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1. Introduction 

Statistical problems related to modelling and the study of spatial data have recently 

been of great interest in the field of statistics. 

The importance of this research topic is motivated by the growth in the number of 

concrete problems for which data are collected in a spatial order. Such problems are 

encountered in many fields such as epidemiology, econometrics, environmental and 

earth sciences, agronomy, imaging, etc. In nonparametric statistics, the modelling of 

spatial data is relatively recent compared to the parametric case. Indeed, the first results 

were obtained by Tran (1990), while the most recent references include those of Dabo-

-Niang and Yao (2007), Carbon, Francq and Tran, (2007) and Li and Tran (2009). 
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The objective of this work was to study the nonparametric estimation of the cdf 

function when the observations are both spatially dependent and the covariable is in 

a space of a semi-metric infinite dimension with the k Nearest Neighbour method 

(kNN). The estimation of the cdf function plays a very important role in statistics. 

Indeed, it is used in risk analysis and for the study of survival phenomena in many 

fields such as (medicine, geophysics, reliability, etc. …). 

For spatial dependency, nonparametric approaches were also investigated, e.g. we 

cite the work of Li and Tran (2007): the latter obtained, in a spatial context, the 

asymptotic normality of a kernel estimator of the cdf function. Lu and Chen (2004) 

and Biau and Cadre (2004) investigated the non-parametric spatial regression problem, 

using the Nadaraya-Watson weights to create a kernel estimator and establish the weak 

convergence and asymptotic distribution. Carbon, Francq and Tran (2007) investigated 

the non-parametric auto-regression model in a prediction context on random fields. 

The spatial non-parametric regression was examined by Li and Tran (2009) who 

demonstrated the construct estimate's asymptotic normality. Then whereas Attouch, 

Laksaci and Messabihi (2015) studied the nonparametric relative error regression for 

spatial random variables. For current advances and references in non-parametric 

geographical data analysis, the author refer to El Machkouri and Stoica (2010), 

Robinson (2011), and Dabo-Niang, Ould-Abdi and Diop (2014). 

The main contribution of this work was the generalisation of the results of Ferraty, 

Rabhi and Vieu (2008) and of the research by Laksaci and Mechab (2010) in the case 

of spatially dependent observations. Under rather general mixing conditions, this study 

established the almost complete convergence (with rate) of the cdf function of a real 

random variable conditioned by a functional explanatory variable by the kNN method. 

Note that, like all asymptotic properties in functional nonparametric statistics, this 

result is linked to the phenomenon of concentration of the probability measure of the 

explanatory variable and to the regularity of the functional space of the model. 

Non-parametric k Nearest Neighbour (kNN) smoothing approaches have attracted 

a lot of interest in the statistical literature for evaluating multivariate data because of 

their flexibility and efficiency. Drawn by its attractive features, the functional kNN 

smoothing approach has received growing consideration over the last few years. The 

study by Gyorfi (2002) is a thorough analysis of kNN estimators in the finite 

dimensional context. Work in this area was started by Cover (1968), and a large 

number of articles are now available in various estimating contexts, including 

regression, discrimination, density and mode estimation, and clustering analysis; the 

author also made reference to Collomb (1981), Devroye and Wagner (1982), Li and 

Tran (2007), 

Moore and Yackel (1977), Devroye, Gyorfi, Krzyzak, and Lugosi (1994), Beirlant 

and Biau (2018), Laloe (2008), Burba, Ferraty and Vieu (2009), Tran, Wehrens and 

Buydens (2006), Lian (2011), Attouch and Bouabsa (2013), Attouch, Bouabsa and 

Chiker el mozoaur (2018), Kudraszow and Vieu (2013). For the most recent advances 
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and references this study cited Kara, Laksaci, and Vieu (2017), Almanjahie, Aissiri, 

Laksaci, and Chiker el Mezouar (2020), and Bouabsa (2021). 

Note that in spatial statistics, one distinguishes two types of asymptotics (see 

Cressie (1991)): the extensive asymptotic and the intensive asymptotic. The former 

deals with the cases where the size of the observations increases with that of the 

observation domain; in practice, this asymptotic is used when observations are 

collected by separate measuring stations. Examples of functional data, adapted to this 

asymptotic, are found in economics (consumption curves of any product in different 

cities), the environment (the concentration curves of a polluting gas in different 

regions) and in agronomy (the concentration curves of rainfall in different localities). 

The intensive asymptotic examines the situation of observations which densify in 

a fixed bounded domain, which is the case, for example, in prospecting or in 

radiographic analysis. 

The study’s main objective was to construct an estimator of the cdf function by 

relinking the functional estimation approach with the spatial setting using the kNN 

method estimation. Let us remember that the complexity of this research comes from 

the fact that the bandwidth parameter in the kNN method is a random variable. To be 

precise, the bandwidth parameter is priorily defined according to the distance between 

the functional random variable. Such consideration allows for exploring the 

topological as well as the specter component of the data. N-F-D-A, kNN cdf with 

spatial data is new.  

The author presents the estimator of the spatial model with the kNN method in 

Section 2. Section 3 gives the assumptions, and studies the almost complete convergence 

of this estimator. In Section 4 the author provides all the results and their proof. 

2. The model and its estimator with the kNN method 

Let 𝑀 be a natural number in ℕ ∧∗. Consider the random field 𝑊𝐢 = (𝐴𝐢, 𝐵𝐢), 𝐢 ∈ ℕ
M 

with values in 𝒢 × ℝ, where (𝒢, 𝑑) is a semi-metric space of possibly infinite 

dimension. In this context, (𝐴𝐢)𝐢∈ℕM can be a functional random variable. It should be 

noted that, for a good ten years the statistical community has been preoccupied with 

the development of models and methods adapted to this context of functional data. 

While the first studies in this direction mainly focused on linear models (see Bosq, 

2000; Ramsay and Silverman (2006)), recent developments (see Ferraty and Vieu, 

2006) report non-parametric models suitable for this type of data. 

Next, a point 𝑎 in 𝒢 (respectively, a compact 𝒬 ∈ ℝ) was fixed, assuming that the 

spatial observations (𝐴𝐢, 𝐵𝐢)𝐢∈ℕM have the same distribution as 𝑊:= (𝐴, 𝐵) and that 

the regular version of the probability of 𝐵 knowing 𝐴 = 𝑎. With the kNN method the 

functional parameter studied in this article, denoted 𝐹k
a so for all 𝑏 ∈ ℝ, hence 

𝐹k
a(⋅) = ℙ(𝐵 ⩽⋅ |𝐴 = 𝑎). 
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Furthermore, it was assumed that the functional random field is observed on the 

set 𝐼𝐧 = {𝐢 = (𝑖1, … , 𝑖𝑀) ∈ ℕ
M, 1 ⩽ 𝑖ℓ ⩽ 𝑛ℓ, ℓ = 1,… ,𝑀}, 𝐧 = (𝑛1, … , 𝑛𝑀) ∈ ℕ

M 

and estimated with the kNN method the cdf by 

𝐹̂k
a(𝑏) =

∑𝐢∈𝐼𝐧 𝐿 (𝑃k
−1𝑑(𝑎, 𝐴𝐢)) 𝐽 (ℎJ

−1(𝑏 − 𝐵𝐢))

∑𝐢∈𝐼𝐧 𝐿 (𝑃k
−1𝑑(𝑎, 𝐴𝐢))

 , ∀𝑏 ∈ ℝ, 

where 𝐿 is a kernel and 𝐽 is a conditional distribution function (cdf), defined by  

𝐽(⋅) =
∫0 𝐿(𝑠)d𝑠

∫ 𝐿(𝑠)d𝑠
1/2

0

, 

and 𝑃𝑘 = 𝑃𝑘,𝐧 (resp. ℎ𝐽 = ℎ𝐽,𝐧) is a sequence of positive real numbers which belong 

to ar interval (𝑥𝐧, 𝑦𝐧) (resp. (𝑣𝐧, 𝑠𝐧)), with  lim𝐧→∞𝜈𝐧 = lim𝐧→∞𝑠𝐧 = 0. 

The aim of this work was to study the almost complete convergence of the 

estimator 𝐹̂k
a to 𝐹k

a, when the functional random field (𝑊𝐢)𝐢∈ℕM satisfies the following 

mixing condition. 
There is a function Φ(𝑠) ↓ 0 when 𝑠 → ∞, such that

∀𝑍, Z′ subset of ℕM finite cardinal

𝛼(ℬ(𝑍), ℬ(Z′)) = sup
𝑌∈ℬ(𝑍),𝐸∈ℬ(Z′)

|ℙ(𝑌 ∩ 𝐸) − ℙ(𝑌)ℙ(𝐸)|

⩽ Ψ(𝐶𝑎𝑟𝑑(𝑍), 𝐶𝑎𝑟𝑑(Z′))Φ(𝑑𝑖𝑠𝑡(𝑍, Z′)),

 

where ℬ(𝑍) (respectively ℬ(Z′)), the Borelian tribe generated by (𝑊𝐢, 𝐢 ∈ 𝑍) 

(respectively (𝑊𝐢, 𝐢∈ Z
′)), 𝐶𝑎𝑟𝑑(𝐸) (respectively Card (Z′)) is the cardinal of 𝑍 

(respectively Z′), 𝑑𝑖𝑠𝑡(𝑍, Z′) designates the Euclidean distance between 𝑍 and Z′ and 

Ψ a symmetric function: ℕ2 → ℝ+M, decreasing with respect to the two variables 

separately and satisfying one of the following conditions:  

 Ψ(𝑢, 𝑣) ⩽ 𝐶min(𝑢, 𝑣), 𝑢, 𝑣 ∈ ℕ, (1) 

or  

 Ψ(𝑢, 𝑣) ⩽ 𝐶(𝑢 + 𝑣 + 1) ∧ 𝜗̃, 𝑢, 𝑣 ∈ ℕ, (2) 

for some 𝜗̃ ⩾ 1 and 𝐶 > 0; note that these conditions were used by Tran (1990) and 

they are verified by many spatial models (see Guyon, 1987). 

Recall that when equation (1) holds with Ψ ≡ 1 or 𝑁 = 1, the random field 

𝑊𝐢 = (𝐴𝐢, 𝐵𝐢) is desribed as highly mixing (see Doukhan, 1994), for further 

information on mixing qualities and examples). 

In addition, we suppose that the process 𝑊 meets the following mixing condition:  

 ∑ 𝑖ℓΦ(𝑖) < ∞, ℓ > 0.∞
𝑖=1  (3) 
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Note that conditions (2) and (3) are identical to the mixing conditions employed 

by Carbon et al. (2007), and Tran (1990). 

3. Asymptotic properties 

In the following, the author denotes by 𝐶 and/or 𝐶′ any strictly positive constants. 

Recall that in this spatial context, 𝐧 → ∞ means that min{𝐧ℓ} → ∞ and that for each 

1 ⩽ 𝑗, ℓ ⩽ 𝑀 we have ∞ > 𝐶 > |
𝐧𝑗

𝐧ℓ
|. Let us introduce the following hypotheses  

• (K1)  

– (K1-i) ℙ(𝐴 ∈ 𝐵(𝑎, 𝑡)) = 𝜑𝑎(𝑡) > 0 where 𝐵(𝑎, 𝑡) is the closed ball, 

centered at 𝑎 and of radius 𝑡.  

– (K1-ii) for all 𝑞 ∈ (0,1), lim𝑡→0
𝜑𝑎(𝑞𝑡)

𝜑𝑥(𝑡)
= 𝜍𝑎(𝑞) < ∞.  

• (K2) The function Φ checks ∑ 𝑖𝛾Φ(𝑖) < ∞,∞
𝑖=1 𝛾 > 5𝑀.  

• (K3)  

0 < sup𝐢≠𝐣ℙ[(𝐴𝐢, 𝐴𝐣) ∈ 𝐵(𝑎, 𝑃𝑘) × 𝐵(𝑎, 𝑃𝑘)] ⩽ 𝐶(𝜑𝑎(𝑃𝑘))
(𝑥+1)/𝑥 , with 1 < 𝑥 < 𝛾𝑀−1. 

• (K4) Recall that 𝑎 is a fixed functional element and 𝑁𝑎 is a fixed neighbourhood 

of 𝑎. The nonparametric model for the conditional distribution and the conditional 

density is constructed by assuming that 𝐶 > 0 such that for all (𝑏1, 𝑏2) ∈ ℝ ∧ 2 

and all (𝑎1, 𝑎2) ∈ 𝑁𝑎 × 𝑁𝑎, one obtains 

– (K4-i)  

|𝐹k
𝑎1(𝑏1) − 𝐹k

𝑎2(𝑏2)| ⩽ 𝐶(𝑑(𝑎1, 𝑎2)
𝛽3 + |𝑏1 − 𝑏2|

𝛽4), 

𝛽3 > 0, 𝛽4 > 0. 

• (K5) kernel 𝐿 has a continuous first derivative on (0,1/2) and is supported inside 

(0,1/2). Furthermore, there are some constants 0 < 𝐶 < 𝐶′ < ∞, such as 

0 < 𝐶I
(
0,1

2
)
(⋅) ⩽ 𝐿(⋅) ⩽ 𝐶′I

(
0,1

2
)
, 

and 

𝐿(1/2) − ∫ 𝐿′(𝑠)𝜍𝑎(𝑠)d𝑠
1/2

0

> 0. 

• (K6) 𝐽 is a function of class 𝐶2 and a support compact.  

• (K7) There exist 0 < 𝛼 < (𝛿 − 5𝑀)/3𝑀 and 𝜁0 > 0, such as  

 lim
𝐧→∞

𝐧̂𝛼ℎ𝐽 = ∞ and 𝐶𝐧̂
(5+3𝛼)𝑀−𝛿

𝛿
+ 𝜁0 ⩽ ℎ𝐽𝜑𝑎(𝑃𝑘), 

where, 𝐧̂ = 𝑛1…𝑛𝑀.  

• (K8)  
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– (K8-i)  

𝒢0 = {⋅↦
1

∫  
1

0
𝐿(𝑠)d𝑠

∫  
(𝛾−1(𝑦−⋅))

0
𝐿(𝑠)d𝑠,  for 𝛿 > 0}, 

is a pointwise measurable class.    

– (K8-ii) 

ℒ0 is such that sup 
𝑈
 ∫ √1 + log𝒩(𝜀‖𝐾0‖𝑈,2, ℒ0, 𝑑𝑈)d𝜀 < ∞,

1

0

  

where, 𝐾0 is the envelope function of the set ℒ0. 

• (K9)  

– (K9-i)   

log  𝐧

𝐧min(𝑥𝐧, 𝜑𝑎(𝑥𝐧))
→ 0. 

Remarks on the hypotheses 

This research provides a link between the work by Kara, Laksaci, and Vieu (2017) and 

Laksaci, and Mechab (2010), so several assumptions are considered the same as in all 

these studies. 

4. Result and proof 

Theorem 4.1. Under hypotheses (K1), and (K7)-(K8-ii)-(K9-i) we have that  

sup
𝑏∈𝒮

  sup
𝑥𝐧⩽𝑃𝑘⩽𝑦𝐧

sup
 𝜈𝐧⩽ℎ𝐽⩽𝑠𝐧

 sup
𝑘
  |𝐹
^

𝑘
𝑎(𝑏) − 𝐹𝑘

𝑎(𝑏)| = 𝑂 (𝑦𝐧
𝛽3) + 𝑂 (𝑠𝐧

𝛽4) +

𝑂𝑎.𝑐𝑜. (√
log 𝐧

𝐧𝜑𝑎(𝑥𝐧)
).  

Proof 

The demonstrations are based, respectively, on the following decompositions 

𝐹
^

𝑘
𝑎(𝑏) − 𝐹𝑘

𝑎(𝑏) =
1

𝐹
^

𝐷
𝑎
{(𝐹

^

𝑁
𝑎(𝑏) − 𝔼𝐹

^

𝑁
𝑎(𝑏)) − (𝐹𝑘

𝑎(𝑏) − 𝔼𝐹
^

𝑁
𝑎(𝑏))} +

 

 

 
𝐹𝑘
𝑎(𝑏)

𝐹
^

𝐷
𝑎
(𝔼𝐹

^

𝐷
𝑎 − 𝐹

^

𝐷
𝑎).  (4) 
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Define 

𝐹
^

𝐷
𝑎 =

1

𝐧̂𝔼 [𝐿 (𝑃𝑘
−1𝑑(𝑎, 𝐴1))]

∑  

𝐢∈𝐼𝐧

𝐿 (𝑃𝑘
−1𝑑(𝑎, 𝐴𝐢)) ,

𝐹
^

𝑁
𝑎(𝑏) =

1

𝐧̂𝔼 [𝐿 (𝑃𝑘
−1𝑑(𝑎, 𝐴1))]

∑  

𝐢∈𝐼𝐧

𝐿 (𝑃𝑘
−1𝑑(𝑎, 𝐴i)) 𝐽 (ℎ𝐽

−1(𝑏 − 𝐵i)) ,

 

where 𝟏 is the spatial index of the fixed components 1. 

The proof follows from the Lemmas bellows. 

Lemma 4.1. Under hypotheses (1) and (2) and hypotheses (K1), (K3), (K5) and 

(K7)-(K9-i) we have that  

sup 
𝑏∈𝒮

   sup
𝑥𝐧⩽𝑃𝑘⩽𝑦𝐧

  |𝐹
^

𝐷
𝑎 − 𝔼𝐹

^

𝐷
𝑎| = 𝑂 ((

log 𝐧̂

𝐧̂𝜑(𝑥𝐧)
)

1

2
)  𝑎. 𝑐𝑜.  

Proof 

In the following note for all 𝐢 ∈ 𝐼𝐧 

𝐿i(𝑎) = 𝐿 (𝑃𝑘
−1𝑑(𝑎, 𝐴i)) , 𝐽i(𝑏) = 𝐽 (ℎ𝐽

−1(𝑏 − 𝐵i)). 

One has to show that there exists 𝜁0 > 0 such that  

∑ 

𝑛

ℙ{ sup
𝑥𝐧⩽𝑃𝑘⩽𝑦0

 √
𝑛𝜑𝑎(𝑥𝐧)

log 𝑛
|𝐹
^

𝐷
𝑎 − 𝔼[𝐹

^

𝐷
𝑎]| ⩾ 𝜁0} < ∞, for some 𝑦0 > 0. 

Following Bernstein’s inequality in (Dony and Einmahl (2009), p. 321) the proof 

is based on Bernstein’s inequality for empirical processes, by defining  

ℎ𝐿,𝑗 = 2
𝑗𝑥𝐧 and 𝐾(𝑛) = 𝑚𝑎𝑥{𝑗: ℎ𝐿,𝑗 ⩽ 2𝑦0}, 

hence 

sup
𝑥𝐧⩽𝑃𝑘⩽𝑦0

  √
𝑛𝜑𝑎(𝑥𝐧)

log 𝑛
|𝐹
^

𝐷
𝑎 − 𝔼 [𝐹

^

𝐷
𝑎]| ⩽ max

1⩽𝑗⩽𝐾(𝐧)
  sup
ℎ𝐿,𝑗−1⩽𝑃𝑘⩽ℎ𝐿,𝑗

  √
𝐧𝜑𝑎(𝑃𝑘)

log 𝑛
|𝐹
^

𝐷
𝑎 − 𝔼 [𝐹

^

𝐷
𝑎]|. 

To write the difference, the demonstration is based on the concepts similar to those 

used by Carbon, Tran and Wu (1997). Thus 

𝐹̂𝐷
𝑎
(𝑎) − 𝔼[𝐹̂𝐷

𝑎
(𝑎))] =

1

𝐧̂𝔼[𝐿𝟏(𝑎)]
∑

𝐢∈𝐼𝐧

Θ𝐢(𝑎), 
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where 

 Θ𝐢(𝑎) = (1/√𝐧)∑(𝐿𝑖 − 𝔼[𝐿𝑖])

𝐧

𝐢=𝟏

 

corresponds to the empirical process based on variables 𝐴1, 𝐴2, … , 𝐴𝐧. Then, consider 

the following class of functions  

ℒ𝐿,𝑗 = {𝑧 ⟼ 𝐿(𝛾−1𝑑(𝑎, 𝑧)) where ℎ𝐿,𝑗−1 ⩽ 𝛾 ⩽ 𝑃𝑘,𝑗}. 

Therefore, 

⩽ ∑  

𝐾(𝐧)

𝐢=𝟏

ℙ

{
 
 

 
 

1

√𝐧𝜑𝑎 (
𝑃𝑘,𝑗
2
) log𝐧

‖√𝐧Θ𝐢(𝑎)‖ℒ𝐿,𝑗 ⩾ 𝜁0

}
 
 

 
 

, 

 ⩽ 𝐾(𝐧) max
𝑗=1,…,𝐾(𝐧)

ℙ{ max
1⩽𝑘⩽𝐧

‖√𝑘Θ𝑘(𝑎)‖ℒ𝐿,𝑗
⩾ 𝜁0√𝐧𝜑𝑎 (

𝑃𝑘,𝑗

2
) log 𝐧}.  (5) 

Consider the spatial decomposition of Tran (1990) on Θ𝐢(𝑎) variables, defined, for 

the fixed integer 𝜚𝐧, as follows  

𝑉(1, 𝐧, 𝑎, 𝐣) = ∑  

2𝑗𝜅𝜚n+𝜚n

𝑖ℓ=2𝑗𝜅
𝜅=1,…,⋯
𝜅,…,1

Θi(𝑎),

𝑉(2, 𝐧, 𝑎, 𝐣) = ∑  

2𝑗𝜅𝜚𝐧+𝜚𝐧

𝑖𝜅=2𝑗𝜅𝜚𝐧+1
𝜅=1,…,𝑀

∑  

2(𝑗𝜚𝐧+𝜚𝐧+1)

𝑖𝑗
𝑀

Θi(𝑎),

 

𝑉(3, 𝐧, 𝑥, 𝐣) = ∑  

2𝑗𝑘𝜚𝐧+𝜚𝑛

𝑖𝑘=2𝑗𝑘𝜚𝐧+1𝑖𝑁−1=2𝑗𝑁−1𝜚𝐧+𝜚𝐧+1
𝑘=1,…,𝑁−2

∑  

2(𝑗𝜌𝐧+1

𝑛
𝑗𝑁

∑  

2𝑗𝑁𝜚𝐧+𝜚𝐧

𝐢

Θi(𝑎), 

𝑉(4, 𝐧, 𝑥, 𝐣) = ∑  

2(𝑗𝑁−1+1)𝜚𝐧

𝑖ℎ=2𝑗ℎ𝜚𝐧+1
𝑘=1,…,𝑁−2

∑  

2(𝑗𝑁+1)𝜚𝐧+𝜚𝐧+1

𝑖𝑁−1=2𝑗𝑁−1

∑  

𝑖𝑁=2𝑗𝑁

Θ𝜚𝐧+𝜚𝐧+1Θ𝐢(𝑎), 

and so on. The last two terms are as follows  
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𝑉(2𝑀−1, 𝐧, 𝑎, 𝐣) = ∑  

2(𝑗𝜅+1)𝜚𝐧

𝑖𝜅=2𝑗𝜅𝜚𝐧+𝜚𝐧+1
𝜅=1,…,𝑀−1

∑  

2𝑗𝑀𝜚𝐧+𝜚𝐧+1

𝑖𝑀=2𝑗𝑀𝜚𝐧+1

Θi(𝑎), 

𝑉(2𝑀, 𝐧, 𝑎, 𝐣) = ∑  

2(𝑗𝜅+1)𝜚𝐧

𝑖𝜅=2(𝑗𝜅+1)𝜚n
𝜅=1,…,𝑀

Θi(𝑎). 

For 𝜏𝑖 = 2
−1𝑛𝑖𝜚𝐧

−1, 𝑖 = 1,… ,𝑀 and ℋ = {0,… , 𝜏1 − 1} × …× {0,… , 𝜏𝑀 − 1}, 
we pose  

Δ(𝐧, 𝑎, 𝑖) = ∑

𝐣∈ℋ

𝑉(𝑖, 𝐧, 𝑎, 𝐣). 

Without loss of generality, one can write  

|𝐹̂𝐷
𝑎
(𝑎) − 𝔼[𝐹̂𝐷

𝑎
(𝑎)]| =

1

𝐧̂𝔼[𝐿𝟏(𝑎)]
∑Δ(𝐧, 𝑎, 𝑖).

2𝑀

𝑖=1

 (6) 

Even if 𝑛𝐢 is not exactly equal to 2𝜏𝐢𝜚𝐧, one can group the remaining variables in 

a block Δ(𝐧, 𝑎, 2𝑀 + 1) (this will not change the proof, see Biau, Cadre (2004)). 

Now, under the last equation (6), for all 𝜁 > 0, one obtains 

 ℙ(|𝐹̂𝐷
𝑎
𝑎(𝑎) − 𝔼[𝐹̂𝐷

𝑎
(𝑎)]| ⩾ 𝜁) ⩽ 2𝑀max

𝑖=1,…
ℙ(Δ(𝐧, 𝑎, 𝑖) ⩾ 𝜁𝐧̂𝔼[𝐿𝟏(𝑎)]). 

Hence, it suffices to calculate  

 ℙ(Δ(𝐧, 𝑎, 𝑖) ⩾ 𝜁𝐧̂𝔼[𝐿𝟏(𝑎)]) for all 𝑖 = 1,… , 2
𝑀 . 

This only deals with the case 𝑖 = 1. For this, we number the variables 

(𝑉(1, 𝐧, 𝑎, 𝐣); 𝐣 ∈ ℋ) and apply (Lemma 4.1 of Carbon, Tran, Wu (1997)) on the re-

numbered variables. Variables with the new numbering are noted 𝐷1, … , 𝐷𝑁, where 

𝑁 = ∏ 𝜏𝜅
𝑀
𝜅=1 = 2𝑀𝐧̂𝜚𝐧

−𝑀 ⩽ 𝐧̂𝜚𝐧
−𝑀. Note that for all 𝐷𝑗 there is a certain 𝐣 in ℋ 

such as  

𝐷𝑗 = ∑

𝐢∈𝐼(1,𝐧,𝑎,𝐣)

Θ𝐢(𝑎), 

where 𝐼(1, 𝐧, 𝑎, 𝐣) = {𝐢: 2𝑗𝜅𝜚𝐧 + 1 ⩽ 𝑖𝜅 ⩽ 2𝑗𝜅𝜚𝐧 + 𝜚𝐧; 𝜅 = 1,… ,𝑀}. The distance 

between these sets is greater than  𝜚𝐧
𝑀 and each set contains  𝜚𝐧

𝑀 elements. 

In (Carbon, Tran, Wu (1997), Lemma 4.1) allows to approximate 𝐷1, 𝐷2, …, 𝐷𝑁 

by independent random variables 𝐷1
∗, … , 𝐷𝑁

∗  of the same law as 𝐷𝑗=1,…,𝑁 and such that  
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∑ 

𝑁

𝑗=1

E|𝐷𝑗 −𝐷𝑗
∗| ⩽ 2𝐶𝑁(𝜚𝐧

𝑀𝜓(𝑁 − 1)𝜚𝐧
𝑀 , 𝜚𝐧

𝑀)𝜑(𝜚𝐧). 

Then, by the Bernstein and Markov inequalities 

ℙ(Δ(𝐧, 𝑎, 𝑖) ⩾ 𝜁𝐧̂𝔼[𝐿𝟏(𝑎)]) ⩽ 𝛽1 + 𝛽2, 

where 

𝛽1 = ℙ(|∑  

𝑁

𝑗=1

𝐷𝑗
∗| ⩾

𝑁𝜁𝐧̂𝔼[𝐿1(𝑎)]

2𝑁
)

⩽ 2exp (−
(𝜁𝐧̂𝔼[𝐿𝟏(𝑎)])

2

𝑁Var [𝐷1
∗] + 𝐶𝜚𝐧

𝑀𝜁𝐧̂𝔼[𝐿𝟏(𝑎)]
) ,

𝛽2 = ℙ(∑ 

𝑁

𝑗=1

|𝐷𝑗 −𝐷𝑗
∗| ⩾

𝜁𝐧̂𝔼[𝐿𝟏(𝑎)]

2
) ⩽

𝐶

⟨𝐧̂𝔼[𝐿𝟏(𝑎)]
∑  

𝑁

𝑗=1

𝔼|𝐷𝑗 −𝐷𝑗
∗|

⩽ 𝐶𝑁𝜚𝐧
𝑀(𝜁𝐧̂𝔼[𝐿1(𝑎)])

−1𝜓((𝑁 − 1)𝜚𝐧
𝑀 , 𝜚𝐧

𝑀)𝜑(𝜚𝐧).

 

 As 𝐧̂ = 2𝑀𝑁𝜚𝐧
𝑀 et 𝜓((𝑁 − 1)𝜚𝐧

𝑀 , 𝜚𝐧
𝑀) ⩽ 𝜚𝐧

𝑀 so for 𝜁 = 𝜁0√
log 𝐧̂

𝐧̂𝜑𝑎(𝑃𝑘,𝑗/2)

𝛽2 ⩽ 𝐧̂𝜚𝐧
𝑀(log 𝐧̂)−

1
2(𝐧̂𝜑𝑎(𝑃𝑘))

−
1
2𝜑(𝜚𝐧) .

 

Take 𝜚𝐧𝐶 (
𝐧
^
𝜑𝑎(𝑃𝑘,𝑗/2)

log 𝐧
^ )

1/2𝑀

, then  

 𝛽2 ⩽ (log 𝐧
^
)−1𝐧

^
𝜑(𝜚𝐧),  (7) 

according to hypotheses (K7), to show that ∑  𝐧∈𝐼𝐧 𝐧
^
𝜑(𝜚𝐧) < ∞. 

Now one can deal with 𝛽1. For this, it suffices to evaluate 𝑉𝑎𝑟[𝐷1
∗]. In effect  

𝑉𝑎𝑟[𝐷1
∗] = 𝑉𝑎𝑟 [ ∑

𝐢∈𝐼(1,𝐧,𝑎,𝟏)

Θ𝐢(𝑎)] = ∑

𝐢,𝐣∈𝐼(1,𝐧,𝑎,𝟏)

|𝐶𝑜𝑣(Θ𝐢(𝑎), Θ𝐣(𝑎))|. 

Let us pose 

𝑍𝐧 = ∑

𝐢,𝐣∈𝐼(1,𝐧,𝑎,𝟏)

𝑉𝑎𝑟[Θ𝐢(𝑎)] 

and 

𝑇𝐧 = ∑

𝐢,𝐣∈𝐼(1,𝐧,𝑎,𝟏)

 |𝐶𝑜𝑣(Θ𝐢(𝑎), Θ𝐣(𝑎))|.  
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By virtue of (K1), one has 𝑉𝑎𝑟[Θ𝐢(𝑎)] ⩽ 𝐶 (𝜑𝑎(𝑃𝑘,𝑗/2) + (𝜑𝑎(𝑃𝑘,𝑗/2))
2
), so 

𝑍𝐧 = 𝑂 (𝜚𝐧
𝑀𝜑𝑎(𝑃𝑘,𝑗/2)). As it concerns 𝑇𝐧, the techniques of Masry (1986) are used 

considering the following sets 

𝑄1 = {𝐢, 𝐣 ∈ 𝐼(1, 𝐧, 𝑎, 𝟏): 0 <∥ 𝐢 − 𝐣 ∥⩽ 𝜔𝐧}

𝑄2 = {𝐢, 𝐣 ∈ 𝐼(1, 𝐧, 𝑎, 𝟏): ∥ 𝐢 − 𝐣 ∥> 𝜔𝐧},
 

where 𝜔𝐧 is a real sequence tending to +∞. Thereby,  

𝑇𝐧 = ∑

(𝐢,𝐣)∈𝑄1

|𝐶𝑜𝑣(Θ𝐢(𝑎), Θ𝐣(𝑎))| + ∑

(𝐢,𝐣)∈𝑄2

|𝐶𝑜𝑣(Θ𝐢(𝑎), Θ𝐣(𝑎))| = 𝑇𝐧
1 + 𝑇𝐧

2. 

On the one hand, we have  

𝑇𝐧
1 = ∑(𝐢,𝐣)∈𝑄1 |𝔼[𝐿𝐢(𝑎)𝐿𝐣(𝑎)] − 𝔼[𝐿𝐢(𝑎)]𝔼[𝐿𝐣(𝑎)]|

⩽ 𝐶𝜚𝐧
𝑀𝜔𝐧

𝑀𝜑𝑎(𝑃𝑘)((𝜑𝑎(𝑃𝑘))
1

𝑎 + 𝜑𝑎(𝑃𝑘)) ⩽ 𝐶𝜚𝐧
𝑀Ω𝐧

𝑀𝜑𝑎(𝑃𝑘)
(𝑎+1)/𝑎.

  

While on the other 

𝑇𝐧
2 = ∑

(𝐢,𝐣)∈𝑄1

|𝐶𝑜𝑣(Θ𝐢(𝑎), Θ𝐣(𝑎))|. 

Since kernel 𝐿 is bounded, from (Tran (1990), Lemma 2.1(ii)), one obtains 

|𝐶𝑜𝑣(Δ𝐢(𝑎), Δ𝐣(𝑎))| ⩽ 𝐶𝜑(∥ 𝐢 − 𝐣 ∥). 

Thus  

𝑇𝐧
2 ⩽ 𝐶 ∑

(𝐢,𝐣)∈𝑄2

𝜑(∥ 𝐢 − 𝐣 ∥) ⩽ 𝐶𝜚𝐧
𝑀 ∑

𝐢:∥𝐢∥⩾𝜔𝐧

𝜑(∥ 𝐢 ∥)

⩽ 𝐶𝜚𝐧
𝑁𝜔𝐧

−𝑁𝑎 ∑

𝐢:∥𝐢∥⩾𝜔𝐧

∥ 𝐢 ∥𝑁𝑎 𝜑(∥ 𝐢 ∥). 

Take 𝜔𝐧 = (𝜙𝑥(ℎ𝐾))
−

1

𝑁𝑎,  

so   

𝑇𝐧
2 ⩽ 𝐶𝜚𝐧

𝑀𝜔𝐧
−𝑀𝑎 ∑

𝐢:∥𝐢∥⩾𝜔𝐧

∥ 𝐢 ∥𝑀𝑎 𝜑(∥ 𝐢 ∥) 

⩽ 𝐶𝜚𝐧
𝑁𝜙𝑥(ℎ𝐾) ∑

𝐢:∥𝐢∥⩾𝜔𝐧

∥ 𝐢 ∥𝑀𝑎 𝜑(∥ 𝐢 ∥). 
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From (K2) one can write 𝑇𝐧
2 ⩽ 𝐶𝜚𝐧

𝑀𝜑𝑎(𝑃𝑘). Moreover, with this choice of 𝜔𝐧, 

one obtains 

 𝑇𝐧
1 ⩽ 𝐶𝜚𝐧

𝑀𝜑𝑎(𝑃𝑘,𝑗/2), 

where 

 𝑉𝑎𝑟[𝐷1
∗] = 𝑂 (𝜚𝐧

𝑀𝜑𝑎(𝑃𝑘,𝑗/2)). 

Using this last result, with the definitions of 𝜚𝐧, 𝑁 and 𝜁, it is shown that 

 𝛽1 ⩽ exp(−𝐶𝜁0log𝐧̂). 

(K9-i) and moreover, since 𝐿(𝑛) ⩽ 2log𝑛, from equation 5  

𝐾(𝑛) max
𝑗=1,…,𝐾(𝑛)

ℙ{ max
1⩽𝑘⩽𝑛

‖√𝐧Θ𝑛(𝑎)‖ℒ𝐿,𝑗
> 𝜁0√𝐧𝜑𝑎 (

𝑃𝑘,𝑗

2
) log 𝐧} 

⩽ 𝐶(log𝐧)𝐧−𝐶′0𝜁
2
. 

Now, by choosing 𝜁0 such that 𝐶′0𝜁
2 > 1, one obtains:  

sup
𝑥𝑛⩽𝑃𝑘⩽𝑦𝑛

|𝐹̂𝐷
𝑎
− 𝔼[𝐹̂𝐷

𝑎
]| = 𝑂𝑎.𝑐𝑜. (√

log𝐧

𝐧𝜑(𝑥𝐧)
).  

Lemma 4.2. Under hypotheses (K1), (K4-i), (K5) and (K7)  

sup
𝑏∈𝒮

  sup
𝑥𝐧⩽𝑃𝑘⩽𝑦𝐧

   sup
𝜈𝐧⩽ℎ𝐽⩽𝑠𝐧

  |𝐹𝑘
𝑎(𝑏) − 𝔼𝐹

^

𝑁
𝑎(𝑏)| = 𝑂 (𝑦𝐧

𝛽3) + 𝑂 (𝑠𝐧
𝛽4). 

Proof 

Given the fact that all random variables are distributed in the same way,  

∀𝑏 ∈ 𝒮, sup
𝑥𝐧⩽𝑃𝐾⩽𝑦𝐧

sup
 𝜈𝐧⩽ℎ𝐽⩽𝜈𝐧

|𝐹𝑁
𝑎(𝑏) − 𝔼𝐹

^

𝑁
𝑎(𝑏)|

= 𝔼 [𝐿1(𝑎)𝕀𝐵(𝑎,𝑃𝑘)(𝐴)[𝔼[𝐽1(𝑏)/𝐴] − 𝐹
𝑎(𝑏)]]. 

Integrating by parties, one can see that  

𝔼(𝐽1(𝑏)/𝐴) = ∫  
ℝ
𝐽(ℎ𝐽

−1(𝑏 − 𝑧))𝑓𝑘
𝐴(𝑧)d𝑧 = ℎ𝐽

−1 ∫  
ℝ
𝐽′(ℎ𝐽

−1(𝑏 − 𝑧))𝐹𝑘
𝐴(𝑧)d𝑧. 

Taking into account the change in a common variable 𝑡 =
𝑏−𝑧

ℎ𝐽
, one obtains  

𝔼(𝐽1(𝑏)/𝐴) = ∫
ℝ

𝐽′(𝑏)𝐹𝑘
𝐴(𝑏 − ℎ𝐽𝑡)d𝑡, 

thus 

 |𝔼(𝐽1(𝑏)/𝐴) − 𝐹𝑘
𝑎(𝑏)| ⩽ ∫ℝ 𝐽′(𝑏)|𝐹𝑘

𝐴(𝑏 − ℎ𝐽𝑡) − 𝐹𝑘
𝑎(𝑏)|d𝑡. 
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Under (K4) 

sup
𝑏∈𝒮

  sup
𝑥𝐧⩽𝑃𝑘⩽𝑦𝐧

    sup
𝜈𝐧⩽ℎ𝐽⩽𝑠𝐧

 (𝐴) |𝔼 (
𝐽1(𝑏)

𝐴
) − 𝐹𝑘

𝑎(𝑏)|  

⩽ ∫  
ℝ
𝐽′(𝑏) (𝑃𝑘

𝛽1 + |𝑡|𝛽2ℎ𝐽
𝛽2)d𝑡. 

Knowing that 𝐽′ is a probability density, hypothesis (K6) thus completes the 

demonstration of Lemma 4.2, leading finally to  

sup
𝑏∈𝒮

  sup
𝑥𝐧⩽𝑃𝑘⩽𝑦𝐧

   sup
𝜈𝐧⩽ℎ𝐽⩽𝑠𝐧

  |𝐹𝑘
𝑎(𝑏) − 𝔼𝐹

^

𝑁
𝑎(𝑏)| =C(𝑦𝐧

𝛽3 + 𝑠𝐧
𝛽4). 

Lemma 4.3. Under the same conditions of Theorem 4.1 

sup
𝑏∈𝒮

  sup
𝑥𝐧⩽𝑃𝑘⩽𝑦𝐧

   sup
𝜈𝐧⩽ℎ𝐽⩽𝑠𝐧

  |𝐹
^

𝑁
𝑎(𝑏) − 𝔼𝐹

^

𝑁
𝑎(𝑏)| = 𝑂 ((

log 𝐧̂

𝐧̂𝜑𝑥(𝑥𝐧)
)

1

2
) , 𝑎. 𝑐𝑜.  

Proof 

By the compactness of 𝑆, 

𝑆 ⊂ ⋃
𝑗=1

𝜎𝐧

 (Γ𝑗 −℘𝐧, Γ𝑗 +℘𝐧), 

with ℘𝐧 = 𝐧
−𝛼−1/2 and 𝜎𝐧 = 𝑂(𝐧

𝛼+1/2). Then the monotony of 𝔼 [𝑓
^

𝑁
𝑎(𝑏)] and 

𝑓
^

𝑁
𝑎(𝑏) gives, for 1 ⩽ 𝑗 ⩽ 𝜎𝐧, that 

𝔼 [𝐹
^

𝑁
𝑎(Γ𝑗 −℘𝐧)] ⩽ 𝔼 [𝐹

^

𝑁
𝑎(Γ𝑗 +℘𝐧)] ,

𝐹
^

𝑁
𝑎(Γ𝑗 −℘𝐧) ⩽ 𝐹

^

𝑁
𝑎(Γ𝑗 +℘𝐧).

 

Now, from condition (K4-i), one obtains, for any 𝑏1, 𝑏2 ∈ 𝑆, that  

|𝔼 [𝐹
^

𝑁
𝑎(𝑏1)] − 𝔼 [𝐹

^

𝑁
𝑎(𝑏2)]| ⩽ 𝐶(𝑑(𝑎1, 𝑎2)

𝛽3 + |𝑏1 − 𝑏2|
𝛽4). 

It follows that  

sup
𝑡∈𝑆

|𝐹
^

𝑁
𝑎(𝑏) − 𝔼 [𝐹

^

𝑁
𝑎(𝑏)]|

⩽ max
1⩽𝑗⩽𝜎𝐧,𝑧∈{Γ𝑗−℘𝐧,Γ𝑗+℘𝐧}

|𝑓
^

𝑁
𝑎(𝑧) − 𝔼 [𝐹

^

𝑁
𝑎(𝑧)]| + 2𝐶

℘𝐧
ℎ𝐽
𝐹
^

𝐷
𝑎.
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Then,  

℘𝐧 = 𝑜(√
log𝐧

𝐧𝜈𝐧𝜑𝑎(𝑥𝐧)
). 

Thus, all it remains to prove is that  

ℙ( sup
𝑥𝐧⩽𝑃𝑘⩽𝑦𝐧

sup
𝜈𝐧⩽ℎ𝐽⩽𝑠𝐧

max
1⩽𝑗⩽𝜎𝑛,𝑧∈{Γ𝑗−℘𝐧,Γ𝑗+℘𝐧}

|𝐹
^

𝑁
𝑎(𝑧) − 𝔼 [𝐹

^

𝑁
𝑎(𝑧)]| > 𝜁√

log𝐧

𝐧𝜈𝐧𝜑𝑎(𝑥𝐧)
) ,

⩽ 2𝜎𝐧 max
1⩽𝑗⩽𝜎𝐧𝑧∈{Γ𝑗−℘𝐧,Γ𝑗+℘𝐧}

max
𝑥𝐧⩽𝑃𝑘⩽𝑦𝐧

max
𝜈𝐧⩽ℎ𝐽⩽𝑠𝐧

|𝐹
^

𝑁
𝑎(𝑧) − 𝔼 [𝐹

^

𝑁
𝑎(𝑧)]| > 𝜁√

log𝐧

𝐧𝜈𝐧𝜑𝑎(𝑥𝑛)
) .

 

Now, look at the quantity  

 ℙ( sup
𝑥𝐧⩽𝑃𝑘⩽𝑦𝐧

sup
𝜈𝐧⩽ℎ𝐽⩽𝑠𝐧

|𝐹
^

𝑁
𝑎(𝑧) − 𝔼 [𝐹

^

𝑁
𝑎(𝑧)]| > 𝜁√

log𝐧

𝐧𝜈𝐧𝜑𝑎(𝑥𝑛)
), 

for all 𝑧 = Γ𝑗 ∓℘𝐧, 1 ⩽ 𝑗 ⩽ 𝜎𝐧. The proof of the above inequality is based on 

Bernstein’s inequality for empirical processes, i.e. 

Θi1(𝑎) =
1

√𝐧
∑  

𝐧

𝑖=1

(𝐿𝑖𝐽𝑖 − 𝔼[𝐿i(𝑎)𝐽i(𝑎)]). 

Then, one obtains for all 𝑧 = Γ𝑗 ∓℘𝐧, 1 ⩽ 𝑗 ⩽ 𝜎𝐧, that  

 ℙ{ sup
𝑥𝐧⩽𝑃𝑘⩽𝑦𝟎

sup
𝜈𝐧⩽ℎ𝐽⩽𝑠𝟎

|𝐹
^

𝑁
𝑎(𝑧) − 𝔼 [𝐹

^

𝑁
𝑎(𝑧)]| ⩾ 𝜁0′} ⩽ 𝜎𝐧(𝛽1 + 𝛽2), 

The definition of 𝜎𝐧, equation (7) and hypotheses (K7) allow to write  

∑

𝐧∈𝐼𝐧

𝐧̂𝛼+
1
2 𝛽2 < ∞. 

A suitable choice of 𝜁0 gives 

∑

𝐧∈𝐼𝐧

 𝐧̂𝛼+
1
2 𝛽1 < ∞. 

With the same technic of demonstration like Lemma 4.1, the only difference is that 

Θ𝐢𝟏(𝑎) is used instead of Θ𝐢(𝑎). Hence this leads finally to  

sup
𝑏∈𝒮

 sup
𝑥𝐧⩽𝑃𝑘⩽𝑦𝐧

 sup
𝜈𝐧⩽ℎ𝐽⩽𝑠𝐧

|𝐹𝑁
𝑎(𝑏) − 𝔼 𝐹

^

𝑁
𝑎(𝑏)| = 𝑂𝑎.𝑐𝑜. (√

log𝐧

𝐧𝜑𝑎(𝑥𝐧)
). 
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Corollary 4.1. Under the hypotheses of Lemma 4.1 

∑  

𝐧∈ℕ𝑁

ℙ( inf
𝑥𝐧⩽𝑃𝑘⩽𝑦𝐧

 𝐹
^

𝐷
𝑎 < 𝐶) < ∞. 

Proof 

By simple analytical arguments, one obtains from equations (K1) and (K5)-(K6) 

𝔼 [
1

𝐧𝜑𝑎(𝑃𝑘)
∑  

𝐧

𝑖=1

𝐿 (𝑃𝑘
−1𝑑(𝑎, 𝐴𝑖))] → 𝐿(1/2) − ∫  

1
2

0

𝐿′(𝑞)𝜍𝑎(𝑠)d𝑠 > 0. 

Then, for 𝐧 large enough there exists a constant 𝐶′ > 0, such that:  

𝔼 [ 𝐹
^

𝐷
𝑎] ⩾ 𝐶′for all 𝑃𝑘 ∈ (𝑥𝐧, 𝑦𝐧). 

As a result of selecting 𝐶 = 𝐶′/2, one obtains:  

ℙ( inf
𝑃𝑘∈(𝑥𝐧,𝑦𝐧)

𝐹̂𝐷 ∧ 𝑎 ⩽ 𝐶) ⩽ ℙ( sup
𝑃𝑘∈(𝑥𝐧,𝑦𝐧)

|𝔼 [𝐹
^

𝐷
𝑎] − 𝐹

^

𝐷
𝑎| ⩾ 𝐶), 

and Lemma 4.1 leads to the desired result. 
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WARUNKOWA FUNKCJA ROZKŁADU  

Z FUNKCJONALNĄ ZMIENNĄ WYJAŚNIAJĄCĄ: 

PRZYPADEK DANYCH PRZESTRZENNYCH  

I METODY k-NAJBLIŻSZEGO SĄSIADA 

Streszczenie: W artykule opisano nowy estymator funkcji rozkładu warunkowego (CDF) używany, 

gdy współzmienne mają charakter funkcjonalny. Ten estymator jest połączeniem obu procedur: 

k-najbliższego sąsiada i przestrzennej estymacji funkcjonalnej. 

Słowa kluczowe: funkcjonalna analiza danych, nieparametryczna funkcjonalna, przestrzenna analiza 

danych, metoda k Nearest Neighbor. 
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