this exa
t ensemble

is used in the generalization phase to predi
t the labels of all test samples. Clas-

si�er diversity and 
lassi�
ation a

ura
y are among the most 
ommon sele
tion


riteria. Among the well-known algorithms implementing this approa
h, Classi�er

and Sele
tion proposed by Kun
heva [148℄ 
an be distinguished. Another example

is the approa
h proposed by Ja
kowski et al. [113℄ 
alled Adaptive Splitting and

Sele
tion, whi
h uses an evolutionary algorithm to �nd the best partitioning of the

feature spa
e and mat
hes ea
h 
luster with the most �tting ensemble.

� Dynami
 sele
tion, depi
ted in Figure 2.2 b, where the dis
riminant ability of 
las-

si�ers is assessed in the lo
al region of 
ompeten
e for ea
h unknown example

separately. Then, based on these 
ompeten
ies, the sele
tion is performed individ-

ually for 
lassifying ea
h of these samples. Sin
e the Dynami
 Classi�er Sele
tion

is one of the main topi
s of this thesis, it is des
ribed in more detail below.

Dynami
 Sele
tion methods 
an sele
t either a single model (Dynami
 Classi�er Sele
tion

- d
s) or an ensemble of 
lassi�ers (Dynami
 Ensemble Sele
tion - des), with the latter

being re
ognized as a very promising dire
tion in ensemble learning [59℄. des sele
ts the

best 
lassi�ers for ea
h test instan
e based on the notion of 
ompeten
e, whi
h is usually

estimated in the lo
al region of 
ompeten
e 
ontaining, e.g., the k -Nearest neighbors

of the given sample. This region is formed using the dynami
 sele
tion dataset (dsel)


omposed of labeled samples from either the training or validation set. This is based on

the assumption that ea
h of the base 
lassi�ers is an expert in a di�erent region of the

feature spa
e.
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Figure 2.2: Stati
 and dynami
 
lassi�er sele
tion pro
edure.

The 
lassi�
ation of ea
h unknown sample by des involves three steps:

� De�nition of the region of 
ompeten
e; that is, how to de�ne the lo
al region

surrounding the unknown sample, in whi
h the 
ompeten
e level of the base models

is estimated. This lo
al region of 
ompeten
e is found in the dynami
 sele
tion

dataset (dsel), whi
h is usually part of the training set.

� De�ning the sele
tion 
riterion later used to assess the 
ompeten
e of the base


lassi�ers in the lo
al region of 
ompeten
e (e.g., a

ura
y or diversity).

� Determination of the sele
tion me
hanism de
iding whether we 
hoose a single


lassi�er or an ensemble.

Previous work related to the imbalan
ed data 
lassi�
ation using 
lassi�er ensembles and

des involves various approa
hes. Ksieniewi
z proposed an Undersampled Majority Class

Ensemble (um
e) [140℄ employing di�erent 
ombination rules and pruning, based on a

k -fold division of the majority 
lass to divide a single imbalan
ed problem into many bal-

an
ed ones. Chen et al. [51℄ presented the Dynami
 Ensemble Sele
tion De
ision-making

(desd) algorithm to sele
t the most appropriate 
lassi�ers using a weighting me
hanism

to highlight the base models that are better suited for re
ognizing the minority 
lass. Roy

et al. 
ombined prepro
essing with dynami
 ensemble sele
tion to 
lassify both binary

and multi
lass stationary imbalan
ed datasets [198℄. Randomized Referen
e Classi�er,

whi
h produ
es supports for ea
h 
lass that are realizations of random variables with
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the beta distributions, was proposed by Woloszynski and Kurzynski [249℄. Lysiak et al.

[165℄ showed that employing diversity measures during the 
lassi�er sele
tion leads to

smaller ensembles but does not improve the 
lassi�
ation a

ura
y. meta-des.Ora
le,

whi
h uses feature sele
tion and meta-learning over numerous datasets to improve the

sele
tion pro
ess, was proposed by Cruz et al. [58℄. Oliveira et al. [183℄ des
ribed a two-

step ensemble forming using a pre-sele
tion me
hanism. Zyblewski et al. [277℄ proposed

the Minority Driven Ensemble algorithm, whi
h employs a dynami
 
lassi�er sele
tion

approa
h to exploit lo
al data 
hara
teristi
s for imbalan
ed data streams 
lassi�
ation.

The proposal of 
ombining prepro
essing and Dynami
 Ensemble Sele
tion, whi
h is the

basis of resear
h 
arried out in this work, was presented by Zyblewski et al. [280℄. Pinagé

et al. proposed a 
on
ept drift dete
tion method based on dynami
 
lassi�er sele
tion

[188℄.

We may also 
onsider the following des strategies based on ora
le information, whi
h

will be used later in 
ondu
ted experiments:

� knora-eliminate (knora-e) [123℄, whi
h 
reates an ensemble 
onsisting only of

the lo
al ora
les, i.e., models that 
lassify 
orre
tly all data samples lo
ated in the

lo
al region of 
ompeten
e. In the 
ase where no 
lassi�er is sele
ted, the size of


ompeten
e region is redu
ed by removing the farthest neighbor and the sear
h for

ora
les is repeated,

� knora-union (knora-u) [123℄ makes the de
ision based on weighted voting, where

ea
h sele
ted 
lassi�er has a number of votes proportional to the number of 
orre
tly

predi
ted samples in the lo
al region of 
ompeten
e.

� des-knn [214℄ ranks individual 
lassi�ers a

ording to their predi
tion performan
e

and then the �xed number of the best 
lassi�ers are �rst sele
ted. The �nal ensem-

ble is formed based on the �xed number of the most diverse presele
ted individuals.

� des-
lustering [214℄ employs the k-Means to de�ne desl, then the most a

urate

and diverse 
lassi�ers ale sele
ted for the ensemble.

Additionally, as the referen
e methods, two Dynami
 Classi�er Sele
tion algorithms will

be used:

� Modi�ed Classi�er Ranking (Rank) [203, 252℄ uses for 
lassi�
ation su
h an indi-

vidual 
lassi�er whi
h 
lassi�es 
orre
tly the highest number of 
onse
utive samples

in the region of 
ompeten
e.

� Lo
al 
lassi�er a

ura
y (l
a) [252℄ sele
ts for 
lassi�
ation su
h an individual


lassi�er whi
h 
orre
tly 
lassi�es the higher number of samples within the lo
al
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region, but 
onsidering only those examples where the 
lassi�er predi
ted the same


lass as the one it gave for the test instan
e.

Ensemble pruning

Another 
on
ept, 
losely related to the 
lassi�er sele
tion, is known as ensemble pruning.

Let us �rst present the ensemble pruning taxonomy proposed in [270℄:

� Ranking-based pruning 
hooses a �xed number of the best ranked individual 
las-

si�ers a

ording to a given metri
 (as kappa statisti
s) [169℄.

� Optimization-based pruning solves the problem of 
hoosing individual 
lassi�ers

as an optimization task. Be
ause the number of base models is typi
ally high,

therefore heuristi
 methods [202℄, evolutionary algorithms [272℄ or 
ross-validation

based te
hniques [65℄ are usually used.

� Clustering-based pruning looks for groups of base 
lassi�ers, where individuals in

the same group behave similarly while di�erent groups have large diversity. Then,

from ea
h 
luster, the representative is sele
ted, whi
h is pla
ed in the �nal ensem-

ble.

As the following thesis partially deals with employing 
lustering-based 
lassi�er ensemble

pruning methods to improve the predi
tive performan
e of 
ombined 
lassi�ers then let

us brie�y present the main works related to this �eld. Clustering-based pruning 
onsists

of two steps. In the �rst one, base models are grouped into several 
lusters based on a


riterion, whi
h takes into 
onsideration their impa
t on the ensemble performan
e. For

this purpose, various 
lustering methods were used, su
h as hierar
hi
al agglomerative


lustering [96℄, deterministi
 annealing [10℄, k-Means 
lustering [85℄ [156℄ and spe
tral


lustering [267℄. Most of those methods employ some kind of diversity-based 
riteria.

Gia
into et al. [96℄ estimated the probability that 
lassi�ers do not make 
oin
ident errors

in a separate validation set, while Lazarevi
 and Obradovi
 [156℄ used the Eu
lidean

distan
e in the training set. Kun
heva proposed employing a pairwise diversity matrix

for hierar
hi
al and spe
tral 
lustering methods [150℄.

In the se
ond step, a prototype base learner is sele
ted from ea
h 
luster. In [10℄ a new

model was trained for ea
h 
luster, based on 
lusters 
entroids. In [96℄ Gia
into et al.


hosen the 
lassi�er, whi
h was the most distant to the rest of 
lusters. In [156℄ models

were iteratively removed from the least to the most a

urate. The model with the highest


lassi�
ation a

ura
y was 
hosen in [85℄.

The last issue is the 
hoi
e of the number of 
lusters. This 
ould be determined based on

the performan
e of the method on a validation set [85℄. In the 
ase of fuzzy 
lustering
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methods, indexes based on membership values and data set or statisti
al indexes 
an be

used to automati
ally sele
t the number of 
lusters [132℄.

2.4 Di�
ult data 
lassi�
ation

The following se
tion aims to dis
uss the notion of di�
ult data 
lassi�
ation, fo
using on

the skewed 
lass distribution, data stream, and the 
ase of limited label a

ess, strongly

asso
iated with a
tive learning. Dealing with these problems, espe
ially in 
ases of

their simultaneous o

urren
e, is the main fo
us of this dissertation. As mentioned

in the introdu
tion, these three s
enarios are not the only de�nitions of di�
ult data.

However, issues su
h as data heterogeneity, high dimensionality, a high number of 
lasses,

data in
ompleteness, or low or very high 
ardinality of the learning set are not dealt with

in this thesis, therefore they are not 
overed in a longer des
ription.

2.4.1 Imbalan
ed data

Most of the 
lassi�
ation algorithms assume that there are no signi�
ant disproportions

among instan
es from di�erent 
lasses. Nevertheless, in many pra
ti
al tasks, we may

observe that examples from one 
lass (so-
alled majority 
lass) signi�
antly outnumber

the obje
ts from remaining 
lasses (minority 
lass). This disproportion, in the 
ase

of binary problems, is often represented by the Imbalan
e Ratio, whi
h des
ribes how

many majority 
lass samples are there per one minority 
lass sample. Most of the

traditional 
lassi�ers have a bias in favor of the majority 
lass. However, more often, the

minority 
lass is more interesting be
ause misidenti�
ation of an instan
e belonging to

it is usually mu
h more expensive than assigning an instan
e from the majority 
lass to

the minority one. A good example is an undete
ted fraud that would be more expensive

than the 
ost of additional analysis of a 
orre
t transa
tion 
lassi�ed as a fraudless

transa
tion. Su
h a problem is known as imbalan
ed data 
lassi�
ation [224, 245℄, where

an unequal number of instan
es from the examined 
lasses plays a key role during the


lassi�er learning. Various approa
hes have been proposed in the literature to ta
kle

this 
hallenging di�
ulty embedded in the nature of data. Usually, the resear
hers are

fo
using on maximizing the 
orre
t minority 
lass 
lassi�
ation. At the same time, the

performan
e of the majority 
lass 
annot be negle
ted.

In the 
ase of imbalan
ed data 
lassi�
ation, the disproportion between the di�erent


lasses is not the sole issue of learning di�
ulties. One may easily 
ome up with an exam-

ple where the instan
e distributions from di�erent 
lasses are well-separated. Proposing

an e�
ient 
lassi�er for su
h a task is not a 
hallenge. Unfortunately, instan
es from
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the minority 
lass often form 
lusters of an unknown stru
ture that are s
attered [178℄.

An additional 
ompli
ation 
omes from the fa
t that during learning, the number of

instan
es from the minority 
lass may not be su�
ient enough for the learning algorithm

to a
quire the appropriate generalization level, whi
h in e�e
t 
an 
ause over�tting [54℄.

All those problems remain the fo
us of intense resear
h [43, 49, 147℄.

Methods for imbalan
ed data 
lassi�
ation 
an be divided into three main groups, i.e.

data prepro
essing methods, inbuilt me
hanisms and hybrid methods [163℄.

Data prepro
essing methods. This approa
h fo
uses on redu
ing the number of

obje
ts in the majority 
lass (undersampling) or generating new obje
ts of the minority


lass (oversampling). These me
hanisms have the obje
tive of balan
ing the number of

instan
es from 
onsidered 
lasses. For oversampling, new instan
es are random 
opies of

existing ones (Random Oversampling [13℄), or they are generated in a guided manner.

The most popular method is Syntheti
 Minority Oversampling Te
hnique (smote) [49℄

algorithm, whi
h 
reates new instan
es based on existing ones by slightly modifying

the values of their attributes. As a result, new arti�
ial examples that are 
ompatible

with the minority 
lass distribution are generated. Other oversampling methods are

adasyn [104℄, that also takes into 
onsideration the obje
t di�
ulties, or ramoboost

[52℄. Unfortunately, methods like smote may lead to 
hanges in the 
hara
teristi
 of

the minority 
lass. Consequently, it may result in the 
lassi�er over�tting. Several

modi�
ations of smote have been proposed that are able to identify the instan
es to

be 
opied in a more intelligent fashion su
h as Borderlinesmote [100℄. It generates new

instan
es from the minority 
lass 
lose to the de
ision border. Safe-Level smote [43℄ and

ln-smote [167℄ redu
e the probability of generating syntheti
 instan
es of the minority


lass in areas where the predominant obje
ts are that of the majority 
lass. smv-smote

employs svm 
lassi�er in order to generate new examples 
onsidering it;s support ve
tors

[182℄. Among other propositions are: rbo [130℄ and 

r that enfor
e instan
es from

the majority-
lass to be relo
ated from the areas where the minority-
lass instan
es are

present [131℄.

Methods of undersampling are built around the idea of randomly removing the instan
es

from the majority-
lass or removing them in su
h a way that the quality of the 
lassi�er is

not disrupted. The most basi
 method, Random Undersampling (rus) [13℄, a
hieves the


lass balan
e by random elimination of the majority 
lass intan
es. Condensed Nearest

Neighbors (
nn) [102℄ removes the majority 
lass samples that are 
lose to the de
ision

boundary using 1-nn rule. Edited Nearest Neighbors (enn) [248℄ 
omputes three nearest

neighbors of ea
h instan
e and a given sample is removed if it belongs to the majority


lass and is miss
lassi�ed by its three neighbors. Neighborhood Cleaning Rule (n
l) [155℄

removes samples, for whi
h labels obtained based on enn rule for three and �ve neighbors
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are di�erent. Tomek's modi�
ation of Condensed Nearest Neighbor (tl) [229℄ performs

guided undersampling using two Tomek Links, dedi
ated for majority and minority 
lass.

One Sided Sele
tion (oss) [147℄ dete
ts Tomek Link using 1-nn and then removes all

majority samples embedded in it. Undersampling Based on Clustering (sb
) [263℄ divides

data into 
lusters and then, based on the Imbalan
e Ratio, removes samples from the

majority 
lass 
lusters.

Inbuilt me
hanisms. In this approa
h, existing 
lassi�
ation algorithms are adapted

for imbalan
ed problems ensuring balan
ed a

ura
y for instan
es from both 
lasses.

Two of the most popular areas of resear
h of these methods are using one-
lass 
lassi-

�
ation [118℄, usually known as learning without 
ounterexamples. They aim to learn

the minority 
lass de
ision areas, and be
ause of the frequently assumed regular, 
losed

shape of the de
ision borders is adequate to the 
lusters 
reated by minority 
lasses [137℄.

The disproportion between the number of instan
es in 
lasses is then omitted. Another

approa
h is the (
ost-sensitive) 
lassi�
ation, where the algorithm takes into a

ount the

asymmetri
al loss fun
tion that assigns a higher 
ost to mis
lassi�
ation of an instan
e

from a minority 
lass [105, 163, 271℄. Unfortunately, su
h methods 
an 
ause a reverse

bias towards the minority 
lass. There also exists a 
ost-sensitive approa
h to 
lassi�er

sele
tion. However, the algorithms proposed so far are based almost solely on stati


ensembles su
h as 
ost-sensitive trees ensemble [138℄, ensemble methods based on ro


spa
e [16, 74℄, or 
ost-sensitive Boosting [225℄. There is a 
lear la
k of Dynami
 En-

semble Sele
tion methods taking into a

ount the di�erent 
osts of problem 
lasses.

Therefore, the proposal of su
h methods might present another interesting 
hallenge.

Worth noting are methods based on ensemble 
lassi�
ation [253℄, like smoteBoost [50℄

and AdaBoost.n
 [241℄ or Multi-obje
tive Geneti
 Programming Ensemble [17℄.

Hybrid methods. They 
ombine the advantages of methods using data prepro
essing

with the 
lassi�
ation methods as well ass di�erent approa
hes to data prepro
essing.

The most popular 
ategory is the hybridization of undersampling and oversampling with

ensemble 
lassi�ers [86℄. This approa
h allows the data to be independently pro
essed

for ea
h of the base models. Batista et al. proposed two hybrid methods based on

the smote oversampling algorithm [13℄. smote-enn 
ombines smote with Condensed

Nearest Neighbor, whi
h is used to �lter noisy items and remove samples from both


lasses before applying the oversampling algorithm. smote-tl uses smote to gener-

ate syntheti
 minority 
lass instan
es and then dete
ts and removes samples 
omposing

Tomek Links. Stefanowski and Wilk proposed the Sele
tive Prepro
essing of Imbalan
ed

Data (spider) [220℄, whi
h 
ombines lo
al minority 
lass oversampling with �ltering of

di�
ult samples from the majority 
lass. Napierala et al. then extended this idea and

introdu
ed the spider2 algorithm [180℄, whi
h dete
ts noisy samples from both minor-

ity and majority 
lass. Majority noisy samples are then relabeled or removed, while
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the minority noise samples are repli
ated. Adaptive Oversampling Te
hnique Based on

Data Density (asmobd), whi
h 
ombines oversampling with self-labeling based on

the instan
e di�
ulty, was proposed by Wang et al. [244℄. Yang et al. introdu
ed a hy-

brid optimal ensemble 
lassi�er framework 
ombining density-based undersampling with

multi-obje
tive optimization algorithm [261℄. Zhaot et al. presented the Weighted Hy-

brid Boosting (WHMBoost) algorithm 
onsisting of two base 
lassi�ers and two weighted

data prepro
essing methods

Metri
s

The evaluation 
riterion plays an extremely important role in the pro
ess of evaluating

the performan
e of the pattern re
ognition algorithm. This thesis fo
uses on the binary


lassi�
ation task, for whi
h all metri
s are based on the 
onfusion matrix shown in Table

2.2.

Table 2.2: The 
onfusion matrix for binary 
lassi�
ation.

Positive (1) Negative (0)

Positive (1) TP FP

Negative (0) FN TN

Traditionally, the a

ura
y s
ore is used to assess the performan
e of 
lassi�
ation algo-

rithms. Unfortunately, in the 
ase of imbalan
ed data 
lassi�
ation, it is not adequate

and informative, as it does not distinguish 
orre
tly 
lassi�ed obje
ts of the majority

(negative) and minority (positive) 
lass. Therefore, if the minority 
lass we are inter-

ested in 
onstitutes, for example, 3% of all instan
es in a given problem, assigning all of

them to the majority 
lass will result in an a

ura
y s
ore of 97% [166℄.

accuracy(Ψ,VS) = TP + TN

TP + FN + FP + TN
(2.33)

Therefore, the evaluation in the 
ase of imbalan
ed data must be 
arried out using

dedi
ated metri
s that take into a

ount the 
lass distribution. Among these metri
s,

we 
an distinguish three base metri
s, as well as multiple aggregated metri
s:

Re
all (also known as sensitivity or tpr) [190℄, whi
h represents the 
lassi�er's ability to

re
ognize minority (positive) 
lass obje
ts. It tells us what per
entage of minority 
lass

instan
es were dete
ted.

recall(Ψ,VS) = TP

TP + FN
(2.34)
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Miss rate (also known as fnr) [190℄, whi
h is the inverse of re
all and tells what per-


entage of obje
ts belonging to the minority 
lass has not been re
ognized.

miss rate(Ψ,VS) = FN

FN + TP
(2.35)

Spe
i�
ity (also knows as tnr) [190℄, whi
h is equivalent to re
all for the majority (neg-

ative) 
lass. In the 
ase of problems with the dynami
ally 
hanging prior 
lass proba-

bilities (in
luding swapping the majority and minority 
lass), an ex
hange of the re
all

and spe
i�
ity values 
an be observed.

specificity(Ψ,VS) = TN

TN + FP
(2.36)

Fallout (also known as fpr) [190℄, whi
h is the inverse of spe
i�
ity and informs about

the per
entage of majority 
lass obje
ts 
lassi�ed as belonging to the minority 
lass.

fallout(Ψ,VS) = FP

FP + TN
(2.37)

Pre
ision (also known as positive predi
tive value) [190℄, informing about the model's

ability to 
orre
tly dete
t minority 
lass obje
ts. Indi
ates how many of the obje
ts

assigned by the model to the positive 
lass a
tually belongs to said 
lass.

precision(Ψ,VS) = TP

TP + FP
(2.38)

Balan
ed a

ura
y s
ore (ba
) [34, 120℄, de�ned for multi-
lass problems as the average

of re
all 
al
ulated on ea
h 
lass. For binary problems, it is the average of re
all and

spe
i�
ity.

BAC(Ψ,VS) = Recall + Specificity

2
(2.39)

Geometri
 mean s
ore [11, 147℄, known in two versions. By far the most popular is

de�ned as the square root of the produ
t of re
all and spe
i�
ity (Gmeans). However,

there is also an alternative de�nition where spe
i�
ity is repla
ed by pre
ision (Gmean).

Gmeans =
√

Recall ∗ Specificity (2.40)

Gmean =
√
Recall ∗ Precision (2.41)

Fβ score [9℄, whi
h is interpreted as the weighted harmoni
 mean of re
all and pre
ision.

Thanks to this, it takes into a

ount both of these base metri
s, while punishing extremely

low values of either of them. The β parameter expresses how many times re
all is more
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important than pre
ision and 
an be tuned, resulting in di�erent trade-o�s between

both metri
s. Using this metri
 
ould be dangerous if the parameter is not set properly.

Brzezinski et al. [41℄ show, that unsuitable β value may resulting in favoring the majority


lass. Fβ score is also 
riti
ized due to asymmetri
 response to the dynami
ally 
hanging

Imbalan
e Ratio and being more sus
eptible to simple oversampling [36℄.

Fβ = (1 + β2) ∗ Precision ∗Recall
(β2 ∗ Precision) +Recall

(2.42)

F1 score [205℄ 
an be interpreted as Fβ score, where the β value is 1. It is de�ned as the

harmoni
 mean of re
all and pre
ision.

F1 score = 2 ∗ Precision ∗Recall
Precision+Recall

(2.43)

Another way to evaluate to 
lassi�ers performan
e is to use two graphi
al-based metri
s

[29℄, namely Re
eiver Operating Chara
teristi
s (ro
) 
urve and the 
orresponding area

under the ro
 
urve (au
) [227℄. The ro
 
urve allows the visualization of trade-

o� between the fpr (x axis) and tpr (y axis) for given value of threshold used for

labeling a sample as belonging to the positive 
lass. The point (0, 1) represents a perfe
t


lassi�er, the point (0, 0) is a 
lassi�er that predi
ts all samples as negative, (1, 1) is

the 
lassi�er that labels all samples as belonging to the positive 
lass, and the point

(1, 0) is the 
lassi�er whi
h is always in
orre
t. The ro
 
urve has been widely used

in the 
ase, where the 
lassi�
ation 
ost is hard to obtain. au
 allows the models


omparison or general evaluation of a single 
lassi�er, averaged over di�erent parameter

values [78℄. Nevertheless, Hand deemed au
 as fundamentally in
oherent and proposed

the alternative measure [101℄.

Stati
 imbalan
ed data sets

Chapter 3 of this dissertation fo
uses on the 
lassi�
ation of stati
 imbalan
ed data.

Table 2.3 presents the 
hara
teristi
s of 41 datasets sele
ted from the KEEL [4℄ repository.

All datasets have a high imbalan
e ratio of at least 9 and 
ontain binary problems that

were generated through various 
ombinations of 
lass merging.

Experimental proto
ol

In this thesis, all experiments on stati
 data sets will be 
ondu
ted a

ording to the

k-fold 
ross-validation evaluation proto
ol [124℄. In this approa
h, a dataset is randomly

divided into k mutually ex
lusive folds of equal size. Then, k−1 folds are used for training
the algorithms and the remaining one for evaluation. This pro
edure is repeated until
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Table 2.3: Imbalan
ed datasets 
hara
teristi
s.

Dataset #i #f ir Dataset #i #f ir

e
oli-0-1_vs_2-3-5 244 7 9 glass2 214 9 12

e
oli-0-1_vs_5 240 6 11 glass4 214 9 15

e
oli-0-1-3-7_vs_2-6 281 7 39 glass5 214 9 23

e
oli-0-1-4-6_vs_5 280 6 13 led7digit-0-2-4-5-6-7-8-9_vs_1 443 7 11

e
oli-0-1-4-7_vs_2-3-5-6 336 7 11 page-blo
ks-1-3_vs_4 472 10 16

e
oli-0-1-4-7_vs_5-6 332 6 12 shuttle-
0-vs-
4 1829 9 14

e
oli-0-2-3-4_vs_5 202 7 9 shuttle-
2-vs-
4 129 9 20

e
oli-0-2-6-7_vs_3-5 224 7 9 vowel0 988 13 10

e
oli-0-3-4_vs_5 200 7 9 yeast-0-2-5-6_vs_3-7-8-9 1004 8 9

e
oli-0-3-4-6_vs_5 205 7 9 yeast-0-2-5-7-9_vs_3-6-8 1004 8 9

e
oli-0-3-4-7_vs_5-6 257 7 9 yeast-0-3-5-9_vs_7-8 506 8 9

e
oli-0-4-6_vs_5 203 6 9 yeast-0-5-6-7-9_vs_4 528 8 9

e
oli-0-6-7_vs_3-5 222 7 9 yeast-1_vs_7 459 7 14

e
oli-0-6-7_vs_5 220 6 10 yeast-1-2-8-9_vs_7 947 8 31

e
oli4 336 7 16 yeast-1-4-5-8_vs_7 693 8 22

glass-0-1-4-6_vs_2 205 9 11 yeast-2_vs_4 514 8 9

glass-0-1-5_vs_2 172 9 9 yeast-2_vs_8 482 8 23

glass-0-1-6_vs_2 192 9 10 yeast4 1484 8 28

glass-0-1-6_vs_5 184 9 19 yeast5 1484 8 33

glass-0-4_vs_5 92 9 9 yeast6 1484 8 41

glass-0-6_vs_5 108 9 11

the 
hosen metri
 is estimated based on all available folds, i.e., k times. The �nal metri


values is 
al
ulated as the average of k metri
 estimations. The whole pro
ess 
an also be

repeated a set number of times, resulting in repeated 
ross-validation proto
ol. The value

of the parameter k usually depends on the dataset size, i.e., the more problem samples,

the smaller the k. Re
ommended values are k = 10 or k = 5. As the random splitting

may lead to so-
alled dataset shift, in whi
h the folds obtained are not representative

of the original dataset, the proto
ols based on strati�ed sampling have been proposed

[176℄. One su
h approa
h is the standard strati�ed 
ross-validation whi
h maintains in

ea
h fold the original 
lass distributions and will be used in the following thesis.

The use of 
ross-validation allows, apart from desensitizing to the random fa
tor, for

performing the null hypothesis statisti
al tests [215℄. Su
h tests enable answering the

question, whether the obtained performan
e di�eren
e is statisti
ally signi�
ant. Stapor

et al. des
ribe three s
enarios, in whi
h the statisti
al tests 
an be applied [219℄:

� Two 
lassi�ers � one dataset,

� Two 
lassi�ers � multiple datasets,
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� Multiple 
lassi�ers � multiple datasets.

For the 
omparison of two 
lassi�ers on one dataset, when using the repeated 
ross-

validation proto
ol, the most popular are the 
lassi
al t test and the 
orre
ted t test

[27℄. When 
omparing two 
lassi�er on multiple datasets, the Wil
oxon signed-rank

test is widely re
ommended [111℄. For the 
omparison of multiple 
lassi�ers on multiple

datasets, the re
ommended methodology is to �rst use the omnibus test in order to 
he
k

if any model di�ers from other. The most popular omnibus test is the Friedman non-

parametri
 test [111℄. In the se
ond step, if the null hypothesis of the omnibus test is

reje
ted, the post-ho
 analysis with multiple hypothesis testing is performed, whi
h for

Friedman test in based on the means ranks.

2.4.2 Data stream

The main 
hara
teristi
 of the data stream 
lassi�
ation [135℄ is the possibility of the

large amount of data appearing sequentially, 
reating endless data stream over whi
h the

observer has no in�uen
e when it 
omes to the order at whi
h instan
es arrive. Moreover,

a 
lassi�er has to be ready at all times to make a de
ision. When designing e�e
tive


lassi�er for data streams, we have to 
onsider a few important issues:

� Possibility of 
hanges in data distribution (
on
ept drift),

� Frequent need for qui
k 
lassifying of in
oming samples,

� Delay or impossibility of data labeling,

� Limited resour
es as memory, storage, and 
omputational power.

For the purposes of the following thesis, the data stream is de�ned as a set of data 
hunks

DSk with �xed-size N , where k is the 
hunk index. and Ψk denotes the 
lassi�er trained

based on the kth 
hunk.

Be
ause not all obje
ts 
an be stored in memory, it is widely a

epted that ea
h instan
e

may be pro
essed at most one time, and it is not remembered. Therefore its re-evaluation


ould be impossible. Usually, information about instan
es is repla
ed by statisti
s. Fi-

nally, we may be fa
ed with non-stationary data streams, i.e., where parameters of the


lassi�
ation model (
hara
teristi
s of probabilisti
 distributions) may 
hange, for
ing

the 
lassi�
ation model to adapt to up
oming 
hanges. This phenomenon is 
alled 
on-


ept drift and its nature 
an vary due to both the 
hara
ter and the rapidity. It for
es the

implementation of me
hanisms enabling adapting to the 
urrent 
lass imbalan
e status
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or 
on
ept drift dete
tors that providing a drift o

urs enfor
es the model to be rebuilt.

From the 
lassi�
ation point of view, we 
an distinguish two types of su
h an event:

(i) the real 
on
ept drift that 
an strongly a�e
t the shape of the de
ision boundary;

and (ii) the virtual drift that does not a�e
t the de
ision rule. Another drift taxonomy

depends on the drift impetuosity:

� slow 
hanges, i.e., in
remental drift.

� abrupt 
hanges, i.e., in
remental drift.

It is di�
ult to assign a gradual drift in this taxonomy. On the one hand, it 
an be


onsidered as a slow-moving 
hange, but on the other hand, it 
an be seen as an abrupt


hange related to 
lass overlapping.

Additionally, we 
an 
onsider a reo

urring 
on
ept drift. It may o

ur in 
ases of,

e.g., seasonal phenomena as weather predi
tion or 
lient preferen
es of 
lothes or sports

stores. It is worth emphasizing that the presen
e of a 
on
ept drift 
an lead to serious

deterioration of the 
lassi�er's a

ura
y. Therefore, developing e�
ient methods that are

able to deal with this type of 
hange in the data stream is nowadays the fo
us of intense

resear
h.

Kun
heva analyzed various approa
hes to streaming data 
lassi�
ation employing 
las-

si�er ensemble te
hniques in [149℄. Based on this analysis, the following strategies 
an

be distinguished:

� Dynami
 
ombiners, where the 
lassi�er ensemble 
hanges the rule by whi
h trained

in advan
e base models are 
ombined (e.g., 
hanging weights for weighted voting)

[161℄,

� Updating training data, where base 
lassi�ers are updated in an online manner us-

ing in
oming training instan
es, (e.g., in online bagging [185℄ or leveraging bagging

[20℄),

� Updating base 
lassi�ers [126℄,

� Updating the 
lassi�er ensemble line-up, where, e.g., the oldest or worst performing


lassi�er is repla
ed by a new one, trained on the most re
ent data [256℄.

Based on the approa
h to data pro
essing, 
lassi�ers dedi
ated to the data stream 
lassi-

�
ation task 
an be 
ategorized into 
hunk/bat
h-based or online methods. Bat
h-based

methods pro
ess the stream in 
hunks, whi
h 
ontain a �xed number of samples. This

allows iterating several times of samples in ea
h 
hunk to generate base 
lassi�ers. Online
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learning methods pro
ess ea
h sample individually after its arrival, whi
h is an approa
h

dedi
ated for s
enarios with stri
t memory and time 
onstraints [135℄.

Despite the large number of methods proposed, the 
lassi�er ensemble remains the fo
us

of intense resear
h and is one of the more promising dire
tions of the data stream analysis,

both stationary and non-stationary. Still, 
onstru
ting a well-performing ensemble of


lassi�ers is strongly related to the method of ensuring high diversity of the 
lassi�er

pool and employed 
ombination method [253℄.

One the most well re
ognized ensemble approa
hes to stationary data stream 
lassi�
a-

tion is the Learn++ algorithm proposed by Polikar et al. [189℄. Learn++ trains a neural

network model on ea
h in
oming 
hunk and adds it to the pool, whi
h is 
ombined using

majority voting. All models are retained in the pool. Zhao et al. proposed Bagging++

[269℄ as an improvement for Learn++. This approa
h employs Bagging to generate new

models from ea
h data 
hunk, using four di�erent learning algorithms. Minku et al.

introdu
ed the Growling Negative Correlation Learning Growling n
l [172℄ algorithm,

aimed at 
o-training a 
lassi�er ensemble 
omposed of diverse and a

urate neural net-

works.

Online ensembles for stationary data stream 
lassi�
ation in
lude Online Bagging ob,

proposed by Oza [184℄, whi
h uses the Poisson(λ = 1) distribution to update ea
h base


lassi�er with the appearan
e of a new instan
e. Bifet et al. two algorithms modifying

ob, namely Adaptive-Size Hoe�ding Trees (asht) [21℄ and Leveraging Bagging (LevBag)

[20℄. Both of those methods aimed at randomizing the 
lassi�ers' input and ouput. asht

does that by generating de
ision trees of di�erent sizes, while LevBag allows spe
ifying

the value of λ parameter during resampling and employs output dete
tion 
odes. Another

approa
h proposed by Oza is the Online Boosting (OzaBoost) [184℄. Here, a �xed-size

ensemble is maintained and the 
lassi�ers are sequentially updated using ea
h in
oming.

The weights of mis
lassi�ed instan
es are in
reased in order to emphasize them when

updating models. Gama proposed Hoe�ding Option Trees (hot) ensemble [88℄, whi
h

allows updating a set of option nodes instead of a single leaf.

One of the most well known example of bat
h-based 
lassi�er ensemble algorithm for

the non-stationary data stream 
lassi�
ation task is the Streaming Ensemble Algorithm

(sea) [221℄ proposed by Street and Kim, whi
h trains a new base model on ea
h in
oming

data 
hunk and adds it to the 
lassi�er pool but removes the worst model if the pool size

is ex
eeded. Wang et al. introdu
ed the A

ura
y Weighted Ensemble (awe algorithm

[239℄, whi
h is a standard ensemble bat
h pro
essing method based on mean square

error 
al
ulations. Brzezinski and Stefanowski proposed the extension od awe, namely

the A

ura
y Updated Ensemble (aue) algorithm [38℄ allowing for updating the member


lassi�ers. The Weighted Aging Ensemble (wae) [256℄, modifying awe by 
hanging
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the weights 
al
ulation and 
lassi�er sele
tion methods, was proposed by Wozniak et al.

Elwell and Polikar Learn++ for non-stationary environments Learn++.nse [77℄, inspired

by Learn++, sets the weights of training samples from ea
h 
hunk based on the error

obtained when 
lassifying it.

Regarding online ensemble methods for non-stationary data stream 
lassi�
atio, one of

the popular approa
hes is the Dynami
 Weighted Majority (dwm) proposed by Kolter

and Maloof [127℄. In dwm, ea
h base 
lassi�er has a weight, whi
h is redu
ed ea
h time

a wrong predi
tion is made. Brzezinski and Stefanowski introdu
ed the in
remental

version of aue, namely Online A

ura
y Updated Ensemble (oaue) [39℄, whi
h employs

the new 
ost-e�e
tive fun
tion for 
lassi�er weighting. Yoshida et al. proposed the wwh

algorithm [264℄, whi
h 
ombines an adaptive ensemble with instan
e sele
tion based on

overlapping windows. The Sparse Online Classi�
ation (so
) framework from Wag et al.

[238℄ uses sparse online learning algorithms for online drifting data stream 
lassi�
ation.

Data stream 
lassi�er evaluation

As previously mentioned, 
ross-validation is the most 
ommonly used evaluation ap-

proa
h in learning from stati
 data. However, in the 
ase of learning from the data

stream, this method 
annot be used due to, among other fa
tors, 
omputational lim-

itations due to potentially huge amounts of data, as well as possible 
on
ept drift or

dynami
 imbalan
e o

urren
e [135℄.

Con
erning bat
h data stream analysis, whi
h is one of the main topi
s of interest in the

following thesis, two approa
hes are often employed:

� Test-Then-Train [88℄, shown in Figure 2.3 a. Ea
h individual 
hunk is �rst used to

test the 
urrent 
lassi�
ation model and then to update it. The �rst data 
hunk in

a data stream is used to initialize the 
lassi�
ation model, skipping the predi
tion

step.

� Prequential [89℄ (Figure 2.3 b), whi
h in the bat
h-based version relies on the

forgetting me
hanism in the form of a sliding window, rather than on separate

data 
hunks. After ea
h predi
tion and update step, the window moves by a

�xed number of instan
es, keeping some of those previously seen. This makes

the approa
h more sensitive to 
hanges o

urring in the stream. However, it is

asso
iated with an in
rease in the 
omputational 
ost. An example of an evaluation

based on this te
hnique 
an be the prequential au
 proposed by Brzezi«ski and

Stefanowski for imbalan
ed data stream 
lassi�
ation [40℄.
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DS0 DS1 DSN

Build �rst model Reevaluate Reevaluate

(a) Test-Then-Train

DS0

Build �rst model

DS1

Reevaluate

DS2

Reevaluate

(b) Prequential

Figure 2.3: Data stream evaluation s
hemes.

There also exist other approa
hes for 
omparing data stream 
lassi�
ation methods. An

example are metri
s for assessing the behavior of 
lassi�
ation methods during a 
on
ept

drift o

urren
e, proposed by Shaker and Hüllermeier [210℄, namely the restoration time

and the maximum performan
e loss. Let's denote two stationary streams generated

a

ording to distributions PA and PB as DSA and DSB. The drifting data stream

generated by random sampling of DSA and DSB is de�ned as DSC .

Restoration time informs about the length of the algorithm's re
overy phase after the


on
ept drift o

urren
e, and is de�ned as

t2 − t1
T

∈ [0, 1], (2.44)

where t1 is the time at whi
h the learning 
urve DSC drops below 95% of the performan
e


urve DSA, t2 is the time at whi
h the learning 
urve DSC re
overs up to 95% of the

performan
e 
urve DSB , and T denotes the length of the entire data stream.

The maximum performan
e loss measures the maximal de
rease in the method perfor-

man
e in the event of 
on
ept drift. In 
lassi�
ation task, it 
ompares DSC with the

pointwise minimum

DS(t) = min{DSA(t),DSB(t)} (2.45)
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as a baseline and 
omputes the maximum performan
e loss as 
ompared to this baseline

max

t∈T

DS(t)−DSC(t)
DS(t)

. (2.46)

Another problem in the 
ase of data stream 
lassi�
ation is the method of 
arrying out

the statisti
al analysis of the obtained results. So far, there have been few solution

proposals for this issue [18℄. One su
h approa
h is to perform standard statisti
al tests

using metri
 values averaged over the entire length of the data stream - whi
h requires

the use of syntheti
 streams to generate a repli
ation of the said stream with the same


hara
teristi
s but a di�erent random seed. This approa
h, however, tries to transform a

dynami
 problem into a stati
 one and does not take into a

ount the 
hanges o

urring

during the entire length of the evaluation pro
ess. This approa
h is also not appli
able to

real data streams. Another method is to use a sliding window or separate data 
hunks.

However, due to a large number of degrees of freedom, the results are almost always

statisti
ally independent of ea
h other. For this reason, there is 
urrently no de�ned

approa
h to performing statisti
al tests on single data streams.

2.4.3 Imbalan
ed data stream

Despite the fa
t that real-life data streams may often display a high degree of imbalan
e,

there is still a s
ar
ity of arti
les trying to 
ombine both non-stationary data stream

and imbalan
ed data 
lassi�
ation tasks [37℄. Additionally, it is often overlooked that

imbalan
ed data streams may be 
hara
terized by the dynami
 
hanges in the Imbalan
e

Ratio, whi
h may be regarded as the equivalent of 
on
ept drift phenomenon for prior


lass probabilities. The analysis of literature in the �eld of non-stationary data stream

shows that the vast majority of works deal with problems of 
hanges in the posterior

probability, relatively rarely addressing the topi
 of imbalan
ed streams, and in parti
-

ular, dynami
ally imbalan
ed streams, i.e. those 
hara
terized by 
hanges in the prior

probability [243℄.

Existing methods for mining imbalan
ed data streams, same as for balan
ed ones, work

in two distin
tive modes, i.e., the data is arriving in 
hunks and data windows are given

for pro
essing or the data is pro
essed online. Work by Gao et al. [90℄ is worth highlight-

ing as a te
hnique based on the notion of 
lassi�er ensemble, where ea
h of the individual

learners is generated using instan
es from the majority 
lass in the 
onse
utive data win-

dows as well as on the already a

umulated minority 
lass instan
es. In [246℄, authors

propose an ensemble approa
h, where before learning on ea
h up
oming data windows

undersampling is performed based on the k-Means algorithm. Chen et al. [53℄ follow the

same te
hnique and des
ribe a family of algorithms sera, musera and rea, whi
h add
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sele
ted from the appearing minority 
lass obje
ts to the 
urrently pro
essed data win-

dow. In [160℄, authors dis
uss a method for 
al
ulating the weights of 
lassi�ers learned

on data windows and using 
ombination rule based on weighted voting. In [72℄ authors

propose a modi�
ation of the Learn++ algorithm for imbalan
ed data (Learn++.nie

and Learn++.
ds). Both methods, while a
hieving good re
ognition ability, require

signi�
ant 
omputational resour
es. An interesting approa
h, also employing 
lassi�er

ensembles, in whi
h the Imbalan
e Ratio dynami
ally 
hanges were proposed by Sun

et al. [223℄. The se
ond group of methods are based on in
remental (online) learning

mode. Nguyen et al. des
ribed an approa
h based on Random Oversampling [181℄, while

in [245℄, authors propose an interesting method 
alled Sampling-based Online Bagging,

employing both undersampling and oversampling. The de
ision on whi
h model to use

at the given time is made based on the outputs of both imbalan
e ratio dete
tor and drift

dete
tor. Worth mentioning is also the work on the rlsa
p by Ghazikhani et al. [94℄,

and wos-el
 algorithm by Zong et al. [275℄. The aim of these methods is to set the

per
eptron weights in a way preferring the minority 
lass.

Real data streams

Unfortunately, when it 
omes to the task of 
lassifying imbalan
ed data streams with


on
ept drift, there are many limitations in a

essing the real data. There are some works

that present an overview of the databases available for this type of problem [47, 63, 164℄.

Alas, after dis
ussion with some of the authors of these arti
les and thoroughly 
he
king

the data streams they listed, the use of provided data streams for this parti
ular problem

turned out to be di�
ult.

That was due to various fa
tors, su
h as:

� The problem turned out to be too simple,

� The stream 
ontained instan
es appearing sequentially in 
lasses,

� The data stream did not have noti
eable or de�nable 
on
ept drifts,

� The data did not have an appropriate imbalan
e ratio.

Some of these problems 
ould be addressed by modifying the a
tual data stream (e.g., by

reshu�ing or inje
ting drift). However, this approa
h was not used, as su
h a solution

would destroy the a
tual data stru
ture and would amount to resear
hing arti�
ially

generated data. Due to the low availability of data that would allow reliable veri�
ation

of the proposed algorithms in terms of their behavior when 
lassifying imbalan
ed data
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streams with 
on
ept drift, based on preliminary study, �ve ben
hmark streams were se-

le
ted. All streams were binarized arti�
ially (by 
ombining 
lasses). Both 
ovtypeNorm-

1-2vsAll and poker-lsn-1-2vsAll [47℄ do not have a de�nable type of drift. Also, in order

to make them usable during experiments, the longest possible se
tion intervals were se-

le
ted from both streams. This was done in order to guarantee the appearan
e of samples

from both 
lasses in ea
h 
hunk 
ontaining 1000 instan
es. In the 
ase of INSECTS data

[218℄, the streams have distin
t - prede�ned - types of 
on
ept drift. However, to make

things more di�
ult, a tool in
luded in the data stream mining framework MOA [19℄

was used to establish the minority 
lass size in ea
h of these three problems at 5%.

The 
hara
teristi
s of sele
ted real data streams are presented in Table 2.4.

Table 2.4: Real data streams 
hara
teristi
s.

Data stream #Samples #Features ir


ovtypeNorm-1-2vsAll 266 000 54 4

poker-lsn-1-2vsAll 360 000 10 10

INSECTS-abrupt_imbalan
ed_norm 300 000 33 19

INSECTS-gradual_imbalan
ed_norm 100 000 33 19

INSECTS-in
remental_imbalan
ed_norm 380 000 33 19

Syntheti
 data streams

Based on the above-mentioned 
on
lusions, it was 
onsidered ne
essary to use syntheti


data stream generators to evaluate the methods proposed in the thesis. Thanks to this,

the behavior of algorithms under stri
tly de�ned 
onditions 
an be tested. The variety of

streams 
an be ensured by generating a number of repli
ations, based on the determined

random seeds, for ea
h 
ombination of parameters su
h as: (i) the Imbalan
e Ratio, (ii)

the level of label noise, de�ning the global per
entage of in
orre
t labels o

urren
e, and

(iii) the type of 
on
ept drift.

One of the 
ommonly used generators are those available in the MOA data stream mining

framework [19℄. Aside from the above-mentioned parameters, these streams di�er in the

generator used and the number of attributes. The following generators are important in

the 
ontext of the following dissertation: (i) Agrawal - sudden and gradual 
on
ept drift,

9 attributes, (ii) Hyperplane - in
remental 
on
ept drift, 10 attributes.

The vast majority of resear
h presented in the following thesis has been 
arried out on

syntheti
 data streams generated using stream-learn pa
kage for di�
ult data stream

bat
h analysis [141℄, developed in 
ollaboration with Dr Paweª Ksieniewi
z.



Chapter 2. Sele
ted topi
s of pattern re
ognition 53

2.4.4 Partially labeled data

Another 
riti
al problem en
ountered during streaming data analysis is a

ess to the


orre
t label for in
oming obje
ts. Many of the methods des
ribed in the literature

ignore this topi
, assuming that labels are always available. They ignore the fa
t that

even if the labels for the in
oming obje
ts 
an be obtained, samples 
an arrive fast

enough, that labeling all of them will be impossible. The 
ost of labeling should be also

taken into 
onsideration. Sometimes this 
ost is negligible, e.g., in the 
ase of weather

fore
asting (a label 
an be obtained with a delay, but the 
ost is only related to the

observation and imputing it into the system). However, in most 
ases, su
h as medi
al

diagnosti
s, labels are the result of human experts' e�ort, so labeling involves the 
ost

of their work. Given the above, the assumption that labels 
an be obtained for free is

unrealisti
 and limits the possibility of using many methods in real-life de
ision problems

[1℄.

The following thesis deals partially with minimizing the ne
essary 
ost of data labeling

using the so-
alled a
tive learning approa
h [207℄. It 
on
entrates on 
hoosing the inter-

esting unlabeled obje
ts, whi
h are then passed as queries to be labeled by the expert.

There three main a
tive learning s
enarios that have been 
onsidered in the literature:

� Membership Query Synthesis [7℄ � In this s
enario, the learner 
an request labels for

any unlabeled samples, but typi
ally the queries relate to the instan
es synthesized

by the learner. The labeling of the generated instan
es 
an be problemati
 if the

annotator is a human expert. For example, in image 
lassi�
ation, the generated

instan
es may not 
ontain meaningful obje
ts [14℄. However, this s
enario shows

promising results when the labels are not derived from a human annotator but are,

for example, the result of experimentation [121℄.

� Stream-Based Sele
tive Sampling [8, 55℄ � The assumption of this s
enario is that

obtaining an unlabeled sample is inexpensive (or basi
ally free). Be
ause of that,

an instan
e 
an be �rst samples from the distribution, and then the learner 
an

de
ide whether it wants to query an expert about its label. Samples are evaluated

based on various query strategies [64℄, like e.g., un
ertainty sampling [158℄, Query-

By-Committee (qb
) [209℄, or Expe
ted Gradient Length (egl) [208℄.

� Pool-Based Sampling [158℄ � This s
enario is motivated by the fa
t, that for many

real-world tasks, a large 
olle
tions of unlabeled samples 
an be gathered simulta-

neously. In 
ontrast to the stream-based sele
tive sampling, query de
isions are not

made individually in a sequential manner, but the 
olle
tion of samples is evaluated

and ranked before sele
ting the best query.
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The use of a
tive learning for streaming data pro
essing has been noti
ed, among others

[152, 274℄, however it is still not widely used. Hen
e, it is worth noting the work of

Bouguelia et al. [28℄, who proposed a new a
tive learning query strategy based on in-

stan
e weighting. Ksieniewi
z et al. [145℄ used query by example based on the values of

the support fun
tion to improve neural network's predi
tion. [136℄ proposed employing

di�erent (query by 
ommittee) to 
lassify non-stationary data stream. It is also worth

mentioning the work [211℄, where the authors build a 
lassi�ers ensemble employing both

the a
tive learning approa
h as well as random labeling. Yu et al. proposed the extreme

learning ma
hine based solution, 
alled A
tive Online-Weighted Extreme Learning Ma-


hine aow-elm [265℄. A hybrid labeling strategy based on un
ertainty sampling and


lass distribution was proposed for the imbalan
ed data stream 
lassi�
ation by Zhang

et al. [268℄.

Another approa
h aiming to deal with the problem of limited a

ess to labels is known

as self-labeling [273℄. The goal of these te
hniques is to enlarge the original learning

set (or obtain several extended learning sets) by adding unlabeled samples with the

most 
on�dent predi
tions.vIn the literature, Self labeling is usually divided into (i) self-

training [159, 262℄, where 
lassi�er is trained using small initial pool of labeled samples

and then retrained using learning set extended by its most 
on�dent predi
tions, and (ii)


o-training [2, 25℄, whi
h assumes that the feature spa
e 
an be split into two independent

sets 
alled views. Then one 
lassi�er is trained on ea
h view and they tea
h ea
h other

the most 
on�dent predi
tions. Triguero et al. de�ned the main properties of self-labeled

te
hniques [230℄:

� Addition me
hanism, whi
h de�nes whether an enlarged labeled set is obtained

in
rementally, in bat
h mode, or by amending.

� Single-
lassi�er versus multi-
lassi�er, whi
h spe
i�es how many 
lassi�er are used

during the enlarging pro
ess.

� Single-learning versus multi-learning, whi
h de�nes whether the used 
lassi�ers are

heterogeneous of homogeneous.

� Single-view versus multi-view, whi
h spe
i�es how the feature spa
e is 
onsidered

by the self-labeled algorithm.

The example of employing self-labeling in the data stream 
lassi�
ation task might be

the S
a�olding Type-2 Classi�er proposed by Pratama et al.[191℄ and (ST2Class) based

on Fuzzy Neural Network. Kory
ki et al. augmented the a
tive learning module using

self-labeling in order to improve data stream 
lassi�
ation under very small instan
e

budget [129℄.
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2.5 Stream-learn library for di�
ult data stream bat
h anal-

ysis

The stream-learn is a Python module, implementing the s
ikit-learn api [187℄, intended

for a bat
h-oriented data stream pro
essing. It implements a data stream generator,

based on the Madelon [99℄ model used to generate stati
 data in s
ikit-learn and al-

lows the development of both stationary and dynami
 data streams, 
ontaining both


on
ept and prior 
lass probabilities drifts. It is supplemented with exemplary, simple

stream 
lassi�ers (A

umulated Samples Classi�er and Sample Weighted Meta Estima-

tor), whi
h may be used as the boilerplate for the users' solutions, and state-of-art


lassi�er ensembles (sea (Streaming Ensemble Algorithm) [221℄, OnlineBagging [184℄,

oob (Oversampling-Based Online Bagging) [243℄, uob (Undersampling-Based Online

Bagging) [243℄, awe (A

ura
y Weighted Ensemble) [239℄, aue (A

ura
y Updated En-

semble) [38℄ and wae (Weighted Aging Ensemble) [256℄). The pa
kage also implements

evaluation metri
s that are more 
omputationally e�e
tive than those available in s
ikit-

learn and imbalan
ed-learn. The element wrapping-up the pa
kage and allowing for


ondu
ting experiments is a pair of evaluators: Test-Then-Train [88℄ and Prequential

[89℄, in their bat
h variants.

Software Ar
hite
ture

The stream-learn pa
kage is organised in �ve modules, responsible for (i) data streams,

(ii) evaluation methods, (iii) 
lassi�
ation algorithms, (iv) 
lassi�er ensembles and (v)

evaluation metri
s. A general diagram of the proje
t ar
hite
ture is shown in Figure 2.4.
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The streams module 
ontains the arff �le parser 
lass, whi
h is the standard format for

serialising both real data streams and those generated, for example, by the moa software,

as well as the StreamGenerator 
lass responsible for generating syntheti
 data streams.

A more detailed des
ription of the module 
an be found in Se
tion 3.

The evaluators module 
ontains 
lasses responsible for two main predi
tion measures es-

timation te
hniques on data streams, namely Test-Then-Train and Prequential, in their

bat
h-based versions. The former one is based on separate windows known as data


hunks, while the latter uses a sliding window as a forgetting me
hanism. Both te
h-

niques, in ea
h step, reevaluate existing 
lassi�ers.

Estimators 
an be found in the 
lassi�ers and ensembles modules, whi
h 
ontain the


lassi�ers adapted for stream 
lassi�
ation and state-of-art 
lassi�er ensembles that 
an

be used with implemented estimators.

The module metri
s implements a variety of evaluation measures for unbalan
ed binary


lassi�
ation [42℄. The de
ision to 
reate a new implementation was made due to the

low 
omputational e�
ien
y of the metri
s in
luded in existing pa
kages. The module

in
ludes re
all [190℄, pre
ision [190℄, Fβ s
ore [9℄, F1 s
ore [205℄, ba
 [34, 120℄, Gmeans,

and Gmean [11, 147℄.

Data stream generation A key element of the stream-learn pa
kage is a generator

that allows a repli
able (a

ording to the given seed) 
lassi�
ation dataset to be 
re-

ated with a 
lass distribution that 
hanges over the 
ourse of a data stream, with basi



on
epts built on a standard 
lass distribution for the s
ikit-learn pa
kage from the

make_
lassi�
ation() fun
tion. These types of distributions attempt to reprodu
e the

rules for generating the Madelon set [99℄. The StreamGenerator is 
apable of generating

any variant of the stream known in the general taxonomy of streams.

Stationary Stream The simplest types of data streams are stationary streams. They


ontain a basi
 
on
ept that is stati
 for the entire 
ourse of pro
essing. The 
hunks

di�er from ea
h other in terms of the patterns they 
ontain, but the de
ision boundaries

of the models built on them should not di�er statisti
ally. This type of stream 
an be

generated with a 
lean generator 
all with no additional parameters. Su
h a stream

is shown in Figure 2.5, whi
h 
ontains the set of s
atter plots for a two-dimensional

stationary stream with the binary problem.

What is important, 
ontrary to a typi
al 
all to make_
lassi�
ation(), the n_samples

parameter, determining the number of patterns in the set, is not spe
i�ed here, but

instead, two new attributes of a data stream are provided:
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Figure 2.5: S
atter plots of sele
ted 
hunks from a stationary data stream.

� n_
hunks � to determine the number of 
hunks in a data stream.

� 
hunk_size � to determine the number of patterns in ea
h data 
hunk.

In addition, data streams may 
ontain noise, whi
h is not 
onsidered 
on
ept drift but

presents an additional 
hallenge during stream analysis and against whi
h 
lassi�ers

should be robust. The StreamGenerator 
lass implements noise by inverting the 
lass

labels of a 
ertain per
entage of the in
oming instan
es in the data stream. This per-


entage 
an be de�ned by an y_�ip parameter, as in the standard s
ikit-learn dataset

generation 
all. If a single �oat is spe
i�ed as the parameter value, the per
entage of

noise refers to 
ombined instan
es from all 
lasses. On the other hand, if a tuple of �oats

is spe
i�ed, the noise is done separately within ea
h 
lass using the spe
i�ed per
entages.

Data streams 
ontaining 
on
ept drift The most 
ommonly studied property of data

streams is their variability over time. The phenomenon of 
on
ept drift is responsible for

this. The stream-learn pa
kage attempts to address the need to synthesize all the basi


variants of this phenomenon (i.e., sudden, gradual, and in
remental drifts).

Sudden (Abrupt) drift

This type of drift o

urs when the 
on
ept from whi
h the stream is generated is sud-

denly repla
ed by another. The 
on
ept probabilities used by the StreamGenerator 
lass

are 
reated based on a sigmoid fun
tion generated with the 
on
ept_sigmoid_spa
ing

parameter, whi
h determines the shape of the fun
tion and the suddenness of the 
on
ept


hange. The higher the value, the more sudden the shift. Here, this parameter takes the

default value of 999, whi
h allows for the generation of a sigmoid fun
tion that simulates

an abrupt 
hange in the data stream. An illustration of sudden drift is shown in Figure

5.1.

Gradual drift

Unlike sudden drifts, gradual drifts are asso
iated with a slower rate of 
hange that 
an

be dete
ted by observing the data stream for a longer period of time. This type of

drift refers to the transition phase in whi
h the probability of obtaining instan
es of the

�rst 
on
ept de
reases, while the probability of obtaining instan
es of the next 
on
ept

in
reases. The StreamGenerator 
lass simulates gradual drift by 
omparing the 
on
ept
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probabilities with the generated random noise and sele
ting whi
h 
on
ept is a
tive at a

given time depending on the result. An illustration of gradual drift is shown in Figure

5.2.

In
remental (gradual) drift

in
remental drift o

urs when a series of barely per
eptible 
hanges in the 
on
ept used

to generate the data stream o

ur, unlike gradual drift where samples from di�erent


on
epts are mixed without 
hanging. For this reason, drift 
an only be dete
ted after

some time. The severity of the 
hanges, and thus the speed of transition from one 
on
ept

to another, is des
ribed by the parameter 
on
ept_sigmoid_spa
ing, as in the previous

example. An illustration of in
remental drift is shown in Figure 5.3.
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(a) Data stream with sudden drift.
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(b) Data stream with gradual drift.
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(
) Data stream with in
remental drift.

Figure 2.6: Changes in 
lass distribution under ea
h type of 
on
ept drift.

Re
urrent drift

The 
y
li
 repetition of 
lass distributions is an entirely di�erent property of 
on
ept

drifts. If after another drift, the 
on
ept earlier present in the stream returns, we are

dealing with a re
urrent drift. We 
an get this kind of data stream by setting the re
urring

�ag in the generator. Illustration of the re
urrent drift is presented in Figure 2.7a.

Non-re
urring drift

The default mode of 
onse
utive 
on
ept o

urren
es is a non-re
urring drift, where
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in ea
h 
on
ept drift an entirely di�erent new, previously unseen 
lass distribution is

synthesised. Illustration of the non-re
urring drift is presented in Figure 2.7b.
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(a) Data stream with re
urring drift.
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(b) Data stream with non-re
urring drift.

Figure 2.7: Changes in 
lass distribution under re
urring and non-re
urring 
on
ept drift.

Class imbalan
e

Another area of data stream properties, di�erent from a 
on
ept drift phenomenon, is

the prior probability of problem 
lasses. By default, a balan
ed stream is generated, i.e.

one in whi
h patterns of all 
lasses are present in a similar number.

Stationary imbalan
ed stream The primary type of problem in whi
h we are dealing

with disturbed 
lass distribution is a stationary imbalan
ed stream, where the 
lasses

maintain a predetermined proportion in ea
h 
hunk of a data stream. To a
quire this

type of a stream, one should pass the list to the weights parameter of the generator (i)


onsisting of as many elements as the 
lasses in the problem and (ii) adding up to one.

Illustration of the stationary imbalan
ed stream is presented in Figure 2.8a.

Dynami
ally imbalan
ed stream A less 
ommon type of imbalan
ed data, impossible

to obtain in stati
 datasets, is data imbalan
ed dynami
ally. In this 
ase, the 
lass

distribution is not 
onstant throughout a stream, but 
hanges over time, similar to


hanging the 
on
ept presen
e in gradual streams. A tuple of three numeri
 values is

passed to the weights parameter of the generator to get this type of a data stream:

� the number of 
y
les of distribution 
hanges.

� 
on
ept_sigmoid_spa
ing parameter, de
iding about the dynami
s of 
hanges on

the same prin
iple as in gradual and in
remental drifts.

� a range within whi
h os
illation is to take pla
e.
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Illustration of the dynami
ally imbalan
ed stream is presented in the Figure 2.8b.
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(a) Stati
ally imbalan
ed data stream.
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(b) Dynami
ally imbalan
ed data stream.
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(
) Dynami
ally Imbalan
ed Stream with Con
ept Os
illation (dis
o).

Figure 2.8: Changes in 
lass distribution under dynami
ally 
hanging prior 
lass probabilities (a,b)

and 
on
ept drift paired with dynami
 imbalan
e (
).

Mixing drift properties When generating data streams, we do not have to limit our-

selves to just one modi�
ation of their properties. One may easily prepare a stream with

many drifts, any dynami
s of 
hanges, a sele
ted type of drift and a diverse, dynami
 im-

balan
ed ratio. The last example of a data stream is su
h a proposition, namely, dis
o

(Dynami
ally Imbalan
ed Stream with Con
ept Os
illation). Illustration of the dis
o

stream is presented in Figure 2.8
.

Impa
t The arti
les 
ondu
ted so far using stream-learn pa
kage deal with appli
ation

of prepro
essing in the in
remental imbalan
ed data stream 
lassi�
ation methods [98℄,

a
tive learning te
hniques [145℄ and exploring the possibilities of employing the Dynami


Ensemble Sele
tion [277, 280, 284℄. Thanks to the pre
ise, repli
able and user-friendly

stream generation pro
edure, it also allows for a broad spe
trum of drift dete
tion anal-

yses, depending not only on types of drifts but also on the dynami
s of their 
hanges.

Finally, it also implements online bagging methods (uob, oob), whi
h, to the knowledge

of the authors, have not yet had open and stable implementation. Additionally, thanks to

the implementation of the arff �les parser, the stream-learn allows for 
onvenient work

with real data streams, whi
h may help to solve a
tual problems in real-life s
enarios.



Chapter 3

Algorithms for imbalan
ed data


lassi�
ation

In this 
hapter, methods dedi
ated to the task of di�
ult stationary data 
lassi�
ation

will be presented. Ensemble methods remain one of the leading approa
hes in the di�
ult

data 
lassi�
ation problem. Therefore, there is a need to introdu
e new 
lassi�er sele
tion

methods, as well as new approa
hes to 
lassi�er 
ombination.

First, three methods fo
using on 
lustering-based ensemble pruning are presented. These

types of approa
hes look for the group of similar 
lassi�ers whi
h are repla
ed by their

representatives. A novel pruning 
riterion, based on well-known diversity measures, is

proposed. The �rst method sele
ts the model with the best predi
tive performan
e

from ea
h 
luster to form the �nal ensemble, the se
ond one employs the multistage

organization, where instead of removing the 
lassi�ers from the ensemble ea
h 
lassi�er


luster makes the de
ision independently, while the third proposition 
ombines multistage

organization and sampling with repla
ement. Next, two methods, using the similarity

(distan
e) to the referen
e instan
es and 
lass imbalan
e ratio to sele
t the most 
on�dent


lassi�er for a given observation are presented. Both approa
hes 
ome in two modes,

�rst one based on the k -Nearest Ora
les (knora) and the se
ond one also 
onsidering


lassi�er mistakes.

61
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3.1 Diversity Ensemble Pruning

This se
tion proposes the Diversity Ensemble Pruning (dep) algorithm. Clustering-based

ensemble pruning methods, despite possessing a separate taxonomy, are strongly related

to the notion of stati
 
lassi�er sele
tion. The main novelty of the presented approa
h is

the 
lustering 
riterion based on the in�uen
e of individual base 
lassi�ers on the entire

ensemble diversity. Thanks to this, it is possible to group the base models in a one-

dimensional diversity spa
e. This algorithm, originally proposed by the author of the

following thesis to deal with balan
ed problems [283℄, has been experimentally evaluated

for the imbalan
ed data 
lassi�
ation task. The goal here is to test whether 
lassi�er

sele
tion methods, whi
h employ diversity measures in order to �nd the most 
ompetent

models in a given region of the feature spa
e, 
an improve the ensemble's ability to dete
t

minority 
lass instan
es without the use of data prepro
essing te
hniques.

Clustering 
riterion

Here, the measure used for 
reating the spa
e for the 
lustering-based pruning is pro-

posed. As the non-pairwise and averaged pairwise diversity measures 
onsider all the

base models together and 
al
ulate one value for the entire ensemble, thus they 
ould

not be used for pruning, be
ause they do not present an impa
t of a parti
ular base 
las-

si�er on the ensemble diversity. Therefore a novel measure H as the 
lustering 
riterion

is proposed, whi
h is the di�eren
e between the value of diversity measure for the whole

ensemble Π and the value of diversity for the ensemble without a given 
lassi�er Ψi [283℄.

H(Ψi) = Div(Π) −Div(Π−Ψi). (3.1)

Thanks to this proposition the impa
t of ea
h base learner on the ensemble diversity is

presented in a one-dimensional spa
e, shown in Fig. 3.1.

Diversity based one-dimensional 
lustering spa
e and 
luster pruning

The 
hosen 
lustering algorithm is applied to the obtained 
lustering spa
e. The pruned

ensemble 
onsists of the base models with the highest balan
ed a

ura
y s
ore sele
ted

from ea
h 
luster. Then, the �nal de
ision is made based on support a

umulation of

sele
ted prototype 
lassi�ers using the sum rule [76℄ shown in Equation 2.31 on p. 32.

The k-means 
lustering algorithm [162, 168℄ has been employed to �nd a set number

of 
lusters in the 
lustering spa
e 
onstru
ted by the proposed H measure. From ea
h

group a representative 
lassi�er with the highest predi
tive performan
e has been 
hosen.

The goal is to 
onstru
t an ensemble 
ontaining strong, yet diverse base models, as these

two 
hara
teristi
s are distinguishing features of a well-performing 
lassi�er ensemble.

Pseudo
ode for the proposed method is presented in Algorithm 1.



Chapter 3. Algorithms for imbalan
ed data 
lassi�
ation 63

0.036 0.037 0.038 0.039 0.040 0.041 0.042 0.043
M measure

0

100

200

300

400

De
ns
it
y

The entr py measure E

−0.020 −0.015 −0.010 −0.005 0.000 0.005 0.010 0.015
M measure

0

10

20

30

40

50

60

70

80

De
ns
it
y

Measurement  f interrater agreement k

−0.0010 −0.0005 0.0000 0.0005 0.0010 0.0015
M measure

0

200

400

600

800

1000

De
ns
it
y

K havi-Wolpert variance

−0.002 −0.001 0.000 0.001 0.002 0.003
M measure

0

100

200

300

400

500

De
ns
it
y

The disagreement measure

−0.006 −0.004 −0.002 0.000 0.002 0.004 0.006
M measure

0

50

100

150

200

250

De
ns
it
y

The Q statistics

Figure 3.1: Histograms and density estimation plots for H measure based on ea
h ensemble diversity

metri
 
al
ulated on the glass2 dataset.

Algorithm 1 Pseudo
ode of the proposed dep algorithm

Input:

Π = {Ψ1,Ψ2, . . . ,Ψn} � 
lassi�er pool,

c � number of 
lusters,

LS � learning set,

Symbols:

H � set of H measure values for ea
h base 
lassi�er,

C � set of 
lusters,

S � set of evaluation metri
 values for ea
h base 
lassi�er,

Output:

ΠS � pool of sele
ted 
lassi�ers.

1: H ← ∅,ΠS ← ∅,S ← ∅

2: for ea
h Ψi in Π do

3: H ← Hi = div(Π,LS)− div((Π−Ψi),LS)
4: S ← ba
i = evaluate(Ψi,LS)
5: end for

6: C = k-Means(H, c)
7: for ea
h 
luster Cj in C do
8: ΠS ← sele
t(Π, Cj ,S)
9: end for

The des
ription of the fun
tions used in the pseudo
ode is as follows:

� div() � 
al
ulates the ensemble diversity of a given 
lassi�er pool Π based on the

provided learning set LS.

� evaluate() � 
al
ulates the balan
e a

ura
y s
ore on learning set LS for ea
h

base 
lassi�er Ψi in order to use it later in the sele
tion pro
ess.
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� k-Means() � 
arries out the 
lustering pro
ess of a given one-dimensional diversity

spa
e H into c 
lusters using the k-means algorithm. Returns information about

the 
luster ea
h base 
lassi�er belongs to.

� sele
t() � from ea
h 
luster Cj sele
ts a prototype 
lassi�er with the highest

balan
ed a

ura
y s
ore to be a part of the new 
lassi�er pool ΠS .

Computational and memory 
omplexity analysis

The proposed method in
ludes the stage of determining the H measure value of ea
h base


lassi�er, the 
lustering of models in the diversity spa
e and the sele
tion of prototype


lassi�ers.

In order to obtain the H measure value for ea
h base 
lassi�er, �rst, the ensemble

diversity must be 
al
ulated. The 
omplexity of this pro
ess is O(n) or O(n2), where

n is the number of base 
lassi�ers, depending on whether the non-pairwise or pairwise

measure is used. Then, the H measure 
al
ulation pro
ess has the 
omplexity of O(n).

The k-means algorithm was used for 
lustering in diversity spa
e. Therefore, the 
om-

plexity of 
lustering is O(ncde), where c is the number of 
lusters, d is the number of

data dimensions, and e des
ribes the number of iterations/epo
hs of the algorithm [26℄.

As the 
lustering spa
e is one-dimensional, 
omplexity is redu
ed to O(nce).

3.1.1 Experimental evaluation

This subse
tion presents the motivation, goals and set-up of the performed experiments,

as well as their results.

Resear
h questions

The 
ondu
ted resear
h aims to answer two main questions:

Q1. Is the stati
 
lassi�er sele
tion able to improve the results obtained by 
ombining

the entire 
lassi�er pool for the task of imbalan
ed data 
lassi�
ation?

Q2. Can the use of stati
 
lassi�er sele
tion in the problem of imbalan
ed data 
lassi�-


ation result in performan
e 
omparable with the use of prepro
essing te
hniques?

Goals of the experiments

Experiment 1 � Parametrization

The aim of the �rst experiment is to determine the number of 
lusters for whi
h the
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methods based on ea
h of the measures of diversity and the base 
lassi�er performs

best. Parameterization is 
arried out on the basis of the balan
ed a

ura
y s
ore, and

the best pairs of the diversity measure and the number of 
lusters are used in the next

experiments.

Experiment 2 � Comparison with standard 
ombination

The aim of the se
ond experiment is to 
ompare the previously sele
ted methods with

a 
ombination of the entire 
lassi�er pool. Support a

umulation and majority voting of

all 50 base models were used as referen
e methods. The best of the proposed methods

is then used in Experiment 3.

Experiment 3 � Comparison with prepro
essing te
hniques

In the third experiment, the method sele
ted in Experiment 2 is 
ompared with the


ombination of the whole 
lassi�er pool generated using prepro
essing methods. Pre-

pro
essing is performed separately for ea
h of the bootstraps generated by Strati�ed

Bagging.

Experimental set-up

The resear
h was 
arried out on 41 imbalan
ed datasets presented in Table 2.3 on p. 44.

However, it should be noted that the experiments 
ould only be 
arried out on those

datasets for whi
h the k-means 
lustering algorithm was able to �nd the desired number

of 
lusters (from 2 to 7) for a set 
lassi�
ation algorithm and diversity measure.

The evaluation of the proposed methods is based on six metri
s widely used in the 
ase

of imbalan
ed 
lassi�
ation problems. Three popular 
lassi�
ation algorithms were used

as base models, ensemble diversity was 
al
ulated using �ve di�erent measures, and

four prepro
essing te
hniques were used as referen
e methods. Detailed information is

presented below:

� Evaluation measures � balan
ed a

ura
y s
ore (ba
), Gmeans, F1 score, pre
ision,

re
all, and spe
i�
ity,

� Classi�
ation algorithms �Gaussian Naïve Bayes 
lassi�er (gnb), k-Nearest Neigh-

bors 
lassi�er (knn), and Classi�
ation and Regression Tree (
art),

� Ensemble diversity measures � The entropy measure E, Kohavi-Wolpert varian
e

(KW ), measurement of interrater agreement k, the averaged Q statisti
s (Qav),

and the averaged disagreement measure (Disav),
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� Referen
e methods:

� Strati�ed Bagging without prepro
essing � Majority Voting (mv), Support

A

umulation (sa

),

� Strati�ed Bagging paired with prepro
essing (sa

 only) � Random Oversam-

pling (ros), smote, svm-smote (svm) and Borderline-smote (b2).

The �xed size of the 
lassi�er pool was set to 50 base models, generated using a strat-

i�ed version of Bagging [30℄. This Bagging generates ea
h bootstrap sampling with

repla
ement majority and minority 
lasses separately while maintaining the original im-

balan
e ratio. The size of ea
h bootstrap is set to half the size of the original training

set. The proposed approa
hes were evaluated on the basis of 5 times repeated 2-fold


ross-validation. The ensemble's de
ision is based on support a

umulation. Statisti
al

analysis of the obtained results was performed using the Wil
oxon global rank test [62℄.

All experiments have been implemented in Python programming language and 
an be

repeated using the 
ode on Github

1

.

Experiment 1 � Parametrization

Table 3.1 presents the results of the 
luster number parametrization for ea
h 
lassi�er

diversity measure in relation to the type of base 
lassi�er. The digit after 
l denotes the

set number of 
lusters. The numbers under the average rank of ea
h method indi
ate,

whi
h algorithms were statisti
ally signi�
antly worse than the one in question.

In the 
ase of gnb, there is a 
lear tenden
y for methods using 2 or 3 
lusters to a
hieve

the best results, regardless of the diversity measure used. The knn 
lassi�er performs

best when k-means divides 
lustering spa
e into two groups. A more interesting situation


an be observed in the 
ase of the 
art 
lassi�er, whi
h performs best in the 
ase of an

odd number of 
lusters, with an emphasis on 3 and 5 groups.

Based on the results obtained and the statisti
al tests 
ondu
ted, the following pairs of

the measure of diversity and number of 
lusters were sele
ted for the next experiment:

� gnb � E: 2, k: 2, KW : 2, Disav: 2, Qav : 3,

� knn � E: 2, k: 2, KW : 2, Disav : 2, Qav: 4,

� 
art � E: 5, k: 3, KW : 3, Disav: 3, Qav : 5.

Experiment 2 � Comparison with standard 
ombination

Figure 3.2 shows radar plots with the average ranks a
hieved by ea
h method on all

evaluation metri
s.

1

https://github.
om/w4k2/i

s21-ensemble-pruning

https://github.com/w4k2/iccs21-ensemble-pruning
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Table 3.1: Results of Wil
oxon statisti
al test on global ranks for ea
h measure of diversity and number

of 
lusters. Cal
ulated based on ba
. The higher the average rank value, the better.

GNB

(1)

DEP-CL2

(2)

DEP-CL3

(3)

DEP-CL4

(4)

DEP-CL5

(5)

DEP-CL6

(6)

DEP-CL7

E 4.696 4.089 3.804 2.679 3.179 2.554

3, 4, 5, 6 4, 5, 6 4, 6 � � �

k 4.679 4.018 3.446 3.036 3.000 2.821

3, 4, 5, 6 4, 5, 6 � � � �

KW 4.679 4.018 3.464 3.054 2.946 2.839

3, 4, 5, 6 4, 5, 6 � � � �

Disav 4.679 4.018 3.464 3.054 2.946 2.839

3, 4, 5, 6 4, 5, 6 � � � �

Qav 4.089 4.339 3.286 3.375 3.125 2.786

5, 6 3, 4, 5, 6 � � � �

kNN

(1)

DEP-CL2

(2)

DEP-CL3

(3)

DEP-CL4

(4)

DEP-CL5

(5)

DEP-CL6

(6)

DEP-CL7

E 4.054 3.893 3.286 3.482 3.250 3.036

6 6 � � � �

k 4.268 3.607 2.857 3.679 3.000 3.589

3, 5 � � � � �

KW 4.268 3.607 2.857 3.679 3.000 3.589

3, 5 � � � � �

Disav 4.268 3.607 2.857 3.679 3.000 3.589

3, 5 � � � � �

Qav 3.339 3.393 3.929 3.839 3.179 3.321

� � � � � �

CART

(1)

DEP-CL2

(2)

DEP-CL3

(3)

DEP-CL4

(4)

DEP-CL5

(5)

DEP-CL6

(6)

DEP-CL7

E 2.103 4.241 3.172 4.310 3.034 4.138

� 1, 3, 5 1 1, 3, 5 1 1, 3, 5

k 2.276 4.138 3.138 3.983 3.638 3.828

� 1, 3 1 1, 3 1 1

KW 2.276 4.155 3.172 4.017 3.672 3.707

� 1, 3 1 1, 3 1 1

Disav 2.276 4.155 3.172 4.052 3.672 3.672

� 1, 3 1 1, 3 1 1

Qav 1.948 4.448 3.069 4.672 3.328 3.534

� 1, 3, 5, 6 1 1, 3, 5, 6 1 1

For the gaussian naïve bayes 
lassi�er, the advantage of the proposed methods over the


ombination of the entire available 
lassi�er pool 
an be observed. The only ex
eption is

re
all, where dep-e2 is 
omparable to the referen
e methods, while the other proposed

approa
hes display a slightly lower average rank value.

These observations are 
on�rmed by Table 3.2. It presents the results of the performed

statisti
al analysis, on the basis of whi
h it 
an be 
on
luded that the proposed methods

a
hieve statisti
ally signi�
antly better average ranks than the 
ombination of the entire


lassi�er pool for ea
h of the metri
s, ex
ept re
all, where no statisti
ally signi�
ant

di�eren
es were reported. Worth noting is also the identi
al performan
e of methods

based on measures k, KW , and Disav.

In the 
ase of the knn 
lassi�er, the a
hieved results again speak in favor of the proposed

methods. Pre
ision a
hieved by support a

umulation of the entire pool of 
lassi�ers

is 
omparable to that a
hieved by the ensemble pruning algorithms. However, the ad-

vantage obtained in terms of re
all while maintaining similar pre
ision proves that the
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Figure 3.2: Visualization of the mean ranks a
hieved by ea
h method.

proposed methods are oriented towards re
ognizing the minority 
lass. This is espe
ially

visible in the 
ase of measures k, KW and Disav, whi
h again show exa
tly the same

performan
e.

The results of the statisti
al analysis for knn 
lassi�er are also slightly more interest-

ing. There is a statisti
ally signi�
ant advantage of the proposed solutions over the


ombination of the entire pool in the 
ase of ba
, Gmeans and re
all (at the expense of

spe
i�
ity). When it 
omes to F1 score, the ensemble pruning algorithms are statisti
ally
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Table 3.2: Results of Wil
oxon statisti
al test on global ranks for proposed methods in 
omparison to

the 
ombination of the whole 
lassi�er pool. The higher the average rank value, the better.

GNB

(1)

MV

(2)

SACC

(3)

DEP-E2

(4)

DEP-k2

(5)

DEP-KW2

(6)

DEP-DIS2

(7)

DEP-Q3

ba
 1.839 2.018 5.125 4.911 4.911 4.911 4.286

� � 1, 2 1, 2 1, 2 1, 2 1, 2

Gmeans 1.696 2.196 4.661 5.054 5.054 5.054 4.286

� 1 1, 2 1, 2 1, 2 1, 2 1, 2

F1 s
ore 2.196 2.625 4.804 4.589 4.589 4.589 4.607

� � 1, 2 1, 2 1, 2 1, 2 1, 2

pre
ision 2.607 3.000 4.518 4.446 4.446 4.446 4.536

� � 1, 2 1, 2 1, 2 1, 2 1, 2

re
all 4.393 4.304 4.143 3.839 3.839 3.839 3.643

� � � � � � �

spe
i�
ity 2.429 3.000 4.589 4.643 4.643 4.643 4.054

� 1 1, 2 1, 2 1, 2 1, 2 1, 2

kNN

(1)

MV

(2)

SACC

(3)

DEP-E2

(4)

DEP-k2

(5)

DEP-KW2

(6)

DEP-DIS2

(7)

DEP-Q4

ba
 2.393 2.696 4.446 4.732 4.732 4.732 4.268

� � 1, 2 1, 2 1, 2 1, 2 1, 2

Gmeans 2.607 2.839 4.571 4.732 4.732 4.732 3.786

� � 1, 2 1, 2 1, 2 1, 2 1, 2

F1 s
ore 3.143 3.482 4.286 4.268 4.268 4.268 4.286

� � 1 1 1 1 1

pre
ision 3.696 4.375 4.214 3.768 3.768 3.768 4.411

� � � � � � �

re
all 2.250 2.411 4.732 4.964 4.964 4.964 3.714

� � 1, 2, 7 1, 2, 7 1, 2, 7 1, 2, 7 1, 2

spe
i�
ity 4.750 5.036 3.589 3.214 3.214 3.214 4.982

4, 5, 6 3, 4, 5, 6 � � � � 3, 4, 5, 6

CART

(1)

MV

(2)

SACC

(3)

DEP-E5

(4)

DEP-k3

(5)

DEP-KW3

(6)

DEP-DIS3

(7)

DEP-Q5

ba
 2.586 2.586 4.448 4.259 4.259 4.259 5.603

� � 1, 2 1, 2 1, 2 1, 2 all

Gmeans 2.224 2.224 4.362 4.569 4.569 4.569 5.483

� � 1, 2 1, 2 1, 2 1, 2 all

F1 s
ore 2.500 2.500 4.328 4.328 4.328 4.328 5.690

� � 1, 2 1, 2 1, 2 1, 2 all

pre
ision 3.569 3.569 4.207 3.759 3.759 3.759 5.379

� � � � � � all

re
all 2.603 2.603 4.448 4.483 4.483 4.483 4.897

� � 1, 2 1, 2 1, 2 1, 2 1, 2

spe
i�
ity 3.879 3.879 3.810 3.552 3.552 3.552 5.776

� � � � � � all

signi�
antly better than majority voting, but the result obtained by them is 
omparable

to support a

umulation.

Parti
ularly promising results 
an be observed when using 
art as the base 
lassi�er.

In this 
ase, the measure of diversity Qav performs best. Based on the statisti
al anal-

ysis presented in Table 3.2, it a
hieves statisti
ally signi�
antly better results than the


ombination of the entire 
lassi�er pool, as well as the pruning algorithms using other

measures of diversity for the 
lustering spa
e 
onstru
tion. This is true for every metri


ex
ept re
all.

Based on the results of the statisti
al analysis, the gnb dep-e2, knn dep-dis2, and 
art

dep-q5 methods were sele
ted for the next experiment. These approa
hes displayed the

highest average ranks as well as a good ability to re
ognize the minority 
lass.
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Experiment 3 � Comparison with prepro
essing te
hniques

Figure 3.3 shows the results of 
omparing the methods sele
ted in Experiment 2 with

the approa
hes employing prepro
essing te
hniques.

BAC

G-mean
F1

Precision

Recall

Sp
ec
if
ic
it
y

0

1

2

3

4

5

6

7

GNB

ROS
SMOTE

SVM
B2

DEP-E2

BAC

G-mean

F1

Precision

Recall

Sp
ec
if
ic
it
y

0

1

2

3

4

5

6

7

kNN

ROS
SMOTE

SVM
B2

DEP-Dis2

BAC

G-mean

F1

Precision

Recall

Sp
ec
if
ic
it
y

0

1

2

3

4

5

6

7

CART

ROS
SMOTE

SVM
B2

DEP-Q5

Figure 3.3: Visualization of the mean ranks a
hieved by ea
h method.

When the base 
lassi�ers are gnb and knn, it 
an be noti
ed that, despite a
hieving

average rank values for ea
h of the metri
s, the proposed methods are never statisti
ally

signi�
antly worse than the referen
e approa
hes using prepro
essing (Table 3.3). Ad-

ditionally, gnb dep-e2 shows statisti
ally higher pre
ision than that a
hieved by using
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Table 3.3: Results of Wil
oxon statisti
al test on global ranks for the sele
ted methods in 
omparison

to the prepro
essing te
hniques. The higher the average rank value, the better.

GNB

(1)

ROS

(2)

SMOTE

(3)

SVM

(4)

B2

(5)

DEP-E2

ba
 3.125 3.232 3.286 2.286 3.071

4 4 4 � �

Gmeans 3.089 3.286 3.268 2.321 3.036

4 4 4 � �

F1 s
ore 2.768 3.429 2.625 2.750 3.429

� 3 � � �

pre
ision 2.518 3.446 2.446 3.161 3.429

� 1, 3 � � 1, 3

re
all 3.982 2.500 3.464 2.429 2.625

2, 4, 5 � 2, 4 � �

spe
i�
ity 2.054 3.768 2.607 3.250 3.321

� 1, 3 � 1 1

kNN

(1)

ROS

(2)

SMOTE

(3)

SVM

(4)

B2

(5)

DEP-DIS2

ba
 2.946 3.268 3.321 2.786 2.679

� � � � �

Gmeans 2.911 3.304 3.268 2.911 2.607

� � � � �

F1 s
ore 3.304 3.018 3.482 2.232 2.964

4 4 4 � �

pre
ision 3.446 2.839 3.232 2.054 3.429

2, 4 4 4 � 4

re
all 2.446 3.411 3.000 3.536 2.607

� 1 1 1 �

spe
i�
ity 3.857 2.589 3.089 1.357 4.107

2, 3, 4 4 2, 4 � all

CART

(1)

ROS

(2)

SMOTE

(3)

SVM

(4)

B2

(5)

DEP-Q5

ba
 2.052 2.672 3.276 3.793 3.207

� � 1, 2 1, 2 1

Gmeans 1.897 2.655 3.172 4.000 3.276

� 1 1 1, 2, 3 1

F1 s
ore 2.448 2.759 3.379 2.828 3.586

� � 1, 2 � 1, 4

pre
ision 3.034 2.897 3.328 2.207 3.534

4 4 4 � 4

re
all 1.948 2.603 3.190 4.207 3.052

� 1 1, 2 all �

spe
i�
ity 3.966 3.138 3.103 1.483 3.310

2, 3, 4 4 4 � 4

Random Oversampling and svm-smote, and knn dep-dis2 a
hieves better pre
ision

than the ensemble using Borderline-smote for data prepro
essing.

The ensemble pruning methods seem to perform better when using the 
art de
ision

tree as the base 
lassi�er. Again, none of the referen
e methods a
hieved statisti
ally

signi�
antly better average ranks than the proposed approa
h. At the same time, how-

ever, 
art dep-q5 a
hieves a statisti
ally signi�
antly better rank value than ros for

ba
, Gmeans and F1 score. This method is also statisti
ally signi�
antly better than

Borderline-smote in terms of F1 score and spe
i�
ity.

Observations

Based on the results of Experiment 1, it 
an be 
on
luded that the 
lassi�er pool gen-

eration using Strati�ed Bagging probably does not allow for a
hieving a high ensemble
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diversity in the 
ase of gnb and knn base 
lassi�ers. This is indi
ated by the fa
t that

the methods using these 
lassi�ers perform best when the 
lustering spa
e is divided into

just two groups. De
ision trees, whi
h show a greater tenden
y to obtain diverse base

models, do mu
h better in this respe
t. It is also worth noting that in the 
ase of 
art,

due to no tree depth limitation, the results of the majority vote were in line with the

a

umulation of support.

Regardless of the base 
lassi�er used, the results obtained with the use of the measures

of diversity k, KW , and Disav were exa
tly the same. On this basis, it 
an be 
on
luded

that the diversity spa
es generated on their basis 
oin
ide. An example of this 
an be seen

in the example shown in Figure 3.1, where all three spa
es have the same distribution

density (where the spa
e based on measurement of interrater agreement k is a mirror

image of the spa
es based on KW and Disav).

Experiment 2 proved that by a skillful sele
tion of a small group of 
lassi�ers, in the

imbalan
ed data 
lassi�
ation problem, it is possible to a
hieve a better performan
e

than that a
hieved by 
ombining the de
isions of the entire 
lassi�er pool.

Experiment 3 was able to 
on�rm that thanks to employing the 
lassi�er sele
tion meth-

ods to the problem of imbalan
ed data 
lassi�
ation, it is possible to obtain results sta-

tisti
ally not worse (and sometimes statisti
ally signi�
antly better) than those a
hieved

by the ensembles using prepro
essing te
hniques.

Although, in the 
ase of de
ision trees, 
ondu
ted statisti
al tests indi
ate that the most

suitable diversity measure for the problems 
onsidered during experimentation may be

the averaged Q statisti
s, it 
an not de�nitively be 
onsidered the best. As stated in [151℄,

after studying various diversity measures, there is no de�nitive 
onne
tion between the

measures and the performan
e improvement. Nonetheless Qav was re
ommended only

based on ease of interpretation and 
al
ulation.

Answers to resear
h questions

The answers to the previously formulated resear
h questions are as follows:

Q1. Is the stati
 
lassi�er sele
tion able to improve the results obtained by 
ombining

the entire 
lassi�er pool for the task of imbalan
ed data 
lassi�
ation?

A1. The 
ondu
ted experiments have shown that the use of a stati
 
lassi�er sele
-

tion, based on ensemble diversity, is able to statisti
ally signi�
antly improve the

ensemble performan
e in the task of the imbalan
ed data 
lassi�
ation.

Q2. Can the use of stati
 
lassi�er sele
tion in the problem of imbalan
ed data 
lassi�-


ation result in performan
e 
omparable with the use of prepro
essing te
hniques?
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A2. The obtained results 
on�rmed that 
lassi�er sele
tion algorithms may show sta-

tisti
al dependen
y to the approa
hes using prepro
essing te
hniques in the task

of imbalan
ed data 
lassi�
ation.

3.2 Clustering-based multistage organization

The following se
tion introdu
es two proposals for the extension of the multistage ma-

jority voting organization (momv) originally proposed by Ruta and Gabry± [201℄ and

des
ribed in more detail in Chapter 2. Both approa
hes are strongly based on the 
las-

si�er 
lustering in one-dimensional diversity spa
e, whi
h was introdu
ed in Se
tion 3.1

and follow the same pro
edure of 
al
ulating the H measure (Equation 3.1). Although

the multistage organization is not the main subje
t of the thesis, it was 
onsidered an

interesting 
omplement to the proposed dep algorithm.

Two-step majority voting organization (tsmv)

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7

lassifiers

H1 H2 H3 H4 H5 H6 H7 m measure


lustering

1 1 1 0 1 0 0 1

1 1 0 2

1 de
ision

Figure 3.4: Example of a two-step majority voting organization with 9 
lassi�ers divided into 3 
lusters.

Layer 2 is the result of majority voting of ea
h 
luster and the �nal de
ision is made by the se
ond majority

voting.

The �rst proposed method, 
alled Two-step Majority Voting Organization (tsmv), is a

modi�
ation of the momv stru
ture des
ribed in [201℄. Instead of allo
ating outputs to

di�erent groups by permutation, the base models in ea
h 
luster are treated as a separate

ensemble 
ombined by majority voting. The 
al
ulation of H measure as well as 
laster-

izaton pro
ess are 
ondu
ted in the same fashion as in the pde. As the remainder, the

pro
edure is des
ribed in Algorithm 2. Then, predi
tions from all 
lusters are 
olle
ted
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and the majority voting rule is applied for the se
ond time, in order to obtain a �nal

de
ision. This pro
ess is depi
ted in Figure 3.4 and the pseudo
ode for the predi
tion

pro
ess of tsmv is presented in Algorithm 3.

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7

lassifiers

H1 H2 H3 H4 H5 H6 H7 m measure


lustering


luster 1 
luster 2 
luster 3

0 1 1 1 0 0 0 1 1

s

a

m

p

l

i

n

g

w

i

t

h

r

e

p

l

a




e

m

e

n

t

1

1 0 1 2

1 de
ision

Figure 3.5: Example of two-step majority voting organization with 9 
lassi�ers divided into 3 
lusters,

using sampling with repla
ement. The number of groups and 
lassi�ers in ea
h group in the �rst layer

is equal to the number of 
lusters found. Layer 2 and the �nal de
ision are also made a

ording to the

majority voting.

Algorithm 2 Pseudo
ode of the 
lustering pro
ess for tsmv and rsmo methods

Input:

Π = {Ψ1,Ψ2, . . . ,Ψn} � 
lassi�er pool,

c � number of 
lusters,

LS � training set,

Symbols:

H � set of H measure values for ea
h base 
lassi�er,

Output:

C = {C1, C2, . . . , Cc} � set of 
lusters.

1: H ← ∅

2: for ea
h Ψi in Π do

3: H ← Hi = div(Π,LS)− div((Π−Ψi),LS)
4: end for

5: C = k-Means(H, c)

The se
ond proposed method, 
alled Random Sampling Multistage Organization (rsmo),

is a modi�
ation pf tsmv introdu
ing sampling with repla
ement before the �rst voting

step. This approa
h is based on the assumption that 
lassi�ers belonging to the same


luster make similar de
isions, so they don't have to be all used during the the 
lassi�-


ation pro
ess. In rsmo, the �rst layer of voting is 
onstru
ted by generating a number
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Algorithm 3 Predi
tion pseudo
ode of the tsmv

Input:

Π = {Ψ1,Ψ2, . . . ,Ψn} � 
lassi�er pool,

C = {C1, C2, . . . , Cc} � set of 
lusters.

T S � testing set,

Symbols:

V � set of majority voting results.

Output:

Decision � 
lassi�
ation results.

1: for ea
h 
luster Cj in C do
2: ΠCj = {∀i ∈ Cj,Ψi}
3: V ← majorityVoting(ΠCj ,T S) ⊲ First voting
4: end for

5: Decision = mode(V) ⊲ Se
ond voting

of groups equal to the number of 
lusters c. Ea
h group 
ontains one 
lassi�er sampled

from ea
h of the 
lusters found. Example of random sampling multistage organization

is shown in Figure 3.5 and the pseudo
ode for its predi
tion pro
ess is presented in

Algorithm 3.

Algorithm 4 Predi
tion pseudo
ode of the rsmo

Input:

Π = {Ψ1,Ψ2, . . . ,Ψn} � 
lassi�er pool,

C = {C1, C2, . . . , Cc} � set of 
lusters.

T S � testing set,

c � number of 
lusters,

Symbols:

V � set of majority voting results.

Output:

Decision � 
lassi�
ation results.

1: for ea
h 
luster Cj in C do
2: for k in range(c) do
3: ΠCj

← sampling(Π, Ck) ⊲ Sampling with repla
ement

4: end for

5: V ← majorityVoting(ΠCj
,T S) ⊲ First voting

6: end for

7: Decision = mode(V) ⊲ Se
ond voting

The following fun
tions are used in the presented pseudo
odes:

� div() � 
al
ulates the ensemble diversity of a given 
lassi�er pool Π based on the

provided learning set LS.
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� k-Means() � 
arries out the 
lustering pro
ess of a given one-dimensional diversity

spa
e H into c 
lusters using the k-means algorithm. Returns information about

the 
luster ea
h base 
lassi�er belongs to.

� majorityVoting() � uses all 
lassi�ers belonging to a given pool ΠCj to 
lassify

the instan
es in the testing set T S using majority voting.

� mode() � returns the modal (most 
ommon) value in a set V.

� sampling() � sele
t, using sampling with repla
ement, a single 
lassi�er Ψi from a

given 
luster.

Computational and memory 
omplexity analysis

Similar to the pde methods proposed in Se
tion 3.1, tsmv and rsmo in
lude the stage

of the H measure 
al
ulation as well as 
lustering of base models in the prepared spa
e.

The 
omputational 
omplexity of diversity 
al
ulation is again O(n) or O(n2), where

n is the number of base 
lassi�ers, depending on whether the non-pairwise or pairwise

measure is used. The 
omplexity of H measure 
al
ulation pro
ess is O(n).

The 
omplexity of the k-means 
lustering algorithm is O(ncde), where c is the number of


lusters, d is the number of data dimensions, and e des
ribes the number of iterations/e-

po
hs [26℄. Complexity is redu
ed to O(nce), as the 
lustering spa
e is one-dimensional.

During the predi
tion step, tsmv �rst performs majority voting for ea
h 
lassi�er pool

ΠCi
with 
omplexity O(nCi

+ | M |), where nCi
denotes number of base models in pool

ΠCi
and |M | denotes the number of 
lasses. In the 
ase of binary 
lassi�
ation |M | 
an

be omitted, resulting in O(nCi
) 
omplexity. Then, the mode operation with 
omplexity

O(c) is used to obtain the �nal de
ision.

For rsmo, sampling with repla
ement is performed for ea
h 
luster Ci with 
omplexity

O(| Ci |), where | Ci | is a 
ardinality of 
luster Ci. Then, for ea
h 
lassi�er pool ΠCi
,

majority voting is 
arried out with 
omplexity O(c+ | M |). Finally, Mode operation

with 
omplexity O(c) is again employed to obtain predi
tion.

3.2.1 Experimental evaluation

Here, the motivation, goals and set-up of the performed experiments are presented.

Resear
h questions

The 
ondu
ted resear
h aims to answer the following main questions:
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Q1. Can the use of a 
lustering-based two-stage majority voting stru
ture improve the

performan
e of the imbalan
ed data 
lassi�
ation?

Q2. Can the introdu
tion of sampling with repla
ement before the �rst voting stage

allow to in
rease the generalization ability of the momv stru
ture?

Q3. Can the proposed multistage majority voting organization 
ompete with methods

employing prepro
essing te
hniques?

Goals of the experiments

Experiment 1 � Comparison with standard 
ombination

The aim of the �rst experiment is to 
he
k how the proposed two-step majority voting

methods 
ompare to a simple, one-step, 
ombination of a 
lassi�er pool.

Experiment 2 � Comparison with prepro
essing te
hniques

In the se
ond experiment, the methods sele
ted in Experiment 1 will be 
ompared with

prepro
essing-based referen
e methods.

Experimental set-up

The resear
h was 
arried out on 41 imbalan
ed datasets presented in Table 2.3 on p. 44.

Sin
e the tsmv and rsmo algorithms are based on the same 
lustering approa
h as pde,

again the experiments 
ould only be 
arried out on those datasets for whi
h the k-means


lustering was able to �nd the set number of 
lusters (ranged from 2 to 7) for a set pair

of diversity measure and 
lassi�
ation algorithm.

Sin
e the evaluated methods are strongly based on the one-dimensional diversity spa
e

introdu
ed in Se
tion 3.1, the experimental set-up is almost identi
al to that des
ribed

for pde algorithm. However, taking into a

ount the fa
t that multistage majority voting

organization is not the main interest of this thesis, but only an extension of the previously

studied method, the experimental evaluation was redu
ed to two base 
lassi�ers. Details

on used set-up are listed below:

� Evaluation measures � balan
ed a

ura
y s
ore (ba
), Gmeans, F1 score, pre
ision,

re
all, and spe
i�
ity,

� Classi�
ation algorithms �Gaussian Naïve Bayes 
lassi�er (gnb) and Classi�
ation

and Regression Tree (
art),

� Ensemble diversity measures � The entropy measure E, Kohavi-Wolpert varian
e

(KW ), measurement of interrater agreement k, the averaged Q statisti
s (Qav),

and the averaged disagreement measure (Disav),
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� Referen
e methods:

� Strati�ed Bagging without prepro
essing � Majority Voting (mv), Support

A

umulation (sa

),

� Strati�ed Bagging paired with prepro
essing (sa

 only) � Random Oversam-

pling (ros), smote, svm-smote (svm) and Borderline-smote (b2).

The �xed size of the 
lassi�er pool was set to 50 base models, generated using a strat-

i�ed version of Bagging [30℄. This Bagging generates ea
h bootstrap sampling with

repla
ement majority and minority 
lasses separately while maintaining the original im-

balan
e ratio. The size of ea
h bootstrap is set to half the size of the original training

set. The proposed approa
hes were evaluated on the basis of 5 times repeated 2-fold


ross-validation. The ensemble's de
ision is based on support a

umulation. Statisti
al

analysis of the obtained results was performed using the Wil
oxon global rank test [62℄.

The 
luster numbers for ea
h diversity measure were sele
ted in the preliminary resear
h:

� tsmv gnb � E: 4, k: 4, KW : 4, Disav: 4, Qav: 6,

� rsmo gnb � E: 6, k: 6, KW : 6, Disav: 4, Qav: 5,

� tsmv 
art � E: 5, k: 5, KW : 5, Disav: 5, Qav: 5,

� rsmo 
art � E: 7, k: 7, KW : 7, Disav: 7, Qav: 3.

All experiments have been implemented in Python programming language and 
an be

repeated using the 
ode on Github

2

.

Experiment 1 � Comparison with standard 
ombination

Figure 3.6 and Table 3.4 show the results of using two-step mojority voting organization,

both without (tsmv) and with sampling (rsmo), 
ompared to the referen
e methods

for gnb 
lassi�er. In the 
ase of tmsv, the results are statisti
ally signi�
antly better

than those of the standard 
ombination for all metri
s ex
ept re
all. Unfortunately, the

ability of the proposed methods to dete
t the minority 
lass turned out to be statisti
ally

signi�
antly worse than that of the referen
e methods. Noteworthy are the parti
ularly

poor results of the method based on the Qav diversity measure.

The results are di�erent when sampling with repla
ement is introdu
ed to the two-step

majority voting. The most signi�
ant 
hange o

urs for the approa
h using the Qav

diversity measure, whi
h from the worst has be
ome the most balan
ed for ea
h of

2

https://github.
om/w4k2/i

s21-ensemble-pruning

https://github.com/w4k2/iccs21-ensemble-pruning
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the evaluation metri
s. The most important thing is that it has be
ome statisti
ally


omparable with the referen
e methods in terms of the ability to re
ognize the minority


lass.

As in the 
ase of gnb, when the 
art de
ision tree is used as the base 
lassi�er, the

most interesting relationships are represented by the methods based on the averaged

Q statisti
s. Both Figure 3.7 and Table 3.5 show that even without sampling with

repla
ement, the Qav-based method shows the greatest potential in terms of mean ranks.

It is, as the only of the proposed approa
hes, statisti
ally signi�
antly better in terms of

ba
 than the referen
e ensemble methods. Additionally, it is statisti
ally signi�
antly

the best when it 
omes to F1 s
ore, pre
ision and spe
i�
ity. At the same time, its

average rank values in terms of Gmeans and re
all are statisti
ally 
omparable to all

other methods.

However, the introdu
tion of sampling with repla
ement 
auses that the rsmo approa
h

using Qav for the 
lustering spa
e de�nition to be
ome statisti
ally signi�
antly better

than most of the other methods � tsmv, mv and sa

 � in terms of Gmeans and recall.

On the basis of the obtained results, the following methods were sele
ted for Experiment

2:

� gnb � tsmv-dis4 and rsmo-q5,

� 
art � tsmv-q4 and rsmo-q3.
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Figure 3.6: Average rank values for ea
h of the tested methods regarding gnb.
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Table 3.4: Results of Wil
oxon statisti
al test on global ranks for proposed methods in 
omparison to

the 
ombination of the whole 
lassi�er pool regarding gnb 
lassi�er. The higher the average rank value,

the better.

TSMV GNB

(1)

MV

(2)

SACC

(3)

E4

(4)

k4

(5)

KW4

(6)

DIS4

(7)

Q6

ba
 2.607 2.875 4.339 4.946 4.946 4.946 3.339

− − 1,2 1,2,7 1,2,7 1,2,7 −

Gmeans 2.304 2.768 4.571 5.071 5.071 5.071 3.143

− 1 1,2,7 1,2,7 1,2,7 1,2,7 −

F1 s
ore 2.018 2.518 4.286 5.036 5.036 5.036 4.071

− 1 1,2 1,2 1,2 1,2 1,2

precision 1.714 2.214 4.143 5.089 5.089 5.089 4.661

− 1 1,2 1,2,3 1,2,3 1,2,3 1,2

recall 5.250 5.107 4.018 3.625 3.625 3.625 2.750

3,4,5,6,7 3,4,5,6,7 7 7 7 7 −

specificity 1.357 1.929 4.125 5.196 5.196 5.196 5.000

− 1 1,2 1,2,3 1,2,3 1,2,3 1,2

RSMO GNB

(1)

MV

(2)

SACC

(3)

E6

(4)

k6

(5)

KW6

(6)

DIS4

(7)

Q5

ba
 2.750 3.232 4.339 4.446 4.304 4.518 4.411

� � 1, 2 1, 2 1, 2 1 1, 2

Gmeans 2.518 3.071 4.250 4.714 4.393 4.875 4.179

� � 1, 2 1, 2 1, 2 1, 2 1, 2

F1 s
ore 2.268 2.643 4.500 4.714 4.196 5.125 4.554

� � 1, 2 1, 2 1, 2 1, 2, 5 1, 2

precision 1.929 2.357 4.286 4.768 4.482 5.786 4.393

� � 1, 2 1, 2 1, 2 all 1, 2

recall 5.286 5.179 3.839 3.518 3.107 2.339 4.732

3, 4, 5, 6 3, 4, 5, 6 5, 6 6 6 � 3, 4, 5, 6

specificity 1.607 2.179 4.196 4.929 4.607 6.500 3.982

� 1 1, 2 1, 2, 3, 7 1, 2 all 1, 2
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Figure 3.7: Average rank values for ea
h of the tested methods regarding 
art.
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Table 3.5: Results of Wil
oxon statisti
al test on global ranks for proposed methods in 
omparison to

the 
ombination of the whole 
lassi�er pool regarding 
art 
lassi�er. The higher the average rank value,

the better.

TSMV CART

(1)

MV

(2)

SACC

(3)

E5

(4)

k5

(5)

KW5

(6)

DIS5

(7)

Q5

ba
 3.552 3.552 4.017 4.103 4.052 4.052 4.672

� � � � � � 1, 2

Gmeans 3.517 3.517 4.086 4.155 4.103 4.103 4.517

� � � � � � �

F1 s
ore 3.276 3.276 4.293 3.966 3.914 3.914 5.362

� � � � � � all

precision 3.000 3.000 4.397 3.914 3.862 3.862 5.966

� � 1, 2 1, 2 1, 2 1, 2 all

recall 4.224 4.224 3.862 3.983 3.983 3.983 3.741

� � � � � � �

specificity 2.793 2.793 4.069 4.190 4.138 4.138 5.879

� � 1, 2 1, 2 1, 2 1, 2 all

RSMO CART

(1)

MV

(2)

SACC

(3)

E7

(4)

k7

(5)

KW7

(6)

DIS7

(7)

Q3

ba
 3.569 3.569 3.638 3.603 4.500 3.983 5.138

� � � � 1, 2 � 1, 2, 3, 4, 6

Gmeans 3.483 3.483 3.707 3.672 4.569 4.052 5.034

� � � � 1, 2 � 1, 2, 3, 4, 6

F1 s
ore 3.655 3.655 3.293 3.776 4.362 3.845 5.414

� � � � 3 � all

precision 3.741 3.741 3.379 3.862 4.086 3.914 5.276

� � � � � � all

recall 3.448 3.448 3.621 3.759 4.466 4.328 4.931

� � � � 1, 2 � 1, 2, 3, 4

specificity 3.828 3.828 3.707 3.724 3.879 3.828 5.207

� � � � � � all

Experiment 2 � Comparison with prepro
essing te
hniques

The results of the statisti
al analysis for the 
omparison of the tsmv and rsmo with

the prepro
essing-based approa
hes are presented in Tables 3.6 and 3.7. Worth noting

is the great similarity of both the average rank values and the statisti
al relationships

displayed in 
omparison with the referen
e methods by the both algorithms. The average

rank values for ea
h of the metri
s are shown in Figures 3.8 and 3.9.

When the base 
lassi�er is gnb, the proposed methods a
hieve results 
omparable to

Borderline-smote, however, they are statisti
ally signi�
antly worse in terms of re
all

than Random Oversampling and svm-smote. When the 
art de
ision tree is used as

base model for tsmv and rsmo, the the a
hieved results are statisti
ally signi�
antly

better in terms of pre
ision than the referen
e methods. However, the proposed methods

are statisti
ally signi�
antly inferior to Bordeline-smote in terms of both Gmeans and

re
all.
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Figure 3.8: Average rank values for ea
h of the tested methods regarding gnb.

Table 3.6: Results of Wil
oxon statisti
al test on global ranks for the sele
ted methods in 
omparison

to the prepro
essing te
hniques. The higher the average rank value, the better.

GNB

(1)

ROS

(2)

SMOTE

(3)

SVM

(4)

B2

(5)

TSMV-DIS4

ba
 3.196 3.304 3.357 2.357 2.786

4 4 4 − −

Gmeans 3.161 3.321 3.304 2.393 2.821

4 4 4 − −

F1 s
ore 2.768 3.464 2.625 2.893 3.250

− 3 − − −

precision 2.518 3.375 2.518 3.232 3.357

− 1,3 − − −

recall 4.036 2.589 3.500 2.464 2.411

2,4,5 − 2,4,5 − −

specificity 2.018 3.732 2.643 3.250 3.357

− 1,3 − 1 1

(1)

ROS

(2)

SMOTE

(3)

SVM

(4)

B2

(5)

RSMO-Q5

ba
 3.196 3.268 3.321 2.357 2.857

4 4 4 � �

Gmeans 3.196 3.321 3.268 2.429 2.786

4 4 4 � �

F1 s
ore 2.839 3.500 2.661 2.893 3.107

� 3 � � �

precision 2.518 3.411 2.518 3.232 3.321

� 1, 3 � � �

recall 4.071 2.482 3.464 2.393 2.589

all � 2, 4, 5 � �

specificity 2.054 3.804 2.714 3.357 3.071

� 1, 3 � 1 �
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Figure 3.9: Average rank values for ea
h of the tested methods regarding 
art.

Table 3.7: Results of Wil
oxon statisti
al test on global ranks for the sele
ted methods in 
omparison

to the prepro
essing te
hniques. The higher the average rank value, the better.

CART

(1)

ROS

(2)

SMOTE

(3)

SVM

(4)

B2

(5)

TSMV-Q5

ba
 2.155 2.776 3.448 3.828 2.793

� 1 1, 2 1, 2 �

Gmeans 1.966 2.759 3.345 4.069 2.862

� 1 1 all �

F1 s
ore 2.517 2.828 3.517 2.897 3.241

� � 1, 2 � �

precision 3.034 2.897 3.379 2.138 3.552

4 4 4 � 4

recall 2.000 2.707 3.345 4.276 2.672

� 1 1, 2 all �

specificity 3.931 3.103 3.069 1.483 3.414

2, 3, 4 4 4 � 4

(1)

ROS

(2)

SMOTE

(3)

SVM

(4)

B2

(5)

RSMO-Q3

ba
 2.086 2.707 3.310 3.828 3.069

� � 1, 2 1, 2 �

Gmeans 1.966 2.724 3.310 4.000 3.000

� 1 1 1, 2, 3 �

F1 s
ore 2.552 2.828 3.483 2.862 3.276

� � 1, 2 � �

precision 3.069 2.931 3.414 2.224 3.362

4 4 4 � 4

recall 2.017 2.672 3.293 4.207 2.810

� 1 1, 2 all �

specificity 4.069 3.207 3.241 1.517 2.966

all 4 4 � 4
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Observations

From the obtained results, it 
an be 
on
luded that the use of the multistage majority

voting organization may allow, in the 
ase of imbalan
ed data 
lassi�
ation task, to

improve the ensemble performan
e when 
ompared to the traditional 
ombination of the


lassi�er pool. This is due to the division of 
lassi�ers into 
lusters 
ontaining models

that make similar errors on problem instan
es. Thanks to this, after the �rst voting

level, the predi
tions re�e
ting the expert knowledge of the base models in ea
h of the

re
ognized feature spa
e regions are obtained.

The introdu
tion of sampling with repla
ement in order to further diversify the ensembles

during the �rst voting stage while redu
ing the number of models making similar de
isions

allows for the improvement of the a
hieved results. This method 
an be regarded as

related to the stati
 sele
tion of 
lassi�ers. Both in the 
ase of gnb and 
art, it led

to an in
rease in the ability of the proposed methods to dete
t minority 
lass, whi
h is

parti
ularly visible in the 
ase of algorithms based on the averaged Q statisti
s.

Compared to 
lassi�er ensembles employing prepro
essing te
hniques, the proposed meth-

ods are 
hara
terized by a lower ability to dete
t the minority 
lass. It is worth noting,

however, that only in a few 
ases these di�eren
es were statisti
ally signi�
ant.

Answers to resear
h questions

The answers to the previously formulated resear
h questions are as follows:

Q1. Can the use of a 
lustering-based multistage majority voting organization improve

the performan
e of the imbalan
ed data 
lassi�
ation?

A1. The 
ondu
ted experiments 
on�rmed that the use of methods based on a multi-

stage majority voting organization may lead to the improvement of the ensemble

methods performan
e in the imbalan
ed data 
lassi�
ation task.

Q2. Can the introdu
tion of sampling with repla
ement before the �rst voting stage of

tsmv allow to in
rease the ability to dete
t minority 
lass?

A2. The obtained results 
on�rmed that the addition of sampling with repla
ement to

the the tsmv algorithm (rsmo) allows to improve the dete
tion ability of minority


lass obje
ts.

Q3. Can the proposed algorithms 
ompete with methods employing prepro
essing te
h-

niques?

A3. The results of the 
ondu
ted resear
h 
on�rmed that in most 
ases the proposed

tsmv and rsmo algorithms are not statisti
ally signi�
antly worse than ensemble

methods using prepro
essing te
hniques.
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3.3 Distan
e-Based Dynami
 Classi�er Sele
tion

This se
tion proposes two dynami
 
lassi�er sele
tion algorithms for the imbalan
ed

data 
lassi�
ation task. These are respe
tively the Dynami
 Ensemble Sele
tion using

Eu
lidean distan
e (dese) and the Dynami
 Ensemble Sele
tion using Imbalan
e Ratio

and Eu
lidean distan
e (desire). The introdu
tion of these methods is motivated by the

� indi
ated in the literature � shortage of dynami
 
lassi�er sele
tion approa
hes dedi-


ated to the task of unbalan
ed data 
lassi�
ation [59℄. Imbalan
ed learning 
ontinues

to be an important problem in pattern re
ognition, espe
ially in the 
ase of real-world

data. As the methods of dynami
 sele
tion of 
lassi�ers perform a lo
al 
lassi�
ation �

based on the lo
al area of 
ompeten
e often de�ned as the nearest neighborhood of the


lassi�ed instan
e � they may allow redu
ing the bias in relation to the majority 
lass.

Nevertheless, there are 
urrently very few des algorithms dedi
ated for the problem of

imbalan
ed data 
lassi�
ation.

The generation of the 
lassi�er pool is based on the Bagging approa
h [30℄, and more

spe
i�
ally on the Strati�ed Bagging, in whi
h the samples are drawn with repla
ement

from the minority and majority 
lass separately in su
h a way that ea
h bootstrap

maintains the original training set 
lass proportion. This is ne
essary due to the high

imbalan
e, whi
h in the 
ase of standard Bagging 
an lead to the generation of training

sets 
ontaining only the majority 
lass.

Both proposed methods are derived in part from algorithms based on lo
al ora
les,

and more spe
i�
ally on knora-u [123℄, whi
h gives base 
lassi�ers weights based on

the number of 
orre
tly 
lassi�ed instan
es in the lo
al region of 
ompeten
e and then


ombines them by weighted majority voting. The 
omputational 
ost in this type of

method is mainly related to the size of the 
lassi�er pool and the DSEL size, as the

k-Nearest Neighbors te
hnique is used to de�ne lo
al 
ompeten
e regions, whi
h 
an

be 
ostly for large datasets. Instead of voting, dese and desire are based on support

fun
tions and they 
al
ulate weights for ea
h 
lassi�er for both the minority and majority


lasses separately. These weights are 
al
ulated on the basis of the Eu
lidean distan
e (L2

norm) between the 
lassi�ed sample and its neighbors in the lo
al region of 
ompeten
e.

The literature indi
ates, with respe
t to the 
ommonly used Lk norms, the potential

usefulness of norms with the lower k value for problems with high dimensionality [3℄.

Examples of su
h metri
s are the Manhattan distan
e (L1 norm) or a fra
tional distan
es,

in whi
h 
ase k may be less than 1. However, due to the relatively small dimensionality of

the 
hosen datasets as well as popularity and frequent use in distan
e-based algorithms,

the Eu
lidean distan
e was 
hosen as the base distan
e metri
 for the dese and desire.
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Proposed methods 
ome in two variants: Positive (denoted as p), where weights are

modi�ed only in the 
ase of 
orre
t 
lassi�
ation, and Positive&Negative (denoted as

pn), where, in addition to 
orre
t de
isions, weights are also a�e
ted by in
orre
t ones.

The exa
t way of weights 
al
ulation is presented in Algorithm 5.

Algorithm 5 dese and desire weight 
al
ulation methods

Input:

Π � 
lassi�er pool,

T S � testing set,

DSEL � Dynami
 Sele
tion Dataset,

k � number of nearest neighbors,

min,maj � respe
tively the per
entage of minority and majority 
lasses in the train-

ing set,

W ← ∅ � empty weights array of shape (n, n, 2).
Symbols:

LRCi � nearest neighborhood of sample xi,
TP,FN � true positive and false negative,

n � number of base 
lassi�ers,

Output:

W � weights array of shape (n, n, 2).

1: for ea
h sample xi in T S do
2: LRCi ← the k nearest neighbors of xi in DSEL
3: for ea
h Classi�er Ψj in Π do

4: Predict← predi
t(LRCi,Ψj)
5: for ea
h neighbor in LRCi do

6: if Predict[neighbor] = TP then

7: W [j, i, 0]+ =
{ ‖xi−neighbor‖ for dese
‖xi−neighbor‖∗min for desire

8: else if Predict[neighbor] = TP then

9: W [j, i, 1]+ =
{ ‖xi−neighbor‖ for dese
‖xi−neighbor‖∗maj for desire

10: else if Predict[neighbor] = FN then

11: W [j, i, 1]− =
{ ‖xi−neighbor‖ for dese
‖xi−neighbor‖∗min for desire

12: else if Predict[neighbor] = FN then

13: W [j, i, 0]− =
{ ‖xi−neighbor‖ for dese
‖xi−neighbor‖∗maj for desire

14: end for

15: end for

16: end for

Positive

Positive&Negative

For ea
h instan
e, the proposed algorithms perform the following steps:

� In step 2, the k-Nearest Neighbors of a given instan
e xi are found in DSEL, whi
h
form the lo
al region of 
ompeten
e LRCi.

� In step 4, ea
h 
lassi�er Ψj from the pool 
lassi�es all samples belonging to LRCi.

� In steps 5-13, the 
lassi�er weights are modi�ed separately for the minority and

majority 
lass, starting from the value of 0. The Positive&Negative variant uses
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all four 
onditions, while the Positive variant is based only on the 
onditions in

lines 6 and 8. In the 
ase of dese, the modi�
ations are based on the Eu
lidean

distan
e between the 
lassi�ed sample and its neighbor from the lo
al 
ompeten
e

region, and in the 
ase of desire, the Eu
lidean distan
e is additionally s
aled by

a per
entage of the minority or majority 
lass in su
h a way that more emphasis

is pla
ed on the minority 
lass.

Finally, the weights obtained from dese or desire are normalized to the [0, 1] range and

multiplied by the ensemble support matrix. The 
ombination is 
arried out a

ording to

the maximum rule [76℄, whi
h 
hooses the 
lassi�er that is most 
on�dent of itself. This


ombination rule, despite its potentially sound grounds, is rarely used in pra
ti
e due to

its high sensitivity to over�tting. Using the most 
on�dent 
lassi�er may mean 
hoos-

ing an over-trained model whose generalization ability has been signi�
antly impaired.

However, if the dimensionality of the analyzed problem is relatively low, the possibility

of over�tting is a

ordingly redu
ed. This is due to the potentially lower number of noisy

features and low sparsity of the feature spa
e.

Computational and memory 
omplexity analysis

The proposed method for ea
h sample xi ∈ T S �nds its lo
al neighborhood in DSEL
using the k-Nearest Neighbors algorithm. Ea
h distan
e 
omputation has the 
omplexity

of O(d), where d is the problem's dimensionality. Distan
e is 
al
ulated from xi to

ea
h instan
e in DSEL whi
h results in O(d | DSEL |) runtime, where | DSEL | is a

ardinality of DSEL. Then, knn sele
ts k neighbors for ea
h sample in DSEL, whi
h
requires O(| DSEL). This, in total, results in the 
omputation 
omplexity of O(d |
DSEL | +k | DSEL |)).

Next, ea
h 
lassi�er Ψj ∈ Π labels k neighbors of xi and based on the 
lassi�
ation

results uses the 
al
ulated distan
e to establish the weight for a given 
lassi�er. This

step has the 
omputational 
omplexity of O(nk).

3.3.1 Experimental evaluation

This subse
tion presents the motivation, goals and set-up of the performed experiments,

as well as their results.
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Resear
h questions

The experiments were designed to answer the following questions:

Q1. Does taking into a

ount the Eu
lidean distan
e to a given neighbor of a 
lassi�ed

sample in the pro
ess of lo
al 
ompeten
y estimation allow the algorithm to deal

with the imbalan
ed data 
lassi�
ation problem?

Q2. Does the introdu
tion of the weighting of the Eu
lidean distan
e using the imbal-

an
e ratio in su
h a way as to put more emphasis on the minority 
lass lead to an

in
rease in the algorithm's ability to dete
t a given 
lass?

Goals of the experiments

Experiment 1 � Eu
lidean distan
e-based approa
h

The main goal of the �rst experiments was to 
ompare the performan
e of proposed

dynami
 sele
tion methods, weighted based on Eu
lidean distan
e, with the state-of-art

ensemble methods paired with prepro
essing.

Experiment 2 � S
aled Eu
lidean distan
e-based approa
h

The aim of the se
ond experiment was to 
he
k how the previously proposed method

would behave after taking into a

ount during weights 
al
ulation pro
ess the di�eren
e

between the majority and minority 
lasses.

Experimental set-up

The experiments were 
arried out on 41 imbalan
ed datasets presented in Table 2.3 on

p. 44. The evaluation of the proposed methods is based on �ve metri
s widely used in

the 
ase of imbalan
ed 
lassi�
ation problems. Three popular 
lassi�
ation algorithms

were used as base models, and Random Oversampling was employed to investigate the

impa
t of simple data prepro
essing on the proposed ensemble methods. Classi�er pools

of four di�erent sizes were generated using Strati�ed Bagging. As a referen
e method, a

single 
lassi�er, as well as Strati�ed Bagging (sb) and dynami
 sele
tion in the form of

the knora-u algorithm were sele
ted. This 
hoi
e is aimed at 
omparing the proposed

methods with a 
ombination of the entire 
lassi�er pool, as well as with the state-of-

the-art dynami
 sele
tion method in the task of imbalan
ed data 
lassi�
ation. Both

proposed and referen
e methods o

ur in versions with prepro
essing (in the form of

Random Oversampling) and without it, the use of oversampling is denoted by the letter

o added to the method's a
ronym. Detailed information is presented below:

� Evaluation measures � balan
ed a

ura
y s
ore (ba
), Gmeans, F1 score, pre
ision,

and re
all,



Chapter 3. Algorithms for imbalan
ed data 
lassi�
ation 89

� Classi�
ation algorithms �Gaussian Naïve Bayes 
lassi�er (gnb), k-Nearest Neigh-

bors 
lassi�er (knn), and Classi�
ation and Regression Tree (
art),

� Data prepro
essing � Random Oversampling (ros).

� Classi�er pool size � 
onse
utively 5, 15, 30 and 50 base models,

� Referen
e methods � a single model (gnb\
art\knn), Strati�ed Bagging (sb),

Strati�ed Bagging with ros (sbo), knora-u, and knora-u with ros (knora-

uo).

The evaluation was 
arried out using 10 times repeated 5-fold 
ross-validation. Due to

the small number of instan
es in the datasets, DSEL is de�ned as the entire training

set. All experiments have been implemented in Python and 
an be repli
ated using the


ode available on Github

3

.

The radar diagrams show the average global ranks a
hieved by ea
h of the tested algo-

rithms in terms of ea
h of the 5 evaluation metri
s, while the tables show the results

of the Wil
oxon rank-sum (p = 0.05) statisti
al test for a pool size of 5 base 
lassi�ers.

The numbers under the average rank of ea
h method indi
ate the algorithms whi
h are

statisti
ally signi�
antly worse than the one in question.

Experiment 1 � Eu
lidean distan
e-based approa
h

Figure 3.10 shows how the average ranks for dese and the referen
e methods 
hange

with respe
t to di�erent metri
s as a fun
tion of ensemble size. The proposed methods

(in parti
ular dese-po) for 5 base models a
hieve higher ranks with respe
t to ea
h

metri
 with an ex
eption of re
all. While the single 
lassi�er and bagging prefer re
all,

dese-po and dese-p pre
ision. As the number of base 
lassi�ers in
reases, ba
 and

Gmeans-based rankings deteriorate to knora-u levels, while F1 s
ore remains high due

to high pre
ision.

Table 3.8 presents the results of the statisti
al analysis, whi
h shows that the dese-po

method performs statisti
ally signi�
antly better than all referen
e methods with respe
t

to every metri
 ex
ept re
all.

When the base 
lassi�er is 
art, as seen in Figure 3.11, for the smallest pool, dese-p

(both without and with oversampling) ranks higher than the referen
e methods with

respe
t to ea
h of the �ve metri
s. As the number of base models in
reases, knora-

uo and sbo stand out with respe
t to pre
ision, dese-po performs better with respe
t

3

https://github.
om/w4k2/i

s20-desire

https://github.com/w4k2/iccs20-desire


Chapter 3. Algorithms for imbalan
ed data 
lassi�
ation 90

to other metri
s, and dese-pno a
hieves the highest average ranks in terms of ba
,

Gmeans and re
all despite the low F1 s
ore and pre
ision. Table 3.9 
on�rms that for

the �ve basi
 
lassi�ers, dese-po is statisti
ally signi�
antly better than all referen
e

methods, while dese-pno performs statisti
ally signi�
antly better than dese-po with

respe
t to re
all, Gmeans and ba
.

Figure 3.12 and table 3.10 show that the proposed methods using oversampling are not

statisti
ally di�erent from the referen
e methods, ex
ept for a single 
lassi�er that ex
els

in pre
ision, but at the same time a
hieves the worst mean ranks based on the remaining

metri
s. Together with the in
rease in the number of base 
lassi�ers, knora-u and sbo

a
hieve higher mean ranks than dese-po and dese-pno.
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lassi�er.
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Table 3.8: Statisti
al tests on mean ranks for gnb with pool size = 5. The higher the average rank

value, the better.

(1)

gnb

(2)

sbo

(3)

knora-uo

(4)

dese-p

(5)

dese-po

(6)

dese-pn

(7)

dese-pno

F1 s
ore 2.146 2.085 3.500 5.549 5.963 4.159 4.598

− − 1,2 1,2,3,6,7 1,2,3,6,7 1,2,3 1,2,3

pre
ision 1.829 1.756 3.220 6.256 5.866 4.720 4.354

− − 1,2 all 1,2,3,6,7 1,2,3 1,2,3

re
all 4.207 5.159 4.902 2.134 3.744 3.329 4.524

4 4,5,6 4,5,6 − 4 4 4,5,6

Gmeans 2.341 2.695 4.183 4.695 5.890 3.622 4.573

− − 1,2 1,2,6 all 1 1,2,6

ba
 2.317 2.634 3.963 4.720 5.976 3.671 4.720

− − 1,2 1,2,6 all 1,2 1,2,6
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Figure 3.11: Mean ranks for 
art 
lassi�er.
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Table 3.9: Statisti
al tests on mean ranks for 
art with pool size = 5. The higher the average rank

value, the better.

(1)


art

(2)

sbo

(3)

knora-uo

(4)

dese-p

(5)

dese-po

(6)

dese-pn

(7)

dese-pno

F1 s
ore 2.683 2.841 2.988 5.329 5.561 4.256 4.341

− − − 1,2,3,6,7 1,2,3,6,7 1,2,3 1,2,3

pre
ision 2.634 3.976 4.195 5.695 5.134 3.195 3.171

− 1 1,6,7 all 1,2,3,6,7 − −

re
all 3.293 2.622 2.695 3.890 4.463 5.366 5.671

2,3 − − 2,3 1,2,3,4 1,2,3,4,5 1,2,3,4,5

Gmeans 3.098 2.671 2.817 4.061 4.634 5.232 5.488

− − − 2,3 1,2,3,4 1,2,3,4 1,2,3,4,5

ba
 3.098 2.585 2.732 4.280 4.829 5.085 5.390

− − − 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4,5
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Table 3.10: Statisti
al tests on mean ranks for knn with pool size = 5. The higher the average rank

value, the better.

(1)

knn

(2)

sbo

(3)

knora-uo

(4)

dese-p

(5)

dese-po

(6)

dese-pn

(7)

dese-pno

F1 s
ore 3.585 4.305 3.476 4.549 4.390 3.744 3.951

− 3 − 1,6 − − −

pre
ision 5.317 3.963 3.049 4.976 3.659 3.878 3.159

3,5,6,7 3,7 − 2,3,5,6,7 − 7 −

re
all 1.427 5.232 5.366 2.463 4.939 3.305 5.268

− 1,4,6 1,4,6 1 1,4,6 1,4 1,4,6

Gmeans 1.537 5.061 4.866 2.720 5.110 3.427 5.280

− 1,4,6 1,4,6 1 1,4,6 1,4 1,4,6

ba
 1.659 5.012 4.841 2.780 5.024 3.415 5.268

− 1,4,6 1,4,6 1 1,4,6 1,4 1,4,6

Experiment 2 � S
aled Eu
lidean distan
e-based approa
h

The results in Figures 3.13�3.15 and Tables 3.11�3.13 show the average ranks for the

proposed desire method, whi
h 
al
ulates weights based on the Eu
lidean distan
es

s
aled by the per
entages of the minority and majority 
lasses in the training set.

In the 
ase of gnb as the base model (Figure 3.13), the desire-po method a
hieves the

best results 
ompared to referen
e methods in terms of mean ranks based on F1 s
ore,

pre
ision, Gmeans and ba
. When the ensemble size in
reases, the proposed method is

equal to knora-uo in terms of ba
 and Gmeans but retains the advantage in terms

of F1 s
ore and pre
ision. Moreover, the more base 
lassi�ers used, the smaller the

di�eren
es between desire with prepro
essing and the version without prepro
essing.

Table 3.11 presents the results of the statisti
al analysis, whi
h shows that desire-po

is statisti
ally better than all referen
e methods when the number of base 
lassi�ers is

small.

Figure 3.14 shows that for a small 
lassi�er pool, desire-po a
hieves higher ranks than

referen
e methods in terms of ea
h evaluation metri
, and as the 
lassi�er number in-


reases, it loses signi�
antly in pre
ision 
ompared to sbo and knora-uo. desire-pno

has a high re
all, whi
h unfortunately is re�e
ted by the lowest pre
ision and F1 s
ore.

Table 3.12 shows that for 5 base 
lassi�ers, desire-
 both with and without prepro-


essing is statisti
ally signi�
antly better than referen
e methods in terms of all metri
s

ex
ept one, Gmeans in the 
ase desire-p and re
all for desire-po.

When the base 
lassi�er is knn (Figure 3.15), as in the 
ase of dese, desire-po is not

statisti
ally worse than sbo and knora-uo (Table 3.13) and as the number of 
lassi�ers

in the pool in
reases, the average global ranks signi�
antly deteriorate 
ompared to

referen
e methods.
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Figure 3.13: Mean ranks for gnb 
lassi�er.

Table 3.11: Statisti
al tests on mean ranks for gnb with pool size = 5. The higher the average rank

value, the better.

(1)

gnb

(2)

sbo

(3)

knora-uo

(4)

desire-p

(5)

desire-po

(6)

desire-pn

(7)

desire-pno

F1 s
ore 2.341 2.280 4.159 5.634 6.098 3.878 3.610

− − 1,2 1,2,3,6,7 1,2,3,6,7 1,2 1,2

pre
ision 2.244 2.098 3.902 6.341 6.098 3.976 3.341

− − 1,2 1,2,3,6,7 1,2,3,6,7 1,2,7 1,2

re
all 4.037 4.890 4.427 1.939 3.305 4.183 5.220

4 4,5 4,5 − 4 4,5 1,3,4,5,6

Gmeans 2.341 2.793 4.622 4.829 5.976 3.610 3.829

− − 1,2,6 1,2,6,7 all 1 1,2

ba
 2.341 2.634 4.427 4.829 6.061 3.610 4.098

− − 1,2,6 1,2,6 all 1,2 1,2
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Figure 3.14: Mean ranks for 
art 
lassi�er.

Table 3.12: Statisti
al tests on mean ranks for 
art with pool size = 5. The higher the average rank

value, the better.

(1)


art

(2)

sbo

(3)

knora-uo

(4)

desire-p

(5)

desire-po

(6)

desire-pn

(7)

desire-pno

F1 s
ore 3.415 3.768 3.915 5.622 5.768 2.524 2.988

6 6 6,7 1,2,3,6,7 1,2,3,6,7 − −

pre
ision 3.683 4.659 4.878 5.793 5.256 1.793 1.939

6,7 1,6,7 1,6,7 all 1,6,7 − −

re
all 3.146 2.488 2.561 3.793 4.110 5.817 6.085

2,3 − − 2,3 1,2,3 1,2,3,4,5 1,2,3,4,5

Gmeans 3.049 2.598 2.744 4.280 4.817 5.183 5.329

− − − 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4

ba
 3.073 2.537 2.683 4.744 5.110 4.695 5.159

− − − 1,2,3 1,2,3 1,2,3 1,2,3
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Figure 3.15: Mean ranks for knn 
lassi�er.

Table 3.13: Statisti
al tests on mean ranks for knn with pool size = 5. The higher the average rank

value, the better.

(1)

knn

(2)

sbo

(3)

knora-uo

(4)

desire-p

(5)

desire-po

(6)

desire-pn

(7)

desire-pno

F1 s
ore 3.902 4.963 4.134 4.780 4.878 2.878 2.463

6,7 1,3,6,7 6,7 6,7 6,7 − −

pre
ision 5.354 4.695 3.854 5.207 4.293 2.732 1.866

5,6,7 3,6,7 6,7 3,5,6,7 6,7 7 −

re
all 1.354 4.695 4.841 2.341 4.146 4.500 6.122

− 1,4 1,4 1 1,4 1,4 all

Gmeans 1.451 4.866 4.500 2.683 4.610 4.524 5.366

− 1,4 1,4 1 1,4 1,4 1,3,4,5,6

ba
 1.561 4.841 4.573 2.768 4.744 4.354 5.159

− 1,4 1,4 1 1,4 1,4 1,4,6



Chapter 3. Algorithms for imbalan
ed data 
lassi�
ation 97

Observations

The results presented 
on�rm that dynami
 sele
tion methods spe
i�
ally adapted for


lassifying imbalan
ed data 
an a
hieve statisti
ally better results than ensemble methods


oupled with prepro
essing, espe
ially when the pool of base 
lassi�ers is relatively small.

This may be be
ause Bagging has not yet stabilized while the proposed method sele
ts

the best single 
lassi�er. The Positive approa
h, in whi
h the weights of the models were


hanged only when the instan
es belonging to the lo
al 
ompeten
e region were 
orre
tly


lassi�ed, proved to be more balan
ed with respe
t to all 5 evaluation measures. This


ould indi
ate ex
essive weight penalties for mis
lassi�
ation in the Positive&Negative

approa
h. When knn is used as the baseline 
lassi�er, the proposed methods performed

statisti
ally similar to knora-u for a small pool, and they ranked statisti
ally worse


ompared to the referen
e methods for a larger number of 
lassi�ers. This is probably

due to the method used to 
ompute the support in the knn, whi
h is not suitable for the

algorithms proposed in this work. For gnb and 
art, dese-p and desire-p a
hieved

results that are statisti
ally better or similar to the referen
e methods, often without the

use of prepro
essing, sin
e it has a built-in me
hanism to handle the imbalan
e.

Answers to resear
h questions

The answers to the previously formulated resear
h questions are as follows:

Q1. Does taking into a

ount the Eu
lidean distan
e to a given neighbor of a 
lassi�ed

sample in the pro
ess of lo
al 
ompeten
y estimation allow the proposed algorithm

to deal with the imbalan
ed data 
lassi�
ation problem?

A1. The obtained results 
on�rmed that taking into a

ount the Eu
lidean distan
e to a

given neighbor of a 
lassi�ed sample in the pro
ess of lo
al 
ompeten
y estimation

may allow the proposed algorithm to deal with the imbalan
ed data 
lassi�
ation

problem.

Q2. Does the introdu
tion of the weighting of the Eu
lidean distan
e using the imbal-

an
e ratio in su
h a way as to put more emphasis on the minority 
lass lead to an

in
rease in the algorithm's ability to dete
t a given 
lass?

A2. The 
ondu
ted experiments 
on�rmed that, in the 
ase of All variant, the intro-

du
tion of the weighting based on imbalan
e ratio may lead to an in
rease in the

algorithm's ability to dete
t a minority 
lass instan
es.





Chapter 4

Algorithms for imbalan
ed data

stream 
lassi�
ation

This 
hapter is fo
using on 
ombining two of the important resear
h topi
s asso
iated

with data analysis, i.e., data stream 
lassi�
ation as well as data analysis with imbalan
ed


lass distributions. It introdu
es new algorithms designed spe
i�
ally for these kinds of

tasks, employing methods of Dynami
 Ensemble Sele
tion. Simultaneously introdu
ing

new ways to use des algorithms in the imbalan
ed data stream 
lassi�
ation.

First, the novel highly imbalan
ed data stream 
lassi�
ation method, employing a 
las-

si�er sele
tion approa
h in order to fo
us on the dete
tion of the minority 
lass, whi
h


an update its model when new data arrives is proposed.

Next, two novel frameworks employing integrating data prepro
essing and dynami
 en-

semble sele
tion methods for imbalan
ed data stream 
lassi�
ation are introdu
ed. In

the �rst 
ase, single pattern re
ognition models are used as base 
lassi�ers, while the

se
ond approa
h employs Strati�ed Bagging for base 
lassi�er generation.

99
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4.1 Minority Driven Ensemble

In this se
tion, the algorithm Minority Driven Ensemble (mde) is proposed to address

the problem of 
lassifying highly imbalan
ed data streams with 
on
ept drift. The pro-

posed mde method was intended to �ll the gap in algorithms for 
lassifying imbalan
ed

data streams that was hinted at in Chapter 1. Many real-world data streams have high

Imbalan
e Ratio , and existing methods dedi
ated to this problem often have high 
om-

putational 
omplexity. Therefore, the assumption in the design of mde was to a
hieve

relatively low 
omputational 
omplexity by using a simple approa
h to building and

maintaining an ensemble of 
lassi�ers and the absen
e of data prepro
essing te
hniques

in the form of undersampling or oversampling. The ensemble 
onstru
tion in mde is

based on the sea algorithm, and the predi
tion pro
ess uses a novel 
ombination rule

based on the notion of 
lassi�er sele
tion. Therefore, the proposed method �ts the ap-

proa
hes from the inbuilt me
hanism group.

Ensemble 
onstru
tion

The proposed algorithm does not dete
t a 
on
ept drift o

urren
e, but instead employs

a me
hanism allowing it to 
onstru
t self-adapting 
lassi�er ensemble. For ea
h data

stream 
hunk DSk, the k-Nearest Neighbors 
lassi�er is trained based on the data de-

voided of outliers a

ording to 5-neighbor taxonomy [179℄ (i.e., samples from minority


lass for whi
h �ve nearest neighbors are majority 
lass examples).

If the �xed ensemble size nmax is ex
eeded, the worst rated individual 
lassi�er a

ording

to the Balan
ed A

ura
y S
ore (ba
) is removed from the 
lassi�er pool Π. Additionally,

at ea
h step all models with ba
 are lower than 0.5 + α, where α is the algorithm's

parameter responsible for the outdated models removing rate, are removed from Π. The

pseudo
ode of the presented method is shown in Algorithm 6. The des
ription of the

fun
tions used in the training phase pseudo
ode is as follows:

� removeOutliers() � removes the outliers from the 
urrent data 
hunk DSk
a

ording to 5-neighbor taxonomy.

� train() � builds new 
lassi�er Ψk on the 
urrent data 
hunk DSk.

� evaluate() � 
al
ulates the balan
e a

ura
y s
ore on 
urrent data 
hunk DSk
for ea
h base 
lassi�er Ψi ∈ Π in order to use it later in the pruning pro
ess.

� pruneThreshold() � removes from pool Π all models with ba
 lower than α.

� pruneWorst() � removes from pool Π the model with the lowest ba
.
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Algorithm 6 Training phase of the mde algorithm

Input:

Stream = {DS1,DS2, . . . ,DSk,DSk+1, . . .} � data stream,

nmax � maximal number of base models,

α � outdated models removing rate,

Symbols:

Π � 
lassi�er pool,

Sk � set of evaluation metri
 values for ea
h base 
lassi�er,

1: Π← ∅

2: for ea
h k,DSk = {x1k, x2k, . . . , xNk } in Stream do

3: Sk ← ∅

4: if k == 0 then
5: DSk ← removeOutliers(DSk)
6: Ψk ← train(DSk)
7: Π← Ψk

8: else

9: Sk = evaluate(Π,DSk)
10: if | Π |> 1 then
11: Π← pruneThreshold(Π,Sk, α)
12: if | Π |> nmax − 1 then
13: Π← pruneWorst(Π,Sk)
14: DSk ← removeOutliers(DSk)
15: Ψk ← train(DSk)
16: Π← Ψk

17: end for

Predi
tion

During the predi
tion pro
ess if at least one individual 
lassi�er returns a non-zero sup-

port for minority 
lass � i.e., among k nearest neighbors, at least one belongs to minority


lass � then the instan
e is 
lassi�ed as the minority 
lass example.

The 
on
ept of the proposed 
ombination rule is presented in Figure 4.1. The �rst three

subplots present the de
ision border implementing the prin
iple of minimum support

for three subsequent pro
essed data 
hunks during subtle 
hanges in the minority 
lass

distribution. The last subplot (on the right) shows the illustration of the mentioned

above 
ombination rule.
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Algorithm 7 Predi
tion phase of the mde algorithm

Input:

Stream = {DS1,DS2, . . . ,DSk,DSk+1, . . .} � data stream,

Π = {Ψ1,Ψ2, . . . ,Ψn} � 
lassi�er pool,

Output:

Decision � 
lassi�
ation results.

1: for ea
h k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: esmk = ensembleSupportMatrix(Π,DSk)
3: msk = majoritySupport(esmk)

4: mmsk = minMajoritySupport(msk)

5: Decision = int(mmsk) ⊲ If support is less than 100% then 0, otherwise 1

6: end for

The des
ription of the fun
tions used in the predi
tion phase pseudo
ode is as follows:

� ensembleSupportMatrix() � returns an array of shape (‖Π‖, N, 2) 
ontaining
base 
lassi�ers' supports for ea
h of N samples in a given da 
hunk DSk,

� majoritySupport() � returns only the majority 
lass support from esmk,

� minMajoritySupport() � returns the minimum of msk,

� int() � return an integer obje
t 
onstru
ted from given values of minimal majority

support mmsk.

Figure 4.1: Binary predi
tion as non-zero support for a minority 
lass (three on the top) and a maxi-

mum from the pool (on the bottom).
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Computational and memory 
omplexity analysis

Both the removal of outliers and the 
lassi�
ation pro
ess are performed using the k-

Nearest Neighbors based on the Eu
lidean distan
e. Ea
h distan
e 
omputation has the


omplexity of O(d), where d is the problem's dimensionality. Distan
e is 
al
ulated from

ea
h 
lassi�ed instan
e in DSk to all samples used to train a given knn 
lassi�er Ψj ,

whi
h results in O(dN) runtime, where N is a 
ardinality of ea
h data 
hunk. Then,

knn sele
ts k neighbors for ea
h sample in DSk, whi
h requires O(kN). This, in total,

results in the 
omputation 
omplexity of O(dN + kN).

During the predi
tion pro
ess, for ea
h of N problem instan
es in a given data 
hunk

DSk, mde 
al
ulates the minimal majority support in order to �nd a model with a non-

zero support for minority 
lass. This operation is a modi�
ation of support a

umulation


ombination rule and has a 
omputational 
omplexity of O(n).

4.1.1 Experimental evaluation

This subse
tion presents the motivation, goals and set-up of the performed experiments,

as well as their results.

Resear
h questions

The experiments were designed to answer the following questions:

Q1. Can the use of the proposed strategy based on non-zero support for a minority


lass lead to better results in the 
ase of highly imbalan
ed data stream than those

obtained by 
lassi
al Dynami
 Ensemble Sele
tion algorithms?

Q2. Is the proposed method, based largely on the neighborhood de�ned by the knn


lassi�er, resistant to label noise and 
on
ept drift o

urren
e?

Goals of the experiments

Experiment 1 � Hyperparameters optimization

The main goal of the �rst experiment was to tune the two hyperparameters of mde:

� nmax � ensemble size,

� α � pruning parameter responsible for the outdated models removing rate.

Both mean ba
 values and statisti
al dependen
e for multiple values of these two pa-

rameters were reported.
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Experiment 2 � Comparative analysis of 
lassi�er sele
tion methods

During the se
ond experiment, the performan
e of mde was 
ompared to the four ref-

eren
e Dynami
 Sele
tion (ds) te
hniques implemented in DESlib [57℄. The 
omparison

was made in terms of Imbalan
e Ratio value, 
on
ept drift type and the level of label

noise.

Experimental set-up

The experiments were 
arried out based on 96 diverse data streams generated using the

stream-learn [141℄ pa
kage. Ea
h of the streams 
ontains the total of 100 000 instan
es,

divided into 200 
hunks of 500 obje
ts des
ribed by 8 features, and 
ontains 5 
on
ept

drifts. The variety of generated data streams was obtained by generating 3 repli
ation

of ea
h 
ombination of the following parameters:

� the imbalan
e ratio � su

essively 10, 20, 30 and 40% of the minority 
lass,

� the level of label noise � su

essively 0, 10, 20 and 30%,

� the type of 
on
ept drift � gradual or sudden.

Additionally, during Experiment 2, the proposed method was evaluated on the 5 real

data streams des
ribed in Table 4.1.

Table 4.1: Real data streams 
hara
teristi
s.

Data stream #Samples #Features ir


ovtypeNorm-1-2vsAll 266 000 54 4

poker-lsn-1-2vsAll 360 000 10 10

INSECTS-abrupt_imbalan
ed_norm 300 000 33 19

INSECTS-gradual_imbalan
ed_norm 100 000 33 19

INSECTS-in
remental_imbalan
ed_norm 380 000 33 19

The evaluation of mde is based on six metri
s widely used in the 
ase of imbalan
ed 
las-

si�
ation problems. As a referen
e methods, two Dynami
 Ensemble Sele
tion and two

Dynami
 Classi�er Sele
tion algorithms were sele
ted. The number of nearest neighbors

k used to de�ne the lo
al area of 
ompeten
e for Dynami
 Sele
tion methods was set at

7. This 
hoi
e is aimed at 
omparing the proposed mde methods with the state-of-the-

art Dynami
 Sele
tion approa
hes in the task of imbalan
ed data stream 
lassi�
ation.

Detailed set-up is presented below:

� Evaluation measures � balan
ed a

ura
y s
ore (ba
), Gmeans, F1 score, pre
ision,

re
all, and spe
i�
ity,
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� Referen
e methods:

� des � knora-Eliminate (knora-e) and knora-Union (knora-u),

� d
s �Modi�ed Classi�er Ranking (Rank) and Lo
al 
lassi�er a

ura
y ( l
a).

The evaluation was 
arried out using Test-Then-Train proto
ol. The dynami
 sele
tion

dataset (DSEL) for the ds methods was de�ned as the previous data 
hunk with the

Random Oversampling performed on it. Condu
ted experiments as well as the mde

algorithm were implemented in Python programming language and may be repeated

a

ording to sour
e 
ode published on Github

1

.

Experiment 1 � Hyperparameters optimization

The following experiment was performed on the data stream with an Imbalan
e Ratio of

1 : 9 and 1% global label noise. Sudden and gradual 
on
ept drifts were tested separately.

The results of hyperparameter optimization are shown in Figure 4.2, whi
h shows the

relationship between the parameter α (X-axis) and the ensemble size (Y-axis). Ea
h

value 
orresponds to the mean ba
 obtained from mde for given values of nmax and

α. The 
olors 
orrespond to the statisti
al dependen
ies between the mean ba
 values,

a

ording to the Wil
oxon rank-sum test.
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Figure 4.2: Optimization of mde hyperparameters for sudden and gradual 
on
ept drift in relation to

the Balan
ed A

ura
y S
ore.

In
reasing the size of the ensemble initially stabilizes the ba
, but over time degrades

the ability of the ensemble to respond to the 
on
ept drift. In
reasing the removal rate α

parameter initially 
ompensates for the degradation of the 
on
ept drift response time,

but at the same time negatively a�e
ts the ba
 value.

The nmax = 3 and the α = 0.05 were 
hosen for further experiments.

1

https://github.
om/w4k2/
lassifier-sele
tion

https://github.com/w4k2/classifier-selection
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Experiment 2 � Comparative analysis of 
lassi�er sele
tion methods

Figure 4.3 shows the in�uen
e of random over-sampling on referen
e methods perfor-

man
e on data streams with high Imbalan
e Ratio (1 : 9). The use of oversampling

equates the performan
e of all tested ds methods.
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Figure 4.3: Referen
e methods performan
e with (left) and without oversampling (right).

Figure 4.4 shows how the performan
e of the methods depends on the Imbalan
e Ratio.

The proposed mde is very e�e
tive for highly imbalan
ed data streams (10%, 20% of

minority 
lass samples). In
reasing the per
entage of minority 
lass to 30% redu
es

the di�eren
es between mde and the referen
e methods. In the 
ases of low imbalan
e

data (40% of minority 
lass), mde performs worse than the referen
e Dynami
 Sele
tion

methods.
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Figure 4.4: In�uen
e of imbalan
e s
ale on the quality of 
lassi�
ation.

The aim of the experiment is to demonstrate the ability of the proposed method to


lassify highly imbalan
ed data, so all further results are presented for streams with a
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per
entage of a minority 
lass not greater than 20%.

Figure 4.5 presents the relation between the 
lassi�
ation quality and the type of 
on
ept

drift. The type of the 
on
ept drift does not a�e
t the relation between the analyzed


lassi�
ation methods. In either 
ase mde outperforms the ben
hmark 
lassi�ers.
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Figure 4.5: In�uen
e of 
on
ept drift type on the quality of 
lassi�
ation.

Figure 4.6 shows the relation between the performan
es of the individual methods and the

label noise ratio. The in
rease of noise has a negative e�e
t on the overall generalization

ability.
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Figure 4.6: In�uen
e of label noise on the quality of 
lassi�
ation.

The statisti
al analysis of the experimental evaluation is presented in Table 4.2. It


on�rms that mde performs better than the ben
hmark 
lassi�er sele
tion methods in

most 
ases. Only for slightly imbalan
ed data, i.e., when Imbalan
e Ratio is small

(30% of minority examples), mde is not statisti
ally signi�
antly better than knorau

and knorae. For nearly balan
ed data streams (40% of minority examples), rank,

knorau, and knorae are better than mde.
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Table 4.2: Presentation of statisti
al dependen
y of methods in all analyzed 
ontexts. Bold points the

highest ba
 value for a given 
ontext.

value mde k-e k-u rank l
a

Minority 
lass per
entage

10% 0.697 0.632 0.637 0.631 0.634

20% 0.780 0.738 0.741 0.736 0.735

30% 0.796 0.794 0.794 0.792 0.786

40% 0.788 0.821 0.821 0.820 0.811

Drift types

in
remental 0.731 0.675 0.680 0.675 0.674

sudden 0.747 0.694 0.698 0.693 0.694

Label noise

0% 0.851 0.770 0.776 0.769 0.773

10% 0.753 0.700 0.704 0.699 0.699

20% 0.701 0.656 0.659 0.655 0.654

30% 0.651 0.614 0.617 0.613 0.611

Additionally, Figure 4.7 shows the results a
hieved by mde in 
omparison with referen
e

methods for the task of the real imbalan
ed data stream 
lassi�
ation. Radar 
harts

show the averaged values of the evaluation metri
s a
hieved by ea
h method, while the

runs depi
t balan
ed a

ura
y values over the entire length of the data stream.

It is worth noting that in the 
ase of the 
ovtypeNorm stream, whi
h is 
hara
terized

by the lowest Imbalan
e Ratio among all real data streams, mde a
hieves the results at

the level of the referen
e methods and, additionally, does not display a visible de
rease

presented by the referen
e methods at the end of the presented run. There is also a

de
rease in the pre
ision value at the expense of a slight in
rease in re
all, whi
h indi
ates

that the method prefers the minority 
lass.

In the 
ase of a poker stream, where the Imbalan
e Ratio is higher, the potential of the

proposed method 
an be seen. Despite the pre
ision value at the level of the referen
e

methods, the mde presents a mu
h better ability to dete
t minority 
lass at the 
ost

of a de
rease in spe
i�
ity. Additionally, the presented method a
hieves a mu
h higher

Gmeans value, and a slightly better F1 s
ore, and Balan
ed A

ura
y S
ore. The pre-

sented run shows that mde, in the 
ase of poker stream, 
an a
hieve up to 80% Balan
ed

A

ura
y S
ore.
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Figure 4.7: Results of the MDE 
omparison with referen
e methods for real data streams.

The results a
hieved on the INSECTS streams, whi
h display the highest imbalan
e, are

also interesting. In the 
ase of the stream with gradual 
on
ept drift, it 
an be seen that
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the proposed method a
hieves signi�
antly higher results in terms of ba
, Gmeans, F1

s
ore, and re
all, with the spe
i�
ity value equal to the referen
e methods. All this is

a
hieved at the 
ost of a slight de
rease in pre
ision. The presented run shows that mde

maintains a high value of Balan
ed A

ura
y S
ore along the entire length of the stream.

The potential of the method is visible espe
ially in the results obtained on INSECTS

streams 
ontaining sudden and in
remental 
on
ept drift. Despite their di�
ulty and

the fa
t that the referen
e methods a
hieve results 
lose to the random 
lassi�er, mde

is able to break out of this minimum at times, showing its potential to deal with even

extremely di�
ult problems.

Observations

Based on the 
ondu
ted experiments, it 
an be assert that, espe
ially for highly imbal-

an
ed data streams, mde is statisti
ally signi�
antly better that state-of-the-art 
lassi�er

sele
tion methods. Additionally, mde is quite robust to label noise and does not allow

for signi�
ant deterioration of its 
lassi�
ation performan
e in the 
ase of 
on
ept drift

appearan
e. It is also worth noting that the behavior displayed by mde on syntheti


streams was 
on�rmed in experiments using real data streams. In their 
ase, mde also

showed the potential to deal with highly imbalan
ed problems. Interestingly, in the 
ase

of the 
ovtypeNorm stream, the generalizing ability of the proposed method did not seem

to deteriorate, as in the 
ase of syntheti
 streams with a lower Imbalan
e Ratio.

Answers to resear
h questions

The answers to the previously formulated resear
h questions are as follows:

Q1. Can the use of the proposed strategy based on non-zero support for a minority


lass lead to better results in the 
ase of highly imbalan
ed data stream than those

obtained by 
lassi
al Dynami
 Ensemble Sele
tion algorithms?

A1. The obtained results 
on�rmed that the mde algorithm may outperform the state-

of-the-art Dynami
 Sele
tion methods in the task of highly imbalan
ed data stream


lassi�
ation.

Q2. Is the proposed method, based largely on the neighborhood de�ned by the knn


lassi�er, resistant to label noise and 
on
ept drift o

urren
e?

A2. The 
ondu
ted experiments 
on�rmed the resistan
e of the mde to both global

label noise and 
on
ept drift o

urren
e.
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4.2 Dynami
 Ensemble Sele
tion for Imbalan
ed Stream

Classi�
ation

This se
tion introdu
es the Dynami
 Ensemble Sele
tion for Imbalan
ed Stream Clas-

si�
ation (desis
) framework for the task of drifting imbalan
ed data stream 
lassi-

�
ation. The ensemble's 
onstru
tion is based on the Streaming Ensemble Algorithm

(sea) 
on
ept [221℄, with an additional threshold-based pruning, and various oversam-

pling te
hniques are used to deal with 
lass imbalan
e. The motivation for this proposal

was, among others, the shortage of methods dedi
ated to the imbalan
ed data stream


lassi�
ation stream, presented in Chapter 1. An additional goal was to propose a novel

use of Dynami
 Ensemble Sele
tion in 
ombination with prepro
essing for imbalan
ed


lassi�
ation, whi
h so far has been 
onsidered in the literature rarely and only for stati


data [198℄. By using Dynami
 Sele
tion, taking into a

ount the lo
al 
ompeten
ies of

the base 
lassi�ers, desis
 has a 
han
e to deal not only with imbalan
e but also with

the 
on
ept drift phenomenon, even without the use of prepro
essing te
hniques.

desis
 framework

Ea
h based model Ψk learns from the LSk training set whi
h is obtained by prepro-


essing DSk. DSELk denotes dynami
 sele
tion dataset for the kth data 
hunk and it

is 
onsidered as previously prepro
essed DSk−1. Ea
h new trained 
lassi�er (one per

ea
h data 
hunk) is added to the ensemble until the maximum ensemble size nmax is

a
hieved. Then if new model is added, ea
h 
lassi�er in the ensemble is evaluated (a
-


ording to ba
) and the worst one is removed. Additionally, at ea
h step, all models

whi
h ba
 s
ores are lower than a given threshold α are removed from the ensemble.

Pruning pro
ess is performed before adding kth 
lassi�er to the pool. The 
on
ept be-

hind the proposed framework is presented in Figure 4.8 and the pseudo
odes for training

and predi
tion phase is shown in Algorithms 8 and 9.

In the pseudo
odes, the following fun
tions were used:

� prepro
ess() � generates the learning set LSk by applying the 
hosen prepro-


essing method to the kth data 
hunk,

� train() � builds a new base 
lassi�er Ψk on the learning set LSk generated by

applying prepro
essing to the kth data 
hunk,

� evaluate() � 
al
ulates the balan
e a

ura
y s
ore on 
urrent data 
hunk DSk
for ea
h base 
lassi�er Ψi ∈ Π in order to use it later in the pruning pro
ess.

� pruneThreshold() � removes from pool Π all models with ba
 lower than α,
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Figure 4.8: The framework for training base 
lassi�ers and to prepare a dsel for dynami
 sele
tion

pro
ess. Here, LSk is the learning set produ
ed by prepro
essing data 
hunk DSk and Ψk is the base


lassi�er trained on the kth data 
hunk. Π denotes the 
lassi�er pool.

� pruneWorst() � � removes the worst-performing base 
lassi�er from the pool Π

if the �xed maximum 
lassi�er pool size (nmax) is ex
eeded after adding a new

model,

� predi
t() � uses a given 
lassi�er pool (or list of ensembles in 
ase of dynami


sele
tion) to 
lassify ea
h instan
e in given data 
hunk,

� dynami
Sele
tion() � uses a given dynami
 ensemble sele
tion method to gen-

erate a list of ensembles for 
lassifying ea
h test instan
e. In this work Dynami


Ensemble Sele
tion 
an be performed on two levels - bagging 
lassi�er level or base

estimators level.

In the beginning the 
lassi�er pool Π is empty. The �rst 
lassi�er Ψ0 is generated using

the prepro
essed zero 
hunk (Algorithm 8 steps 4, 5 and 6). When the �rst data 
hunk

arrives, the Ψ0 is used to 
lassify it. Then, the learning set LS1 is stored as the DSEL for

the Dynami
 Ensemble Sele
tion pro
ess performed when next 
hunk arrives (Algorithm

9 step 5 and 6). LS1 is also used to train se
ond base model (Algorithm 8 steps 4, 5 and

6). Then, with the arrival of ea
h 
hunk, the following steps are performed:
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Algorithm 8 Training phase of the desis
 framework

Input:

Stream � data stream,

nmax � maximum �xed size of the 
lassi�er pool,

α � pruning threshold,

Symbols:

Sk � set of evaluation metri
 values for ea
h base 
lassi�er,

DSk � data 
hunk,

Ψk � bagging 
lassi�er,

Π � bagging 
lassi�ers pool.

1: Π← ∅

2: for ea
h k,DSk = {x1k, x2k, . . . , xNk } in Stream do

3: if k <= 1 then ⊲ First data 
hunk.

4: LSk = prepro
ess(DSk)
5: Ψk ← train(LSk) ⊲ Bagging 
lassi�er generation

6: Π← Ψk ⊲ Adding bagging 
lassi�er to the pool

7: else ⊲ Third and all subsequent data 
hunks.

8: Sk = evaluate(Π,DSk)
9: if | Π |> 1 then ⊲ Removing worst 
lassi�er if nmax is ex
eeded.

10: Π← pruneThreshold(Π,Sk, α)
11: if | Π |> nmax − 1 then ⊲ Removing worst 
lassi�er if nmax is ex
eeded.

12: Π← pruneWorst(Π,Sk)
13: LSk = prepro
ess(DSk)
14: Ψk ← train(DSk)
15: Π← Ψk

16: end for

Algorithm 9 Predi
tion phase of the desis
 frameworks

Input:

Stream � data stream,

Π � pool of bagging 
lassi�ers.

Symbols:

DSk � data 
hunk,

ΠDk
� 
lassi�er ensemble sele
ted using dynami
 sele
tion,

DSELk � dynami
 ensemble sele
tion dataset for the kth data 
hunk.

1: for ea
h k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: if k == 0 then ⊲ First data 
hunk

3: Pass ⊲ No predi
tion

4: else if k == 1 then ⊲ Se
ond data 
hunk

5: Decision← predi
t(DSk,Π) ⊲ Predi
tion using the whole pool

6: DSELk+1 ← prepro
ess(DSk) ⊲ Storing DSEL for next step

7: else ⊲ Third and all subsequent data 
hunks

8: ΠDk
← dynami
Sele
tion(Π,DSELk,DSk) ⊲ Dynami
 sele
tion

9: Decision← predi
t(DSk,ΠDk
) ⊲ Predi
tion using sele
ted pool

10: DSELk+1 ← prepro
ess(DSk)
11: end for
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1. Previously stored learning set is used as DSEL for the dynami
 sele
tion pro
ess

to 
reate the list of ensembles for 
lassifying ea
h instan
e in DSk (Algorithm 9

step 8).

2. The ensembles sele
ted by the 
hosen des method are used to 
lassify all instan
es

int he 
urrent data 
hunk (Algorithm 9 step 9).

3. The 
urrent data 
hunk DSk is prepro
essed and stored as DSEL for the next

Dynami
 Ensemble Sele
tion pro
ess (Algorithm 9 step 10).

4. All base models in 
lassi�er pool Π are evaluated based on ba
 in order to use this

information for ensemble pruning (Algorithm 8 step 8).

5. All base 
lassi�ers with ba
 lower than a given threshold α are removed the the

ensemble (Algorithm 8 steps 9 and 10).

6. The worst performing 
lassi�ers is removed from the ensemble is the maximal pool

size nmax is ex
eeded (Algorithm 8 steps 11 and 12).

7. Using prepro
essing, the learning set LSk is generated, on the basis of whi
h a new


lassi�er is build and then added to the pool Π (Algorithm 8 steps 13, 14 and 15).

Computational and memory 
omplexity analysis

Be
ause the assumption of limited resour
es is 
ru
ial for the data stream pro
essing,

then let us estimate the 
omputational 
omplexity of the proposed framework. The

proposed 
hunk-based framework for the imbalan
ed data stream 
lassi�
ation is based

on the methods of dynami
 
lassi�er sele
tion as well as on prepro
essing te
hniques

(both oversampling and undersampling). For this reason, the key fa
tors a�e
ting the


omputational 
omplexity of the presented approa
hes are, respe
tively, the number of

models in the 
lassi�er pool for dynami
 sele
tion methods and the number of problem

instan
es in a single data 
hunk in the 
ase of prepro
essing te
hniques.

Based on preliminary observations, it was established that the Dynami
 Ensemble Se-

le
tion methods (both knora-u and knora-e) have a linear time 
omplexity of O(n)

depending on the number of base 
lassi�ers in the pool. The prepro
essing te
hniques

used in the work have, respe
tively, the logarithmi
 
omplexity of O(log n) (ros and

rus), the quadrati
 
omplexity of O(n2) (Borderline2-smote) [260℄, and the 
omplexity

of O(n log n) (
nn). smote has the 
omputational 
omplexity of O(n log2 n) [260℄.

Additionally des-knn performs 
al
ulation of pairwise disagreement measure (O(n2)),

and des-
l employs the k-means 
lustering algorithm. The k-means 
omputational
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omplexity is O(ncde), where c is the number of 
lusters, d is the number of data di-

mensions, and e des
ribes the number of iterations/epo
hs [26℄. Complexity is redu
ed

to O(nce), as the 
lustering spa
e is one-dimensional.

Be
ause a �xed size of the data 
hunk N is always set, the 
omplexity of the proposed

algorithms depends only on the number of 
lassi�ers from whi
h the sele
tion is made

(denoted as | Π |).

4.2.1 Experimental evaluation

Here, the motivation, goals and set-up of the performed experiments are presented.

Resear
h questions

The experiments were designed to answer the following questions:

Q1. Can the use of Dynami
 Sele
tion, taking into a

ount the lo
al 
ompeten
ies of the

base 
lassi�ers, improve the ensemble's performan
e in the 
ase of the imbalan
ed

data stream with 
on
ept drift?

Q2. Can 
ombining des with data prepro
essing improve the ensemble's performan
e

in the 
ase of the imbalan
ed data stream with 
on
ept drift?

Q3. Whi
h des methods and prepro
essing te
hniques are best suited for the 
lassi�-


ation of a data stream with a given 
on
ept drift type and Imbalan
e Ratio?

Goals of the experiments

Experiment 1 � Imbalan
e Ratio impa
t

The aim of the �rst experiment is to test how dseis
, with di�erent 
ombinations of

Dynami
 Ensemble Sele
tion methods and prepro
essing te
hniques, behaves when 
las-

sifying data streams with various Imbalan
e Ratios.

Experiment 2 � Con
ept drift type impa
t

The aim of the �rst experiment is to evaluate how dseis
, with di�erent 
ombinations

of Dynami
 Ensemble Sele
tion methods and prepro
essing te
hniques, behaves when


lassifying data streams with various types of 
on
ept drift.

Experimental set-up

The proposed framework was evaluated using 72 arti�
ially generated data streams.

Ea
h stream is 
omposed of one hundred thousand instan
es divided into 200 
hunks of
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500 obje
ts des
ribed by 8 features, and 
ontains 5 
on
ept drifts. The base 
on
epts

were generated using the stream-learn pa
kage. The variety of streams was ensured by

generating 3 repli
ations with di�erent random seed for ea
h 
ombination of the following

parameters:

� the imbalan
e ratio � su

essively 10, 20, 30 and 40% of the minority 
lass.

� the level of label noise � su

essively 0, 10 and 20%.

� the type of 
on
ept drift � sudden or in
remental.

As the experimental proto
ol, the Test-Than-Train framework [135℄ was used, i.e., every


lassi�
ation model is trained on a re
ent data 
hunk, but it is evaluated on the basis of

the following one. Evaluation of the desis
 was based on metri
s typi
al for imbalan
ed

data 
lassi�
ation problem. The value of pruning threshold α was set to .55, i.e., all

base 
lassi�ers whi
h ba
 lower than .55 were removed from ensemble. This value was


hosen in order to leave in the 
lassi�er pool only the models that performed slightly

better than the random 
lassi�er. The maximum size of the 
lassi�er pool nmax was set

to 20. Neighborhood size for Dynami
 Ensemble Sele
tion methods was k = 7. Set-up

details are listed below:

� Evaluation measures � Balan
ed A

ura
y S
ore (ba
) and Geometri
 mean s
ore

(Gmeans),

� Base 
lassi�er � Classi�
ation and Regression Tree (
art),

� Dynami
 Sele
tion Methods � knora-Eliminate (knora-e), knora-Union (knora-

u), des-knn, des-Clustering (des-
l),

� Data prepro
essing te
hniques � smote, svm-smote, Bordeline-smote in two

variants (b1-smote & b2-smote), Safe-level smote (sl-smote), and adasyn,

� Referen
e method � desis
 without des and prepro
essing, leaving a 
lassi�er pool


ombined using support a

umulation (sa

).

Experiments were implemented in Python programming language and may be repeated

a

ording to sour
e 
ode published on Github

2

.

2

https://github.
om/w4k2/ECML19-IoT-DES-prepro


https://github.com/w4k2/ECML19-IoT-DES-preproc
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Experiment 1 � Imbalan
e Ratio impa
t

The results of Experiment 1 a

ording to ba
 (a) and Gmeans (b) for di�erent ir values

are presented in Tables 4.3 and 4.4 and in Figures 4.9-4.12. Bold indi
ates the statisti
ally

signi�
ant best 
ombination method, while bra
kets indi
ate the statisti
ally signi�
ant

best prepro
essing algorithm for a given 
ombination strategy. Small numbers below the

results indi
ate the indi
es of methods that are statisti
ally signi�
antly outperformed by

the 
onsidered 
ombination strategy (best in row), while small letters represent prepro-


essing methods that are statisti
ally signi�
antly outperformed by the 
onsidered one

(best in 
olumn). Statisti
al analysis was performed using the Wil
oxon Signed Rank

Test (p ≤ .05). The radar 
harts show how ea
h data prepro
essing te
hnique a�e
ted

the performan
e of a parti
ular Dynami
 Ensemble Sele
tion method, and are followed

by the 
lassi�
ation results for the best performing Dynami
 Sele
tion methods in 
on-

jun
tion with the most e�e
tive data prepro
essing te
hniques. The methods presented

were sele
ted based on statisti
al evaluation and are 
ompared with the support a

u-

mulation of the entire 
lassi�er pool and with the results obtained using only Dynami


Ensemble Sele
tion or prepro
essing.

Naive

KNORA-E

KN
OR
A-
UDES-KNN

DE
S-
CL
us
te
ri
ng

0.5

0.6

0.7

0.8

0.9

1.0

10% of minority class - BAC

None
SMOTE

SVM-SMOTE
B1-SMOTE

B2-SMOTE
SL-SMOTE

ADASYN

Naive

KNORA-E

KN
OR
A-
UDES-KNN

DE
S-
CL
us
te
ri
ng

0.5

0.6

0.7

0.8

0.9

1.0

10% of minority class - G-mean

None
SMOTE

SVM-SMOTE
B1-SMOTE

B2-SMOTE
SL-SMOTE

ADASYN

0 25 50 75 100 125 150 175 200
chunks

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d 
ac

cu
ra

cy

Naive-None
0.650
KNORAU-None
0.729

KNN-None
0.743
Naive-SVM
0.677

KNORAU-SVM
0.771
KNN-SVM
0.770

Naive-B2
0.681
KNORAU-B2
0.772

KNN-B2
0.763

0 25 50 75 100 125 150 175 200
chunks

0.4

0.5

0.6

0.7

0.8

0.9

1.0

G
-m

ea
n

Naive-None
0.544
KNORAU-None
0.676

KNN-None
0.705
Naive-SVM
0.591

KNORAU-SVM
0.742
KNN-SVM
0.752

Naive-B2
0.598
KNORAU-B2
0.751

KNN-B2
0.752

Figure 4.9: Comparison of di�erent sampling approa
hes for di�erent 
lassi�er ensembles with respe
t

to performan
e measures (ba
 and Gmeans) for imbalan
e ratio 1 : 9.
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Table 4.3: Results of the Wil
oxon Signed Rank Test for various Imbalan
e Ratios in relation to ba
.

1:9 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.650 0.717 0.729 0.743 0.725

� 1 1,2,5 All 1,2

g � � f �

SMOTE (b) 0.664 0.741 0.768 0.762 0.754

� 1 All 1,2,5 1,2

a,d,f,g a,e,f,g a,d,f a,f,g a,d,f,g

SVM-SMOTE (c) 0.677 [0.751℄ 0.771 [0.770℄ [0.762℄

� 1 All 1,2,5 1,2

a,b,d,f,g All a,b,d,f,g All All

B1-SMOTE (d) 0.657 0.741 0.763 0.762 0.750

� 1 All 1,2,5 1,2

a,f,g a,e,f,g a,f a,f,g a,f

B2-SMOTE (e) [0.681℄ 0.738 [0.772℄ 0.763 0.755

� 1 All 1,2,5 1,2

All a,f All a,b,f,g a,b,d,f,g

SL-SMOTE (f ) 0.651 0.718 0.740 0.741 0.728

� 1 1,2,5 1,2,5 1,2

g � a � a

ADASYN (g) 0.649 0.738 0.768 0.758 0.752

� 1 All 1,2,5 1,2

� a,f a,d,f a,f a,d,f

2:8 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.744 0.779 0.809 0.814 0.800

� 1 1,2,5 all 1,2

� f � f �

SMOTE (b) 0.757 0.793 0.829 0.820 0.815

� 1 All 1,2,5 1,2

a,d,f,g a,e,f,g a,f a,e,f,g a,d,e,f,g

SVM-SMOTE (c) 0.771 [0.801℄ [0.833℄ [0.826℄ [0.820℄

� 1 All 1,2,5 1,2

a,b,d,f,g All All All All

B1-SMOTE (d) 0.754 0.793 0.829 0.820 0.813

� 1 All 1,2,5 1,2

a,f,g a,e,f,g a,f a,b,e,f,g a,e,f

B2-SMOTE (e) [0.773℄ 0.782 0.830 0.814 0.811

� 1 All 1,2,5 1,2

All a,f a,b,d,f,g f a,f

SL-SMOTE (f ) 0.747 0.776 0.819 0.805 0.800

� 1 All 1,2,5 1,2

a,g � a � a

ADASYN (g) 0.744 0.788 0.830 0.814 0.813

� 1 All 1,2 1,2

� a,e,f a,b,d,f f a,e,f

3:7 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.800 0.806 0.846 0.844 0.834

� 1 All 1,2,5 1,2

� e,f � e,f,g f

SMOTE (b) 0.806 0.815 0.856 0.846 0.841

� 1 All 1,2,5 1,2

a,f,g a,d,e,f,g a,f a,d,e,f,g a,d,e,f,g

SVM-SMOTE (c) 0.816 [0.819℄ [0.858℄ [0.847℄ [0.843℄

� � All 1,2,5 1,2

a,b,d,f,g All All All All

B1-SMOTE (d) 0.808 0.813 0.856 0.844 0.839

� 1 All 1,2,5 1,2

a,b,f,g a,e,f,g a,b,e,f e,f,g a,e,f

B2-SMOTE (e) [0.819℄ 0.800 0.855 0.836 0.835

2 � All 1,2 1,2

All � a,f f a,f

SL-SMOTE (f ) 0.802 0.801 0.850 0.833 0.831

2 � All 1,2,5 1,2

a,g � a � �

ADASYN (g) 0.800 0.809 0.856 0.838 0.839

� 1 All 1,2 1,2,4

� a,e,f a,b,e,f e,f a,e,f

4:6 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.827 0.819 0.864 [0.857℄ 0.851

2 � All 1,2,5 1,2

� e,f,g � All e,f

SMOTE (b) 0.828 0.823 0.867 0.856 0.853

2 � All 1,2,5 1,2

a,f,g a,d,e,f,g a,f c,d,e,f,g a,d,e,f,g

SVM-SMOTE (c) 0.834 [0.823℄ [0.868℄ 0.856 [0.853℄

2 � All 1,2,5 1,2

a,b,d,f,g All All d,e,f,g All

B1-SMOTE (d) 0.832 0.821 0.867 0.854 0.852

2 � All 1,2,5 1,2

a,b,f,g a,e,f,g a,b,e,f e,f,g a,e,f

B2-SMOTE (e) [0.836℄ 0.811 0.866 0.848 0.848

2 � All 1,2 1,2

All � a,f � f

SL-SMOTE (f ) 0.827 0.815 0.864 0.849 0.847

2 � All 1,2,5 1,2

� e � e �

ADASYN (g) 0.827 0.818 0.868 0.852 0.852

2 � All 1,2 1,2

� e,f a,b,e,f e,f a,e,f



Chapter 4. Algorithms for di�
ult data stream 
lassi�
ation 119

Table 4.4: Results of the Wil
oxon Signed Rank Test for various Imbalan
e Ratios in relation to

Gmeans.

1:9 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.544 0.683 0.676 0.705 0.679

� 1,3,5 1 All 1,3

g � � � �

SMOTE (b) 0.569 0.729 0.742 0.748 0.733

� 1 1,2,5 All 1,2

a,d,f,g a,d,f a,d,f a,d,f a,d,f

SVM-SMOTE (c) 0.591 [0.735℄ 0.742 [0.752℄ 0.738

� 1 1,2,5 All 1,2

a,b,d,f,g All a,d,f a,b,d,f,g a,b,d,f,g

B1-SMOTE (d) 0.555 0.724 0.734 0.744 0.726

� 1 1,2,5 All 1,2

a,f,g a,f a,f a,f a,f

B2-SMOTE (e) [0.598℄ 0.729 [0.751℄ [0.752℄ [0.740℄

� 1 1,2,5 1,2,5 1,2

All a,d,f All a,b,d,f,g All

SL-SMOTE (f ) 0.544 0.702 0.705 0.723 0.702

� 1 1,2,5 All 1

g a a a a

ADASYN (g) 0.542 0.729 0.745 0.748 0.734

� 1 1,2,5 All 1,2

� a,d,f a,b,c,d,f a,d,f a,d,f

2:8 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.704 0.768 0.792 0.803 0.783

� 1 1,2,5 All 1,2

� � � f �

SMOTE (b) 0.724 0.789 0.820 0.816 0.807

� 1 All 1,2,5 1,2

a,d,f,g a,e,f,g a,f a,e,f,g a,d,f

SVM-SMOTE (c) 0.744 [0.797℄ [0.825℄ [0.822℄ [0.813℄

� 1 All 1,2,5 1,2

a,b,d,f,g All a,b,d,f,g All All

B1-SMOTE (d) 0.719 0.789 0.821 0.817 0.805

� 1 All 1,2,5 1,2

a,f,g a,e,f,g a,b,f a,b,e,f,g a,f

B2-SMOTE (e) [0.746℄ 0.780 [0.825℄ 0.812 0.806

� 1 All 1,2,5 1,2

All a,f a,b,d,f,g a,f a,d,f

SL-SMOTE (f ) 0.708 0.772 0.809 0.802 0.792

� 1 All 1,2,5 1,2

a,g a a � a

ADASYN (g) 0.704 0.786 0.822 0.811 0.807

� 1 All 1,2,5 1,2

� a,e,f a,b,d,f a,f a,d,f

3:7 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.786 0.803 0.840 0.841 0.828

� 1 1,2,5 All 1,2

� e,f � e,f,g �

SMOTE (b) 0.794 0.814 0.852 0.844 0.838

� 1 All 1,2,5 1,2

a,f,g a,d,e,f,g a,f a,d,e,f,g a,d,e,f,g

SVM-SMOTE (c) 0.807 [0.817℄ [0.855℄ [0.846℄ [0.841℄

� 1 All 1,2,5 1,2

a,b,d,f,g All All All All

B1-SMOTE (d) 0.797 0.811 0.853 0.843 0.836

� 1 All 1,2,5 1,2

a,b,f,g a,e,f,g a,b,f a,e,f,g a,e,f

B2-SMOTE (e) [0.810℄ 0.799 0.853 0.835 0.833

2 � All 1,2,5 1,2

All � a,b,f f a,f

SL-SMOTE (f ) 0.790 0.799 0.847 0.831 0.828

� 1 All 1,2,5 1,2

a,g � a � �

ADASYN (g) 0.786 0.808 0.853 0.837 0.836

� 1 All 1,2 1,2

� a,e,f a,b,f e,f a,e,f

4:6 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.822 0.818 0.862 [0.856℄ 0.849

2 � All 1,2,5 1,2

� e,f � All e,f

SMOTE (b) 0.824 0.822 0.865 0.855 0.851

2 � All 1,2,5 1,2

a,f,g a,d,e,f,g a,f c,d,e,f,g a,d,e,f

SVM-SMOTE (c) 0.831 [0.823℄ [0.867℄ 0.854 [0.852℄

2 � All 1,2,5 1,2

a,b,d,f,g All All d,e,f,g All

B1-SMOTE (d) 0.828 0.820 0.866 0.853 0.850

2 � All 1,2,5 1,2

a,b,f,g a,e,f,g a,b,e,f e,f,g a,e,f

B2-SMOTE (e) [0.833℄ 0.810 0.865 0.847 0.847

2 � All 1,2 1,2,4

All � a,f � f

SL-SMOTE (f ) 0.822 0.814 0.863 0.848 0.845

2 � All 1,2,5 1,2

� e a e �

ADASYN (g) 0.822 0.817 0.866 0.851 0.850

2 � All 1,2 1,2

� e,f a,b,e,f e,f a,e,f
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Figure 4.10: Comparison of di�erent sampling approa
hes for di�erent 
lassi�er ensembles with respe
t

to performan
e measures (ba
 and Gmeans) for imbalan
e ratio 2 : 8.

Based on the statisti
al analysis we 
an see that for the 1 : 9 imbalan
e ratio, a

ording

to ba
, des-knn was the best performing method without the use of any prepro
essing.

In 
ases where des was 
oupled with prepro
essing methods, knora-u performed best

ex
ept for the use of sl-smote, where it was not statisti
ally better than des-knn.

A

ording to Gmeans for 1 : 9 ir des-knn was statisti
ally the best dynami
 ensemble

sele
tion method. For the Borderline2-smote prepro
essing method, both des-knn and

knora-u performed statisti
ally similar. The best prepro
essing methods were svm-

smote and Borderline2-smote.

For the 2 : 8 ir, both in terms of ba
 and Gmeans, knora-u performed best when

paired with any prepro
essing method. If no data prepro
essing was used, des-knn

performed statisti
ally signi�
antly best. As for the prepro
essing methods, in most


ases svm-smote was statisti
ally signi�
ant, Borderline2-smote performed best for

Support A

umulation of the whole 
lassi�er pool.

For the 3 : 7 imbalan
e ratio, knora-u again proved to be the statisti
ally signi�
antly

best Dynami
 Ensemble Sele
tion method. The only ex
eption (a

ording to Gmeans)
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Figure 4.11: Comparison of di�erent sampling approa
hes for di�erent 
lassi�er ensembles with respe
t

to performan
e measures (ba
 and Gmeans) for imbalan
e ratio 3 : 7.

was the 
ase where no prepro
essing was used, then des-knn works best. By both

measures, the best data prepro
essing method for des was svm-smote. Borderline2-

smote again performed the best for support a

umulation.

In the 
ase of 4 : 6, ir was the statisti
ally signi�
antly best knora-u method in

ea
h 
ase a

ording to both ba
 and Gmeans. Borderline2-smote worked best for

support a

umulation and in the remaining 
ases svm-smote was statisti
ally the best

prepro
essing method.

Experiment 2 � Con
ept drift type impa
t

Evaluation of the desis
 in the 
ase of di�erent 
on
ept drift types (sudden or in
re-

mental) fo
used on the streams with high imbalan
e ratios (i.e., 1 : 9 and 2 : 8), typi
al

for the real-life de
ision tasks. The 
omparison is shown in Figure 4.13 and 4.14. The

results of statisti
al analysis 
ondu
ted in Experiment 2 is presented in Tables 4.5 and

4.6. Bold indi
ates the statisti
ally signi�
antly best 
ombination method, while bra
kets

are used to denote the statisti
ally signi�
antly best prepro
essing algorithm for a given
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Figure 4.12: Comparison of di�erent sampling approa
hes for di�erent 
lassi�er ensembles with respe
t

to performan
e measures (ba
 and Gmeans) for imbalan
e ratio 4 : 6.


ombination strategy. Small numbers under the results indi
ate the indexes of methods

that are statisti
ally signi�
antly outperformed by the 
onsidered 
ombination strategy

(best in row), while small letters stand for prepro
essing methods that are statisti
ally

signi�
antly outperformed by the 
onsidered one (best in 
olumn). Statisti
al analysis

was 
ondu
ted using the Wil
oxon Signed Rank Test (p ≤ .05).

For sudden drift, in terms of both measures, des-knn was statisti
ally the best with-

out the use of any prepro
essing method and knora-u was statisti
ally leading when

paired with every oversampling method. Borderline2-smote was the best for support

a

umulation and for knora-u a

ording to Gmeans, for the rest of Dynami
 Ensemble

Sele
tion methods svm-smote performed the best.

Finally, for in
remental drift, a

ording to ba
, des-knn performed statisti
ally sig-

ni�
antly best without the use of prepro
essing and for the sl-smote while knora-u

was the best for other oversampling te
hniques. svm-smote was the best prepro
essing

method for knora-e, des-knn and des-Clustering and Borderline2-smote performed

the best 
oupled with support a

umulation and knora-u. A

ording to Gmeans,
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Figure 4.13: Comparison of di�erent sampling approa
hes for di�erent 
lassi�er ensembles with respe
t

to performan
e measures (ba
 and Gmeans) for sudden drift.

knora-u was statisti
ally leading desmethod for Borderline2-smote and adasyn while

des-knn was statisti
ally signi�
ant for all other prepro
essing te
hniques. svm-smote

worked best with knora-e and des-knn, Borderline2-smote proved to be statisti
ally

signi�
ant for support a

umulation, knora-u and des-Clustering.

Observations

n general, the order of the approa
hes presented in terms of performan
e, beginning with

the worst, is as follows: (i) support a

umulation without using prepro
essing methods,

(ii) support a

umulation 
ombined with prepro
essing, (iii) dynami
 ensemble sele
tion

methods without prepro
essing, (iv) des methods 
oupled with prepro
essing methods.

The lower the imbalan
e ratio, the smaller the di�eren
es between the approa
hes, but

the order is maintained. The 
ondu
ted experiments showed that the best performing

des method among the 
onsidered strategies a
ross all tested imbalan
e ratios is the

knora-u, whi
h uses the weighted voting s
heme. Sin
e the knora-Union method

sele
ts all the base models that are able to 
orre
tly 
lassify at least one instan
e in
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Figure 4.14: Comparison of di�erent sampling approa
hes for di�erent 
lassi�er ensembles with respe
t

to performan
e measures (ba
 and Gmeans) for in
remental drift.

the lo
al 
ompeten
e region and then 
ombines them based on the weighted voting,

where the number of votes equals the number of 
orre
tly dete
ted samples, it allows

us to sele
t both an a

urate and a diverse ensemble. Sin
e these two properties are

the determinants of a good 
lassi�er ensemble model, they may be the reason for high

results of this Dynami
 Ensemble Sele
tion method. Worth mentioning is also the des-

knn, whi
h is doing well for high imbalan
e ratios, espe
ially for the 10% of minority


lass and for in
remental drift in terms of Gmeans. des-knn performs the best for

high ir (10 and 20% of minority 
lass) in 
ase of not using any prepro
essing method.

The worst performing des method, for low ir (30 and 40%) worse even than support

a

umulation, was knora-e. This may be due to the fa
t, that the lo
al ora
les are

found only for 
ompeten
e regions with a signi�
antly redu
ed size, whi
h negatively

a�e
ts the performan
e.

Based on the results a
hieved by des-knn and des-Clustering methods it may suspe
ted

that the k-Nearest Neighbors te
hnique is better suited for de�ning the lo
al region of


ompeten
e in 
ase of imbalan
ed data streams than the 
lustering te
hnique. Despite
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Table 4.5: Results of the Wil
oxon Signed Rank Test for various types of 
on
ept drift in relation to

ba
.

Sudden drift

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.717 0.756 0.780 0.784 0.774

� 1 1,2,5 All 1,2
g f � f �

SMOTE (b) 0.732 0.771 0.803 0.793 0.790

� 1 All 1,2,5 1,2

a,d,f,g a,e,f,g a,d,f,g a,e,f,g a,d,e,f,g

SVM-SMOTE (c) 0.746 [0.780℄ [0.807℄ [0.800℄ [0.797℄

� 1 All 1,2,5 1,2

a,b,d,f,g All All All All

B1-SMOTE (d) 0.727 0.771 0.801 0.794 0.788

� 1 All 1,2,5 1,2

a,f,g a,e,f,g a,f a,e,f,g a,e,f,g

B2-SMOTE (e) [0.749℄ 0.763 0.805 0.789 0.786

� 1 All 1,2,5 1,2

All a,f a,b,d,f,g a,f,g a,f

SL-SMOTE (f ) 0.721 0.753 0.792 0.776 0.773

� 1 All 1,2,5 1,2
a,g � a � �

ADASYN (g) 0.716 0.767 0.802 0.788 0.787

� 1 All 1,2 1,2
� a,e,f a,d,f a,f a,f

In
remetal drift

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.677 0.741 0.757 0.773 0.751

� 1 1,2,5 All 1,2
� � � f �

SMOTE (b) 0.689 0.762 0.793 0.788 0.778

� 1 All 1,2,5 1,2

a,d,f,g a,e,f,g a,d,f a,f,g a,d,f

SVM-SMOTE (c) 0.703 [0.771℄ 0.796 [0.796℄ [0.785℄

� 1 All 1,2,5 1,2

a,b,d,f,g All a,b,d,f,g All All

B1-SMOTE (d) 0.684 0.762 0.791 0.789 0.775

� 1 All 1,2,5 1,2

a,f,g a,e,f,g a,f a,e,f,g a,f

B2-SMOTE (e) [0.704℄ 0.757 [0.797℄ 0.789 0.780

� 1 All 1,2,5 1,2

All a,f All a,f,g a,b,d,f,g

SL-SMOTE (f ) 0.677 0.741 0.767 0.770 0.756

� 1 1,2,5 All 1,2
g � a � a

ADASYN (g) 0.676 0.759 0.795 0.784 0.778

� 1 All 1,2,5 1,2
� a,e,f a,b,d,f a,f a,d,f

Table 4.6: Results of the Wil
oxon Signed Rank Test for various types of 
on
ept drift in relation to

Gmeans.

Sudden drift

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.657 0.735 0.750 0.762 0.748

� 1 1,2,5 All 1,2

g � � � �

SMOTE (b) 0.679 0.764 0.787 0.784 0.777

� 1 All 1,2,5 1,2

a,d,f,g a,d,e,f,g a,d,f a,d,e,f,g a,d,f

SVM-SMOTE (c) 0.700 [0.771℄ 0.790 [0.789℄ [0.783℄

� 1 All 1,2,5 1,2

a,b,d,f,g All a,b,d,f,g All All

B1-SMOTE (d) 0.672 0.761 0.783 0.783 0.773

� 1 All 1,2,5 1,2

a,f,g a,e,f a,f a,f,g a,f

B2-SMOTE (e) [0.706℄ 0.758 [0.793℄ 0.783 0.778

� 1 All 1,2,5 1,2

All a,f All a,d,f,g a,d,f,g

SL-SMOTE (f ) 0.662 0.745 0.775 0.767 0.761

� 1 All 1,2,5 1,2

a,g a a a a

ADASYN (g) 0.656 0.761 0.788 0.781 0.776

� 1 All 1,2,5 1,2
� a,e,f a,b,d,f a,f a,d,f

In
remetal drift

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.592 0.717 0.718 0.746 0.714

� 1 1,2,5 All 1
� � � � �

SMOTE (b) 0.613 0.754 0.775 0.780 0.763

� 1 1,2,5 All 1,2

a,d,f,g a,d,e,f,g a,d,f a,d,f,g a,d,f

SVM-SMOTE (c) 0.635 [0.761℄ 0.777 [0.784℄ [0.768℄

� 1 1,2,5 All 1,2

a,b,d,f,g All a,b,d,f All a,b,d,f,g

B1-SMOTE (d) 0.602 0.752 0.772 0.778 0.758

� 1 1,2,5 All 1,2

a,f,g a,e,f a,f a,f a,f

B2-SMOTE (e) [0.638℄ 0.751 [0.783℄ 0.782 [0.769℄

� 1 All 1,2,5 1,2

All a,f All a,b,d,f,g a,b,d,f,g

SL-SMOTE (f ) 0.591 0.729 0.739 0.757 0.733

� 1 1,2,5 All 1,2
� a a a a

ADASYN (g) 0.590 0.753 0.779 0.779 0.766

� 1 All 1,2,5 1,2
� a,e,f a,b,c,d,f a,f a,b,d,f
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the higher 
omputational 
ost, knn allows for more pre
ise estimation of the region of


ompeten
e whi
h leads to more possible ensemble 
on�gurations for 
lassifying new

instan
es.

On the other hand, svm-smote and Borderline2-smote have proven to be the preferred

prepro
essing strategies for the used dynami
 ensemble sele
tion methods. The 
ombi-

nation of knora-u or des-knn with one of those prepro
essing methods always leads

to the best 
lassi�
ation performan
e.

Answers to resear
h questions

The answers to the previously formulated resear
h questions are as follows:

Q1. Can the use of Dynami
 Sele
tion, taking into a

ount the lo
al 
ompeten
ies of the

base 
lassi�ers, improve the ensemble's performan
e in the 
ase of the imbalan
ed

data stream with 
on
ept drift?

A1. The obtained results and statisti
al analysis 
on�rmed, that the use of Dynami


Sele
tion may improve the ensemble's performan
e when dealing with the drifting

imbalan
ed data stream 
lassi�
ation task.

Q2. Can 
ombining des with data prepro
essing improve the ensemble's performan
e

in the 
ase of the imbalan
ed data stream with 
on
ept drift?

A2. The 
ondu
ted experiments 
on�rmed, that 
ombining des with prepro
essing

improves desis
 performan
e when 
ompared to the methods employing only one

of these 
on
epts.

Q3. Whi
h des methods and prepro
essing te
hniques are best suited for the 
lassi�-


ation of a data stream with a given 
on
ept drift type and Imbalan
e Ratio?

A3. The results obtained showed that regardless of the Imbalan
e Ratio and the type of


on
ept drift, the statisti
ally signi�
antly best performing des method was almost

always knora-u. The only ex
eptions were ir of 1 : 9 and in
remental 
on
ept

drift, where in terms of Gmeans, des-knn performed best. The best prepro
essing

te
hniques, regardless of the Imbalan
e Ratio and the type of 
on
ept drift, turned

out to be svm-smote or b2-smote.
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4.3 des and Strati�ed Bagging for Imbalan
ed Stream Clas-

si�
ation

This se
tion proposes an extension of the previously introdu
ed desis
 framework with

the generation of base 
lassi�ers using strati�ed bagging. This idea alludes to the arti
le

in whi
h Roy et al. proposed a 
ombination of des and prepro
essing for the 
lassi�
ation

of stati
 imbalan
ed data [198℄. Here, however, due to the promising results a
hieved

by dseis
, it was de
ided to use a bootstrapping approa
h to 
lassify highly imbalan
ed

data streams with 
on
ept drift o

urren
e. The motivation to use Strati�ed Bagging

to generate a 
lassi�er pool was the potential possibility of obtaining a more diverse

pool of base models, whi
h may in
rease the 
han
es of Dynami
 Ensemble Sele
tion

methods to �nd experts in lo
al regions of the feature spa
e. This led to the proposition

of a framework 
alled Dynami
 Ensemble Sele
tion for Imbalan
ed Stream Classi�
ation

using Strati�ed Bagging (desis
-sb).

desis
-sb framework

Here, the previously proposed desis
 framework is 
ombined with the Strati�ed Bagging.

This is to allow the generation of 
lassi�er ensemble based on ea
h individual highly im-

balan
ed data 
hunk. The use of bootstrapping in the pro
ess of 
lassi�er pool generation

enables Dynami
 Ensemble Sele
tion on two levels: (i) bagging 
lassi�ers level and (ii)

all base 
lassi�ers level.

Ea
h bagging 
lassi�er Ψk 
onsists of n base estimators. Let ψi
k denote the ith base

model forming the kth bagging 
lassi�er. Ea
h base 
lassi�er ψi
k is build using the

LSik learning set whi
h is produ
ed by prepro
essing the ith strati�ed bootstrap SBik
from DSk. Details are provided in the stratifiedBagging(DSk) method des
ription.

dselk stands for the dynami
 sele
tion dataset for the kth data whi
h in this 
ase in

the previously prepro
essed data 
hunk DSk−1. One bagging 
lassi�er Ψk is generated

based on ea
h in
oming data 
hunk DSk and added to the bagging 
lassi�er pool Π.

As the proposed framework is based on the Streaming Ensemble Algorithm (sea) [221℄,

when the maximum bagging 
lassi�ers pool size (nmax) is ex
eeded after adding a new

model, the worst one, a

ording to the balan
ed a

ura
y metri
, will be removed from

the pool. The desis
-sb framework is presented in Figure 4.15 and the pseudoode is

shown separately for the training and predi
tion phase in Algorithms 10 and 11.

Let us shortly des
ribe the methods used in pseudo
ode:

� prepro
ess() � applies the 
hosen prepro
essing te
hnique to the provided data,
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Figure 4.15: The framework for generating the 
lassi�er pool and preparing dsel for the dynami


sele
tion pro
ess. The red arrows follow the training phase (Algorithm 10), while the orange arrows

depi
t the predi
tion phase (Algorithm 11).

� stratifiedBagging() � generates the bagging 
lassi�er for kth data 
hunk. Ea
h

bootstrap is generated by sampling with repla
ement both minority and majority


lasses separately in su
h a way that preserves the number of instan
es of both


lasses in the original data 
hunk. The �nal de
ision of Ψk is made based on the

aggregation of the support fun
tions of n individual 
lassi�ers a

ording to the sum

rule [76℄. When 
oupled with prepro
essing te
hniques, prepro
ess() method is


alled on ea
h bootstrap a

ording to Figure 4.15,

� predi
t() � uses a given 
lassi�er pool (or list of ensembles in 
ase of dynami


sele
tion) to 
lassify ea
h instan
e in given data 
hunk,

� dynami
Sele
tion() � uses a given dynami
 ensemble sele
tion method to gen-

erate a list of ensembles for 
lassifying ea
h test instan
e. In this work des 
an be

performed on two levels - bagging 
lassi�er level or base estimators level,

� pruneWorst() � removes the worst-performing base 
lassi�er from the pool if the

maximum bagging 
lassi�er pool size (nmax) is ex
eeded after adding a new model.
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Algorithm 10 Training phase of the desis
-sb framework

Input:

Stream � data stream,

nmax � maximum �xed size of the bagging 
lassi�er pool,

Symbols:

Sk � set of evaluation metri
 values for ea
h base 
lassi�er,

DSk � data 
hunk,

Ψk � bagging 
lassi�er,

Π � bagging 
lassi�ers pool.

1: Π← ∅

2: for ea
h k,DSk = {x1k, x2k, . . . , xNk } in Stream do

3: if k <= 1 then ⊲ First data 
hunk.

4: Ψk ← stratifiedBagging(DSk) ⊲ Bagging 
lassi�er generation

5: Π← Ψk ⊲ Adding bagging 
lassi�er to the pool

6: else ⊲ Third and all subsequent data 
hunks.

7: Sk = evaluate(Π,DSk)
8: if | Π |> nmax − 1 then ⊲ Removing worst 
lassi�er if nmax is ex
eeded.

9: Π← pruneWorst(Π,Sk)
10: Ψk ← stratifiedBagging(DSk)
11: Π← Ψk

12: end for

Algorithm 11 Predi
tion phase of the desis
-sb frameworks

Input:

Stream � data stream,

Π � pool of bagging 
lassi�ers.

Symbols:

DSk � data 
hunk,

ΠDk
� 
lassi�er ensemble sele
ted using dynami
 sele
tion,

DSELk � dynami
 ensemble sele
tion dataset for the kth data 
hunk.

1: for ea
h k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: if k == 0 then ⊲ First data 
hunk

3: Pass ⊲ No predi
tion

4: else if k == 1 then ⊲ Se
ond data 
hunk

5: Decision← predi
t(DSk,Π) ⊲ Predi
tion using the whole pool

6: DSELk+1 ← prepro
ess(DSk) ⊲ Storing DSEL for next step

7: else ⊲ Third and all subsequent data 
hunks

8: ΠDk
← dynami
Sele
tion(Π,DSELk,DSk) ⊲ Dynami
 sele
tion

9: Decision← predi
t(DSk,ΠDk
) ⊲ Predi
tion using sele
ted pool

10: DSELk+1 ← prepro
ess(DSk)
11: end for

The step by step des
ription is as follows. At the start. the 
lassi�er pool Π is empty

and the �rst bagging 
lassi�er (Ψ0) is generated using StratifiedBagging() method

on the �rst data 
hunk (Algorithm 10 steps 4 and 5). When the se
ond 
hunk arrives,

it is 
lassi�ed using the predi
t() fun
tion (Algorithm 11 step 5) and then used to
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generate a new bagging model Ψk, whi
h is added to the ensemble (Algorithm 10 steps

4 and 5). DS1 is prepro
essed using prepro
ess() method and stored as the dsel for

the dynami
 sele
tion pro
ess in the future (Algorithm 11 step 6). Then, with the arrival

of ea
h new data 
hunk, following steps are performed:

� In Algorithm 11 step 8, previously stored dsel is used in the dynami
 sele
tion

pro
ess for ea
h instan
e in DSk (Dynami
Sele
tion() method),

� In Algorithm 11 step 9, the list of ensembles sele
ted by des method is used to


lassify all the instan
es in the 
urrent data 
hunk,

� In Algorithm 10 steps 8 and 9, the PruneWorstClassifier() method is used to

prune the 
lassi�er pool if the �xed size nmax is ex
eeded,

� In Algorithm 10 steps 10 and 11 a new bagging 
lassi�er Ψk is generated using kth

data 
hunk and added to the pool Π,

� Finally, in Algorithm 11 step 10, the 
urrent data 
hunk DSk is prepro
essed and

stored in order to use it as dsel in the next iteration.

Computational and memory 
omplexity analysis

The 
omputationl 
omplexity of desis
-sb framework is largely adequate to the 
om-

plexity of desis
, as it is also based on the methods of Dynami
 Ensemble Sele
tion

as well as on prepro
essing te
hniques (both oversampling and undersampling). The

key fa
tors a�e
ting the 
omputational 
omplexity of the presented approa
hes are, re-

spe
tively, the number of models in the 
lassi�er pool for Dynami
 Sele
tion algorithms

and the number of problem instan
es in a single data 
hunk in the 
ase of prepro
essing

te
hniques.

Based on preliminary observations, it was established that the des methods (both

knora-u and knora-e) have a linear time 
omplexity of O(n) depending on the num-

ber of base 
lassi�ers in the pool. The prepro
essing te
hniques used in the work have,

respe
tively, the logarithmi
 
omplexity of O(log n) (ros and rus), the quadrati
 
om-

plexity of O(n2) (Borderline2-smote) [260℄, and the 
omplexity of O(n log n) (
nn).

Strati�ed Bagging performs sampling with repla
ement for ea
h 
lass with 
omputational


omplexity of O(| i | n), where | i | is the 
ardinality of the ith 
lass and n denotes the

number of bootstraps (number of base models in bagging 
lassi�er) [79℄.

Be
ause a �xed size of the data 
hunk N is always set, the 
omplexity of the proposed

algorithms depends only on the number of 
lassi�ers from whi
h the sele
tion is made

(denoted as | Π |). Methods that perform dynami
 sele
tion at the level of base 
lassi�ers
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have a linearly higher 
omputational 
omplexity than those that do it at the level of

bagging 
lassi�ers.

4.3.1 Experimental evaluation

Here, the experimental set-up plan for the dseis
-sb-SB framework will be presented

along with the motivation, obje
tives of the individual experiments, and the results

obtained.

Resear
h questions

The experiments were designed to answer the following questions:

Q1. Whi
h Dynami
 Ensemble Sele
tion methods perform best while dealing with the


on
ept drift o

urren
e?

Q2. Does performing Dynami
 Ensemble Sele
tion at the level of all generated base

models (in
luding those forming individual bagging 
lassi�ers) allow dseis
-sb to

a
hieve better performan
e when 
ompared to Dynami
 Sele
tion performed only

at the level of bagging 
lassi�ers?

Q3. Can methods 
ombining data prepro
essing and Dynami
 Ensemble Sele
tion out-

perform state-of-the-art bat
h-based and online 
lassi�ers for di�
ult data stream


lassi�
ation task?

Goals of the experiments

Experiment 1 � Dynami
 sele
tion level

The main purpose of the �rst experiment is, due to a large number of methods, the

pre-sele
tion of further used dynami
 ensemble sele
tion approa
hes. Dynami
 sele
tion

without the use of prepro
essing te
hniques is evaluated for the potential to 
lassify

highly imbalan
ed data. Based on the results obtained from this shortened experiment

in whi
h the results are presented only for the highest tested Imbalan
e Ratio and stream-

learn generated data streams, a pool of 
lassi�ers will be sele
ted, on whi
h des methods

will be used later for a given type of base 
lassi�er (i.e., bagging level or the level of all

base 
lassi�ers present in the pool).

Experiment 2 � Pairing des with prepro
essing te
hniques

The se
ond experiment aims to examine how two previously 
hosen des methods perform

based on the prepro
essing te
hnique with whi
h they were paired 
ompared to using

solely dynami
 sele
tion. We divided the experiment into two parts, i.e., oversampling
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and undersampling. After analyzing the results obtained, one prepro
essing method will

be sele
ted from both groups, whi
h then will be used in subsequent experiments. Again,

this is a shortened experiment in whi
h the results only for 3% of the minority 
lass and

stream generated using the stream-learn pa
kage are presented.

Additionally, the behavior of ea
h approa
h during the sudden 
on
ept drift o

urren
e

was analyzed. using the restoration time and maximum performan
e loss metri
s.

Experiment 3 � Comparison with state-of-the-art

In the third experiment, two previously sele
ted dynami
 sele
tion methods and two

prepro
essing te
hniques are 
ompared with state-of-the-art online data stream 
lassi�-


ation approa
hes based on the notion of o�ine Bagging, as well as with the 
hunk-based

stream 
lassi�
ation methods. Be
ause online methods require a base 
lassi�er 
apable

of in
remental learning, a 
omparison was possible only for Gaussian Naïve Bayes and

Hoe�ding Tree 
lassi�ers.

In the 
ase of this experiment, arti�
ially generated data streams from both stream-learn

and moa were used and full results for three imbalan
e ratios and three types of 
on
ept

drift are presented. Results for 10 and 20% of the minority 
lass 
an be found on GitHub.

Due to the high 
omputational 
omplexity of Hoe�ding Trees, they were tested only for

real data streams.

Experimental set-up

To evaluate the proposed framework 90 arti�
ially data streams were generated with

various 
hara
teristi
s using stream-learn Python library [141℄. Ea
h data stream is


omposed of �fty thousand instan
es (200 
hunks, 250 instan
es ea
h) des
ribed by 8

informative features, and 
ontains a single 
on
ept drift (in the 100th data 
hunk). The

variety of streams was ensured by generating two streams, based on the determined seeds,

for ea
h 
ombination of the following parameters:

� the imbalan
e ratio � su

essively 3, 5, 10, 15 and 20% of the minority 
lass.

� the level of label noise � su

essively 1, 3 and 5%.

� the type of 
on
ept drift � sudden, gradual, or in
remental.

The remaining 45 data streams were generated using the moa data stream mining frame-

work [19℄. While retaining the parameters mentioned above, these streams di�er in the

generator used and the number of attributes:
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� the generator used � Agrawal (sudden and gradual 
on
ept drift) and Hyperplane

(in
remental 
on
ept drift).

� the number of attributes � 9 for the Agrawal generator and 10 for Hyperplane

generator.

Additionally, this paper presents the results of experiments 
arried out on real data

streams presented in Table 4.7.

Table 4.7: Real data streams 
hara
teristi
s.

Data stream #Samples #Features ir


ovtypeNorm-1-2vsAll 266 000 54 4

poker-lsn-1-2vsAll 360 000 10 10

INSECTS-abrupt_imbalan
ed_norm 300 000 33 19

INSECTS-gradual_imbalan
ed_norm 100 000 33 19

INSECTS-in
remental_imbalan
ed_norm 380 000 33 19

Evaluation of the proposed framework was based on six metri
s dedi
ated for imbalan
ed

data 
lassi�
ation problems. The experimental proto
ol Test-Then-Train [135℄ was used,

i.e., the 
lassi�
ation model is trained on a 
urrent data 
hunk and it is evaluated based on

the following one. As the base estimators, four di�erent 
lassi�
ation models a

ording to

the s
ikit-learn implementation [187℄ were used. In the resear
h on ensemble methods,

large pools of 
lassi�ers, su
h as 100 [60℄ or even 1000 [204℄ base models, are usually


onsidered. However, the interesting experiments regarding the predi
tion of the best


lassi�er pool size for Dynami
 Sele
tion methods suggested that pools 
ontaining an

average of 20 
lassi�ers might perform best [196, 197℄. Therefore, in order to improve

the performan
e of dseis
-sb and to redu
e its 
omputational 
omplexity, the maximum

size of the bagging 
lassi�er pool was set to nmax = 5 and ea
h bagging 
lassi�er 
onsisted

of n = 10 base models. Bat
h-based referen
e methods use 5 bagging 
lassi�ers, ea
h

of whi
h 
onsists of 10 base models, while online referen
e methods maintain ensembles


onsisting of 20 base 
lassi�ers. Experiments were implemented in Python programming

language and may be repeated a

ording to sour
e 
ode published on GitHub

3

.

� Evaluation metri
s � Balan
ed A

ura
y S
ore (ba
), Gmeans, F1 score, pre
ision,

re
all, and spe
i�
ity,

� Classi�
ation algorithms � Gaussian Naïve Bayes (gnb), Hoe�ding Tree (ht), k-

Nearest Neighbors 
lassi�er (knn) and Support Ve
tor Ma
hine (svm),

3

https://github.
om/w4k2/if-des-imb-stream

https://github.com/w4k2/if-des-imb-stream
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� Referen
e methods

� Online Bagging (ob) [184℄, whi
h updates ea
h base 
lassi�er in the pool with

the appearan
e of a new instan
e using the Poisson(λ = 1) distribution.

� Oversampling-Based Online Bagging (oob) and Undersampling-Based Online

Bagging (uob) [243℄, whi
h integrate resampling into the Online Bagging algo-

rithm. This was a
hieved by making the λ value dependent on the proportion

between 
lasses.

� Learn++.nie (Nonstationary and Imbalan
ed Environments) and Learn ++.
ds

(Con
ept Drift with smote) [72℄, whi
h extend the Learn++.nse (Non-Stationary

Environments) algorithm.

� Re
ursive Ensemble Approa
h (rea) [53℄, whi
h in
orporates part of previous

minority 
lass samples into the 
urrent data 
hunk and 
ombines base models

in a dynami
ally weighted manner.

� Over/UnderSampling Ensemble (ouse) [91℄, whi
h uses minority 
lass in-

stan
es from all previously seen data 
hunks and a subset of majority 
lass

present in the most re
ent 
hunk to generate new ensemble.

� km
 [246℄, an ensemble-based approa
h, whi
h performs, on ea
h arriving

data 
hunk, undersampling based on the k-Means 
lustering algorithm.

In total, based on the proposed framework, �fteen methods for the 
lassi�
ation of im-

balan
ed data streams have been distinguished in this paper. These methods di�er in the

applied prepro
essing te
hniques and the dynami
 sele
tion methods used. We 
hose two

dynami
 ensemble sele
tion methods and two prepro
essing te
hniques for experiments:

� Dynami
 ensemble sele
tion methods � knora-e and knora-u were sele
ted due

to the relatively low 
omplexity 
ompared to e.g. des-knn, whi
h may not be

suited for data stream environment due to 
ostly ensemble diversity 
al
ulation.

� Prepro
essing te
hniques

� Oversampling � Random Oversampling and Borderline2-smote sele
ted, based

on experiments 
arried out for desis
, as the best performing among several

smote variants when paired with des for imbalan
ed data stream 
lassi�
a-

tion.

� Undersampling � Random Undersampling and Condensed Nearest Neighbour.

In addition, the 
ases of no prepro
essing applied and 
lassi
 support a

umulation of

the 
lassi�er pool instead of Dynami
 Sele
tion are 
onsidered. The Dynami
 Ensemble
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Sele
tion is performed in two variants � on the bagging 
lassi�ers level or the level of all

base models (in
luding those making up ea
h bagging 
lassi�er). The variant of Dynami


Sele
tion is denoted by the number after the name of des method, 1 being bagging


lassi�ers and 2 being all base estimators. The neighborhood size for des methods is

k = 7, as it is the most 
ommonly suggested value for the lo
al region of 
ompeten
e

[59℄.

Also, to redu
e the amount of information, only the most interesting results are presented,

and to fa
ilitate 
on
luding, results for two of the four base 
lassi�ers are omitted, namely

gnb and knn, in Experiments 1 and 2. gnb a
hieved results remarkably 
lose to ht,

and knn showed behavior quite similar to gnb and ht.

Some of the observations regarding the results obtained by the omitted models are pre-

sented in the Observations subse
tion. Runs smoothed using Gaussian �lter (σ = 3)

are presented for the Gmeans, as it best re�e
ts the relationships between the methods'

performan
e.

Experiment 1 � Dynami
 sele
tion level

Figure 4.16 shows the results for the use of sele
ted Dynami
 Ensemble Sele
tion methods

at bagging 
lassi�ers level and base 
lassi�ers level, when Hoe�ding Tree (Figure 4.16a)

and Support Ve
tor Ma
hine (Figure 4.16b) were used as base models. In 
ase of ht,

radar diagrams show slight di�eren
es in terms of ea
h metri
 when 
ompared to the

basi
 sea as data streams with a high Imbalan
e Ratio are analyzed without using any

prepro
essing te
hniques. Despite this, knorae2 has an advantage in terms of Gmeans,

F1 s
ore and ba
.

More signi�
ant di�eren
es are visible in the presented runs, in whi
h signi�
antly better

response to the 
on
ept drift when the knorae method is used (both at the level of

bagging and base models) 
an be observed. This may be be
ause this algorithm 
an

sele
t base 
lassi�ers that are lo
al ora
les in a given fragment of the feature spa
e,

whi
h in the event of a 
on
ept 
hange allows us to keep only the models already trained

on the given 
on
ept.

In the 
ase of the svm 
lassi�er (Figure 4.16b), the use of des at the base estimators level

leads to a signi�
ant deterioration of the results obtained in terms of ea
h metri
 ex
ept

for spe
i�
ity. This may be due to a large number of poorly di�erentiated 
lassi�ers in the

pool. The sele
tion methods used at the bagging 
lassi�ers level, espe
ially knorau1,

perform similar to sea.
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Figure 4.16: Experiment 1 results for Hoe�ding Tree and Support Ve
tor Ma
hine 
lassi�ers.

Based on the results obtained, the following methods of Dynami
 Ensemble Sele
tion

were sele
ted for further experiments:

� ht - knorau and knorae on the base 
lassi�ers level (knorau2, knorae2).

� smv -knorau and knorae on the bagging 
lassi�ers level (knorau1, knorae1).

Experiment 2 � Pairing des with prepro
essing te
hniques

The following are the results of 
ombining sele
ted methods of Dynami
 Ensemble Se-

le
tion with prepro
essing te
hniques. The experiment was divided into parts related to

oversampling and undersampling.
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Figure 4.17: Experiment 2.1 results for Hoe�ding Tree and Support Ve
tor Ma
hine 
lassi�ers.

Table 4.8: Gmeans-based performan
e metri
s regarding sudden drift for Experiment 2.1.

Performan
e metri
 non-u ros-u b2-u non-e ros-e b2-e

ht

performan
e loss 0.851 0.481 0.473 0.720 0.571 0.516

restoration time 0.023 0.012 0.013 0.017 0.010 0.009

svm

performan
e loss 0.667 0.167 1.000 0.833 0.167 1.000

restoration time 0.012 0.008 0.010 0.008 0.007 0.010

Figure 4.17 shows the results of the 
ombination of des and prepro
essing te
hniques in


ases where ht or svm was used as the base 
lassi�er. For ht the use of prepro
essing

leads to an in
rease in the re
all at the expense of pre
ision and an in
rease in balan
ed

a

ura
y andGmeans. On the presented runs, it 
an be seen that the use of prepro
essing
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in 
onjun
tion with des allows for mu
h smaller losses in Gmeans at the time of the


on
ept drift. This is parti
ularly visible in the 
ase of the Random Oversampling 
oupled

with knorau2. Here, ros proved to be a better oversampling method.

When svm was employed as the base 
lassi�er (Figure 4.17b), the use of ros 
aused the

deterioration of all metri
s ex
ept spe
i�
ity, be
ause dupli
ate instan
es 
ause a stronger

shift in the de
ision boundary. The use of b2-smote leads to a signi�
ant redu
tion in

pre
ision and a slight de
rease in the F1 s
ore, while the other metri
s are 
omparable

to pure Dynami
 Sele
tion.

Table 4.8 
ontains performan
e loss and restoration time values in terms of Gmeans av-

eraged over all runs, referring to sudden 
on
ept drift. In the 
ase of ht, methods paired

with Borderline2-smote generally a
hieve the smallest performan
e loss and restoration

time values. This may be due to the generation of arti�
ial minority samples near the

de
ision boundary. In the 
ase of svm 
lassier, des (a

ording to the presented metri
s)

performs best when 
ombined with ros.

It should be noted that better performan
e in terms of performan
e loss and restoration

time does not ne
essarily mean better 
lassi�
ation performan
e. This 
an be observed

espe
ially in the 
ase of svm.

Undersampling

Table 4.9: Gmeans-based performan
e metri
s regarding sudden drift for Experiment 2.2.

Performan
e metri
 non-u rus-u 
nn-u non-e rus-e 
nn-e

ht

performan
e loss 0.851 0.578 0.663 0.720 0.466 0.598

restoration time 0.023 0.017 0.021 0.017 0.008 0.009

svm

performan
e loss 0.667 0.833 0.500 0.833 0.924 0.500

restoration time 0.012 0.012 0.010 0.008 0.010 0.008

Figure 4.18 shows the results regarding the use of undersampling in 
ombination with

Dynami
 Ensemble Sele
tion for ht and svm base 
lassi�ers. As 
an be seen, for Ho-

e�ding Trees, the use of both Random Undersampling and Condensed Nearest Neighbor

leads to a noti
eable improvement in re
all, balan
ed a

ura
y and Gmeans, while redu
-

ing pre
ision. In addition, rus also leads to deterioration of F1 s
ore and spe
i�
ity. As

in the 
ase of oversampling te
hniques, the pro�t from undersampling is best seen at the

moment of the 
on
ept drift o

urren
e, where only a slight de
rease in Gmeans 
an be

observed. Despite the advantage of rus in terms of this metri
, a better undersampling



Chapter 4. Algorithms for di�
ult data stream 
lassi�
ation 139

Balanced accuracy

G-mean
f1
 s
co
re

precision

recall

sp
ec
if
ic
it
y

0.2

0.4

0.6

0.8

1.0

HT 0-03

NON-KNORAU2
RUS-KNORAU2

CNN-KNORAU2
NON-KNORAE2

RUS-KNORAE2
CNN-KNORAE2

Balanced accuracy
G-mean

f1
 s
co
re

precision

recall

sp
ec
if
ic
it
y

0.2

0.4

0.6

0.8

1.0

SVM 0-03

NON-KNORAU1
RUS-KNORAU1

CNN-KNORAU1
NON-KNORAE1

RUS-KNORAE1
CNN-KNORAE1

0 25 50 75 100 125 150 175 200
chunks

0.0

0.2

0.4

0.6

0.8

1.0

G
-m

ea
n

0.378

0.670

0.575

0.425

0.630

0.558

0 25 50 75 100 125 150 175 200
chunks

0.0

0.2

0.4

0.6

0.8

1.0

G
-m

ea
n

0.279

0.503

0.169

0.287

0.475

0.215

(a) ht (b) svm

Figure 4.18: Experiment 2.2 results for Hoe�ding Tree and Support Ve
tor Ma
hine 
lassi�ers.

method for ht 
lassi�er was 
nn, as it led to balan
ed results in terms of ea
h of the

evaluation metri
s.

For svm (Figure 4.18 b), employing rus leads to better results, while the use of 
nn

pra
ti
ally does not 
ause di�eren
e when 
ompared to the methods without prepro
ess-

ing. This is due to the internal design of this undersampling method, whi
h does not


hange the de
ision boundary.

Table 4.9 presents the performan
e loss and restoration time values for undersampling

methods. In the 
ase of ht, rus a
hieves the best values of these metri
s. In the 
ase of

svm 
lassi�er, 
nn allowed des te
hniques to a
hieve the lowest performan
e loss and

restoration time, but simultaneously, it led to the worst 
lassi�
ation performan
e.

Based on the results obtained for the ht 
lassi�ers, Random Oversampling and Con-

densed Nearest Neighbor were sele
ted as the prepro
essing methods for Experiment 3.
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Same for Gaussian Naïve Bayes, for whi
h the results were omitted due to the high

similarity to the Hoe�ding Tree.

Experiment 3 � Comparison with state-of-the-art

Online referen
e methods
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Figure 4.19: Results of the experiment regarding online referen
e methods for various imbalan
e ratios.
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Figure 4.20: Results of the experiment regarding online referen
e methods for various 
on
ept drift

types.

Figure 4.19 shows a 
omparison of a 
ombination of previously sele
ted dynami
 se-

le
tion methods and prepro
essing te
hniques with state-of-the-art online bagging-based

methods. As these methods need base models 
apable of updating in
rementally, this

experiment was performed only for Gaussian Naïve Bayes and Hoe�ding Tree.

Gaussian Naïve Bayes (Figure 4.19 a) is not suitable for online methods in the 
ase of


on
ept drift as Gmeans signi�
antly de
reases, be
ause the 
lassi�er still remembers
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the old 
on
ept. Online Bagging is not able to rebuild after drift o

urren
e, while oob

and uob note a lower de
line and are slowly re
overs thanks to built-in oversampling and

undersampling methods. When it 
omes to the 
ombination of des and prepro
essing,

the relationships between the methods persist, but de
rease with the Imbalan
e Ratio.

uob rises faster than oob at 3 and 5% of the minority 
lass, but when the Imbalan
e

Ratio is lower both methods 
onverge.

In the 
ase of ht (Figure 4.19 b), it 
an be seen that the use of trees in online methods

leads to a mu
h smaller de
rease in the Gmeans value at the moment of 
on
ept drift

and leads to faster re
overy. This is due to the 
onstru
tion of the Hoe�ding Tree

re
ognition model. oob and uob a
hieve better results than methods 
ombining des and

prepro
essing in terms of balan
ed a

ura
y, Gmeans and re
all. In addition, uob leads

when it 
omes to F1 s
ore and pre
ision, oob a
hieves worse F1 s
ore and spe
i�
ity.

As in the 
ase of gnb, when the Imbalan
e Ratio de
reases, the results a
hieved by

individual methods begin to 
onverge. The ob improvement is parti
ularly noti
eable.

Figure 4.20 shows a 
omparison of sele
ted bat
h methods with online methods in terms

of 
on
ept drift type. It 
an be seen that the relationships shown in Figure 4.19 are also

true in this 
ase. It is noteworthy that although in the 
ase of using Hoe�ding Tree as

the base 
lassi�er oob and uob perform 
omparably or better than the proposed bat
h

methods, they note a more signi�
ant de
rease in Gmeans and a slower re
overy after

sudden 
on
ept drift. Therefore, it 
an by assumed that in the 
ase of a large number of

sudden drifts o

urring in the data stream, the use of bat
h methods based on Hoe�ding

Trees may prove more pro�table than online methods.

Figures 4.21 and 4.22 show the results of the 
omparison of the proposed methods with

online state-of-the-art approa
hes for two sele
ted real data streams, on whi
h the re-

lationships similar to those o

urring in the 
ase of syntheti
 data 
an be observed.

When the base 
lassi�er is gnb, online bagging-based methods note a signi�
ant de
rease

when the 
on
ept drift o

urs, whi
h is not noti
eable when using the ht 
lassi�er. We

also see that in the poker-lsn-1-2vsAll stream, whi
h is mu
h more di�
ult than the


ovtypeNorm-1-2vsAll stream due to a large number of 
on
ept drifts, online methods

employing de
ision trees perform better than bat
h methods. Similar dependen
ies 
an

be observed for the three di�
ult streams from the INSECTS set presented in Figure

4.23. In the 
ase of gnb, the proposed dseis
-sb framework performs better than on-

line referen
e methods. When the base 
lassi�er is Hoe�ding Tree, the referen
e methods

turn out to be better than dseis
-sb in the 
ase of sudden and gradual 
on
ept drift.

For the in
remental 
on
ept drift, the results of the proposed method are 
omparable

with those of the referen
e methods.
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Figure 4.21: Results of the experiment regarding online referen
e methods for 
ovtypeNorm-1-2vsAll.

It is worth noting that, while bat
h methods using gnb and ht a
hieved very similar

results in the 
ase of syntheti
 streams, this is no longer the 
ase with real data. It


an be seen that methods employing ht as the base 
lassi�er note a larger de
rease in

predi
tive ability as the 
on
ept drift o

urs. This may be due to trees being over�tted

be
ause of the greater number of instan
es in ea
h data 
hunk (1000 instan
es for real

streams and 250 for syntheti
 streams).

Chunk-based referen
e methods

Figure 4.24 shows the results of the 
omparison of the proposed methods with referen
e

state-of-the-art 
hunk-based approa
hes. As the base 
lassi�er, Gaussian Naïve Bayes

was employed, as in its 
ase, the use of a bat
h framework based on prepro
essing and

dynami
 
lassi�er sele
tion is more justi�ed than in the 
ase of Hoe�ding Trees (as shown

in Figures 4.19 and 4.20).
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Figure 4.22: Results of the experiment regarding online referen
e methods for poker-lsn-1-2vsAll.

In ea
h 
ase, both for di�erent Imbalan
e Ratio values and for di�erent types of 
on
ept

drift, the rea method performs by far the worst, obtaining the lowest values of reported

metri
s (ex
ept spe
i�
ity), and also has the most signi�
ant de
rease at the time of


on
ept drift o

uren
e, from whi
h it rises very slowly.

The ouse approa
h is the best in the 
ase of the highest tested Imbalan
e Ratio (3%

of minority 
lass) and is distinguished by a high re
all that is a
hieved at the 
ost of

low spe
i�
ity and pre
ision. Although it displays the 
apa
ity to 
ope with the 
on
ept

drift o

urren
e, ouse performs worse as the Imbalan
e Ratio de
reases.

Among the referen
e methods that 
an be 
ompared with the approa
hes proposed in

this work are Learn++.nie, Learn++.
ds and km
. Regardless of the Imbalan
e Ratio

and type of drift, they exhibit behavior 
omparable to the proposed framework. This is

espe
ially true for Learn++.
ds, whi
h performs parti
ularly well for the highest Imbal-

an
e Ratio studied in this experiment, in whi
h in terms of Gmeans it beats all proposed
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Figure 4.23: Results of the experiment regarding 
hunk-based referen
e methods for the Gaussian Naïve

Bayes 
lassi�er.

methods ex
ept ros-knorau2, while noting a low pre
ision value and thus F1 s
ore. It is

worth noting that with the de
reasing Imbalan
e Ratio, Learn++.nie and Learn++.
ds

appear to deteriorate 
ompared to methods 
ombining des and prepro
essing te
hniques.

The km
 method behaves similarly to Learn++.
ds, but a
hieves lower spe
i�
ity and

higher re
all. It performs parti
ularly well in terms of Gmeans and ba
 in the 
ase
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Figure 4.24: Results of the experiment regarding 
hunk-based referen
e methods for the Gaussian Naïve

Bayes 
lassi�er.

of the in
remental drift o

urren
e in the data stream, where it a
hieves metri
 values


omparable with the best of the proposed methods (i.e. ros-knorau2). At the same

time, however, it displays lower F1 s
ores than approa
hes employing Dynami
 Classi�er

Sele
tion.

Figures 4.25, 4.26 and 4.27 show results 
omparing the performan
e of the proposed

methods with state-of-the-art bat
h-based approa
hes for real data streams. The results



Chapter 4. Algorithms for di�
ult data stream 
lassi�
ation 147

Balanced accuracy

G-mean
f1
 s
co
re

precision

recall

sp
ec
if
ic
it
y

0.2

0.4

0.6

0.8

1.0

covtypeNorm-1-2vsAll  GNB

REA
OUSE
KMC

CDS
NIE
ROS-KNORAU2

CNN-KNORAU2
ROS-KNORAE2
CNN-KNORAE2

Balanced accuracy
G-mean

f1
 s
co
re

precision

recall

sp
ec
if
ic
it
y

0.2

0.4

0.6

0.8

1.0

covtypeNorm-1-2vsAll  HT

REA
OUSE
KMC

CDS
NIE
ROS-KNORAU2

CNN-KNORAU2
ROS-KNORAE2
CNN-KNORAE2

0 50 100 150 200 250
chunks

0.0

0.2

0.4

0.6

0.8

1.0

sc
or
e

REA
0.689
OUSE
0.830
KMC
0.800

CDS
0.824
NIE
0.857

ROS-KNORAU2
0.944
CNN-KNORAU2
0.869

ROS-KNORAE2
0.915
CNN-KNORAE2
0.911

0 50 100 150 200 250
chunks

0.0

0.2

0.4

0.6

0.8

1.0

sc
or
e

REA
0.684
OUSE
0.535
KMC
0.386

CDS
0.727
NIE
0.837

ROS-KNORAU2
0.943
CNN-KNORAU2
0.780

ROS-KNORAE2
0.931
CNN-KNORAE2
0.904

Figure 4.25: Results of the experiment regarding 
hunk-based referen
e methods for 
ovtypeNorm-1-

2vsAll.

obtained 
oin
ide with the observations drawn on the basis of experiments 
arried out

on syntheti
 data streams. The proposed approa
hes 
ombining prepro
essing and des

a
hieve better results than 
omparative methods and are more stable. Again, the use

of ht 
lassi�er for bat
h methods at 
hunk size 1000 size leads, espe
ially in the 
ase of

more di�
ult data sets, to deterioration of 
lassi�
ation quality and stronger rea
tions

to the o

urren
e of 
on
ept drift.

Observations

Based on the 
ondu
ted experiments, it 
an be seen that the results for the methods

of bat
h data stream pro
essing were almost identi
al for arti�
ially generated streams

when the base 
lassi�ers were Gaussian Naïve Bayes and Hoe�ding Tree, and ea
h 
hunk


ontained 250 samples. The di�eren
e between these two base 
lassi�ers 
an bee observed



Chapter 4. Algorithms for di�
ult data stream 
lassi�
ation 148

Balanced accuracy

G-mean
f1
 s
co
re

precision

recall

sp
ec
if
ic
it
y

0.2

0.4

0.6

0.8

1.0

poker-lsn-1-2vsAll  GNB

REA
OUSE
KMC

CDS
NIE
ROS-KNORAU2

CNN-KNORAU2
ROS-KNORAE2
CNN-KNORAE2

Balanced accuracy
G-mean

f1
 s
co
re

precision

recall

sp
ec
if
ic
it
y

0.2

0.4

0.6

0.8

1.0

poker-lsn-1-2vsAll  HT

REA
OUSE
KMC

CDS
NIE
ROS-KNORAU2

CNN-KNORAU2
ROS-KNORAE2
CNN-KNORAE2

0 50 100 150 200 250 300 350
chunks

0.0

0.2

0.4

0.6

0.8

1.0

sc
or
e

REA
0.027
OUSE
0.165
KMC
0.549

CDS
0.348
NIE
0.363

ROS-KNORAU2
0.619
CNN-KNORAU2
0.421

ROS-KNORAE2
0.555
CNN-KNORAE2
0.523

0 50 100 150 200 250 300 350
chunks

0.0

0.2

0.4

0.6

0.8

1.0

sc
or
e

REA
0.329
OUSE
0.019
KMC
0.264

CDS
0.247
NIE
0.300

ROS-KNORAU2
0.389
CNN-KNORAU2
0.181

ROS-KNORAE2
0.420
CNN-KNORAE2
0.408

Figure 4.26: Results of the experiment regarding 
hunk-based referen
e methods for poker-lsn-1-2vsAll.

in the 
ase of real data streams when the �xed 
hunk size was 1000. This may be due

to the over�tting of the de
ision trees.

It 
an be observed that the use of the dynami
 sele
tion method knora-e allows the

proposed framework for faster restoration in the event of 
on
ept drift (espe
ially sud-

den). This is parti
ularly evident in Experiment 1, in whi
h any prepro
essing te
hnique

has not been used. These observations have been 
on�rmed by performan
e loss and

restoration time measures and that was most likely due to the fa
t that this approa
h to

des allows for sele
ting only the 
lassi�ers learned on the new 
on
ept as soon as in the

se
ond data 
hunk of its presen
e.

When the svm was used as the base 
lassi�er for the proposed framework, the sele
tion

at the level of base models of all bagging sub-ensembles led to a signi�
ant deterioration

of the a
hieved results. This may be due to the large pool of not diverse 
lassi�ers
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Figure 4.27: Results of the experiment regarding 
hunk-based referen
e methods for the Gaussian Naïve

Bayes 
lassi�er.

and suggests that in the 
ase of svm, strati�ed bagging may not be a good method to

diversify individual base 
lassi�ers.

The 
ombination of svm with oversampling in both 
ases led to a deterioration in its

performan
e 
ompared to the version without prepro
essing. Borderline2-smote, due to
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its 
hara
teristi
s, shifted the de
ision boundary in favor of the minority 
lass, leading to

a de
rease in pre
ision. Random oversampling, on the other hand, signi�
antly worsened

the results a
hieved in terms of all measured metri
s, ex
ept for spe
i�
ity, be
ause

dupli
ate minority 
lass instan
es resulted in a strong shift of the de
ision boundary.

When undersampling methods were employed, the use of Random undersampling allowed

for a more a

urate adjustment of the de
ision boundary and thus a signi�
ant improve-

ment in re
all, F1 s
ore, Gmeans and ba
 at the expense of hindering pre
ision. The

use of 
nn resulted in a similar behavior as in the absen
e of prepro
essing. This is due

to the internal stru
ture of this undersampling method, whi
h leaves instan
es 
lose to

the de
ision boundary, and thus leads to only minor 
hanges.

When it 
omes to online methods (i.e., ob, oob and uob), the use of the Gaussian Naïve

Bayes 
lassi�er leads to a signi�
ant deterioration of methods at the moment of 
on
ept

drift o

urren
e and di�
ulties with re
overing after the drift. oob and uob mitigate

these e�e
ts due to built-in resampling me
hanisms, but they still struggle due to the

fa
t that gnb remembers the previous 
on
ept.

De
ision trees do mu
h better in online methods be
ause they have the opportunity to

a
hieve optimal predi
tive ability (as seen before 
on
ept drift o

urs) and they also


ope better with re
overy after drift. Generally, when Hoe�ding Trees are used, online

methods work better than the proposed bat
h methods, ex
ept for the moment when

sudden drift o

urs, in whi
h 
ase online methods rebuild more slowly than 
hunk-based

ones be
ause the 
lassi�ers trained on the old 
on
ept are not removed. Theoreti
ally,

with many sudden drifts in a single data stream, 
hunk-based methods 
an have an

advantage over online ones, even when using de
ision trees as base estimators.

rea is by far the worst-performing one of the 
hunk-based referen
e methods, espe
ially

in the 
ase of 
on
ept drift o

urren
e. In this approa
h, added to the training sets are

minority 
lass samples from the old 
on
ept, whi
h makes it di�
ult for the method to

re
over after drift. Besides, all models are subje
t to weighted 
ombination, as there is

no forgetting me
hanism.

ouse builds a new ensemble on ea
h of the data 
hunks so that the 
lassi�ers relate to the


urrent 
on
ept. Despite using all minority 
lass instan
es that have ever appeared in the

stream, the pro�t from balan
ing the problem using real samples, in the 
ase of a high

Imbalan
e Ratio, outweighs the loss resulting from using some of the instan
es from the

old 
on
ept. However, as the Imbalan
e Ratio de
reases, and thus the number of instan
es

from the old 
on
ept in training set in
reases, the algorithm begins to deteriorate.

The km
 method presents an approa
h similar to the ones proposed in desis
 and

desis
-sb. As a base, it uses the sea algorithm in whi
h the ensemble is pruned using
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the au
 metri
. Additionally, it uses the undersampling method based on the k-Means

algorithm. It a
hieves parti
ularly promising results in 
ase of the in
remental 
on
ept

drift o

urren
e. This may be due to the fa
t that it does not use real majority 
lass

instan
es but its 
lusters 
entroids that might better re�e
t the slowly o

urring minor


on
ept 
hanges.

Learn++.d
s performs 
omparatively with the proposed methods in terms of Gmeans

and ba
, but at the expense of pre
ision and F1 s
ore. It is somewhat 
omparable

to the proposed framework, as it also uses prepro
essing, but the Dynami
 Classi�er

Sele
tion is repla
ed by a weighted 
ombination. However, the method deteriorates


ompared to those proposed as the Imbalan
e Ratio de
reases. Learn++.nie is also

quite similar to the proposed framework in that it uses the bagging sub-ensembles that

train ea
h of the base 
lassi�ers on the whole minority 
lass from the given data 
hunk

and part of the majority 
lass. It is done in su
h a way, that no information about

the majority 
lass is lost. Sub-ensembles are then integrated utilizing the re
all-based

weighted 
ombination. In the 
ase of both methods, the main di�eren
e between them

and the proposed framework is the use of dynami
 sele
tion, whi
h seems to perform

better than the weighted 
ombination.

Answers to resear
h questions

The answers to the previously formulated resear
h questions are as follows:

Q1. Whi
h Dynami
 Ensemble Sele
tion methods perform best while dealing with the


on
ept drift o

urren
e?

A1. Based on the results obtained in Experiment 1, it 
an be 
on
luded that knora-e is

the Dynami
 Sele
tion method that best 
opes with the 
on
ept drift phenomenon.

This is due to the approa
h to 
lassi�er sele
tion that prefers only lo
al ora
les,

whi
h allows for qui
k re
overy of the generalization ability after the 
on
ept drift

o

urren
e.

Q2. Does performing Dynami
 Ensemble Sele
tion at the level of all generated base

models (in
luding those forming individual bagging 
lassi�ers) allow dseis
-sb to

a
hieve better performan
e when 
ompared to Dynami
 Sele
tion performed only

at the level of bagging 
lassi�ers?

A2. Condu
ted experiments 
on�rmed, that performing Dynami
 Ensemble Sele
tion

at the level of all generated base models leads to better performan
e when 
ompared

to Dynami
 Sele
tion performed only at the level of bagging 
lassi�ers. This is due

to the larger and more diverse pool of available models.
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Q3. Can methods 
ombining data prepro
essing and Dynami
 Ensemble Sele
tion out-

perform state-of-the-art bat
h-based and online 
lassi�ers for di�
ult data stream


lassi�
ation task?

A3. The results obtained in Experiment 3 
on�rmed, that the dseis
-sb framework

may outperform both bath and online-based state-of-the-art imbalan
ed data stream


lassi�
ation algorithms.



Chapter 5

Limited a

ess to labels

A signi�
ant problem when building 
lassi�ers based on data stream is information about

the 
orre
t label. Most algorithms assume a

ess to this information without any restri
-

tions. Unfortunately, this is not possible in pra
ti
e be
ause the obje
ts 
an 
ome very

qui
kly and labeling all of them is impossible, or we have to pay for providing the 
orre
t

label (e.g., to human expert). Hen
e, methods based on partially labeled data, in
luding

methods based on an a
tive learning approa
h, are be
oming in
reasingly popular, i.e.,

when the learning algorithm itself de
ides whi
h of the obje
ts are interesting to improve

the quality of the predi
tive model e�e
tively.

This 
hapter introdu
es the new method for a
tive learning of data stream 
lassi�er. The

BALS algorithm in based on the notion, that the 
lassi�er should re
eive - in addition

to sele
ted labeled obje
ts by the a
tive learning strategy - a pool of randomly sele
ted

obje
ts from ea
h data 
hunk.

Then, the behavior the desis
-sb framework 
ombining DES and prepro
essing for im-

balan
ed data stream 
lassi�
ation under the limited a

ess to labels s
enario is evalu-

ated. Best performing variant of desis
-sb is 
oupled with random labeling and a
tive

learning strategy in order to see what is the e�e
t of limited labeling on ensemble methods

for imbalan
ed data stream 
lassi�
ation.

153
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5.1 Budget A
tive Labeling Strategy

The problem of limited label a

ess is important due to its prevalen
e in real data. When

dealing with data streams the problem is not only the 
ost of obtaining labels but also the

speed at whi
h the data arrives, whi
h may prevent labeling the number of samples that

would allow the model to a
hieve the expe
ted 
lassi�
ation performan
e. Re
ent works

in this �eld noti
ed that in the event of rapid 
hanges, using labeling strategies only for

data 
lose to de
ision boundaries may not be enough to adapt the 
lassi�er to the new

distribution su�
iently (espe
ially in the 
ase where the 
hanges in the distributions

are very signi�
ant) [134℄. Therefore, this se
tion proposes that the 
lassi�er should

re
eive, in addition to sele
ted obje
ts labeled by the a
tive learning strategy, a pool

of randomly sele
ted instan
es from ea
h data 
hunk. This proposition is 
alled Budget

A
tive Labeling Strategy (bals).

bls

The resear
h presented in this work is based on three approa
hes to 
lassi�ers' building

on streaming data with limited labeling. The �rst of them is, hereinafter referred to as

the bls, Budget Labeling. In bls, for ea
h data 
hunk, the a
tual labels are obtained

for a �xed per
entage of randomly sele
ted samples, denoted by the budget parameter

b. This approa
h is presented in Algorithm 12. The des
ription of the fun
tions used in

the pseudo
ode is as follows:

� randomBudget() � sele
ts, a

ording to the set budget b, a �xed number of

problem instan
es randomly 
hosen from 
urrent data 
hunk DSk.

� getLabels() � obtains the real labels for previously sele
ted samples and 
on-

stru
ts a learning set LSk.

� updateClassifier() � updates the 
lassi�er Ψ with learning set LSk.

Algorithm 12 Pseudo
ode for bls

Input:

Stream = {DS1,DS2, . . . ,DSk,DSk+1, . . .} � data stream,

Ψ � 
lassi�
ation algorithm,

b � budget value.

1: for ea
h k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: Xk = randomBudget(b,DSk) ⊲ Randomly sele
t per
entage of instan
es

3: LSk = getLabels(Xk) ⊲ Get labels for the 
hosen instan
es

4: Ψ← updateClassifier(Ψ,LSk) ⊲ Update the 
lassi�er
5: end for
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als

The se
ond approa
h is a simple a
tive learning solution, further des
ribed by the als

a
ronym and presented in Algorithm 13. In the 
ase of this method, after in
rementally

training the model on the fully labeled �rst data 
hunk (steps 2 and 3), the pro
essing of

ea
h subsequent one begins with 
olle
ting the support of the existing model Ψ (whi
h

for
es the appli
ation of probabilisti
 
lassi�er) obtained for the 
urrent data 
hunk DSk.
The obje
ts are later sorted a

ording to the distan
e from the de
ision boundary, whi
h

for a binary problem means an absolute di�eren
e from the value of .5. Real labels are

obtained for obje
ts for whi
h the 
al
ulated absolute di�eren
e does not ex
eed the set

threshold t (steps 5 and 6). In the pseudo
ode, the one new fun
tion was used:

� a
tiveLearning() � sele
ts, a

ording to the set threshold t, all problem instan
es

for whi
h the distan
e from the de
ision boundary doe not ex
eed the set value.

Algorithm 13 Pseudo
ode for als

Input:

Stream = {DS1,DS2, . . . ,DSk,DSk+1, . . .} � data stream,

Ψ � 
lassi�
ation algorithm,

t � threshold value.

1: for ea
h k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: if k == 0 then
3: Ψ← updateClassifier(Ψ,DSk) ⊲ Update the 
lassi�er using whole 
hunk

4: else

5: Xk = a
tiveLearning(t,DSk) ⊲ Sele
t instan
es using a
tive learning

6: LSk = getLabels(Xk) ⊲ Get labels for the 
hosen instan
es

7: Ψ← updateClassifier(Ψ,LSk) ⊲ Update the 
lassi�er

8: end for

bals

The Budget A
tive Labeling Strategy algorithms, whi
h is the main 
ontribution of this

se
tion, 
ombines both the Budget Labeling and a
tive learning approa
hes des
ribed

in Algorithms 12 and 13. It uses an a
tive strategy, typi
al for als (step 5), but ea
h

performed a
tive sele
tion of obje
ts is supplemented by a 
ertain, predetermined random

samples pool, like in bls strategy (step 6). The proposed approa
h thus tries to in
rease

the generalization ability of the used 
lassi�
ation algorithm, by additional diversi�
ation

of samples subje
ted to labeling by an expert.

Computational and memory 
omplexity analysis

The bls algorithm uses a simple sampling without repla
ement in order to 
hoose the
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Algorithm 14 Pseudo
ode for bals

Input:

Stream = {DS1,DS2, . . . ,DSk,DSk+1, . . .} � data stream,

Ψ � 
lassi�
ation algorithm,

t � threshold value,

b � budget value.

1: for ea
h k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: if k == 0 then
3: Ψ← updateClassifier(Ψ,DSk) ⊲ Update the 
lassi�er using whole 
hunk

4: else

5: Xk = a
tiveLearning(t,DSk) ⊲ Sele
t instan
es using a
tive learning

6: Xk ← randomBudget(b,DSk) ⊲ Randomly sele
t per
entage of instan
es

7: LSk = getLabels(Xk) ⊲ Get labels for the 
hosen instan
es

8: Ψ← updateClassifier(Ψ,LSk) ⊲ Update the 
lassi�er

9: end for

random budget b of instan
es from ea
h data 
hunk DKk. This operation has the 
om-

putational 
omplexity of O(b log b). The used a
tive learning approa
h 
al
ulates ea
h

sample's distan
e from the de
ision boundary (whi
h an absolute di�eren
e of obtained

support and .5), whi
h has the 
omplexity of O(| DSk |). Then, als sorts the obje
ts

a

ording to the a
quired distan
e and uses only those, for whi
h the distan
e values

does not ex
eed the set threshold t. This operation has the 
omputational 
omplexity

of O(| DSk | log | DSk |). The proposed Budget A
tive Labeling Strategy 
ombines both

approa
hes.

5.1.1 Experimental evaluation

This subse
tion presents the motivation, goals and set-up of the performed experiments,

as well as their results.

Resear
h questions

The experiments were designed to answer the following questions:

Q1. Can a 
lassi�er that will have a quality 
omparable to the model learned on all

available obje
ts be obtained by using a small budget 
ombined with a
tive learning

for data labeling?

Q2. Will su
h a method be better in terms of the drift response time (restoration

time) and performan
e deterioration, when 
ompared to the referen
e methods for

dealing with limited labeling?
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Q3. Will the observed behavior also o

ur when dealing with imbalan
ed real data

streams?

Goals of the experiments

Experiment 1 � Balan
ed syntheti
 data streams

The main purpose of the �rst experiment is to evaluate the quality of the bals method,

when 
ompared to the mlp trained on all available data, bls, and als for the task of

balan
ed drifting data stream 
lassi�
ation.

Experiment 2 � Imbalan
ed real data streams

The main goal of the se
ond experiment is to observe the behavior of the tested methods,

when dealing with the imbalan
ed real data streams.

Experimental set-up

The analysis was based on six types of syntheti
 streams, repli
ated 10 times for sta-

bility of the a
hieved results. The detailed 
hara
teristi
s of the generated streams are

des
ribed below:

� Con
ept drift types � sudden, gradual and in
remental,

� Approa
hes to repetitive 
on
epts � re
urrent and non-re
urrent 
on
ept drift,

� Data stream size � 500 000 instan
es (1000 data 
hunks, 500 instan
es ea
h)

� Number of 
on
ept drift per stream � 9.

Additionally, during Experiment 2, the proposed method was evaluated on the 5 real

data streams des
ribed in Table 5.1.

Table 5.1: Real data streams 
hara
teristi
s.

Data stream #Samples #Features ir


ovtypeNorm-1-2vsAll 266 000 54 4

poker-lsn-1-2vsAll 360 000 10 10

INSECTS-abrupt_imbalan
ed_norm 300 000 33 19

INSECTS-gradual_imbalan
ed_norm 100 000 33 19

INSECTS-in
remental_imbalan
ed_norm 380 000 33 19

The three 
onsidered methods were implemented in 
onsisten
y with the s
ikit-learn

[187℄ api. Evaluation was based on 7 di�erent metri
s and performed a

ording to the

Test-Then-Train methodology. The details on experimental set-up are listed below:
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� Classi�
ation algorithm � in
remental mlp probabilisti
 
lassi�er with ReLu a
-

tivation fun
tion, Adam solver and one hidden layer 
onsisting of 100 arti�
ial

neurons,

� Methods' parameters:

� als � the budget of 5, 10 and 20%,

� bls � a single threshold of absolute distan
e t = .2 from the de
ision boundary,

� bals � threshold of absolute distan
e t = .2 as well as the random budget of

5, 10 and 20%,

� Evaluation metri
s:

� Experiment 1 � a

ura
y s
ore,

� Experiment 2 � ba
, F1 s
ore, Gmeans, re
all, pre
ision, and spe
i�
ity,

Experiments 
an be repli
ated a

ording to the 
ode available on the GitHub repository

1

.

Experiment 1 � Balan
ed syntheti
 data streams

The experimental studies were 
arried out for three di�erent 
on
ept drift types. Figure

5.1 presents the runs for individual approa
hes to the 
onstru
tion of the mlp-based

model for data 
ontaining sudden drifts.

As 
an be seen, the bls approa
h to non-re
urring sudden drifts is 
hara
terized by a


onstant learning 
urve that builds the model in a similar way for ea
h of the following


on
epts. The learning 
urve a
hieved has lower dynami
s than the full model (marked

with dotted lines) and in no 
ase rea
hes the maximum generalization 
apability. The

lower learning dynami
 is dire
tly 
aused by the redu
tion of the number of learning

obje
ts. Interestingly, there are no signi�
ant di�eren
es in quality between using 5, 10

or 20% of obje
ts.

For re
urrent drifts, there is a slight 
hange in the behavior of the bls approa
h. A
hiev-

ing full dis
riminative ability 
auses the model to retain information from previous 
on-


epts even after they have been 
hanged. While in the 
ase of the �rst 
on
ept drift,

whi
h introdu
es a new distribution of problem 
lasses for the �rst and only time, qual-

ity degradation o

urs in the same way as in the full model when a sudden 
hange o

urs.

In other situations, the quality redu
tion is less noti
eable. However, it does not de
rease

1

https://github.
om/w4k2/bals

https://github.com/w4k2/bals
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Figure 5.1: Exemplary results for the stream a�e
ted by a sudden 
on
ept drift.

signi�
antly in subsequent iterations of re
urrent drifts, and the other models a
hieve

higher 
lassi�
ation quality than bls relatively qui
kly ea
h time.

The most interesting observation in this 
ase is the behavior of the 
lassi�
ation approa
h

als. While in the 
ase of the �rst and se
ond 
on
epts (regardless of 
on
ept repetition)

its ability to a
hieve the full possible 
lassi�
ation a

ura
y (relative to mlp trained on a

fully labeled data 
hunk) 
an be seen, its progressive degeneration with subsequent drifts

is equally visible. In the 
ase of non-re
urring drifts, it 
orresponds with the o

urren
e

of the third 
on
ept bls and de
reases in a

ura
y over time. In the 
ase of re
urrent

drifts, this degeneration o

urs even faster due to the previously des
ribed remembering

of old 
on
epts by bls and already with the o

urren
e of the se
ond 
on
ept drift it

turns out that als is outperformed by the 
ompetitor based on a random budget.

The observation of the bals method for the �rst two 
on
epts is identi
al to the als

approa
h, and in both 
ases leads to the a
hievement of the generalization ability of

the 
lassi�er built on fully labeled data. However, it is pleasantly surprising that the
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Figure 5.2: Exemplary results for the stream a�e
ted by a gradual 
on
ept drift.

introdu
tion of even a small per
entage of random patterns sensitizes su
h a method

to the degenera
y of subsequent drifts typi
al of bls. The di�eren
e between the two

standard approa
hes (bls and als) and the 
ombined approa
h is not just a simple

improvement in 
lassi�
ation a

ura
y. It 
an be seen that by introdu
ing randomly

sele
ted patterns, the bals method a
hieves the full possible 
lassi�
ation a

ura
y every

time (albeit sometimes with de
reasing dynami
s).

The proportional to learning time degeneration of the als approa
h is probably due to

the in
reasing 
ertainty of the predi
tions made, in the 
ase of analysis of the supports

a
hieved, whi
h means their strong polarization, and thus a gradual, rapid redu
tion

of the number of obje
ts lo
ated near the de
ision boundary. This means that the

solution based on support thresholding � over time � assigns fewer and fewer obje
ts

as potentially useful for labeling. The phenomenon of this polarization is redu
ed by

introdu
ing seemingly di�erent patterns for the built re
ognition model, modifying the
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Figure 5.3: Exemplary results for the stream a�e
ted by an in
remental 
on
ept drift.

statisti
al distribution of obtained support, whi
h is a dire
t result from the new 
on
ept

signaling itself for a need for in
reased learning rate.

Interestingly, the per
entage of random patterns added to the a
tive labeling model

does not appear to have a signi�
ant impa
t on 
lassi�
ation a

ura
y or learning 
urve

dynami
s. Even a small number of su
h obje
ts (5%) 
auses bals to no longer exhibit

the degenerative tenden
ies of the pure als model.

The observations made for sudden drifts, in
luding both approa
hes to drift re
urren
e,


an be dire
tly applied to those made for gradual (Figure 5.2) and in
remental drifts

(Figure 5.3). The dynami
s of the 
on
ept 
hanges themselves do not seem to have mu
h

in�uen
e on the relationships between the analyzed algorithms, so the 
on
lusions made

for sudden drift 
an be easily generalized for all problems 
onsidered in the resear
h.
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Experiment 2 � Imbalan
ed real data streams

Figure 5.4 shows the behavior of the proposed mlp model 
onstru
tion approa
hes when


lassifying real imbalan
ed data streams. The radar diagrams show the average values

of all six analyzed metri
s, while the runs are presented for the Gmeans.

In the 
ase of the CovType stream, whi
h has the lowest imbalan
e ratio of all the real

data streams analyzed, there are 
lear - although of unde�ned type - 
on
ept drifts. The

bls method a
hieves the generalization 
apa
ity of the full model, but the learning 
urve

has lower dynami
s than in the 
ase of a

ess to the full training set, whi
h is again due to

the lower number of patterns used in the training pro
ess. bls also shows a greater, but

delayed in relation to the full model, de
rease in generalization ability when the 
on
ept

drift o

urs (degrading to the level of a random 
lassi�er), whi
h may be due to the

o

urren
e of drift in prior 
lass probabilities and a temporary in
rease in the imbalan
e

ratio. When rebuilding the model, the bls a
hieves a generation ability 
lose to that

of the full model, whi
h in
reases with the per
entage of budget used. The mlp model

trained with the use of als performs by far the worst, remaining for most of the data

stream at the level of the random 
lassi�er. Only in the vi
inity of 
hunk 180 does the

learning 
urve begin to be visible, whi
h leads to the a
hieved generalization ability being


lose to the full model. It may be 
aused by too high 
ertainty of the predi
tion, whi
h

translates into the la
k of instan
es lo
ated within a �xed distan
e from the de
ision

boundary. The proposed bals approa
h, 
ombining als with a random budget, allows

to a
hieve full generalization 
apa
ity faster than in the 
ase of bls, but in the event

of 
on
ept drift it shows a faster redu
tion in performan
e. Re
onstru
tion after drift

o

urren
e in the 
ase of BALS is slower than in the 
ase of bls, however, a higher value

of the examined metri
s is a
hieved.

In the 
ase of the Poker stream, whi
h exhibits a higher imbalan
e ratio of 10, the bls - as

expe
ted - has the lowest ability to dete
t the minority 
lass. This is due to the fa
t that

mainly the majority 
lass instan
es are drawn to the budget. The model trained with the

use of als, despite a poor start and remaining at the level of the random 
lassi�er during

the �rst 150 data 
hunks, at a later stage of the stream a
hieves the generalization ability

ex
eeding that a
hieved by the full model. It is 
aused by 
hanges in the support spa
e,

whi
h lead to an in
rease in the number of problem samples o

urring at a set distan
e

from the de
ision boundary. The use of the bals strategy allows the observation of

behavior identi
al to that displayed when dealing with syntheti
 balan
ed data streams.

In the �rst half of the stream, the model trained using the bals approa
h, as opposed

to bls and als, performs above the random 
lassi�er level, and in the se
ond half, it

a
hieves the generalizing ability that ex
eeds that of the full model.
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Figure 5.4: Results for real imbalan
ed data streams.
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In the 
ase of INSECT data streams, whi
h present by far the most di�
ult problems and

the highest imbalan
e ratio, the mlp models in 
ombination with the proposed labeling

strategies are not able to 
ope with the 
lassi�
ation task. The models' performan
e only

ex
eeds that of the random 
lassi�er at the beginning of all three streams, whi
h may

be due to a drift in prior probabilities and a lower imbalan
e ratio in the �rst twenty-

�ve data 
hunks. In the further part of the streams, the limitation of the training set

size makes it impossible to a
hieve the generalization ability above that of the random


lassi�er.

Observations

The bals outperforms als algorithm due to the use of an additional fra
tion of la-

beled instan
es. However, its size was very small 
ompared to the fra
tion of obje
ts

sele
ted a

ording to the a
tive learning rule. Additionally, in
reasing its number does

not signi�
antly improve the quality of the proposed method.

It is obvious that the proposed model obtained slightly worse results 
ompared to the


lassi�er based on a fully labeled learning set, but the time needed to rea
h the same

performan
e is very short.

Answers to resear
h questions

Q1. Can a 
lassi�er that will have a quality 
omparable to the model learned on all

available obje
ts be obtained by using a small budget 
ombined with a
tive learning

for data labeling?

A1. Performed experiments 
on�rmed, that the balsmethod � 
ombining both random

and a
tive labeling � is 
apable of obtaining a generalization ability at the level of

full model.

Q2. Will su
h a method be better in terms of the drift response time (restoration

time) and performan
e deterioration, when 
ompared to the referen
e methods for

dealing with limited labeling?

A2. The obtained results 
on�rmed, that the model trained using bals approa
h may

display better restoration time as well as less performan
e deterioration than bls

or als when dealing with 
on
ept drift.

Q3. Will the observed behavior also o

ur when dealing with imbalan
ed real data

streams?
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A3. The 
ondu
ted experiments proved, that the bals method 
an be su

essfully used

in the 
ase of relatively highly imbalan
ed data streams, even without the use of

additional data prepro
essing.

5.2 desis
-sb framework under limited labels s
enario

This se
tion fo
uses on extending the desis
-sb imbalan
ed data stream 
lassi�
ation

framework with an a
tive learning module. This is to asses the 
ompatibility of the

proposed bat
h approa
h with a
tive labeling methods and to evaluate its behavior,


ompared to a single MLP 
lassi�er, when dealing with restri
ted a

ess to labels. The

s
hema of the expanded framework is presented in the Figure 5.5.
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1.5.A
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Π
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ΠDk
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Figure 5.5: The framework extended with the a
tive learning module for training base 
lassi�ers and

to prepare a dsel for dynami
 sele
tion pro
ess. Here, Tk is the training data produ
ed by prepro
essing

(Prepro
) data 
hunk DSk and Ψk is the base 
lassi�er trained on the kth data 
hunk. E denotes the


lassi�er pool.

The algorithms des
ribed in Se
tion 5.1 will be reused as labeling methods. The �rst

is Budget Labeling (bls) whi
h trains ea
h new base 
lassi�er on a �xed per
entage of

randomly sele
ted problem instan
es from the 
urrent 
hunk (Algorithm 15). The se
ond

method is the als that has been modi�ed. As before, this algorithm sele
ts patterns
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that are within a 
ertain distan
e from the problem's de
ision boundary de�ned by the

threshold t, but this time it 
an also be given the budget b, whi
h de�nes the per
entage

of these patterns we want to label. als pseudo
ode is presented in Algorithm 16.

As the framework is supposed to work with highly imbalan
ed problems, another modi-

�
ation has been made to labeling methods. If all the labeled instan
es 
ome from the

same 
lass, a new model is not added to the 
lassi�er pool.

Algorithm 15 Pseudo
ode for bls

Input:

Stream = {DS1,DS2, . . . ,DSk,DSk+1, . . .} � data stream,

Ψ � 
lassi�
ation algorithm,

b � budget value.

1: for ea
h k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: Xk = randomBudget(b,DSk) ⊲ Randomly sele
t per
entage of instan
es

3: LSk = getLabels(Xk) ⊲ Get labels for the 
hosen instan
es

4: Ψ← updateClassifier(Ψ,LSk) ⊲ Update the 
lassi�er
5: end for

Algorithm 16 Pseudo
ode for the modi�ed als

Input:

Stream = {DS1,DS2, . . . ,DSk,DSk+1, . . .} � data stream,

Ψ � 
lassi�
ation algorithm,

t � threshold,

b � budget.

1: for ea
h k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: if k == 0 then
3: Ψ← updateClassifier(Ψ,DSk) ⊲ Update the 
lassi�er using whole 
hunk

4: else

5: Xk = a
tiveLearning(t, b,DSk) ⊲ Sele
t instan
es using a
tive learning

6: LSk = getLabels(Xk)
7: Ψ← updateClassifier(Ψ,LSk) ⊲ Update the 
lassi�er

8: end for

Computational and memory 
omplexity analysis

The 
omputational 
omplexity of desis
-sb framework is based on the Dynami
 Ensem-

ble Sele
tion methods of as well as on prepro
essing te
hniques. The key fa
tors a�e
ting

the 
omputational 
omplexity of the presented approa
hes are, respe
tively, the number

of models in the 
lassi�er pool for Dynami
 Sele
tion algorithms and the number of

problem instan
es in a single data 
hunk in the 
ase of prepro
essing te
hniques.

Based on preliminary observations, it was established that the knora-u has a linear time


omplexity of O(n) depending on the number of base 
lassi�ers in the pool. The ros

prepro
essing te
hnique has the logarithmi
 
omplexity of O(log n. Strati�ed Bagging
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performs sampling with repla
ement for ea
h 
lass with 
omputational 
omplexity of

O(| i | n), where | i | is the 
ardinality of the ith 
lass and n denotes the number of

bootstraps (number of base models in bagging 
lassi�er) [79℄.

The bls algorithm uses a simple sampling without repla
ement in order to 
hoose the

random budget b of instan
es from ea
h data 
hunk DKk. This operation has the 
om-

putational 
omplexity of O(b log b). The used a
tive learning approa
h 
al
ulates ea
h

sample's distan
e from the de
ision boundary (whi
h an absolute di�eren
e of obtained

support and .5), whi
h has the 
omplexity of O(| DSk |). Then, als sorts the obje
ts

a

ording to the a
quired distan
e and uses only those, for whi
h the distan
e values

does not ex
eed the set threshold t. This operation has the 
omputational 
omplexity of

O(| DSk | log | DSk |).

5.2.1 Experimental evaluation

Here, the motivation, goals and set-up of the performed experiments are presented.

Resear
h questions

The experiments were designed to answer the following questions:

Q1. Is the bat
h-based desis
-sb framework for imbalan
ed data stream 
lassi�
ation,

introdu
ed in Se
tion 4.2, 
ompatible with a
tive learning methods?

Q2. Is it possible to 
ontrol the metri
 values obtained in the task of imbalan
ed data

stream 
lassi�
ation by parametrization of the threshold t in the als method?

Goals of the experiments

Experiment 1 � The impa
t of a
tive learning on the dseis
-sb framework

The aim of the �rst experiment is to see how the use of a data labeling strategy a�e
ts

the results a
hieved by the proposed framework.

Experiment 2 � The impa
t of the als distan
e threshold on the values of evaluation

metri
s

The aim of the se
ond experiment is to 
he
k whether the obtained metri
 values 
an

be 
ontrolled by 
hanging the distan
e from the de
ision boundary on the basis of whi
h

the als sele
ts patterns for labeling.
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Experimental set-up

The analysis was based on six types of syntheti
 streams, repli
ated 10 times for sta-

bility of the a
hieved results. The detailed 
hara
teristi
s of the generated streams are

des
ribed below:

� Con
ept drift types � sudden, gradual and in
remental,

� Approa
hes to repetitive 
on
epts � re
urrent and non-re
urrent 
on
ept drift,

� Data stream size � 50 000 instan
es (200 data 
hunks, 250 instan
es ea
h)

� Number of 
on
ept drift per stream � 9,

� Global label noise � 5%,

� Imbalan
e Ratio � 19.

Additionally, experiments were 
arried out on 5 real data streams, the 
hara
teristi
s of

whi
h are presented in the table 5.2.

Table 5.2: Real data streams 
hara
teristi
s.

Data stream #Samples #Features ir


ovtypeNorm-1-2vsAll 266 000 54 4

poker-lsn-1-2vsAll 360 000 10 10

INSECTS-abrupt_imbalan
ed_norm 300 000 33 19

INSECTS-gradual_imbalan
ed_norm 100 000 33 19

INSECTS-in
remental_imbalan
ed_norm 380 000 33 19

The experimental evaluation was 
arried out in a

ordan
e with the Test-Then-Train

methodology. The desis
-sb framework presented in se
tion 4.2.2 was 
hosen as the


lassi�er. Its parameters (i.e. dynami
 sele
tion method and prepro
essing te
hnique)

were sele
ted based on the results of the experiments performed in se
tion 4.2.3.2 and

are listed below:

� Base 
lassi�er � Naïve Bayes Classi�er,

� Dynami
 Ensemble Sele
tion � knora-u at the level of bagging 
lassi�ers,

� Data prepro
essing � Random Oversampling,

� Fixed 
lassi�er pool size � 5 bagging 
lassi�ers, 10 base 
lassi�ers ea
h (50 models

in total).
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Comparative methods:

� Whole - model updated using all available data,

� bls-15 - 15% of random budget,

� als-15 - 15% of instan
es 
loses to the de
ision boundary,

� als - all instan
es within distan
e of 0.2 from the de
ision boundary.

The methods' parameters were sele
ted based on the experien
e gained during resear
h

on the bals algorithm and also taking into a

ount the bat
h approa
h and base 
lassi�er

used.

Experiment 1 � The impa
t of a
tive learning on the dseis
-sb framework

Figure 5.6 shows the results of using the proposed framework in the 
ase of sudden


on
ept drifts o

urren
e. The �rst thing that stands out is that the bls-15 result is

similar to that of the random 
lassi�er. This is due to the high imbalan
e ratio (5% of

minority 
lass) in the data stream. Be
ause of that bls sele
ts only instan
es belonging

to the majority 
lass and the new model is not added to the pool. At the same time, we


an see that both als-15 and als are doing relatively well. Both in the 
ase of re
urring

and non-re
urring drift, als is better at identifying the minority 
lass, due to the la
k

of a set budget. Thanks to this, it maintains a high generalization 
apa
ity and in some


ases is able to perform similarly to the model learned on all available data.

Figure 5.7 shows the results obtained in the 
ase of gradual drift, 
hara
terized by slower

dynami
s of 
hange and the o

urren
e of instan
es from both 
on
epts at the same

time. In this 
ase, for non-re
urring drift, we 
an observe a progressive deterioration of

the generalizing ability of als. This may be due to a small number of instan
es lo
ated

within a given distan
e from the de
ision boundary, whi
h in turn leads to under�tting

in the fa
e of a 
onstant 
on
ept 
hange. On the other hand, in the 
ase of re
urring

gradual drift, the als and als-15 remain on a similar level, be
ause the ensemble always

in
ludes models that remember the old 
on
ept.

In the 
ase of the of in
remental drift o

urren
e (Figure 5.8) the observations are similar

to those regarding the gradual 
on
ept drift. The di�eren
e is that whether the drift is

re
urring or non-re
urring, the als-15 and als methods a
hieve nearly identi
al results.

This may be the result of more instan
es available to als as one 
on
ept blends seamlessly

into another.

Figure 5.9 shows the results of 
ombining the desis
-sb framework with a
tive learning

methods in a 
lassi�
ation task of �ve real imbalan
ed data streams. Radar 
harts show
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Figure 5.6: Results for sudden drift.

values of six metri
s averaged over the entire length of the stream, while the runs are

shown for the Gmeans metri
. Due to the use of the bat
h-based data stream 
lassi�
a-

tion approa
h and the gnb 
lassi�er as the base model, it was de
ided to abandon the

bls approa
h, whi
h in this 
ase would remain at the level of the random 
lassi�er.

In the 
ase of the CovType stream, the als-15 approa
h - sele
ting 15% of the instan
es


losest to the problem's de
ision boundary - a
hieves a generalization ability worse than

the full model. At the same time, however, the sele
tion based on the distan
e to de
ision

boundary allows for the sele
tion of instan
es belonging to both 
lasses for later data

prepro
essing, and the lower performan
e is a dire
t result of the smaller training set

size. Interestingly, the model learning with the use of als almost immediately drops to

the level of a random 
lassi�er and stays there along the entire length of the stream.

This may be due to the support spa
e distribution, in whi
h, due to the high 
ertainty of
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Figure 5.7: Results for gradual drift.

the model used, there are no instan
es lying within a de�ned distan
e from the de
ision

boundary.

For the slightly more di�
ult Poker stream, both the als and als-15 methods show

similar behavior. als-15 
an a
hieve generalization 
apa
ity 
lose to the full model but

also shows greater model degradation when 
on
ept drifts o

ur. The als approa
h is

more stable, whi
h is due to the 
olle
tion of more training patterns in the event of


on
ept drift, as the labeling limitation with this method does not 
on
ern the number

of patterns, but only the distan
e to the de
ision boundary.

The observations related to the 
lassi�
ation of INSECTS streams, presenting three de-

�ned types of 
on
ept drift, are parti
ularly interesting. In the 
ase of sudden drift, the

model learned using the als approa
h a
hieves the generalization ability at the level of

the full model. It may be 
aused by low 
lassi�
ation 
ertainty, and thus a large number

of patterns lo
ated at a given distan
e from the de
ision boundary. The model using
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Figure 5.8: Results for in
remental drift.

the als-15 approa
h a
hieves slightly lower results than als, whi
h is a dire
t result of

the smaller number of training patterns available. In the 
ase of gradual drift, all three

approa
hes have very similar performan
e. This is due to the drift 
hara
teristi
s and

proves that only a small number of instan
es 
losest to the de
ision limit is su�
ient

for building a useful model. When dealing with in
remental 
on
ept drift, the model

learned using the als-15 approa
h displays a 
orrespondingly lower generalization 
a-

pa
ity, resulting from the smaller number of patterns used for updating the 
lassi�er. At

the same time, however, this model is relatively stable 
ompared to the 
lassi�er trained

using the als method, whi
h demonstrates greater degeneration in the event of 
on
ept

drift o

urren
e. This is due to the 
hanges in the support spa
e and the la
k of patterns

that 
an be used during the training pro
ess.
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Figure 5.9: Results of the MDE 
omparison with referen
e methods for real data streams.



Chapter 5. Limited a

ess to labels 174

Experiment 2 � The impa
t of the als distan
e threshold on the values of

evaluation metri
s

Figure 5.10 shows the averaged results of the evaluation metri
s for ea
h type of 
on
ept

drift, depending on the value of threshold t. Additionally, the X-axis shows the average

per
entage of instan
es used in the training pro
ess, and the right Y-axis shows the

metri
 values a
hieved by the model trained on the entire available data.

Regardless of the type of drift and whether it is re
urring or non-re
urring, we 
an

observe more or less the same dependen
ies for ea
h of the evaluation metri
s. The

value of spe
i�
ity, whi
h is responsible for the ability to re
ognize the majority 
lass,

de
reases with an in
rease in the number of used samples, whi
h in turn 
auses an in
rease

in the value of re
all. This is a typi
al phenomenon in the problem of imbalan
ed data


lassi�
ation as the two metri
s are 
losely related.

Espe
ially interesting is the behavior of pre
ision metri
, whi
h in
reases until the value

of t is approximately .20 or .25 and then starts to de
line. This is a sign that model

started to prefer the minority 
lass.

The values of aggregated metri
s, i.e. ba
, Gmeans, and F1 s
ore, result dire
tly from

the values of the base metri
s. Balan
ed A

ura
y s
ore and Gmeans note a 
ontinuous

in
rease that slows signi�
antly when t a
hieves the value of 0.25 or 0.3. At the same

time, the F1 s
ore usually rea
hes its highest value due to the signi�
ant in
rease in

pre
ision.

Observations

Based on the results obtained, it 
an be 
on
luded that the proposed bat
h-based frame-

work for imbalan
ed data stream 
lassi�
ation is 
ompatible with a
tive learning meth-

ods. als works espe
ially well in the 
ase of sudden drift, where about 25% of the

instan
es 
losest to the de
ision boundary are su�
ient to a
hieve results similar to the

model trained using all instan
es of the problem.

Resear
h on real data streams has shown that the als approa
h - using all patterns

within a given distan
e from the problem's de
ision boundary - 
annot be used in its


urrent form for every data stream. This is due to the high sensitivity of the method

to the distribution of patterns in the support spa
e, whi
h, if the 
lassi�
ation is too


ertain, leads to the la
k of patterns that 
an be used in the model training pro
ess. To

deal with this problem, threshold t should not be set as a �xed parameter, but rather

optimized for ea
h data 
hunk, to ensure that models using this approa
h always get a

training set 
ontaining patterns useful in the training pro
ess.
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Figure 5.10: Average metri
 values in relation to the set threshold t.

Answers to resear
h questions

Q1. Is the bat
h-based desis
-sb framework for imbalan
ed data stream 
lassi�
ation,

introdu
ed in Se
tion 4.2, 
ompatible with a
tive learning methods?

A1. Obtained results 
on�rmed, that the desis
-sb bat
h-based framework for imbal-

an
ed data stream 
lassi�
ation is 
ompatible with a
tive learning approa
hes.

Q2. Is it possible to 
ontrol the metri
 values obtained in the task of imbalan
ed data

stream 
lassi�
ation by parametrization of the threshold t in the als method?

A2. Based on the 
ondu
ted experiments, it 
an be 
on
luded that by appropriate

parametrization of the als method, it is possible to optimize the pre
ision metri
.





Chapter 6

Con
lusions and Future Works

This thesis fo
used on the use of dynami
 ensemble sele
tion methods and data prepro-


essing te
hniques in the problem of streaming and imbalan
ed data 
lassi�
ation. This

work showed the potential of 
lassi�er sele
tion methods to deal with 
lass imbalan
e, but

also, most of all, proposed new e�e
tive solutions to the problem of highly imbalan
ed

data stream 
lassi�
ation, up to this point rarely dis
ussed in the literature. The stated

hypothesis � that there exist su
h methods employing data prepro
essing and 
lassi�er

sele
tion that 
an outperform state-of-the-art 
lassi�ers for di�
ult data 
lassi�
ation

tasks � seems to be proven by a
hieving the following goals:

1. Developing an ensemble sele
tion algorithm for imbalan
ed data 
lassi�-


ation, as well as designing a dedi
ated 
ombination rule.

This goal was met by developing three algorithms based on the 
lustering of models in

a one-dimensional spa
e of 
lassi�er diversity. The 
lustering spa
e was based on the

proposed H measure, whi
h informs about the impa
t of individual 
lassi�ers on the

diversity a
hieved by the entire ensemble.

The Diversity Ensemble Pruning (dep) algorithm groups the base models in the diver-

sity spa
e and then evaluates them in terms of balan
ed a

ura
y. The pruned ensemble


onsists of the 
lassi�ers with the highest ba
 in ea
h 
luster. The Two-step major-

ity voting organization (tsmv) algorithm 
lassi�es imbalan
ed data using the two-step

voting stru
ture, instead of pruning the ensemble. In the �rst stage of voting, ea
h 
lus-

ter is treated as a separate 
lassi�er pool, whi
h independently makes a de
ision based

on the majority voting. In the se
ond step, the majority voting pro
edure is repeated,


ombining the de
isions obtained by the individual 
lusters. The Random Sampling Mul-

tistage Organization (rsmo) algorithm, whi
h is a modi�
ation of tsvm, additionally

177
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uses sampling with repla
ement to redu
e the number of similar 
lassi�ers used in the

de
ision-making pro
ess.

The 
omputer experiments on imbalan
ed data, as well as statisti
al analysis 
on�rmed

the usefulness of the proposed pruning method and showing it's potential for in
reasing

the ensemble's ability do dete
t the minority 
lass.

The �rst proposition of ensemble methods based on 
lustering in diversity spa
e was

published in [281℄. The proposals were then extended in [283℄ and evaluated for the

imbalan
ed data 
lassi�
ation in [276℄.

2. Proposing a novel distan
e-based Dynami
 Ensemble Sele
tion method

for imbalan
ed data 
lassi�
ation.

This goal has been a
hieved by proposing a novel solution based on dynami
 
lassi�er se-

le
tion for imbalan
ed data 
lassi�
ation problem. Two methods were proposed, namely

dese and desire, whi
h use the Eu
lidean distan
e and Imbalan
e Ratio in the train-

ing set to sele
t the most appropriate model for the 
lassi�
ation of ea
h new sample.

Resear
h 
ondu
ted on ben
hmark datasets and statisti
al analysis 
on�rmed the use-

fulness of proposed methods, espe
ially when there is a need to maintain a relatively low

number of 
lassi�ers.

The propositions of dese and desire were �rst published in [282℄.

3. Developing a 
hunk-based ensemble algorithm, aimed spe
i�
ally for the

task of highly imbalan
ed data stream 
lassi�
ation.

This goal was met by proposing a novel, Minority Driven Ensemble method for a 
hal-

lenging task of imbalan
ed data stream 
lassi�
ation. mde employs dynami
 
lassi�er

sele
tion approa
h to exploit lo
al data 
hara
teristi
s. The 
omputer experiments 
on-

�rmed the usefulness of the proposed method and on the basis of a thorough statisti
al

analysis.

The proposition of mde was �rst published in [277℄.

4. Designing a novel framework 
ombining Dynami
 Ensemble Sele
tion and

prepro
essing te
hniques for imbalan
ed data stream 
lassi�
ation.

A novel desis
 framework 
ombining Dynami
 Ensemble Sele
tion and prepro
essing

te
hniques (both oversampling and undersampling) was proposed for the task of highly

imbalan
ed data streams. The extended version of this approa
h, named desis
-sb, is

based on using bagging 
lassi�ers diversi�ed using strati�ed bagging, whi
h performs sam-

pling with repla
ement separately from the minority and majority 
lass. The resear
h



Chapter 6. Con
lusions and Future Works 179


ondu
ted on two dynami
 sele
tion methods (in two variants) and four prepro
ess-

ing te
hniques 
on�rmed the e�e
tiveness of the proposed solution and highlighted its

strengths in 
omparison with state-of-art methods. The proposed framework, 
ompared

to the referen
e methods, was 
hara
terized by balan
ed performan
e in terms of all eval-

uation metri
s whi
h was stable regardless of the imbalan
e ratio or 
on
ept drift type.

Thus, the validity of using the Dynami
 Classi�er Sele
tion methods to 
lassify drift-

ing imbalan
ed data streams was 
on�rmed. The obtained results are showing the way

for further resear
h on employing lo
al 
lassi�er 
ompeten
es for di�
ult data stream


lassi�
ation.

The �rst proposition of desis
 framework was published in [280℄. The extended desis
-

sb framework was proposed in [284℄.

5. Proposing a strategy for learning from drifting data stream under limited

a

ess to labels s
enario.

The modi�
ation of the a
tive learning method dedi
ated to non-stationary data stream


lassi�ers was introdu
ed. The proposed bals algorithm, in addition to the pool of ob-

je
ts sele
ted for labeling (a

ording to the rule that obje
ts 
lose to de
ision boundaries

have a large impa
t on model modi�
ation), also re
eived a small number of randomly

sele
ted obje
ts from among the other instan
es belonging to an analyzed data 
hunk.

This approa
h 
aused the 
lassi�er to stabilize faster after the 
on
ept drift than bls or

als. Also, the deterioration of bals quality is lower than the referen
e algorithms.

The proposition of bals was �rst published in [278℄.

6. Evaluating the behavior of the previously proposed data stream 
lassi�
a-

tion framework, taking into a

ount the limitation in the label a

ess.

This goal was a
hieved by 
ombining the proposed framework with the a
tive learn-

ing method based on sele
ting patterns lo
ated at a 
ertain distan
e from the de
ision

boundary. The 
ondu
ted resear
h 
on�rmed the usefulness of the framework under a

high imbalan
e ratio and limited a

ess to labels.

7. Condu
ting an experimental evaluation of the proposed methods in 
om-

parison to state-of-the-art approa
hes.

8. Developing a Python Ma
hine Learning library for di�
ult data stream

analysis.

These goals were a
hieved by designing an experimental environment for stati
 
lassi�-


ation problems (For Chapter 3), as well as by designing the stream-learn pa
kage for
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di�
ult data stream 
lassi�
ation whi
h was used to 
ondu
t all experiments presented

in Chapters 4 and 5.

The stream-learn pa
kage has already been tested in the resear
h pro
ess of preparing

several s
ienti�
 arti
les, and it is an ideal tool for users who 
are about the simpli
ity of

pro
essing, ease of the use and integration with the s
ikit-learn ma
hine learning library.

The arti
le des
ribing pa
kage 
ontents is available on arXiv [141℄.

Future works

The ideas presented in this thesis may be potentially developed in the following dire
tions:

� Future resear
h on 
lustering-based methods for ensemble pruning may in
lude ex-

ploring the di�erent ways of 
al
ulating the proposed H measure (in
luding both

deterministi
 and non-deterministi
 variants) and, in 
ase of multistage organiza-

tion methods, employing di�erent types of voting (e.g. weighted majority voting).

It would be useful to also 
onsider ways of dealing with ties during the voting pro-


ess and, possibly, investigate the e�e
ts of data dimensionality on the performan
e

of the proposed algorithms.

� Future work on distan
e-based des may involve the exploration of di�erent ap-

proa
hes to the base 
lassi�ers' weighting, as well as using di�erent 
ombination

methods and the use of proposed methods for the imbalan
ed data stream 
lassi-

�
ation.

� The mde algorithm 
an be extended for other types of base 
lassi�ers, e.g. by

taking into a

ount the threshold for the minority 
lass supports returned by ea
h

of the models in the ensemble.

� Further resear
h regarding desis
 and desis
-sb frameworks for imbalan
ed data

stream 
lassi�
ation may in
lude problems with multiple 
on
ept drifts. A 
om-

prehensive analysis employing measures used to evaluate the behavior of methods

during 
on
ept drift o

urren
e, their extension for many 
on
ept drifts in a sin-

gle the data stream, and their statisti
al analysis. It is also possible to extend

the resear
h to other methods of Dynami
 Ensemble Sele
tion and prepro
essing

te
hniques, as well as to adapt our proposition to the multi-
lass 
lassi�
ation task.

� Employing the bals method for another 
lassi�
ation models and 
lassi�er ensem-

bles, as well as using the information on the 
on
ept drift rapidness to establish the

proportion between the number of obje
ts labeled by a
tive learning and random


hoosing.
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� Condu
ting a broader experimental evaluation of the proposed framework for the

imbalan
e data stream 
lassi�
ation under a s
enario of restri
ted a

ess to labels.

Publi
ations

The sele
ted parts of the thesis have been already published in:

� Paweª Zyblewski, Robert Sabourin, and Mi
haª Wo¹niak. Prepro
essed dynami



lassi�er ensemble sele
tion for highly imbalan
ed drifted data streams. Informa-

tion Fusion, 66:138 � 154, 2021 (if: 13.669, mnisw: 200)

� Paweª Zyblewski and Mi
haª Wo¹niak. Novel 
lustering-based pruning algorithms.

Pattern Analysis and Appli
ations, pages 1�10, 2020 (if: 1.512, mnisw: 70)

� Paweª Zyblewski, Robert Sabourin, and Mi
haª Wo¹niak. Data prepro
essing and

dynami
 ensemble sele
tion for imbalan
ed data stream 
lassi�
ation. In Ma-


hine Learning and Knowledge Dis
overy in Databases, pages 367�379, Cham, 2020.

Springer International Publishing (
ore: a, mnisw: 140)

� Paweª Zyblewski and Mi
haª Wo¹niak. Dynami
 
lassi�er sele
tion for data with

skewed 
lass distribution using imbalan
e ratio and eu
lidean distan
e. In Inter-

national Conferen
e on Computational S
ien
e, pages 59�73. Springer, 2020

(
ore: a, mnisw: 140)

� Paweª Zyblewski. Clustering-based ensemble pruning in the imbalan
ed data 
lassi-

�
ation. In International Conferen
e on Computational S
ien
e. Springer, 2021 [a
-


epted for publi
ation℄ (
ore: a, mnisw: 140)

� Paweª Zyblewski, Paweª Ksieniewi
z, and Mi
haª Wo¹niak. Classi�er sele
tion for

highly imbalan
ed data streams with minority driven ensemble. In Arti�
ial In-

telligen
e and Soft Computing, pages 626�635, Cham, 2019. Springer International

Publishing (
ore: National, mnisw: 20)

� Paweª Zyblewski, Paweª Ksieniewi
z, and Mi
haª Wo¹niak. Combination of a
tive

and random labeling strategy in the non-stationary data stream 
lassi�
ation. In

International Conferen
e on Arti�
ial Intelligen
e and Soft Computing, pages 576�

585. Springer, 2020 (
ore: National, mnisw: 20)

� Paweª Zyblewski and Mi
haª Wo¹niak. Clustering-based ensemble pruning and

multistage organization using diversity. In International Conferen
e on Hybrid

Arti�
ial Intelligen
e Systems, pages 287�298. Springer, 2019

(
ore: National, mnisw: 20)
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� Paweª Ksieniewi
z and Paweª Zyblewski. stream-learn�open-sour
e python library

for di�
ult data stream bat
h analysis. arXiv preprint arXiv:2001.11077, 2020

During the work on the thesis I have also 
oauthored other resear
h:

� P. Ksieniewi
z, P. Zyblewski, M. Chora±, R. Kozik, A. Gieª
zyk, and M. Wo¹niak.

Fake news dete
tion from data streams. In 2020 International Joint Conferen
e on

Neural Networks (IJCNN), pages 1�8, 2020 (
ore: a, mnisw: 140)

� Dominika Suªot, Paweª Zyblewski, and Paweª Ksieniewi
z. Analysis of varian
e

appli
ation in the 
onstru
tion of 
lassi�er ensemble based on optimal feature sub-

set for the task of supporting glau
oma diagnosis. In International Conferen
e on

Computational S
ien
e. Springer, 2021 [a

epted for publi
ation℄

(
ore: a, mnisw: 140)

� Paweª Zyblewski, Marek Pawli
ki, Rafaª Kozik, and Mi
haª Choras. Cyber-atta
k

dete
tion from iot ben
hmark 
onsidered as data streams. In International Con-

feren
e on Computer Re
ognition Systems, 2021 [a

epted for publi
ation℄

Additionally, at the time of 
ompleting this thesis, the following arti
les are undergoing

the review pro
ess:

� Paweª Ksieniewi
z, Paweª Zyblewski, and Robert Burduk. Fusion of linear base


lassi�ers in geometri
 spa
e. Knowledge-Based Systems, 2021

� Paweª Ksieniewi
z, Paweª Zyblewski, Weronika Borek, Rafaª Kozik, Mi
haª Choras,

and Mi
haª Wozniak. Alphabet �atting as a variant of n-gram feature extra
tion

method in ensemble 
lassi�
ation of fake news. Engineering Appli
ations of Arti-

�
ial Intelligen
e, 2021

� Paweª Ksieniewi
z and Paweª Zyblewski. stream-learn�open-sour
e python library

for di�
ult data stream bat
h analysis. Neuro
omputing, 2021

� Joanna Komorni
zak, Paweª Zyblewski, and Paweª Ksieniewi
z. Prior probability

estimation in dynami
ally imbalan
ed data streams. In The International Joint

Conferen
e on Neural Networks, 2021

The resear
h presented in this thesis was supported by the Polish National S
ien
e Centre

under the grant No. 2017/27/B/ST6/01325.
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