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Abstract: The purpose of the paper was to investigate by the kernel method a nonparametric estimate
of the conditional density function of a scalar response variable given a random variable taking values
in a separable real Hilbert space when the observations are quasi-associated dependent. Under some
general conditions, the authors established the pointwise almost complete consistencies with rates of
this estimator. The principal aim is the investigate the convergence rate of the proposed estimator.
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1. Introduction

In statistics, (FDA) has received much attention in the field of applied mathematics.
This type of data is collected from numerous fields, such as econometrics study,
epidemiology control, environmental and ecological sciences, and many other
sections. Functional Statistics was published by Ferraty, Laksaci, and Vieu (2006),
who obtained some properties in the case i.i.d. The study of statistical models for
infinite-dimensional (functional) data has been the subject of several works in recent
statistical literature; the reader can consult the studies by Akkal, Kadiri, and Rabhi
(2021), Kadiri, Rabhi, Khardani, and Akkal (2021), and references therein. The recent
result on nonparametric estimation was obtained by Hamri, Mekki, Rabhi, and Kadiri
(2022), who introduced a kernel estimator of the conditional distribution function and
proved some asymptotic properties (with rate) in various situations including censored
and/or independent variables. Since then, abundant literature has appeared on the
estimation of the conditional density and its derivatives, in particular to utilise it to
estimate the conditional mode. Considering mixed observtions, Ferraty, Laksaci, and
Vieu (2005) established the convergence (a.co) of the kernel estimator of the
conditional mode defined by the random variable maximizing the conditional density.
Alternatively, Ezzahrioui and Ould-Said (2008, 2010) estimated the conditional mode
by the point that cancels the derivative of the kernel density estimator. In related
disciplines, including analyses of reliability, theoretical physics, MVA, and biological
sciences the associated random variables are crucial. Many studies used positive and
negative dependent random variables. The association case is a type of weak
dependence introduced by Bulinski (Bulinski and Suquet, 2001) for stochastic
processes in R. It was generalized by Ezzahrioui and Ould-Said (2008) to real random
fields, and it provides a unified approach to studying families of both positive
dependence and negative dependence random variables. There are few of articles
dealing with the nonparametric estimation of quasi-associated data. One can cite, for
quasi-associated Hilbertian random variables, Douge (2010) studied its limit theorem,
Attaoui et al. (2015) examined asymptotic properties for Regression M-estimator, and
for a functional single index structure, while Tabti and Ait Saidi (2018) discussed the
simulation and estimation part of the conditional risk function in the quasi-associated
data case. The same model, the asymptotic normality, was studied by Daoudi, Mechab
and Chikr Elmezouar (2020). In the case of relative regression, Mechab and Laksaci
(2016) addressed the nonparametric estimation for associated r.v. For the asymptotic
normality of the nonparametric conditional cumulative function estimate studied by
Daoudi and Mechab (2019). The intention of this work is to check the estimator
properties proposed by Ferraty et al. (2006); in cases of associated data the a.co
convergence is established (rate) of a kernel estimate for the hazard function when the
variable is real random conditioned by a functional explanatory variable.
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2. The model

Consider Z; = (X;,Y:)1<i<n P8 @ n quasi-associated (Q.A) random processes,
identically distributed as the random pair Z = (X,Y), with values in ' X R, where
I is a separable real Hilbert space, with the norm ||. || generated by an inner product
(,.)

The authors considered the semi-metric d defined by V(x,x") € H/d(x,x") =
[lx — x"||. In the rest of this paper, it was considered thatx € # (fixed) and NV,
mention a fixed neighbourhood of x and § c R.

To estimate the conditional distribution function, let us consider the following
functional kernel estimators

i=1 K (hic' d (e, X))H (hy' (v = Y2))
i=1 K (h'd(x, X))

where: K is a probability density function (the so-called kernel function), H is
a cumulative distribution function, hy = hy ,, (resp.hy = hy ) is a sequence
of positive real which converges to 0 whenn — oo, with:

Ki(x) = K (hg'd(x, X;)) and Hy(y) = H(hy' (y — 12)),

one can write

A En(X)
F*(y) AOK
Fu0) = e ZK COH)

and for

R 1 -
Fp(x) = m; K;(x),

and f£*(y) is the conditional density estimator for £*(y) given by

hict X1 K (hitd (e, X)) H' (hig' (v — Y)

For= K (hgd(x X))

,Vy eR,

where H' is kernel function (the first derivative of a given distribution function H), one
can write
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£x __fb(y:x)
f*) = FACK
where
fu ) = —K()Z Ki(COH] (),
with

K;(x) = K (h'd(x, X)) and Hi(y) = H'(hy' (y — Y)).

3. Assumptions

Definition 3.1. A sequence (X,,)ney Of real random vectors variables be Quasi-
-Association (QA), if for any disjoint subsets I and J of N and all bounded Lipschitz

functions f: R - R and g: RV - R satisfying
d

d
Cov (f (Xpi € D,g(X;.j €))) < Lip(ALip(g) Y. D" > > [Cov(xk,xP)],

i€l jeJ k=11=1
where X¥ imply the kt*composent of X;.

Lip(f) = supeay W with [|Gey, e Xl = 1] 4+ il

Later in the paper, when there is no possible confusion, the authors refer by ¢
or/and €' to some completely positive global constants whose values are allowed to be
changed. Suppose the coefficient of covariance is defined as:

Ak = Supssi z Aij,
li-jlzs

where

i §:|cov(Xl XD+ Z|c0v(X

k=11=1

Ll

X¥ imply the k" composent of X; specified as X :=< X;,e* >, with hy > 0, let
Bg(x, hg) := {x' € H/d(x',x) < hg} aball with its centre x and radius hy. Let us
mention the assumptions that help us reach the desired results:
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(H1) P(X € B(x,hg)) = ¢, (hg) > 0and B(x,.) such that:

vse[od], lim ‘f;((‘q:;))

(H2) Conditional distribution F*(y), satisfies the Holder condition, i.e.

= B(x).

V(xy, %) € NZ,V(y1,y,) €S2,
|F*1(yy) — F¥2(y,)| < C(dP*(xx1, x2) + |y, — ¥2172), b1 >0, b2 > 0.

(H3) Kernel H is a positive bounded function such that V(ts, t2) € R?, [H(t) —
H(t)| < Clti—to|, [ H' ()dt = 1, [ H'?(t)dt < wand [|t|P2H'(t)dt < co.

(H4) Kernel K is a positive bounded continuous Lipschitz function on [0,1] such
that: Clo 4() < K(-) < C'1o47(-), where ;g 41 is an indicator function.

(H5) The sequence of random pairs (X;,Y;); ey IS quasi-associated with cov-
ariance coefficient A, k € N satisfying

Ja > 0,3 C > 0, such that 1, < Ce~%k,
(H6) Pi;(h) = P[(X;, X;) € B(x, h) X B(x, hy)| = 0(pZ(hy)), satisfy
512}3 Wij(R) = 0(¢Z(hg)) > 0.

(H7) The bandwidth hx and hu, are sequences of positive numbers satisfying
forj =0,1:

. llm h'K = Oand llm hH = O,

n—oo n—oo
o Jlim (i + g )V (i) = 0,
5
. ljog#=0and limM= )
n—co nth)x(hK) n—-oo nh{_,qf)x(hK)

where X imply the k" composent of X;.

4. Main results
Theorem 4.1. Under assumptions (H1)-(H7), we have, forany x € #:

PR _logn)_
FX0) = F*) = 0(hg +hig) + Oaco| 5= |
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Proof of Theorem 4.1: This based on the following decomposition:
Fi (y) = F*(3)Fp(x)
FD (x)

—— (F¥ () — E[FF(»)])

F*y) —F*(y) =

F"( )
(F*) - E[F§ 0])

F"( )
(y)

Finally, the proof of this theorem is a direct consequence of the following inter-

mediate results.
Lemma 4.1. Under assumptions (H1)-(H4)-(H6), we obtain:

A ~ |
F¥(y) — E[Fﬁ(}’)] = Og.co %EZZ) )

Corollary 4.1. Under assumptions (H1)-(H4)-(H6), we obtain:

[oe]

A 1
D B(1F3]<3)< e
i=1
Lemma 4.2. Under assumptions (H1)-(H3)-(H6), we obtain:

R ~ 1
Fi(y) — E[Fg(Y)] = Og.co % )

Lemma 4.3. Under hypotheses (H1)-(H6), we obtain:
F*) — E[FF0)] = 0(h + h?).

5. Proof of technical lemmas

First of all, let us state the following lemmas.

Lemma 5.1 (Douge, 2010). Let (X,),.y be a quasi-associated sequence of
random variables with values in . Let f € BL(#"')NL* and g € BL(#V)NL®
for some finite disjoint subsets I, ] € N, then

d d
Cov (f (i€, g(X,j€))) < Lip(f)Lip(g)zz Z ZlCOU(Xz X

i€l jej k=11=1
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where BL(HY,u > 0) is the set bounded Lipschitz functions f: H* — R and L® is
the set of bounded functions.

Lemma 5.2 (Kallabis and Newmann, 2006). Let X4, ..., X;,be the real random such
that E(X;) = 0 and P(|X;| <M) =1 forall j=1,..,n and some M < oo, let
o =Var(TL,65).

Assume furthermore, that there exist K < oo and f > oo such that, for all u-uplets
(51..Sy) EN¥ (t;..t,) ENY with 1<s; <:-<s,<t; << t,< n, the
following inequality is fulfilled

|Cov (Xs, .. X X, - Xe,)| < KEM¥H~2pe=Flti=su),

Then
- t2/2
for some
A, < o
and
3 16nK? y 2(KVv M)
" \94,,(1—ehB) 1—e B’
Proof of Lemma 5.1: Let us put
1
6 = ——=x(X;,Y),1 <i <n,
l n]E[Kl(X)] X( L l) l n

where X; e H,Y; R
XX, Y) = K(hi*d(x, X)) H(y — Y;) — E[K H,]. @)
Clearly, we have E[§;] = 0 and i
20— BER ]| = ) 8
we can also write -

X112 < 2 CIK|loo|[H]|co)

and

Lip(x) < C€(hg'|IHI|_Lip(K) + hz*|IKl|_Lip(H).
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Now, to apply Lemma 5.2, evaluate the variance Var( %I~ §;) and the covariance
term Cov (H’i‘=1 O | (St].) = Cov (651 wr O, 8t 6tv), forall (sq ...s,) € N,
(ty ... tp) EN?With1 <s; <+ <5, <ty <+ < <.

Firstly, for the covariance term, consider the following cases: If: t; = s,. By using
the fact that E[|K; H; 1] = 0(¢ (hy)) and E[|K;|] = 0(¢, (hy)) we obtain

u+v

u v
C
Cov 1_[8.,1_[6, S(—) E, Xy, Yy [*FY
Lol 50 = Bk ()

(c||K||m||H||m
<|——*=

RETK, O] ) Elf ]

u+v

¢x(hx))

If t; > s, use the quasi-association, by (H5), to obtain

u v 2
hi! Lip(K) + hy! Lip(H)
Cov 1_1[ bsi H b || = < nE[K, ()]
= =

(nIE (K1 ()] ) Z Z Asi 2)

i=1j=

< 6ol (-

C u+v
< (he! Lip(K) + hi! Lip(H))? (m) Vhe, s,

u+v
) ve~a(ti=sy)

c
< (" Lip(K) + hig* Lip(H))’ (0

On the other hand, by (H6) we obtain

u v C“Klloo“H”oo u+v-2
Cov 1_[65i’1_[6tj <\ TEK.o7 (E[As,. A, | + E[As, [E[A, )
i=1 j=1 1
IR JHI\ 2 e N2
S( nE[K; ()] ) (n]E[Kl(x)]) X
(S_lipﬂj’[(Xi.Xj) € B(x, hg) X B(x, hK)] + (P[X; € B(x, hK)])2> ®)
i#]

= (thbx(hK)) (ex(hi0)”
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Furthermore, taking a y — power of (2), (1 —y) — power of (3), with0 <y < 1, we
obtain an upper-bound of the tree terms as follows, for: 1 <s; <+ <s, <t; <

< t,<n,
Cov stsivﬂ‘stj ('bx(hK)( ¢x(hK))

u+v

Secondly, for the variance term Var(Xi~, 6;), weputforall 1 < i < n:

Var (Z 5i> (m> Z Z Cov(K;H;, K;H;)

=1 =

2

1
- [k, (x)]> Var(ath) ()

T1

<n]E [K1 ()] >Zzn: Z Cov(KiH;, K;H;).

i=1 j=1,i#j
T,

For the first term T1, we have
Var(K,H,) = E[K{H{] — (E[K,H,])?,
then,
E[KZH?] = E [KZE[HZ|X,]]
thus, under (H2)-(H3), and by integration on the real component y, we obtain
E[H{|X1] = 0(D),
as, forall j > 1,E[K/] = 0(¢x(hy)), then
E[K?HT] = 0(¢x(h1())-
It follows that

() et = (55) ©

Now, to deal with the part T2 from equation (4) in the same way that Masry (1986)
developed it, one needs the following decomposition
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u v u v
Cov n%'n% =Z Z Cov(K;H;, K;H,)
i=1 j=1 i=1 j=1
0<|i—jlsm,
Py
n n
+Z Z Cov(K;H;, K;H;),
i=1 Jj=1
[i—=jl>my
P2

where m,, 2 ® and from assumptions (H1)-(H3)-(H6), thus for i + j:
P, < nm, (r?%xHE(KiHi,KjHj)l + (1E[K1H1])2)
2
< enmy (93 (h) + (¢x(hi))”) (6)

< enm, (93 (hi))

and for P,:

u v

P, < (! Lip() + hg' Lip())? Y >
i=1 j=1
li—jlI>my

< C(hg" Lip(K) + Lip(H)? Y~ > 4y @)
=1 Jj=1

[i-jl>my

< Cn(hg' Lip(K) + Lip(H))?Ap,
2
< Cn (h,;l Lip(K) + Lip(H)) e~
Then, by (6)-(7), we obtain
Cov(K;H;, K;H;)
j=1,i%j
< en(my (@3 (hi)) + (hi* Lip(K) + Lip(H))Ze "),

by choosing

| (hi' Lip(K) + hy' Lip(H))?
in= Og( a3 (o) )
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we obtain

1
Z Cov(KHl,KH)—>0asn—>oo (8)
$uhi0) Lo

At last, by collecting the results (4)-(5) and (8), we obtain

Var <Z 8i> =0 (m),

thus, the variables §;,i = 1, ..., n be content with the assumptions (H1)-(H4)-(H6)

% M =—C  anda,=var ia-
b () ndx(hy) " o)

Hence
) 3 lo I
P<|f,sf(y>—m[f,sf<y>1|> | (,fEZ) (‘Z | /Jf&)
. log (1)
= expy 6| log>(n)
n¢x(hK)Var(Z?=15i)+ W
X K
C)]
< exp _nz&
¢|log®(n)
€t /n¢x(hK>
< Clexp ,  log(n)

g losm [
¢|log®(n)
c+ /nqu—(h,a

Finally, by (H7) and for a favourable choice of #, the Borel-Cantellis lemma allows
to finish the proof of Lemma 4.1.
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Proof of Corollary 4.1. We have

Otherwise

p{IFs| <5} < P{lFs -1 > 5} < pifs - B[R] > 5},

for E[F¥] = 1, we apply the result of Lemma 4.1 to show that
A 1
P{|Fg| < E} < o,
Proof of Lemma 4.2. The proof is a direct application of Lemma 4.1 when the
authors replaced x(., .) in equation (1) by
x(X;,Y) = K(hi'd(x, X)) — E[K;],VX; € K.

Proof of Lemma 4.3. We have

LN e @H)] -
nE[Kl(x)];E[KL(x)Hl@)] F*®)

1

1
= ———E(K{[E(H,;(y)|X) — F¥ ,
using the stationarity of the observations, the conditioning by the explanatory variable

and the usual change of variable ¢t = yh;u we obtain:
H

E[FF )] - F*(y)

ECH(hi (v — Y))IX) = f Hht (v = Y)) £ (w)du
- | H i o - ) Fr ) du

= f+ooH’(t) FX(y — hy)dt.

and can deduce that

+00

ECH (R (v — Y)IX) — FX ()| = f H'(©) [FX(y — hyt) — FX ()] dt.
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Under (H3):Vy € S,

+00

|ECH(hii' (v — Y))IX) — FX(0)| < Ay f H'(£) (R + |tIR}2) dt.

— 00

Hypothesis (H4) and Corollary 4.1 complete the proof of Lemma 4.3.

6. Conclusion

In this paper, the authors established the consistency properties (with rates) of the
conditional density function in a scalar response variable given a random variable
taking values in a separable real Hilbert space when the observations are quasi-
-associated dependent; the pointwise almost complete convergence (with rates) of the
kernel estimate of this model was obtained.
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WLASCIWOSCI ASYMPTOTYCZNE
SZACUNKU ROZKEADU WARUNKOWEGO
DLA POWIAZANYCH DANYCH FUNKCJONALNYCH

Streszczenie: Celem niniejszej pracy jest zbadanie metodg jadra nieparametrycznego oszacowania
warunkowe] funkcji rozktadu zmiennej odpowiedzi skalarnej przy zmiennej losowej przyjmujacej
warto$ci w separowalnej rzeczywistej przestrzeni Hilberta, gdy obserwacje sa quasi-skojarzone
zalezne. W pewnych ogdlnych warunkach ustala si¢ punktowo prawie zupelng zgodno$¢ ze stawkami
tego estymatora. Gtéwnym celem jest zbadanie wspotczynnika zbiezno$ci proponowanego estymatora.

Stowa kluczowe: estymacja nieparametryczna, prawdopodobiefistwo small ball, dane quasi-sko-

jarzone.
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