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“There is no any mathematical abstraction
which would not be applicable at an earlier time
or later time in practice”.

Nikolai Ivanovich Lobachevsky (1792 — 1856)

Preface

Knowledge is the most valuable attainment of the human civilisation. In fact, without knowledge there is no any
science, and vice versa. And hence, knowledge and science can be considered as elements of some discrete
sequential process. Obviously, the initial state of any such process is knowledge. Wisdom is a reasonable principle
based on existing humans knowledge. A more formal treatment of the last notion should be very difficult, but in the
broad sense it may be described e.g. as “a habit or disposition to perform the action with the highest degree of
adequacy under any given circumstance” (The Free Encyclopaedia, The Wikimedia Foundation, Inc). However,
wisdom should be associated with some good thing (i.e. disinterested goodness, etc.) in the same way as beauties
should not be useful. Moreover, wisdom should not involve contradictory interpretations (e.g. such as: a peace war,
peace bombardment, humanitarian intervention, twofold standards, privatisation or distortion of historical, scientific
or other facts and so on) . It should be an alternative to “technical rationality” and hence, should involves knowledge
of what is good or bad. And also, it should not be time restricted, as an example the following sentence: “Much do
not means well, but well means much” (Socrates 469/70 — 399 b.c.) or also: “ It is not sufficient to know very many
for being wise” (Heraclitus of Ephesus, 535 — 475 b.c.). In particular, such notions as: wisdom and ethical goodness
were also fundamental in Confucius’ philosophy (Kong Fuzi, 551 — 479 b.c., near Qufu, China): “Do not do to others
what you do not want done to yourself™.

Logic is the science and art which so directs the mind in the process of reasoning and subsidiary processes as to
enable it to attain clearness, consistency and validity in those processes (Turner W. 1999). The term ‘/ogic’ can be
considered into two aspects. The first one describes the use of valid reasoning in some activity while the second
names the science or study of reasoning. In the latter sense, it features most prominently in the subjects of
philosophy, mathematics, and computer science (The Free Encyclopaedia, The Wikimedia Foundation, Inc).

The science of computers, computer systems and their applications (often called in short “computer science” or
also “theoretical and applied informatics™) is a very young discipline starting together with the development of the
first electronic computers”. Sometimes computer science is erroneously interpreted as e.g. “computer hardware
science” or also “computing (or computation) science”. In fact, a computation in the broad sense can be realised
without using any computers, e.g. the Euclid’s algorithm (computation of the greatest common divisor of two
integers a and b), computation of vx (x > 0), known in ancient times, etc. But in the narrow sense, any computation
is introduced as a process, i.e. a strongly connected sequence of computer memory states realised under some subset
of computer instructions. It can be observed that without computers there is no any sense of using the term
‘informatics’. On the other hand, today’s computer systems became a very important and at the same time necessary
condition for any scientific investigation.

The problem-solving emphasis of computer science borrows heavily from the areas of mathematics and logic.
Faced with a problem, computer scientists must first formulate a solution. This method of solution, or algorithm as it
is often called in computer science, must be thoroughly understood before the computer scientists make any attempt
to implement the solution on the computer (Lambert K.A. et al. 1996). Any using of (digital) computers in resolving
mathematical tasks would require a discretisation of the considered domain. And so, the involved computational
process, i.e. a sequence of computer memory states, is discrete (and finite, if the corresponding algorithm would be
convergent).

* Electronic computers were initially developed in the 1940s by the American physicist John Vincent Atanasoff, son of a Bulgarian immigrant
(1903 — 1995). In fact, Atanasoff designed and built the first electronic, digital computer (non-programmable).



Discrete mathematical structures (in short: discrete structures), in particular such as mathematical logic and set
theory, algebraic systems, formal languages, automata theory, graphs, number theory, coding theory, combinatorial
analysis, discrete probability theory, Petri nets and so on, underpin a large amount of modern computer science”.
Discrete structures became a very large and dynamic science. Unfortunately, the speedy developments and
knowledge in this area makes impossible the presentation of all notions, definitions and applications used here.

The subjects of this part are propositional (or equivalently: sentential) calculus, first-order predicate (or equivalently:
quantifier) calculus, and set theory. The last three topics can be considered as basic, having now sufficiently large
applications in computer science theory. Without this “surgical instrumentarium” any more formal treatment of
definitions or descriptions, various properties or theorem proofs would not be complete. Some elements of classical
mathematical logic and set theory are first introduced. Then non-classical logic systems and sets are also presented.

Some basic notions concerning: operations and algebraic systems, lattices, Boolean, multiple valued and fuzzy
algebras, homomorphisms of algebraic systems (i.e. epimorphism, monomorphism, isomorphism, endomorphism
and automorphism), congruencies, quotient algebraic systems, finite direct products of algebraic systems and free
algebraic systems, grammars and sequential machines, algorithms, computability, recursion, graph theory,
combinatorial analysis, probability theory, Markov’s chains, number theory, information, coding and algorithm
complexity will be briefly considered in Part II of this book.

In general, the natural deduction in the broad sense can be considered as a way of the human thinking and
inferenc. But in the narrow sense, i.e. in senso stricto, it corresponds to the assumptional system style (as a natural
way of imitation of any such thinking and inference)?. In fact, this is the most generally known and important
approach and any other automated (algebraic or “artificial”) approach can be described by this one, but not vice
versa. Moreover, the last approaches seem to be very difficult in using for non-classical systems. The natural
deduction style is the most preferable and at the same time required in any scientific research. Moreover, the proofs
in the above assumptional systems are nearly the same as in the case of usual mathematical proofs or other scientific
reasoning. And hence, in accordance with the above advantages of these systems, they sometimes are known under
the name “natural deduction”. In the case of propositional and predicate logic systems, the existing assumptional and
axiomatic system styles are theoretically equivalent. But the main problem of any axiomatic system is related to the
time and space effectiveness of the corresponding proofs. This is because they are used here only two rules, i.e. the
rule of detachment for implication and the rule of replacement. And hence, from the practical point of view, we have
a different provability effectiveness related to the above two styles. An additional advantage of the assumptional
system style is the possibility of constructing different proofs for the same thesis and hence, the possibility of
studying different proof techniques. Finally, the assumptional and the axiomatic system styles theoretically are
having the same modelling power, but having different decision powers (related to concrete scientific research, e.g.
as in Turing machines and high-level Petri nets®). And so, the assumptional system approach is used in this book.
Usually a non-classical propositional logic involves a non-classical predicate logic, and hence — a non-classical set
theory. Here, some such approaches are also presented. The material considered was selected mainly based on
further investigations in computer science.

At the beginning in Chapter I, the classical propositional™ calculus is presented. The logical calculi considered
here are based on a system of rules, which define the methods used in proofs from assumptions. The methodological
problems in the deductive sciences are given only an elementary treatment (Stupecki J. and Borkowski L. 1967). The
last problems such as consistency, completeness, independence, etc. of a given system arise when a given axiomatic
system is considered (in ways analogous to assumptional systems). Obviously, the most important of these properties
is the consistency of a system. Next, a short review of selected axiomatic systems is presented and the proof of the

" In contradistinction to the numerical analysis, i.e. the study of algorithms for the problems of continuous mathematics (as distinguished from
discrete mathematics).

T In general, the existing logic systems may be classified as formal or non-formal (or “intuitive”: e.g. tracing somebody’s steps: a perfect
system of the Australian Aborigines). We shall study only formal logic systems. The last ones may be classified as classical or non-classical. On
the other hand, the non-classical systems can be classified as partially classical (or: “anti-classical”) and extended (or “extra-classical”), e.g.
see: (Burgess J.P. 2009). Provided there is no ambiguity, the term ‘mathematical logic’ is sometimes used to denote the applications of formal
logic in mathematics.

¥ Natural deduction is a deductive reasoning as distinct from abductive reasoning (a form of logical inference based on observations).
§ Alan Mathison Turing (1938: 1912 — 1954), Carl Adam Petri (1962: 1926 —2010).

™ From the Latin: ‘propositio’.



well-known deduction theorem is given (a summary presentation under Stupecki J. and Borkowski L. 1967). The last
theorem can be considered as a basis of introducing assumptional system style. Some elements concerning direct
reasoning and automated deduction methods are related to the sequent presentation. As it is shown, any Gentzen’s
rule can be represented as a corresponding thesis in the above-considered calculus. In the second section of this
chapter some non-standard logic systems are briefly considered, such as many-valued, fuzzy, modal, deontic and
temporal logics (Zadeh L.A. 1974, Manna Z. and Pnueli A. 1992 and 1995, Carson J. 1995,Gotwald S. 1995, Suber
P. 1997, Hajek P. 1998, Navara M. 2000, etc.). Here, the natural deduction methods are extended to some non-
classical systems, e.g. such as many-valued, fuzzy, modal, deontic and temporal logic systems. The Gentzen’s
sequent calculus is extended to Lukasiewicz’s L.-BL systems. In particular, it is shown that any fuzzy propositional
formula provable under Hajek’s axioms of the logic BL is also provable under the above-proposed approach, i.e.
using proofs from assumptions. This approach seems to be more attractive, more simpler and natural in practical use
than the axiomatic one. Moreover, there are introduced new t-norm and t-conorm and then it is defined a generalised
Lukasiewicz’s system, denoted by Lo-BL (o > 0), where the previous one becomes a particular case with o = 1. The
used fuzzy implication is specified as a residuum of the above t-norm (which is left-continuous) and hence, the last
implication is unique. In particular, it is also shown that the generalised Lukasiewicz’s fuzzy t-norm, given in
(Tabakow 1.G. 2010, 2014), can be also used for obtaining more universal fuzzy flip-flops and hence more flexible
control systems (modeled with fuzzy interpreted Petri nets). It is also shown that this t-norm, redefined as generalised
Lukasiewicz’s intuitionistic fuzzy t-norm is a t-representable intuitionistic fuzzy t-norm. And hence, a generalised
Lukasiewicz’s fuzzy intuitionistic implication (satisfying all corresponding requirements) is also introduced. Some
new inference rules are also given in the case of modal and temporal systems. Some introductory notions related to
the dynamic logic, modal p-calculus and their applications are also presented (Pratt V.R. 1981, Kozen D.C. 1983,
Venema Y. 2008, Gurov D. and Huisman M. 2013, etc.). As a first pass, some notions concerning the last calculus
and related to the next two chapters may be omitted. There are also briefly presented (or commented) some other
non-classical systems, such as: epistemic, game, quantum dynamic-epistemic, intuitionistic and fuzzy intuitionistic,
linear, (intuitionistic) computability, paraconsistent, relevant and non-monotonic logic systems. Some comments
concerning fractal logic are also given.

Propositional logic is not sufficient for computer science. And hence, in the next Chapter II, the first-order
predicate calculus is initially considered. Some well-known basic notions related to the classical predicate logic are
first introduced. As an illustration, by using such formulae, some example mathematical and/or computer science
definitions are also described and a set of primitive rules is then presented. Next, a carefully selected subset of theses
is proved. The corresponding formal proofs are based on assumptions. The notion of the existential uniqueness
quantifier is next presented and some properties are also given. The Gentzen’s sequent calculus is also illustrated. As
in the previous chapter, the corresponding rules are proved. Some new proofs and/or theses, mainly concerning
bounded (or equivalently: restricted) quantifiers, are also given. In the next considerations the skolemisation,
resolution and interpretation techniques are discussed (Chang C.-L. and Lee R.C.-T. 1973). The resolution technique
is considered as a construction of ramified indirect proofs with joined additional assumptions and natural numbers
are used in the formula interpretation rules. Next, the higher order predicate logic is briefly considered. Basic notions
related to the genralised quantifier theory are also presented (Pogonowski J. and Smigerska J. 2008). Some
considered here notions are related to the next Chapter III (e.g. the semantic values of quantifier expressions arer sets of
sets). Other non-classical systems, such as fuzzy, modal, deontic and temporal predicate calculi are considered in the
second section of Chapter II. Here, the intuitionistic and paraconsistent predicate logic systems are also briefly
presented.

In the last Chapter III, elements of set theory are first presented. This theory is a basic tool in discrete
mathematics and also in mathematical analysis (concerning infinite sets). Initially, there is given a historical outline
related to the development of this theory (The little encyclopaedia of logic 1988). And next, starting with the
axiomatic foundations, some well-known (set-algebraic) classical basic notions and definitions are briefly introduced
(Stupecki J. and Borkowski L. 1967, Kerntopf P. 1967). In particular, there are presented relations which are binary”.
The most of considered proofs are from assumptions. In the next considerations Kripke — Platek and other set
theories are briefly presented. Several applications are also presented. Some comments concerning commonsense
sets are also given. Next some elements of non-classical set theories are given, such as: multisets (or bags) and
multirelations, fuzzy sets and fuzzy relations, rough sets or also non-standard approaches: fuzzy rough sets, interval
type-2 fuzzy sets, near sets and nested sets, paraconsistent sets or other set models. Bunch theory is also briefly
presented. It is shown that the generalised Lukasiewicz’s fuzzy t-norm (introduced in Chapter I) may be considered

* In accordance with Part II: the presentation of abstract algebra that focuses on binary relations.
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as an adequate t-norm in the case of obtaining a distance function of the Minkowski class. Some other properties and
examples are also given. In particular, a possibility of a generalisation and improving of the notions of lower and
upper approximations used in fuzzy rough sets is also presented. All the above set theories are a very important part
of today’s computer science. And hence, some applications are also considered, e.g. concerning multigraphs, high-
level Petri nets, fuzzy graphs and nets, fuzzy clustering, fuzzy control, information systems and decision tables, data
mining, theory of programming, etc.

The above basic theories may be used as a part of lectures, predestined at first for computer science students,
however it can also be useful in other areas, e.g. such as system techniques and control, technical cybernetics,
telecommunication, managing etc. And also, the considered here systems may be useful for any researcher who is
interested in the above given area. The expected effects can be summarised as twofold. First, thorough knowledge of
the sense of using natural deduction methods in computer science and second, a possibility of obtaining a knowledge
for the purpose of efficient bibliographic search in this field of application and also with respect to future scientific
investigations and/or practical applications.

Several parts of this work were presented during my lectures at the Institute for Mechanical and Electrical
Engineering in Sofia, now known as TU Sofia, Bulgaria and also at the Wroclaw University of Technology in
Wroclaw, Poland. A preliminary version of this study was realised in accordance with some research projects, e.g.
such as 70802-331557-W0800, Z0802-341763-W0800, etc., during my stay in Wroclaw.

In addition, I would like to thank my wife for her countless patience and love during the writing of the
manuscript of this book.

This open access work is firstly addresses to the (advanced) computer science students, but may be useful for any
researcher who is interested in the above given area. Any suggestions or other comments related to this work are
well come. To all such remarks I would be grateful.

Iwan.G.Tabakow (retd. Professor)



11

The used designations

The used names for the primitive and/or derived rules given below are in accordance with the Lukasiewicz's
symbols of negation, conjunction, disjunction implication, and equivalence denoted by N, K, A, C, and E,
respectively (introduced in the parenthesis-free notation called also Polish notation: Jan Lukasiewicz 1878 — 1956).
Some commonly used symbols are given in parentheses. Other designations and/or abbreviations are the same as in
(Stupecki J. and Borkowski L. 1967)".

symbol of negation, called also logical inversion or logical
not (called also e.g  ‘quantum  negation’, i.e.
‘orthocomplement’ in quantum logic systems or ‘linear
negation’ in linear logic systems, etc.). Another used
designations: —, ", , 1 (e.g pt), Not, etc. The used
symbol ‘" ” may be also used as a citation of designations or
formulae, e.g. '~ to denote the set equinumerosity relation
or 'A n B’ etc., depending on the context ;

A symbol of conjunction (logical multiplication, logical and:
&, -, N, N, And) or weak conjunction (many-valued
logics) ;

v symbol of disjunction (logical sum, logical alternative, join:

+,U,l,/, U, Or) or weak disjunction (many-valued logics)
&,V ,% the symbols of strong conjunction and  disjunction,
respectively: many-valued logics (& may also denote

additive and in linear logic, depending on the context), B
denotes multiplicative or, see: linear logic, subsection 2.4 ;

= symbol of (the material) implication (— ,>,1);

- p & q <df p A ~q, the co-implication connective,
known also as subtraction (or difference) operator ;

PN symbol of equivalence (co-implication, -, iff,~, < , E:
‘=> may also denote the congruence modulo m relation on
the set of integers or a linear logic equivalence, depending
on the context (see linear logic, Subsection 2.4 ) ;

¢° is an abbreviation for ~ (@ A ~ @), i.e. ¢° <dar ~ (O A
~ @), see: paraconsistent predicate logic ;

0 => Y, 9 <S>y O=> vy <dr D= y) and @ <&> y<dr O(Q < V),
respectively (see temporal predicate calculus, Subsection 4.2) ;

d (the modal) functor of necessity (other used designation: N):
Provided there is no ambiguity by O it is also denoted the temporal
functor ‘always’ (or ‘henceforth': see Subsection 2.3, Temporal
logics) ;

o (the modal) functor of possibility (other used designations:

A oralso P: Lewis C.I. 1883 - 1964): Provided there is no

* Stupecki Jerzy (1904 — 1987), Borkowski Ludwik (1914 — 1993).
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=5, <e>

-0
+ O
NO
N<

+SI, +SE, — SI

+OSE, - OSE

o/o
oK
ocC
O-Toll

S-Toll

OA
AD
oK
RO, RO

SDS, CSDS

SMC, SAA

co
&-Toll
NOK, NG A

OBR

ambiguity by < it is also denoted the temporal functor
‘eventually' (or 'sometimes': see Subsection 2.3, Temporal logics) ;

the modal logic symbols of strict implication (or entailment:

<, ,—> ,2,=: Lewis C.l.) and strict equivalence,
respectively ;

rule of omitting the necessity modal functor ;
rule of joining the possibility modal functor ,
rule of negating a necessity modal functor ;

rule of negating a possibility modal functor ;

rules of joining a strict implication and a strict equivalence,
respectively, rule of detachment for strict implication (or
omitting a strict implication) ;

ordinary rules of joining and omitting a strict equivalence,
respectively ;

rule of changing a necessity modal functor into possibility
modal functor ;

rule of exchanging a necessity of conjunction by conjunction
of necessities ;

rule of necessity of implication ;
modal necessity tollens ;

strict implication tollens ;
rule of exchanging a possibility of disjunction by disjunction
of possibilities ;

rule of disjunction of necessities ;
rule of possibility of conjunction ;
rules of reduction of necessity and possibility, respectively ;

strict rule of Duns Scotus and contrapositive strict rule of
Duns Scotus, respectively ;

strict laws of multiplication of consequents and addition of
antecedents, respectively ;

rule of implication of possibilities ;
modal possibility tollens ;

modal De Morgan’s laws for necessity of conjunction and
possibility of disjunction, respectively ;

obligation rule ;

(the deontic) functor of obligation ( O ) or a connective in
linear logic (pronounced as ‘of course’, see: linear logic,
Subsection 2.4) ;

(the deontic) functor of permission (P ) ;

(the deontic) functor of forbiddance ( F, provided there is no
ambiguity and depending on the context, by o it is also
denoted a binary relation or a program computation, i.e. a
sequence of states, stack, i.e. an abstract data type: last in,
first out, or also a map: see Subsection 2.3, Temporal logics, -
calculus). Provided there is no ambiguity, the Greek letter p
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I-Toll
NIK
NGSA
1AA
IMC
IMAC

+1A
ITC
Voo /o), B /o), (e /)

also denotes a path ( of a graph G): depending on the
context ;

denotes a formula or the binary relation of bisimulation,
depending on the context (see Subsection 2.3, Temporal
logics,i-calculus) ;

deontic constant (i.e. 0-ary modal functor, denoted also by
‘'s” or 'v’), standing for some sanction or related to some
violation or may also denote a belief revision action,
depending on the context ;

rule of negating a deontic functor of obligation ;

rule of negating a deontic functor of permission ;

rule of exchanging an obligation of conjunction by
conjunction of obligations ;

rule of exchanging a permission of disjunction by
disjunction of permissions ;
rule of disjunction of obligations ;

rule of permission of conjunction ;

rule of changing an obligation deontic functor into
permission deontic functor ;

rule of obligation of implication ;

rule of implication of permissions ;

deontic rule of detachment for implication (or omitting an
implication) ;

deontic obligation tollens ;

deontic De Morgan's law for obligation of conjunction ;
deontic De Morgan's law for permission of disjunction ;
deontic law of addition of antecedents ;

deontic law of multiplication of consequents ;

deontic rule of multiplication of the antecedents and
consequents of two implications ;

deontic rule of joining a disjunction ;
deontic rule of transitivity for implication ;

conditional (or relative) obligation, permission and
forbiddance functors, respectively, e.g. (¢ / y), where ©
and y may be arbitrary classical logic formulae ;

the (temporal) functors ‘mext’, ‘previous’ and ‘weak
previous';

the temporal logic functors ‘wntil’, ‘unless (waiting-for)’,
"since’ and ‘back-to” , respectively ;

the temporal logic functors 'has-always-been' and ‘once’,
respectively ;

the temporal logic functor ‘it will always be the case that..."

the primary tense logic functor ‘it will be the case that...” ;

the temporal logic functor it has always been the case
that...” ;

the primary tense logic functor it was the case that...” ;

tense logic rule of joining G functor ;

13



+H

- GC,—HC

G-Toll, H-Toll
FA, PA

NGK, NHK

NFA, NPA

GTC, HTC

//’:(P‘r,e

1(u)
No
0A, OK

NOA, NoK

n™(x), a"(x,y), ¢"(x.y)

=df

+K (-K)

+A (-A)

+E (-E)

+C
C—l
DE
DS
NC
NA (NK)
+N (-N)

tense logic rule of joining H functor ;

tense logic G and H rules of detachment for implication (or
omitting an implication) ;

tense logic rules G and H ftollens ;

distributive property rules of F and P functors ;

tense logic De Morgan's laws for G and H functors of
conjunction ;

tense logic De Morgan's laws for ¥ and P functors of
disjunction ;

tense logic rules of G- and H-transitivity for implication ;
the formula o in time instance t is satisfied in model .7,
0 is a time instance set (.~ and T may also denote a

transition system and transition label, respectively: see
Subsection 2.3, Temporal logics, p-calculus: simulation logic) ;

the label associated with u (an edge of a graph G) ;
rule of negating a temporal next functor ;

distributive property rules for temporal next functor of
disjunction and conjunction, respectively ;

De Morgan's laws for temporal next functor of disjunction
and conjunction, respectively ;

Post’s functions corresponding to negation, disjunction and
implication in m-valued systems (Post E.L. 1897 — 1954):
the Post’s functions corresponding to the classical
disjunction, conjunction and negation, i. e. for m = 2, are
denoted by a, k and n, respectively;

the metalogical symbol of definitional equality (:=, £ or
also =) ;

the range equality (set theory) :
symbol of definitional equivalence ;

rule of omitting an implication (or detachment for
implication RD called also modus ponendo ponens or
briefly: modus ponens MP) ;

rules of joining (omitting) a conjunction ( JC and OC ,
respectively) ;

rules of joining (omitting) a disjunction ( JD and OD ,
respectively) ;

rules of joining (omitting) an equivalence ( JE and OE,
respectively) ;

rule of joining an implication ;

rule of conversion of implications ;

rule of detachment for equivalence ;

rule of Duns Scotus (John Duns Scotus 1266 — 1308) ;
rule of negating an implication ;

rules of negating a disjunction (conjunction) ;

rules of joining (omitting) double negation ;



ER, SR

RR

—EA’"—EA”
TC, TE, CR, CC, CE

- Na, - Nc, - Ka, - Kc, - Aa, - Ac, - Ca, - Cc, - Ea, and
- Ec

1(0)

B

Toll
AA, MC (AC)

AAC, MAC

iso, sim, &, =, =g

GR

1

ai

aip

extensionality rule, rule of substitution for equivalence
(called also: substitution rule or rule of replacement for
equivalence) ;

rule of definitional replacement of one formula by another
(axiomatic system style) ;

rules of omitting an exclusive disjunction ;

the transitivity for implication, transitivity for equivalence
and implication rules, the law of transposition or
contraposition of implication, law of transposition or
contraposition of equivalence ;

rules of reduction of the basic logical functors in the
antecedent (consequent) of a sequent (subscripts ‘a” and ¢’
, respectively: here the Lukasiewicz’s symbols N,K,A,C,
and E are used) ;

truth (falsehood) of a sentence, i.e. a sentence which is
always true (always false, i.e. inconsistent) proposition, the
logical constants (or equivalently: the constant formulae)
"true’ and ‘false’ are also denoted by T and F, respectively
or also by tt and ff: depending on the context: other
possible designations: T and L, respectively, ), T and L
may be also used to denote a t-norm and t-conorm,
respectively ;

denotes ‘both’, i.e. false and true: see paraconsistent logic (
B may also denote e.g. a set: depending on the context);

rule modus tollendo tollens (or briefly: modus tollens);,

rules of addition of antecedents and multiplication (addition)
of consequents of two or more implications having the same
consequent and antecedent, respectively;

rules of addition and multiplication of the antecedents and
consequents of two implications, respectively;

binary relations of machine isomorphism, simulation,
inclusion,  equivalence (Pawlak Z. 1926 — 2006) and
isomorphism between two algebraic systems (wrt some map

0);

Gédel’s Rule in modal logic systems (Godel K. 1906 —
1978);

symbol of replacement ;

symbol of alternative negation (Sheffer’s dash: Sheffer
H.M. 1882 — 1964) or also the (temporal logic) functor
first... then...”: see Subsection 2.3, Temporal logics. This symbol
may also denote ‘such that’ or arithmetical division (depending on
the context) ;

symbol of joint negation (Peirce’s arrow: Peirce C.S. 1839 —
1914) ;

assumption(s) ;

the i axiom (i=1, 2, ... k) ;

the unit element of an algebraic system (denoted also by u:
provided there is no ambiguity by e it is also denoted an
expression: see Subsection 2.3, Temporal logics) ;

assumption(s) of indirect proof;
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additional assumption of a proof , contradiction ;

the basic fuzzy propositional logic (called also: basic many-
valued logic: Hajek P 1998),concerning the following three
systems: fukasiewicz’s BL, Godel’s BL, and product logic
BL, respectively (1 may also denote quantum program or
proof: depending on the context) ;

means: ‘also known as’, " with respect to ..., and " such that
...", respectively (denoted also by: /, s, or :): the O-ary " s *
may also denote an ‘intuitionistic absurd’, depending on the
context ;

the conjunctive (disjunctive) normal form of the formula ¢ ;

symbol of Gentzen's sequent ( — , Gentzen G.K.E. 1909 —
1945) ;

the many-valued logic symbols of  “undefined” (or

[TARIN

“undetermined” also denoted by Kleene symbol “u”: Kleene
S.C. 1904 -1994 ) and “overdefined”, respectively; the first
symbol is also used as truth constant in strict fuzzy logic
(denoting falsity, i.e. the truth degree 0 or equivalently: 0,
similarly the second symbol denoting truth, i.e. the truth

degree 1 or equivalently: 1). L and, T may also denote
‘bottom’ and ‘top’ in linear logic or also: ‘machine’ and
‘environment’ in  intuitionistic  computational  logic
(depending on the context, see Subsection 2.4):" Lx " may denote
‘the decimal value of a binary (in general m-ary) word” ;

product logic: the usual arithmetic product and algebraic
sum operations (denoted also by ‘“*®”), where: a V. b =¢r a
+b-—ab;

the logical operations minimum and maximum, respectively ;
the main sequent connective of a given formula ¢ ,ie. '’

in the sequent '~ ¢ ”;

‘state of affairs’ (wrt a database query) ;

"E ¢ means ' @ is thesis’ (F ), ¥ ¢ <ar~ (= 0), Et O
" means ¢ is t- thesis” or also, depending on the context,
"= @' requires ¢ to hold at the first state of any sequence of
states (see Subsection 2.3, Temporal logics) ;

denotes '@ is true or holds at s’ (another designation of the
satisfaction relation: 'I-', used in p-calculus: similarly for I

and I+, see Subsection 2.3, Temporal logics) ;

«' (if P
and D are known: see Subsection 2.3, Temporal logics, p-
calculus) ;

the modal equivalence relation, denoted also by

denotes '@ holding at a position j,j > 0, in a sequence
o' (similarly for #: see Subsection 2.3, Temporal logics) ;

() =ar (o)) Fo';

symbol of exclusive disjunction (% , ¥ ) ;
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some propositional (called also sentential) variables
(provided there is no ambiguity by p it is also denoted a
property of a given program and s may also denote a state:
see Subsection 2.3, Temporal logics) ;

symbol of an interpretation or index set, depending on the
context: usually I coincides with the set of natural numbers:
for convenience, instead of |} X;» it is also used: |y,
iel i

(assuming that I is known) ;

the logical value of a propositional formula ¢ , v(¢) forl,
vy is a logical consequence wrt @i, ... ,on (follows from , is
deducible by, equivalently: @1, ... ,on E Y ) ;

vy follows from (or is a logical consequence wrt) ¢. Then
= ¢ = vy (and vice versa: similarly for ¢ E¢y);

~( Evy);

is obtained from 7y by the replacement of its parts v by the
formula o ;

‘is (are) element(s) of ..’(may also denote an empty
sequence €, depending on the context: see Subsection 2.3,
Temporal logics: p-calculus) ;

empty (or null) set ;

the sets of natural numbers N =4 {1, 2, ...}, the subsets of
even and odd natural numbers, integer numbers, rational
numbers, real numbers, nonnegative real numbers [0, 00),
positive real numbers (0, ), complex numbers,
transcendental numbers and quaternions, respectively ;
nonnegative integers (i.e. IN =i N U {0}), extended by
‘®’ (an infinite number) ;

the cardinal numbers corresponding to the sets of natural
numbers and real numbers, respectively ;

E, O < Z denote the subsets of even and odd integer
numbers |

the set of all ‘a’ satisfying condition @(a) , another
designation: E®(a): ‘B> from French word ‘ensemble’ ;
a

the cardinality of set X (denoted also by: X (Cantor’s
designation: G.F.L.P. Cantor 1845 — 1918) , card(X), nc(X),
#(X) or #X;

the number of x’s in B (a multiset) ;

the i™ axiom A anditsuse ai (i € N);

denote ‘is less than or equal to’ (in general: some partial
ordering relation) and ‘is a subformula of’, respectively ;

the partial order relation, the opposite (or inverse) partial
order relation and their strong versions, respectively:
denoted also by >, <, > and <, respectively ;

17



ged(a,b)

(a) modulo m

equivalently: Ox or id it is denoted the set: {(x,x)/ x
e X};

universum (the universe set, the universe, the universal set),
other used designations: S, E, 1, etc., sometimes may be
used another symbol (e.g. X: fuzzy sets or intuitionistic fuzzy
sets) and this is depending on the context) ;

the greatest common divisor (archaic: greatest common
factor) of two integers a and b is the largest integer that
divides them both. ;

denoted also by rem(a/m) =4t b is the remainder when a
is divided by m, where: a = k-m + b (amk,b -
integers:m > 0 and 0 <b <m)";

c,¢,¢ the set inclusion and the proper set inclusion (or strict set
inclusion, denoted also by ' ) binary relations. X ¢ Y
i ~(X S Y)if X € Y then X is a subset of Y or
equivalently, Y is a superset of X ;

S, = the multiset inclusion and equation, respectively ;

inf{Y}, sup{Y}

supp(X)

P, d

X/p

P /B

[x]

A (X), A (X), BR(X)

infimum of Y (supremum of Y), denoted also by: inf Y (sup
Y)or infy/y e Y (supy/y € Y),ie. the greatest lower
bound (the least upper bound) of Y & X, where X is a
partial ordered set ;

support of X (a given set) ;

non-empty (equivalently: non-void) sets of formulae, e.g.
proposition letters (i.e. propositional variables called also
atomic propositions p, q, T, ... or also free or bound variables
of a formula ¢: X, Yy, z etc., see Subsection 2.3, Temporal
logic: p-calculus; provided there is no ambiguity by P it is also
denoted a given program or also process: see Subsection 2.3,
Temporal logics): in set theory @® and W may also
correspond to some conditions (depending on the context) ;

non-empty set of atomic actions (or labels: see Subsection 2.3,
Temporal logics: p-calculus) ;

the quotient set wrt the binary equivalence relation p (the

used symbol p may also denote metric in a given metric
space, denoted also by d, from the term ‘distance’) ;

the binary relation p on A, restricted to (the subset) B
c A,

an equivalence class under p ;

denote: lower approchimation, upper approchimation and
boundary region of X wrt p (a binary relation, see: rough
sets) ;

the set union (set sum), set intersection, set difference and
symmetric (or: symmetrical) set difference operations (another
designation for set difference: "\ ', e.g. X \'Y, instead of
X — Y), provided there is no ambiguity by X’ is denoted

<

* In general, the congruence modulo m relation on the set of integers ‘=’ is defined as follows: a =b (mod m) <>¢ m/a — b,ie. m

divides the arithmetical difference a — b. Equivalently, @ = b (mod m) iff there exists an integer k € Z suchthat a = k-m + b.

T This set operation may also denote usual set inclusion, e.g. see (Stupecki J. and Borkowski L. 1967).
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p, plp°

dom(p), cod(p)

phLp*,poc

f:X > Y, YX

S
S, KopeS, [lo[I® (llell,)

the complement of X (another designation: X ): the symbol
'U" may also denote a union (or nondeterministic choice of
events, called also regular expressions), - and = are the
corresponding algebraic operations of concatenation (called
also catenation, sequencing or composition: another
designation: " ; : "o’ may also denote composition or
equivalently superposition of two or more, a finite number,
binary relations) and the Kleene star operator, called

iteration, Kleene S.C. (1904 — 1994: see Subsection 2.3,
Temporal logics: dynamic logic) ;

dynamic logic functors (called also operators, ‘a’ denotes

action or equivalently: event): [a](ﬂ and <a>¢) denote the

facts that after performing a it is necessarily and it is
possible the case that ¢ holds, respectively (for an arbitrary
formula ¢ : see Subsection 2.3, Temporal logics: dynamic logic)

s

the induction axiom, the loop invariance, the reflexive
transitive closure, the modal generalization and the
monotonicity rules (see Subsection 2.3, Temporal logics:
dynamic logic) ;

the polymodal logic in D and P, the polymodal fixpoint
logic in D and P, the sets of free and bound variables of a
formula @, respectively (see Subsection 2.3, Temporal logics:
u-calculus) ;

the epistemic and doxastic functors (or: operators, denoted
in short by K and B, if the Agent ¢’ is known). Kp
denotes “Agent ¢ knows p” and B denotes “Agent c
believes p”

the generalised set union and set intersection operations,
respectively ;

an ordered pair (2-tuple in short “couple”: means “pair”),
denoted also by <x,y>, Kuratowski K. (1896 — 1980) ;

Cartesian product of sets, X" =4 X x X x .. x X, n
times, n > 2 (René Descartes 1596 — 1650, Latinised:
Renatus Cartesius) ;

a binary relation: p S A x B, where A and B are two
sets (apb <t (ab) € p); p' denotes the transposed
relation or equivalently the converse of p, i.e. ap™'b <ar
bpa (sometimes instead of the Greek p, o, ... they are also used
the latin letters R, S, ... ) and the identity relation (denoted also
byid):eg. p’ =ar {(xx)/x € X};

domain and codomain (called also: range or image) of a binary
relation p ;

transitive closure of p, transitive and reflexive closure of p,
ie. p*¥ =a p° U p° and composition (called also:
superposition or relative product) of two (or more, a finite
number) binary relations: sometimes "o " is omitted ("o ’
may also denote concatenation: language theory) ;

fis a map (into or onto) from X to Y, YX =4 {f/f: X —
Y} (denoted also by Map(X,Y));

a (P,D)-(labelled) transition system or (P,D)-Kripke model,
KppS (in short K) denotes the Kripke functor associated
with D and P, and and the corresponding meaning or
extension of a formula ¢ in S (in S wrt the environment
€ : see Subsection 2.3, Temporal logics: p-calculus) ;
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the usual triangular norm and conorm operators, in short: -
norm and t-conorm (called also: s-norm), denoted also by T
and L, respectively; the generalised Lukasiewicz’s fuzzy t-

norm and t-conorm; the intuitionistic fuzzy t-norm and t-
conorm; the generalised Lukasiewicz’s intuitionistic fuzzy t-
norm and t-conorm, respectively. ® and @ may also denote
multiplicative and’ and additive or, depending on the
context, see: linear logic, Subsection 2.4 ;

is used in propositional dynamic logic, e.g. ‘?p’ denotes:
‘test p and proceed only if true’ (see Subsection 2.3) or also a
connective in linear logic, pronounced as: ‘why not’ and ‘—

denotes linear implication, e.g. @ —o \, see: linear logic,
Subsection 2.4 ;

the generalised Lukasiewicz’s fuzzy implication, the fuzzy
intuitionistic implication and the generalised tukasiewicz’s
fuzzy intuitionistic implication, respectively ;

denotes logical, arithmetical operation or another binary
operation: depending on the context ;

the logical value of a propositional formula ¢© wrt the
continuous t-norm ®: v(e) € [0,1] ;

the set of all x such that ¢(x) (or equivalently: E¢(x));

the power set (or the powerset) of a set X, P(X) =¢t { Y/Y
< X }also denoted by: P(X), p(X), pX, 2%X);

partition of a set X ;

denotes the class of Boolean interpreted Petri nets ;

denotes a Petri net (provided there is no ambiguity, N
denotes also the tLukasiewicz's symbols of negation:
depending on the context) ;

the finite-state machine corresponding to N (a Petri net) ;

the behaviour equivalence and state machine equivalence
relations, respectively ;

means: "Corollary’;
means: Definition’;

e.g. 'T1.2a" means ' Thesis or Theorem I1.2a’ (depending
on the context) ;

the state-tautology axiom (see Subsection 2.3, Temporal logics)

>

the primitive rules of generalisation, specialisation and
instantiation rules (see Subsection 2.3, Temporal logics) ;

the derived rules of temporalisation, particularisation and
propositional reasoning (see Subsection 2.3, Temporal logics) ;

the derived rules of entailment omission of implication (or:
entailment modus ponens), entailment transitivity for
implication (or: entailment transitivity) and entailment
propositional reasoning (see Subsection 2.3, Temporal logics)

>

an alphabet and the set of all finite words in X ;
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the wuniversal quantifier (called also: general or big

quantifier and denoted also by: IT, A, A, etc.: IT or A may

also denote a generalised conjunction, /\ may denote the
minimal element of a given lattice: depending on the

context) and the bounded universal quantifier: VX) V(&) <
Y (p(x) = y(x)) (or equivalently: Vx (p(x) = v(x) or
Vx:ip(x) = v(x) oralso VX. o) = y(x));

the existential quantifier (called also existentional or little
quantifier and denoted also by: X, 1T, E, V, 3,,, etc.: T or

V' may also denote a generalised disjunction, ¥ may also

denote an alphabet and V may denote the maximal
element of a given lattice: depending on the context) and the

bounded existential quantifier: W?X) V(X)) <dar 3 (px) A ()
(or equivalently: 3x (p(X) Ay(X) orIx:eX) AKX or

also 3X. () AY(x) ) ;
denotes a quantifier, i.e. Q e {V, 3}, aset or also a
predicate name (depending on the context) ;

the unique (or "exists unique’) quantifier, denoted also by 3,
or also by 3., and the existential uniqueness quantifier,
denoted also by 3., and s0: Jlpx) < Fox) A I+ o) ;

X X X

denotes an expression formed from ¢ by substituting (the
individual variable) x for the expression &.

denotes a mathematical expression, describing some property
associated with X ;

rules of negating an universal quantifier, negating an
existential quantifier,  omitting an universal and an
existential quantifiers (the corresponding rules for bounded
quantifiers) ;

rules of joining an universal and an existential quantifiers
(the corresponding rules for bounded quantifiers), and
“there exists at most one” quantifier ;

the rule of extensionality for identity, cut-elimination rule ;

"1’ denotes a descriptor’s operator, e.g. 1p(x) ;
X

rule of joining a descriptor’s operator (or omitting an
existential uniqueness quantifier) ;

the resolvent rule (see Subsection 3.6: resolution method) ;
"end-of-definition’;

the symbol of definitional equality (or identity: equals by
definition) ;

some vectors (denoted also by x, y, ...) ;

empty formula (empty sequence, empty sentence, phrase or
word, empty string: denoted also by € or e€) or real
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ECSQ

Cont, Weak, Perm

parameter, depending on the context ;

ex contradictione sequitur quodlibet (latin), equivalently:
ECQ;

Contraction, Weakening, Permutation

ie. id est (latin): that is ;
LP logic of paradox ;
PDL, LQA propositional dynamic logic, logic of quantum actions ;
QL (the traditional) quantum logic ;
o the average, combinatorial and series connectives (see Subsection
®. , ©Of, @®n 2.4, Fractal logic) ;
KB, DB, CWA knowledge base, database, closed world assumption ;
It Hilbert space ;
T, K quantum programs or proofs: depending on the context ;
ite if ... then ... else, e.g. s = ite{b/ o ;c} denotes: ‘if a is
true, then s = b, else s = ¢ (Subsection 2.4: fractal logic) ;
e an expression ;

which respect to, versus, also known as ;

IFN intuitionistic fuzzy number ;

p Pytagorean fuzzy set

LNC law of non-contradiction ;

It "1t "~ denotes ’less than’, i.e. ‘<’

Z(X), Z(y) Xisaset' , 'yisaset;

qr(e) the quantifier rank of ¢ ;

,,aj is an abbreviation: Elj =4 %l 31 ;

s "is proportional to”

o ‘end of proof ° (of an example, algorithm, or another
formalised text) ;

‘text’

[boow], [boows]

citation of a text, e.g. ‘a variety of problems that can be
solved by ... ©

denote (depending on the context): ‘based on other work > and
‘based on other works’, respectively.

Sets are denoted by capital letters, e.g. X, Y, etc. Families of sets are denoted by bold capital letters, e.g. X, Y
etc. Moreover, as in Stupecki J. and Borkowski L. (1967), below the lower case Greek letters "¢ ", "¢ ", "y’ , "y~
, etc., are used as metalanguage variables for which names of any formulae of the propositional calculus may be
substituted, while for the variables "p ", " q " etc. , we may substitute any propositional formulae belonging to that
calculus.
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. Propositions

The logical calculi considered here are based on a system of rules, which define the methods used in proofs from
assumptions. The methodological problems in the deductive sciences are given only an elementary treatment
(Stupecki J. and L. 1967). The last problems such as consistency, completeness, independence, etc. of a given system
arise when a given axiomatic system is considered (in ways analogous to assumptional systems). Obviously, the
most important of these properties is the consistency of a system. Some elements concerning direct reasoning and
automated deduction methods are related to the sequent presentation. As it is shown, any Gentzen’s rule can be
represented as a corresponding thesis in the above-considered calculus. In the second section of this chapter some
non-standard logic systems are considered, such as many-valued, fuzzy, modal, temporal and other non-classical
systems (Zadeh L.A. 1974, Manna Z. and Pnueli A. 1992 and 1995, Carson J. 1995,Gotwald S. 1995, Suber P. 1997,
Hajek P. 1998, Navara M. 2000, etc.). Here, the natural deduction methods are extended to some non-classical
systems, e.g. such as many-valued, fuzzy, modal, temporal and some others. The Gentzen’s sequent calculus is
extended to L-BL systems. In particular, it is shown that any fuzzy propositional formula provable under Hajek’s
axioms of the logic BL is also provable under the above-proposed approach, i.e. using proofs from assumptions. This
approach seems to be more attractive, more simpler and natural in practical use than the axiomatic one. Some new
inference rules are also given in the case of modal and temporal systems. Some introductory notions related to the
dynamic logic, modal p-calculus and their applications are also presented (Pratt V.R. 1981, Kozen D.C. 1983,
Venema Y. 2008, Gurov D. and Huisman M. 2013, etc.). As a first pass, some notions concerning the last calculus
and related to the next two chapters may be omitted. There are also briefly presented (or commented) some other
non-classical systems, such as: epistemic, game, quantum dynamic-epistemic, intuitionistic and fuzzy intuitionistic,
linear, (intuitionistic) computability, paraconsistent, relevant and non-monotonic logic systems. Some comments
concerning fractal logic are also given.

1. Classical propositional calculus

Logic is the science and art which so directs the mind in the process of reasoning and subsidiary processes as to
enable it to attain clearness, consistency and validity in those processes (Turner W. 1999). The Greek word logos,
meaning ‘reason’ is the origin of the term ‘logic-logike’ (techen, pragmateia,or episteme,understood) as the name of
a science or art., first occurs in the writings of the Stoics (The Stoic School: founded in 322 b.c. by Zeno of Cittium).
The traditional mode of dividing logic into ‘formal’ (called also ‘symbolic’) and ‘material’ is maintained in many
modern treatises on the subject. The founder of logic, Aristoteles (born at Stagira, a Grecian colony in the Thracian
peninsula Chalcidice,384 b.c. died at Chalcis,in Euboea,322 b.c.) in the six treatises”, which he devoted to the subject,
examined and analysed the thinking processes for the purpose of formulating the laws of thought. In the wide sense,
the discovery of logic should be associated with the classical Greek philosopher Socrates (469/70 — 399 b.c.)
reckoned as the biggest wise man in Ancient Greece, one of the most famous of the whole history of philosophy,
attracted many pupils and/or followers, such as: Euclides (430 — ¢.360 b.c.), Platon (c.424 — 347 b.c.), Xenophon
(c.425 —¢.386), Aristophanes (¢.450 — ¢.386), Aristoteles (who was a student of Platon, whom Socrates taught), etc. The
Socrates style of teaching was based on two different methods: elenctic style (elenkhos: critical thinking or cross-
examing) and maieutic style (maieutics: constructive or creative style). It can be observed that the last two methods
are related to the notions of indirect and direct proofs from assumptions, respectively. Some philosophy systems
were studied early, e.g. in India, in the 5" century b.c.:‘nydya’ meaning inference, logical argument or syllogism?.
The Nyaya school of logic, based on Hindu philosophy, can be considered as a form of epistemology (i.e. theory of

" The Categories, Interpretation, Prior Analytics, Posterior Analytics, Topics, and Sophisms.

T A syllogism (Greek: culMoyiopodg , ‘conclusion, inference’) is a kind of logical argument that applies deductive reasoning to arrive at a
conclusion based on two or more propositions that are asserted or assumed to be true (see: The Free Encyclopaedia, The Wikimedia Foundation,
Inc.).
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knowledge) in addition to logic. In accordance with this school, there are exactly four sources of knowledge,
i.e."paramanas’: perception, inference, comparison, and testimony (based on texts known as Nyaya Sutras, written
by Aksapada Gautama from around the 2™ century b.c. (see The Free Encyclopaedia, The Wikimedia Foundation,
Inc).

In the next considerations we shall concentrate our attention only to the formal logic (called in short also ‘logic’,
provided there is no ambiguity). In the last case, logic can be divided into ‘classical’(known also as Boolean™ or
bivalent, i.e. the logical value of a propositional formula is either true or false) and ‘non-standard’ (called also ‘non-
classical’). Typically, a logic consists of a formal or informal language together with a deductive system and/or a
model-theoretic semantics. The language is, or corresponds to, a part of a natural language like English or Greek.
The deductive system is to capture, codify, or simply record which inferences are correct for the given language, and
the semantics is to capture, codify, or record the meanings, or truth-conditions, or possible truth conditions, for at
least part of the language (Shapiro S. 1995).

Subsections 1.1 — 1.6 are a brief introduction to the methods of natural deduction according to the excellent
work given by Stupecki J. and Borkowski L. (1967). The logical calculi considered here are based on a system of
rules which define the methods used in proofs from assumptions. Such an approach was originally introduced during
1934 — 1935 by Jaskowski S. and Gentzen G.K.E'. The last approach seems to be inspirated by the earlier
presented deduction theorem (introduced independently by Tarski A. in 1923 and Herbrand J.* in 1930: see
Theorem 1.31 of Subsection 1.7 and related comments). Some elements concerning direct reasoning and automated
deduction methods are related to the sequent presentation (Subsection 1.8).

1.1. Symbols and formulae

Consider the proposition: “Russell is a logicien or it is not true that Russell is a logicien”. This proposition
remains to be true if instead of the word “Russell”, the word “Chaplin™¥ is used or also instead of the word
“logicien” , e.g. the word “general” is used. However, the last property is not preserved if we consider only the first
part of the above proposition: “Russell is a logicien” (Bertrand Russell: 1872 — 1970). So, it can be observed
different texts may have different logical forms. In general, the logical form of a proposition is the formula obtained
from this proposition by replacing non-logical constants™ by variables, the same constants being replaced by the
same variables and different constants by different variables. Unfortunately it is a very difficult task to be given some
more general definition of the last notion. Some more fundamental investigations concerning the process of
extraction of a logical form associated with a priori given text were presented by Barwise K. J. and Perry J. (1983)
and also by Kamp H. and Reyle U. (1993)"". A more strict considerations of the notion of logical form are omitted
here. According to the above example, the following formula can be obtained: p v ~p, where the propositional
variable p corresponds to “ Russell is a logicien”. The constants v and ~ correspond to the connectives ‘or’ and
‘it is not true that’, respectively. Hence, the Aristotelian law of the excluded middle (lat: “tertium non datur”) was
obtained.

In the propositional calculus any formula is constructed by using the following three kinds of symbols: (i)
propositional variables (denoted by p, q, T, S,....p1,p2,...), (il) some constants of the calculus (called also logical

* George Boole (1815 — 1864)

fStanistaw Jaskowski (1906 — 1965), Gerhard Karl Erich Gentzen (1909 — 1945)
¥ Alfred Tarski (1901 — 1983), Jacques Herbrand (1908 — 1931)

§ Charlie Chaplin (1889 — 1977)

** Any logical expression consists of symbols (in the broad sense: constants and variables). In general, there exist two kinds of constants:
logical constants (e.g. T,F, ~, An,v,=, &, 0, <, !, etc., having the same semantic content in any interpretation) and non-logical ones,
depending on the used interpretation (and hence, the considered sentence may be true or false).

" A formal semantics approach including the Kamp’s discourse representation structures having two critical components: a set of discourse

referents representing entities which are under discussion and a set of conditions representing the obtained information about discourse referents
(discourse representation theory: Johan Anthony Willem Kamp, born 1940)
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functors or connectives, such as: ~, A,V , =, <, etc.) and also (iii) parentheses (left: ‘(° and right: )’ ). The
basic symbols ~, A,v,= and < are called negation, conjunction, disjunction (below called also ‘logical
alternative’ or in short ‘alternative’), ‘(material) implication’, and ‘equivalence’, respectively. The expression '~ p’
isread: ‘not p’ (or: ‘it is not true that p’). In a similar way, the expressions ‘p A @', p v q¢’,‘p = q’,and ‘p &
q’ are read as follows: ‘p and q’, ‘p or q’, ‘if p then q (or: ‘q only if p’) and ‘p if and only if q’,
respectively. The first and the second elements of an implication are called its antecedent (or premise) and its
consequent (or succedent), respectively. As it was mentioned, an expression may be introduced without using any
parentheses (in accordance with the Lukasiewicz's parenthesis-free notation), e.g. instead of the expression ‘(p =

q = (~q = ~p) wecanconsider ‘CCpqCNgNp’ (this approach is omitted below).

To minimise the number of used parentheses in an expression, some priorities for logical connectives were
introduced, e.g. (i) ~, A,V ,=,< (ie. the symbol of negation binds more strongly than the symbol of
conjunction, the last binds more strongly than the symbol of disjunction, etc. Stupecki J. and Borkowski L. 1967) or
(i) ~, A,=,<, Vv (Mostowski A.W and Pawlak Z. 1970) or also (iii) ~,Vv,A,=,< (Chang C.-L. and Lee
R.C.-T. 1973). The only difference concerns disjunction binding. The convention under Stupecki J. and Borkowski
L. (1967) is used below. Moreover, in the next considerations we shall use the term ‘proposition’ to denote only
such expressions which are declarative, i.e. either true or false (so neither the interrogative nor the imperative
sentences are propositions wrt the last sense).

The set of propositional formulae (called equivalently propositional expressions, in short: expressions or also
sentential formulae) of the propositional calculus can be considered as the smallest set of formulae which includes
propositional variables, and which is closed under the operations of forming the negation, conjunction, disjunction,
implication and equivalence. Hence, any propositional variable can be considered as an expression and also the
compound formulae formed from them by means of the corresponding logical functors. More formally, the
following well-known inductive definition is used.

Definition 1.1
A propositional formula is:
1. Any propositional variable,

2. If ¢ and y are some propositional formulae, then such formulae are also: ~ (), (®) A (W), (@) v (), (p)
= (y),and (¢) < (v),

3. Every propositional formula in this propositional calculus either is a propositional variable or is formed from
propositional variables by a single or multiple application of rule (2)".

Let ¢ be a formula constructed under Definition 1.1. The main purpose of this calculus is to give an answer of
the question whether this formula is a thesis or not.

1.2. Primitive rules

There exist two classical approaches in constructing of the propositional calculus: the axiomatic approach and
the approach from assumptions. In general, a system based on assumptions is presented below. The proofs realised
in such a system are very similar to the mathematical proofs or also to the reasoning in other disciplines. Hence, in
accordance with the last property, the commonly used name for such systems is the name of natural deduction. As it
was mentioned, the first systems based on assumptions were developed during 1934 — 1935 by Jaskowski and
Gentzen. The system considered below differs from them in some details (Borkowski L. and Stupecki J. 1958). The
proof in the propositional calculus can be interpreted as a process of joining new lines by using some primitive or
derived rules and/or other theses in accordance with the used assumptions. The following seven primitive rules are
considered below.

" Equivalently, the above collection of formulae, i.e. the language of this logic, can be recursively defined as follows: ¢ =4 p/~¢ /@ Ay /
ovvy/e = v/¢ & w. This definition corresponds to the BNF notation, i.e. the Backus-Naur form, a notation technique for context-free
grammars: John Backus (1924 — 2007), Peter Naur (1928 —2016).
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(1)

)

)

“4)

)

(6)

Rule of detachment (or omitting an implication, also known
as ,,modus ponens” or ,,modus ponendo ponens” denoted
below by '—C™):

=V
-C: [0)

i

Rule of joining a conjunction:
¢
+K: v
oAy

Rule of omitting a conjunction:

oAy
-K:

(p\\y\(p
v

Rule of joining a disjunction:

¢
vy

Rule of omitting a disjunction (also known as ,modus
tollendo ponens” or also ,,disjunctive syllogism”):

vy
-A: ~0
v

Rule of joining an equivalence:

+A:

human thinking and reasoning). Another possible convention, e.g. for the rule of detachment: — C :

- EA”™

PPy
T In fact, the rule
v
oP Y OB
— (in a similar way: — EA™": L),
~(p\\41\~(P (p\~\|/\q)
v ~y

The Stoic School founded in 322 b.c. by
Zeno of Cittium (Zeno of Cittium b. 366;
d. in 280 b.c.): the first system of
propositional calculus

The Stoic School

Albert of Saxony (who was a student of
Jean Buridan: 1320 — 1390)

Robert Kildwarby: 1215 - 1279, Albert
of Saxony, Jean Buridan (13" and 14
century, Jean Buridan 1295/1305 —
1358/61).

The Stoic School: a rule formulated
only for an exclusive disjunction.t

Boethius A.M.S.(c.e. 477/80 — 524):
some laws for equivalence. However it
seems that the rules + E date from a
much later time.

*A schema having two parts, upper and lower, separated by a horizontal line will present any rule (corresponding to the sequential way of the

=V
v >

etc.

, which can be considered as a particular case of the following rule of omitting an exclusive disjunction:
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o=V
+E: y=0

oy

(7)  Rule of omitting an equivalence:

o=y
-E:

P>y
=0

o=>y\y=0\

According to the last rule — E, we shall say ¢ = w is a direct (or if-) implication and y = ¢ is the
corresponding opposite (converse or only-if-) implication. Sometimes ¢ = y and y = ¢ are also said to be left-
to-right and right-to-left implications, respectively.

In general, the above primitive rules can be considered as a natural way of the human thinking and inference.
As an example, assume that from our analysis it follows that some variable x > 0,i.e. (x > 0) v (x = 0). But
from the next steps of this analysis it follows that x # 0, i.e. ~(x = 0). And hence, in accordance with the rule of
omitting a disjunction we can obtain: x > 0.

Next we shall concentrate our attention to the following two rules for constructing a proof from assumptions:
direct proof from assumptions and indirect proof from assumptions. Let consider the following generalised form of
an expression:

0= (= (@ =...= (a-1= On) ...)

In general, the direct proof from assumptions is realised as follows:

Proof:
(1) o1 In the first n — 1 lines the corresponding primary assumptions
are given (called also: assumptions of the direct proof or direct
(2) (0 premises). To the proof we may join: new proof lines in
(3) ¢ accordance with the existing primitive rules, some proved
3 {1,2,..‘,n71/a} previously theorems and/or additional assumptions (i.e some

secondary assumptions, if necessary). The proof is said to be
complete if in its last line the formula ¢, appears (this line will not

=1 ¢u-s be numbered). If there exists some ¢« (k e {1, ...,n— 1}
which is a conjunction of the form @1 % A @2% A .. A ou*
according to — K , instead of assuming ¢« , nc lines are

Gn .o obtained. In the case when the main symbol is not an implication
the proof begins by writing down one or more theorems previously
proved. This case is called an ordinary direct proof.

The rule for constructing a direct proof from assumptions is illustrated below.

Thesis 1.1 (the law of multiplying implications by sides)

(P=qA(r=s) = (PAT = (qAS)

o 03 b
Proof:
M p=>gq
g; ; =8 {1234 /a}
@4
3 q {-C: 1,3}
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6) s (—C: 2,4}
qAS.o {+K:5,6}

The indirect proof from assumptions is realised as follows:

Proof:
(1) o1 In the first n — 1 lines the corresponding primary assumptions
are given. In the n" line the formula ~ ¢, is placed as the
(2) 2 assumption of the indirect proof (called also: indirect premise)’. To
3) b the proof we may join: new proof lines in accordance with the
3 {1,2,..n—1/a} existing primitive rules, some proved previously theorems and/or
additional assumptions (i.e some secondary assumptions, if
necessary). The proof is said to be complete if two contradictory
(n -1) On-1 lines appear in it. If there exists some ¢« (k € {1,..,n—-1})
(n) ~ bn {aip} which i_s a conjunction_ of the form ¢4 k_ A @25 AL A ik ko,
according to — K , instead of assuming ¢x , nc lines are
obtained. The last approach will be used also for ~ ¢n. In the case
contr when the main symbol is not an implication the proof begins with
. O

the assumption of the indirect proof. This case is called an
ordinary indirect proof.

The proper specification of the set of all primary assumptions is a very important process (see remark concerning
T 1.15 and T 1.19, given in the next subsection). The rule for constructing an indirect proof from assumptions is
illustrated below.

Thesis 1.2 ( law of reduction ad absurdum)

~p=>qAr~q =>p

Proof:

(I ~p=4qgnr~q {a}

2 ~p {aip}

B) aar~q {-C: 12}

@ q :

) ~q {45/-K:3}
contr. o {4,5}

An application of the law of multiplying implications by sides is given in the next example.

Example 1.1

Let p and o be two binary relations over X ie. p,c =X x X.Assumethat p and o are transitive'.

Then the intersection p N o is also a transitive relation over X . So, the following implication have to be shown
(for any x,y,z € X).:

(Xpy AYpz = Xpz) A (XOy AyozZ = XGz) = ((XpY A XOY) A (YPZ A YGZ) => XPZ A XOZ)

Since A is a commutative and associative logical operation (see the commentary given after T 1.7a below),
this implication is satisfied. o {T 1.1}

" Lines (1 - n) can be considered as obtained by using (n — 1) times the rule NC of negating an implication (see T 1.19 below) wrt ~ [¢; =

(2 = (s 2 a1 00) 2]

T Any binary relation over X p is said to be transitive iff xpy A ypz = xpz (for any x,y,z € X), where xpy iff (x,y) € p.
Obviously, x(p N o)y iff xpy A xoy (foranyx,y € X).
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It can be observed the rule for a direct proof is a particular case of the rule of an indirect proof. However, direct
proofs (if they exist) are usually more simpler than the indirect ones”. And finally, the only universal are the indirect
(ordinary or ramified) proofs. And hence, if some formula ¢ is a thesis then such a proof always exists.

1.3. Theses and derived rules

The propositional variables (e.g. p, q, 1, ...), appearing in the proof of any thesis given below, can be considered
as metavariables and hence the obtained results, i.e. rules, can be generalised for arbitrary propositional formulae
(e.g. ©,V, 1, ...). We shall first consider the laws of double negation.

Thesis 1.3a (rule of omitting double negation)

~~p =P

Proof:

(1 ~~p {a} | LIN: @

. ngeneral: —N: ——

@ ~p {aip} ° ¢
contr. o {1,2}

Thesis 1.3b (rule of joining double negation)

p = ~~p

Proof:

@ p {a}

(2) ~~~p {aip} In general: + N : .

(3) ~p (T 1.3a) ?
contr. o {1,3}

Thesis 1.3

~~p & p.o {+E: T1.3a,T1.3b} The Stoic School

In accordance with the rule of detachment for implication and T 1.3a. , the following law of reduction ad
absurdum can be also obtained (left to the reader).

Thesis 1.4
P=9gAr~qQ = ~p.o

In a (direct or indirect) proof from assumptions some additional assumptions can be also used. Let ¢ be an
additional assumption of the corresponding proof and y is obtained as a consequence of the previous lines and ¢ .
Then the implication ¢ = y may be jointed to the proof. We shall say the rule of joining an implication
(denoted below by '+ C’) has been used in the proof. This rule corresponds to the deduction theorem extended by

" For example, a typical indirect (ramified) proof of the following expression: (p v q) A T = s) = (p AT = 5) A (Q A T = s),ie.
the rule '— A," of removing a disjunction in the antecedent of a sequent (see Subsection 1.8) would require 20 lines. On the other hand, the
corresponding direct proof would require only 3 lines. In fact, since A is distributive over v, by using the rule of addition of antecedents AA, SR
and — E the proof can be completed (the proof is left to the reader). But sometimes, obtained numbers of proof lines may be similar, e.g. see. the
attached two proofs of the law of negating an implication T 1.19a given in the next subsection.
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rules £ K, + A, and + E (see Theorem 1.31 and the comments at the end of Subsection 1.7: a more formal treatment
is omitted here)”.

For simplicity an additional assumption will be preceded by some double number of the form "i.j” (to denote the
j™ line of the i additional assumption; i,j = 1,2,...). It can be observed that any additional assumption, say ¢,
introduced as an “arbitrary formula” should be related to the considered proof. And so, we have some allowable
degree of arbitrariness, e.g. it is not possible to accept ¢, as an additional assumption of the proof (i.e. the right side
of the main implication) or also an expression @ which is in contradiction with some of the previous lines of this
proof.

The rule + C is illustrated in the proof of the first implication of the next thesis called “law of multiplication of
consequents” (the proof of the converse implication T 1.5b can be realised as a direct proof from assumptions
similarly to T 1.1, so this is omitted).

Thesis 1.5 (law of multiplication of consequents: MC)

p=>gqAars (p=>9alp =01

In accordance with the rule of omitting an equivalence, i.e. — E, the following two implications have to be
proven.

Thesis 1.5a
P=qgA0)=>0(p =9 =1
Thesis 1.5b

P=>PDA(p =1 = (p = q AT

Proof T 1.5a:

€] p = q AT {a}

(1.) p {ada}

(1.2) q ar {-C: 1,1.1}

82 ? {13,04/-K: 1.2}

2 p=q {(+C:1.1=1.3}

B p=>r (+C: 1.1=1.4}
P=>P9A(p = 1).0 {+K:2,3}

Proof T 1.5a (a direct proof without using + C).

(1) p=gqnr {a}
2) ~p VvV qAT {CR : 1, i.. according to the law of implication, see T 1.15 }
3  (pva)a(~pvr {\ is distributive over A}

pP=>PAr(p = 1).0 {CR,SR : 3}

Here SR is the substitution rule (see: remarks associated with T 1.18). However, the corresponding indirect
proof without using + C may be more complicated as it is illustrated below.

Proof T 1.5a (an indirect version):

The used rules NK and NC (negating a conjunction or an implication, respectively) and the construction of
ramified proofs with joined additional assumptions are described in the next considerations (see below: T 1.8 and
T 1.19, respectively).

“Let p and q be two propositional variables corresponding to two, not necessarily adjacent, proof’s lines. And so, by using '+ K' we have
the conjunction p A q. Since pAq = (p = q)  is a thesis, using '— C' the following implication can be obtained: p = q. It can be
observed that this proof style do not corresponds to the above rule of joining an implication '+ C'.
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1) p=qar {a}

Q@  ~((=>drp =1) {aip}

B ~p=2q9v~pP=01 {NK : 2}

(LD ~(p =9 {ada}

(12) pa~gq (NC: 1.1}

(13) p .

(14) ~q {13,14/-K:1.2}

(1.5) q At (-C:1,1.3}

83; ? {1617/-K:1.5}
contr. {1.4,1.6}

2 ~@p=0 {ada}

(22) pa~r (NC: 2.1}

8431; 13 T {2324/ -K:2.2}

2.5 qar {-C:1,2.3}

8% N 2627/ -K:2.5)
contr. o {24’27}

It is possible to reduce the above proof wrt the lines (1.7) and (2.6) (see the rule of omitting a conjunction). The
proof of T 1.5b is left to the reader. In fact, in accordance with the second above given direct proof version, all
(algebraic) transformations, i.e. used derived rules are equivalencies. And hence, the opposite implication, i.e. T 1.5b
is also satisfied. The following equivalence is also a thesis (law of addition of consequents, AC: the proof is left to
thereader): p = qvr< (p=q v (p = 1.

In accordance with T 1.5, the proof of any implication of the form ¢ = w A y can be replaced (and of
course simplified) by equivalently proving the following corresponding two implications: ¢ = y and ¢ = .
In fact, assume that = ¢ = y and E @ = y. Then according to the last two lines, the rule + K, and T 1.5, we
have: = @ = y A y'. And so, this observation can be also extended in the case of proving implications on

predicates, sets or non-standard formulae, e.g. the Hauber’s law in L-, G -, and « - BL, in particular in G - and = -
BL, where the classical law of negating an implication NC, i.e. T 1.19, is satisfied only in the case of £- BL: see
Subsection 2.2). As an example, in the case of classical logic Hauber’s law, a corresponding proof is given below:
see the attached direct proof of T 1.13 using the law of multiplication of consequents T 1.5. It can be observed that a
similar approach is possible in the case of T 1.9 (law of addition of antecedents: this is left to the reader).

According to T 1.3a and the rule of detachment for implication, i.e. — C, the following rule can be obtained.

Thesis 1.6 (rule modus tollendo tollens)

~ ~ The Stoic School, Boethius

P = adr~qa= P A.M.S. etc.
Proof:
> ta " f12/a) 9=y

~q . Toll:  ~
(3) ~~p {aip} In general: 10 \'
@ p {(-N: 3} ~0
(5) a {-C: 14}

contr. o {2,5}

" This symbol =" concerns the whole expression on the right
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It can be observed that the proof of T 1.6 follows directly from T 1.14a (according to the law of contraposition
of implication), nextusing T 1.12b (the law of importation).

The following two very important theses, called De Morgan’s laws , can be obtained (Augustus De Morgan
1806 — 1871). In fact, they were already known in the middle ages (i.e. in the medieval period, e.g. W. Burleigh
1273 — 1357, William of Ockham 1285 — 1349, etc.). Only the proof of the first one is presented below (the proof of
T 1.8 is left to the reader). More formally, the indirect proof of T 1.8a, in accordance with T 1.3, should require the
use of substitution rule SR: introduced after T 1.18).

Thesis 1.7 (the law of negating a disjunction)
~p v a & ~p A~q
Thesis 1.8 (the law of negating a conjunction)
~P A @ & ~p Vv~g
In accordance with the rule of omitting an equivalence, i.e. — E , the following two implications are obtained.
Thesis 1.7a
~p v a9 = ~p A ~q
Thesis 1.7b
~p A~q = ~( Vv q

Let x and ~y be two contradictory lines obtained for some additional assumption ¢ . Hence, by using rules +
K and + C the following line can be obtained: ¢ = x A ~y .Accordingto T 1.4 and the rule of detachment
— C, as a next line of the proof, the formula ~ @ can be used. This is illustrated in the proof of T 1.7a below.

Proof T 1.7a:
M~ v a9 {a} ~(0v
(I.1) p {ada} In general: NA:((D—WZ
(12) pvag (+A:1.1} ~(p\~\p\~$
2) ~D {1.1 = contr.(1,1.2)}
2.1) q {ada}
22) pvq {+A:2.1}
3) ~q {2.1 = contr.(1,2.2)}

~p A~Q.o {+K:2,3}

It is easily to show the v and A logical operations satisfy the commutative, associative, absorptive,
idempotent, and distributive axioms. In fact, any system (P ;v , A) can be considered as a Boolean finite lattice,
where P # @" is an arbitrary set of formulae such that forany p,q € P wehave: p v q, p A q € P (we
shall say the logical operations v and A are closed in P , e.g. see Kerntopf P. 1967). Hence, for any p,q,r € P
wehave: pvq ©qvp,pArq oqap,pPpvgdgvr ©@pv@vr pargAar & pAa(qa
0,pSpVvpAaq, pepAaPyY.peEepVp.peEpAap, pal@vn) < pAaqypar,and
pvagar<e (pvq)a (p v (eg theline (2.2) inthe proofof T 1.7a is obtained in accordance with the
commutative axiom for disjunction). The corresponding proofs are left to the reader. In general, the notion of a
Boolean algebra is used (George Boole 1815 — 1864). So,let P =4 {0,1,p1,p2, ... ~Pi, ... , P1 A P2, ...} bethe
set of all formulae containing 0,1, and the propositional variables pi, p2, ..., closed wrt the logical operations v , A,

" '@’ denotes “empty set”. In general, the word “empty” may be used in other contexts, e.g. such as: empty formula, empty word, empty string,
empty cover, empty graph, empty algebraic system, empty domain, empty music (4'33": four minutes, thirty-three second: John Cage 1912 —
1992), etc.
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and ~ (it can be observed P is not finite). Hence, the corresponding algebraic system can be considered as a
Boolean algebra (Mostowski and Pawlak 1970)".

Proof T 1.7b:

I ~p

) ~q {12/a}

G ~~0pva {aip}

@4 pva {-N:3}

(5) q {—A:14}
contr. o {2,5}

For simplicity, in the next considerations we shall omit lines like (3) in the proof of T 1.7b assuming directly line
(4) as an {aip}. According to T 1.8, the following rule of negating a conjunction can be obtained.
~ (@~ V)
~pv -~y

NK :

In accordance with the previous used convention , the above rules NA and NK can be considered as "— NA’
and — NK’ in comparison with the rules + NA and + NK given below.

~PA~Y o~
+NA: ——— Nk 2TV
~(pVvy) ~(pArv)

The following law is satisfied.

Thesis 1.9 (law of addition of antecedents: AA)

pvg=>r1r < (p=>1)A(qQ=>r1

Proof T 1.9a:

M pvag=r )

(1.1)y p {ada}

(12) pvg {+A: 1.1}

(1.3) r {-C:1,1.2}

2) p=>r {+C:1.1=1.3}

2.1) q {ada}

22) pvg {+A:2.1}

23) {-C:1,2.2}

3) q=>r {+C:2.1=2.3}
P =1)A(q@ =1)0o {+K:2,3}

Since A and v are commutative and mutually distributive, the proof of T 1.9a (and hence T 1.9) can be
simplified by using a similar approach as in T 1.5a (without + C) and this is left to the reader.

Proof T 1.9b:

* It is assumed that any two equivalent formulae are identical. Hence, elements of this algebra are not single formulae ,but equivalence
classes wrt the following binary relation p S P x P : @ip @2 < (p1 < ¢2). Since p is an equivalence relation , the system .7 =4 (P /p ;
[0]p, [1]p5 V', A", ~")isaBoolean algebra, where P/p is the quotientset wrt p and v', A", ~ " are the corresponding operations closed in

Plp.
T Provided there is no ambiguity, a similar approach will be used for any derived rule having as a main connective in the corresponding thesis

an equivalence, e.g. + CR wrt the law of implication CR, similarly + NC wrt the law of negating an implication NC (see T 1.15 and T 1.18
given below), etc.
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M p=>r

2 gq=>r {123/a}

G pvg

4 ~r {aip}

(5)  ~p {Toll : 1,4}

6) ~q {Toll : 2,4}

(7) ~p A ~q {+K:5,6}

®  ~pva {+NA: T}
contr. o {3,8}

It can be observed there may exist various proofs for a given thesis, e.g. an indirect version for T 1.9a (more
complicated, like the indirect version of the proof of T 1.5a) or instead of using + K and + NA in the proof of T
1.9b, the use of the rule of omitting a disjunction ,i.e. — A wrt lines (3) and (5), etc. In the last case we can obtain
some simplification of the proof (this is left to the reader). Since A and v are associative logical operations, the
above laws of multiplication of consequents and addition of antecedents (i.e. T 1.5 and T 1.9, respectively) can be
generalised for a finite number ( > 2) of propositional variables. The obtained laws are called generalised laws of
multiplication of consequents and addition of antecedents.

Next we shall concentrate our attention on the construction of ramified proofs with joined additional assumptions.
Consider the generalised form of a given expression. Let @ =g {@1, @2, ... , @} be a finite set of additional
assumptions. Also let @iV @2 Vv ... v @k be one of the proof lines. Then:

(1)  a ramified direct proof from assumptions of this expression is recognised to be complete if the formula ¢y
have been obtained as a consequence of each ¢ € @,

(i)  a ramified indirect proof from assumptions of this expression is recognised to be complete if a contradiction
have been obtained as a consequence of each ¢ € ©.

Let consider the case (i). Assume that ¢, have been obtained as a consequence of each @ € ®. So, by using rule
+ C the k additional lines can be obtained: ¢ = ¢, (for each ¢ € ®). According to the (generalised form of the)
law of addition of antecedents we have: @1 v @2 Vv ...V @ = ¢n . Finally, by rule of detachment — C wrt the last
line and @iV @2V ... v @k, the formula ¢, can be obtained as the last proof line.

Let a contradiction have been obtained as a consequence of each ¢ € ®@. So, in accordance with T 1.4. to prove
case (ii) the negation of each @ € ® can be joined, i.e. the following new proof lines can be obtained: ~ @i, ~ @2
, > ~ Ok . Next by using (k — 1) times the rule of omitting a disjunction — A two contradictory lines can be
obtained: @x and ~ @k (Shupecki J. and Borkowski L. 1967).

It can be observed that for k > 4 the proof of case (ii) can be simplified if instead of using (k — 1) times —
A, the (generalised) rules + K and + NA are used (wrt the proof lines ~ @i, ~ @2 , ..., ~ @x ). Hence we can
obtain the following two contradictory lines: @iv@:v..ver and ~(Qiv @2 V..V Qk).

The following thesis (known in ancient times) is an illustration of the ramified direct proof from assumptions. An
illustration of the ramified indirect proof from assumptions is the indirect version of the proof of T 1.5a.

Thesis 1.10 (law of compound constructive dilemma)

P =PAr(r = s)A(p Vv =>qVvs

Proof:

M p=q

2 r=s {123/a}
3) pvr

(1.1 p {ada}

(12) q {(-C:1,1.1}
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(13) qvs {+A:1.2}

21 r {ada}

22) s {=C:2,2.1}

23) qvs {+A:2.2}
qVvs.o {1.3,2.3}

The last thesis can be also proven without using the ramified proof rule as it is shown below.

Proof T 1.10 (an indirect version):

M p=gq

2 r=s {123/a}

3) pvVvr

@ ~@vy) {aip}

) ~q :

) i {56/ NA : 4}

7 ~p {Toll : 1,5}

(8) ~r {Toll : 2,6}

9 ~pP A ~T {+K:7,8}

(10)  ~(pvr) +NA: 9
contr. o {3,10}

The proof of the next two theses is left to the reader. Isthe law (p = q) = (p v r = q Vv 1) usable in the
indirect proof of T 1.11? Give a direct proof of T 1.11 without using any additional assumptions. Similarly, is the
law(p = Q)A( = s) = (p v r = q Vv s) usable in the direct proof of T 1.10?

Thesis 1.11 (law of compound destructive dilemma)
P =>PA(r = s)A~(qVvs) =~ Vi1)a

Thesis 1.12 (laws of exportation and importation: implications (a) and (b), respectively)
PAq >1T ©p=(qQ=>r1).o

According to T 1.12, the following formula is an equivalent version of the law of compound constructive
dilemma: (p = qQ)A(r = s) = (p v r = q Vv s) (inasimilar way for T 1.11). The following two examples
are an application of the ramified direct/indirect proofs with joined additional assumptions.
Example 1.2

Let p and o be two binary relations over X (see Example 1.1). Assume that p and o© are symmetric”.
Then the union p U o isalso a symmetric relation over X . So, the following implication have to be shown
(forany x,y € X):

Xpy = ypx) A (XGy = yox) = (Xpy V X0y = ypX V yOX)
This formula is an equivalent version of the law of compound constructive dilemma (T 1.10). The proof follows
immediately from the law AAC (of addition of the antecedents and consequents of two implications: see T 1.20

given below). o

An application of the ramified indirect proof from assumptions is given in the next example (Tabakow 2001).

" Any binary relation over X p is said to be symmetric ifft xpy = ypx (forany x,y € X), Obviously, x(p U o)y iff xpy v xoy
(forany x,y € X).
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Example 1.3

Let f:{0,1} — {0,1} bean n-variable two-valued logic function. Assume that C is any circuit realisation
of f = f(x) € {0.1} where x =4 (X1,....Xn) € {0,1}" is the corresponding primary input vector. For C which
realises the function f(X), a logical type fault o € .7 changes the function realised to f “(x) (a new n-variable
two-valued logic function called a faulty function) , where .7 1is the set of all possible such faults. Next for any o
e 7 by T(a) =4 {x € {0,1}"/f(x) # f*x)} we shall denote the set of tests which detect o . Similarly, by
Tl = B) =ar {x € {0,1}"/f*x) # fP(x)} we shall denote the set of tests that distinguish o and B (for any

a,B € F,a # B). The following implication is satisfied.

x €eT(a) " TB) = x ¢ T(a# B) (foranyx € {0,1}" a,p € .7, a # PB).

Proof:
() x eT(x) N T(R) 1a}
(2) x € T(a # B) {aip}
G fx =0v fixy =1 {df f(x) }
@) x € T(a) A x € T(B) {df 'm": 1}
®) x T {56/ ~K:4)
6 x €T
(7 fx) # £9x) {df T(a) : 5}
®) fx) = i) {df T(B) : 6§
® U = ) {df T(a % B):2}
(1.1) fix) = 0 {ada}
(12) fx) = fi) (3.7.8}

contr. {9,1.2}
2.1 fixy =1 {ada}
(22) fox) = £A() (3.7.8}

contr. o {9,2.2}

It can be observed for an arbitrary n-variable m-valued discrete logic function f : M" — M the above
implication is not satisfied, where M =4 {0,1,...,m — 1} and m > 2. In fact, the above property is satisfied only
for m = 2.0

The algorithm proving is another field of application of the logic rules. This is illustrated in the next example,
where the well-known Donald Knuth’s version of the Euclid’s algorithm is presented (Euclides of Alexandria, a
native of Megara: 430 b.c. — ¢.360 b.c.).

Example 1.4

Consider the following algorithm (without loss of generality, it is assumed below that a,b € N, the set of natural
numbers: “ged” denotes “greatest common divisor”).
Input:  ab e N
Output: ged(a,b) € N

(1) Let p =¢r @ and q =4 b (initial step) ; (2) Assume that r =4 (p) modulo q; (3) If r = 0 then gcd(a,b)
=4t q.End; (@) Let p =¢rq and q =4 r.Goto (2).c"

* The Euclid’s algorithm: (1) If a > b then a =4 a — b.Goto(l); (2) If a = b then gcd(a,b) =« a.End; 3) b =4 b —
a.Goto (1). O It can be observed these two algorithms have the same behaviour. We shall say they are behavioural-equivalent, i.e. the outputs
are the same for any input.
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According to the above given algorithm it is sufficient to consider the case a > b.

Let: rn =4 a —cib = (a)ymodulob, n=0 = q=0b
rn =i b -cyr = (b)modulor, n=0 = q=r
s  =daf I —C3n = (r)) modulor,, =0 = q=n
I'n  =df Tn-2 — CnTn—1 = (ta-2) modulory-i. m=0 = q=r

For example, for a = 1026 and b = 580 we canobtain: r; = 446,12 = 134,13 = 44,14 = 2 ,and 15 =
0. Hence gcd(1026,580) = 2. Similarly, assuming a = 551 and b = 64 wehave: 1 = 39,1 = 25,13 = 14,
s = 11,15 = 3,16 = 2,17 = l,and 13 = 0. So ged(551,64) = 1, etc.

Provided there is no ambiguity, let 19 =4 b . It can be observed -1 > r¢ (forany k = 1,2, ... ,n). It can be
shown for any a,b € N , there exists some step k such that ry = 0 (i.e. the number of iterations required to reach
a fixed point is finite and the algorithm converges: this is left to the reader).Moreover, the following property is
satisfied.

Proposition (a): Foranystep k = 1,2,... n:
a = neoia® + gk and b = o) + nd),
where a(k), B(k), y(k), and d(k) are some sum-of-products forms wrt the c¢;’s.
In fact, let a = rs—10(s) + rsy(s) and b = rg-if(s) + 10(s). Since 1 = rh-2 — Caln-1,for n =¢ s +
1 wecanobtain: rs+1 = Is-1 — Cs+1 I's. Hence rs-1 = rs+1 + Cs+1 s andsowehave: a = (fs+1 + Cs+1

roafs) + ry(s) and b = (rs+1 + Cs+1 Ls)P(S) + 1:0(s). Then a = reo(s+ 1) + rg+1y(s+ 1) and b = rp(s+
1) + r5+18(s + 1), where: aus + 1) =¢r cs+10(s) + ¥(s), y(s+ 1) =qr a(s), B(s+ 1) =4 cs+1B(s) + &(s), and &(s
+1) =4t B(S) .0

For example:

k a(k) p(k) v(k) d(k)
1 C1 1 1 0

2 1 + cic C2 Cl 1

3 ci +c3+cices | 1 +ccs | 1+ ciem C2
etc.

The following implication is satisfied.

Proposition (b): m=0= ged(@b) =q= r-1 (foranyn e N)
Proof:
The proof is inductive wrt n, e.g. for n = 3, assuming r3 = 0 wecanobtain r; = c3r2.Hence a = 2 (¢

+ c3 + cicac3), b = 2 (1 + coc3) and q = r2 = ged(a,b). In general the following implication have to be proven
(the inductive step of the proof):

(i« = 0 = ged(a,b) = 1v-1) = (x+1 = 0 = ged(a,b) = 1)

So we have:
(1 i =0 = ged(ab) =
2) fii = 0 {12/ a}
(3) ged(ab) # vy = e = 0 {T 1.14: sce below}
(1.1)  ged(a,b) # rv— {ada}

(12) n#0 {(-C:3,1.1}
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4) a = (k) + ny(k) and b = re-ipk) + rdk) {Prop.(a)}
(5) T+l = Tk—1 — Ck+1 Tk {df. 1o, n =gr K+ 1}
(6) k-1 = Ck+1 Ik {2}
(7 a = ckrr rvalk) + ryk) and b = ckv e Bk) + 1d(k) {4,6}
() a =ncok+1) and b = rp(k+ 1), where: {7}
ok + 1) =4 ck+1ouk) + y(k) and Bk + 1) =4r ck+1B(k) + (k).
gcd(a,b) = r¢. o {8}

It can be observed that instead of the existing algorithm proving techniques, in general the last approaches may
be nontrivial.

The following law of converting implications is satisfied (called also law of a closed system of theorems or
Hauber's law: Hauber E.D. 1695 - 1765).

Thesis 1.13 (law of conversion of implications)

= PA@ = )APVDA~(qAS) = (Q=>pA=>01)

Proof (Stupecki J. and Borkowski L. 1967):

M p=q P =V
(2) r=s (1234/a) P2 = VY2
3) pvVvr v o
4) ~(q A s) In general: C': 1 2
(5)  ~qv ~s (NK : 4} ~ (v AY,)
(1.1) q {ada} V=0
(12) ~s (—A:511} V2 =)
(1.3) ~r {Toll : 2,1.2}
(14) p {(—-A:3,13}
(6) q=7p {(+C:1.1=>1.4}
2.1) s {ada}
22) ~q (—A:52.1}
23) ~p {Toll : 1,2.2}
24) r —A:323)
(7 S =r {+C:2.1=2.4}

(=>pA(G=r1.0 {+K:6,7}

The proof of the next five theses is left to the reader (T 1.17 and T 1.18 are some particular cases of the laws of
extensionality of equivalence). According to T 1.14 and T 1.15, it can be also observed the implication is transitive,
ie. (p = q) A (Q = 1) = (p=>r). Byusing T 1.12, the following equivalent form of the last implication can be
obtained, called first law of the hypothetical syllogism’ (or conditional syllogism: known in ancient times): (p =

Q= (q=>r1=@E=>1)

Thesis 1.14 (law of transposition or contraposition of implication: CC)

P=>>qQ &< ~qQ = ~p.o

By using CC we have:

Peqg © =>9Pa@=p)
< (~q=>~pArl~p=>~9q
< (~p=>~9nr(~q = ~p)
< (rpe ~q.o

Py

And so, the following law of transposition or contraposition of equivalence is obtained: CE : .
~p=>~VY



Thesis 1.15 (law of implication)

pP=>qS ~p Vo

=y
~pvy

In general: CR :

The following law is also satisfied: p = q < (p A q < p). The proof is left to the reader.

By using T 1.15 another direct proof of T 1.13 can be obtained. This is illustrated below.

Proof T 1.13 (a direct proof).

) p=gq

(2) r=s

3) pvVvr

@  ~@nrs)

(5)  ~qv-~s

(L) p

(12) ¢q

(1.3) ~s

(14) ~svr

(I1.5) pv~q

16) s=r

(I.7) q=p

(18) (@ = pPal =0

2.1) r

22) s

(23) ~q

24) ~qvp

25) rv~s

26 q=p

27 s=r

28) @=pAG =0
(=pA(s=r1).o

Proof T 1.13 (a direct proof usingToll):

1y P=9q
2) r=s
) pvr
@ ~@~Ay)
(5)  ~qv-~s
(1.1) ~q

(12) ~qvop
(13) gq=p
(14) ~p

(15) r

(1.6) rv ~s
17 s=>r
(1.8) (g =p A =1
Q2.1) ~s

22) ~svr
23) s=>r
24) ~r

(25) p

(26) pv ~q

{1234 /a}

{NK : 4}

{ada}
{=C:1,1.1}
{—A:512}
{+A:1.3}
{+A:1.1}
{CR: 1.4}
{CR: 1.5}
{+K:1.6,1.7}
{ada}
{-C:22.1}
{—A:522}
{+A:2.3}
{+A:2.1}
{CR:2.4}
{CR:2.5}
{+K:2.6,2.7}
{1.8,2.8}

{1234 /a}

{NK : 4}
{ada}
{+A:1.1}
{CR:1.2}
{Toll : 1,1.1}
{—A:3,14}
{+A:1.5}
{CR: 1.6}
{+K:1.3,1.7}
{ada}
{+A:2.1}
{CR:2.2}
{Toll : 2,2.1}
{—A:324}
{+A:2.5}
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@7 q=0p {CR:2.6}
(28) (@=pnrs=r (+K:2.3.2.7}
@=p Al =10 {1.8,2.8}

According to the notion of a ramified proof, it can be observed that sometimes we may have more than one
possible alternative under consideration, e.g. lines (3) and (5) in the last proof, similarly in the indirect proof of the
only-if-implication of the following thesis: p A (@ v 1) < p A q vV p A 1 (A isdistributive over v and vice
versa), etc. In general, any alternative may implicate a different proof effectiveness.

Thesis 1.16 (detachment for equivalence)

P qQQAp = Qo (R}
In general: DE: ¢

Thesis 1.17 (extensionality of equivalence: accordingto T 1.1 and T 1.14)
P = (p=~q.o
Thesis 1.18 (extensionality of equivalence, called below: rule of extensionality)

PpPeggrddoeos)a(ppeor) = (Q©s).o 0, &V,
¢, =V,
P =0,
Y, SV,

In general: ER :

According to T 1.12, the above law of substitution for equivalence can be equivalently described as follows: (p
S Qg Alr<es) = ((p e 1) = (@ & s)).Itcan be observed the converse implication of the right side is
also satisfied, i.e. in general we have: (p < qQ) A (r < s) = ((p < 1) < (q < s)) . Another form of the
above rule of extensionality ER is the following rule of substitution for equivalence (substitution rule or rule of
replacement for equivalence: Stupecki J. and Borkowski L. 1967).

o=y
pey , x(v)
SR: ————— (orequivalently: ———— ).
Lo /) 2 /1)

Here y(¢ // y) is obtained from % by the replacement of its parts y by the formula ¢ , e.g. let
corresponds to the law of compound constructive dilemma, i.e. (p = q) A (r = s) A(p VvV I) = qV s, T
= stoy,and ~s = ~r to @.Then (p = q) A (~s = ~r1) A(p v 1) = q Vv s will correspond to
%(¢ // y) . In particular, the rule DE under T 1.16 can be considered, in a sense, as a special case of SR.

Byusing T 1.15,T1.17,—N,and NA the following law can be proven.

Thesis 1.19 (law of negating an implication)

~(p=>q © pA~Qo
~ (=)

Ingeneral: NC:
o\~ ?
~y

Two kinds of proofs of T 1.19a are given below, i.e. direct and indirect. The first one uses the same technique as
in the proof of T 1.7a (the proof of T 1.19b is left to the reader).

Proof T 1.19a (a direct proof):



(1)
(1.1)
(1.2)
(1.3)
(2)
2.1)
2.2)
(2.3)
3)

~p =9
~p
~pVvq
p=q
p
q
qvVv ~p
p=9q
~q
p/\~q.n

{a}

{ada}

{+A:1.1}
{CR:1.2}

{1.1 = contr.(1,1.3)}
{ada}

{+A:2.1}
{CR:2.2}

{2.1 = contr.(1,2.3)}
{+K:2,3)

Proof T 1.19a (an indirect proof):

(1
2)
)
“4)

~( =9
~(p A ~q
~pVvq
p=9q
contr. o

{a}

{aip}
(NK,-N:2}
{CR: 3}
{14}
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Since = (¢ & v) < (~ ¢ < ~ v), according to DE (the rule of detachment for equivalence), any of the

above two theses T 1.15 and T 1.19 can be proved by assuming that the another is satisfied. However, an
independent proof of any of them would require an exact specification of the corresponding set of primary
assumptions. For example, the following primary assumptions are associated with T 1.15b: ¢1=¢¢t ~p v q and ¢
=4t p. In fact, if ¢, have been omitted (using ~ (p = q) as an assumption of indirect proof) then the proof of
T 1.15b becomes depending on the proof of T 1.19a, but the last is depending on the proof of T 1.15b, etc. And

hence, a cycle can be reached.

The rule NC was used in the indirect proof of T 1.5a. Another illustration may be the indirect proof of the law
of conversion of implications (i.e. T 1.13, see below). The proofs of the laws transitivity for implication, TC (known
also as ‘second law of the hypothetical syllogism’) : (p = qQ A(qQ = 1) = (p = 1) and transitivity for

equivalence, TE: (p <& q)A(qQ 1) = (p < 1) are left to the reader.

Proof T 1.13 (an indirect version):

(1
2)
€)
4)
©)
(6)
@)
(®)
(1.1)
(1.2)
(1.3)
(1.4)
(1.5)

@.1)
(2.2)
(2.3)
(2.4)
2.5)

p=q
r=s {1234/a}
pvr
~@ A 9) ,
~(@ = pAaG=r1) {aip}
~@=p v~(=r {NK: 5}
qA~pPV SA~T {NC, SR : 6}
~qV ~S8 {NK : 4}
q

{1.1,1.2 / ada}
~p
~8 {—A:8,1.1}
~T {Toll : 2,1.3}
p {—A:3,14}
contr. {1.2,1.5}
s . {2.1,22/ ada}
~q {—A:8,2.1}
~p {Toll : 1,2.3}
r {—A:3,2.4}
contr. o {2.2,2.5}
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Proof' T 1.13 (a direct proof using the law of multiplication of consequents T 1.5):

The following two sub-theses should be proved: (p = QA = s)A(pvr)Aa~(q A s) = (qQ = p) and

P = PA@ = s)A(pvr)A~(q A 8) = (s = r1). The proof of the first one is illustrated below (the second
proof is left to the reader).

M p=>q

(2) r=s

3) pvr {12345/ a}

@4 ~@nry)

5 q

(6) ~q Vv ~s {NK : 4}

(7) ~8 {-A:56}

(®) ~T {Toll : 2,7}
p.o {-A:3,8}

It accordance with the used approach, the set of all primary assumptions becomes redundant. In fact, the line (1),
i.e. the implication ‘p = q’ has not been used in the above proof (similarly ‘r = s’ wrt the second sub-thesis).
A ramified direct proof from assumptions can be obtained by using line (6): left to the reader.

The proof of the next theses is also left to the reader.

Thesis 1.20 (addition of the antecedents and consequents of two implications: AAC)

P=2PgAr=s) = (pVvr=qVs).o P =V

In general: AAC: __P=Vs
AN Q=1 VY,

Is the law of addition of the antecedents and consequents of two implications usable in the indirect proof of
T 1.13? Proof the following implication: (p vr = q v s) = (p = q Vv (r = s).
Thesis 1.21 (multiplication of the antecedents and consequents of two implications: MAC)

P=29gAT =5s) = P AT =qAS).o P =V

In general: MAC: _ P2V,
PPy =V AV

An illustration of the law of multiplication of the antecedents and consequents of two implications is given in the
next example.
Example 1.5

Let M; and M, be two isomorphic machines, i.e. anyone can be simulated by the other. We have: M, iso M»
<ar MisimMa A Masim M. We shall say that My is a submachine wrt My, i.e. MiE My <t Fy < F, , where

FMi is the set of functions realised by M; (i = 1,2). Also, we shall say that M; and M» are equivalent, i.e. M = M»
St FM1 = FM2 . The following property can be shown: M; sim My = M, & M; (for any M; and M> . And so, in

accordance with the law of multiplication of the antecedents and consequents of two implications (T 1.21) we can
obtain: M; iso M, = M; = M, (Pawlak Z. 1971). o

Thesis 1.22 (law of contradiction, law of Duns Scotus: John Duns Scotus 1266 — 1308)
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p=(~p=>0q-.c ®
In general: DS: ~o¢

v
By using the law of importation and '— C “(see T 1.12) we can obtain: pA~p = q.Since F pA~1 = q <

p=rvgqgforr=¢gp wehave:pa~p = q < p = p Vv q (the proofis left to the reader: show that (a —
2ab = ¢>—2bc) = (a=c)v(a+c=2b) and (a?—2ab = ¢>—2bc) A(a#c) = (a+c = 2b) are equivalent, for
any a,b,c € R). According to T 1.22, a contradictory proposition has any proposition as its consequence (i.e.
everything follows from a contradiction). An illustration of the rule DS. is given in the next example.

Example 1.6
Let consider the following propositional formula:

p=>@=>@vVvs=(Cp=>~qAtl)

Proof:
M p
2 q {1234/a}
3) rvs
@ ~p
~q A to {DS.: 1,4}
Obviously, an indirect proof of this formula can be obtained immediately. In fact, assuming ~(~q At) we

have a contradiction wrt (1) and (4).

Consider the following two truth functors "/ and "\ called symbol of alternative negation and symbol of joint
negation, respectively. The formula p/q <4 ~(p A q) (isread ‘not both p and q’: known as the Sheffer’s dash:
Henry Maurice Sheffer 1882 - 1964) and the formula plq <4 ~(p v q) (is read "neither p nor q’: known as
the Peirce’s arrow, Charles Sanders Peirce 1839 - 1914). It can be observed the last two functors differ from the
other truth functors of two arguments in that either suffices to define all the remaining truth functors (this is left to
the reader). We shall say these two functors are functionally complete. Functionally complete logical connectives are
also negation and implication, since p A q <a ~(p = ~q) and p v q <4 ~p = q (the Lukasiewicz’s
system: a more formal treatment is omitted here).

Definition 1.2

Let ¢ and y be two propositional formulae. Then ¢ and y are said to be equivalent iff E ¢ < .

Any propositional formula in the propositional calculus can be represented in an unique way by some disjunctive
normal form or also equivalently by some conjunctive normal form (e.g. see Mostowski A.W and Pawlak Z. 1970).
This is illustrated in the next example.

Example 1.7

Consider the following functor "<&’ called exclusive disjunction. The formula p < q <~ (p < q) (is read
“either p or q": ’exclusive” because the truth of one element excludes the truth of the other element). So, the
following disjunctive and conjunctive normal forms can be obtained (a simple method for obtaining such forms is
given in the next Subsection 1.4): p A~q v ~p A qand (p v Q) A(~p Vv ~q), respectively. According to
Definition 1.2, the above two forms are equivalent, i.e. we have the following thesis:

EpA~q Vv ~pAq & (Vv Palp Vv ~q

* By using the law of importation, i.e. T 1.12b, we can obtain: p A ~p = q. Among the material implication paradoxes, the following
(theses) are also known: p = (q = p), (p = q@ v (@ = p) and (p = q) v (q = r): the corresponding proofs are left to the reader.
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Proof (a):

(1) pA~q VvV ~p A(q {a}

(L) p

(12) ~q {1.1,1.2/ ada}

(13) pvgq (+A: 11}

(14) ~p v ~q (+A:1.2}

(15) (v Qa(~p v ~q (+K:13,1.4}

2.1) ~p

22 q {2.1,2.2/ ada}

(23) pvgq (+A:22}

24 ~pv~q {(+A:2.1}

25 (Pvaoarlt~pv~q {(+K:2.3,2.4}
PV PA(~p V ~Qq). o {1.5,2.5}

The proof of the converse implication (b) is left to the reader. The reader is also invited to verify the following
implication: p<» q = p Vv q.

Since v is distributive over A (and the both logical operations are also commutative and associative), a simpler
proof can be obtained. In fact, we have:

pA~q vV ~pAq < (PpA~q vV ~pA(P A~q VvV Q9
< (pv pPDACp YV ~DA@ v P A@V~Qq)
< (Vv PAlp VvV ~Qq .o

In general, it can be shown any disjunctive normal form can be equivalently transformed to a conjunctive normal
form and vice versa. It can be observed that a conjunctive normal form is a true formula if each disjunction includes
at least one variable which in one case is negated and in another is not. Moreover, the complexity of the last two
forms (obtained for a given formula, i.e. the number of propositional variables and the logical operations) may be
different, e.g. the conjunctive normal form associated with p v q coincides with the same formula, but the
following disjunctive normal form can be obtained: ~p A q vV p A~q Vv p Aq.In fact, wehave: = p v q &

~pAqVDpPA~qg VvV p AQ.The following formula is also athesis: = p A~p A q v r < 1 (the last two
proofs are left to the reader).

1.4. Zero-one verification

The zero-one verification of a propositional formula ¢ € P is a functional method (called also fruth table
method) of determining in a finite number of steps whether ¢ is true (yes or no). And so, this method do not present
the corresponding proof structure for a given thesis ¢". Moreover, in some computer science applications the method
realisation may be difficult, but at the same time the assumptional system style is more natural and usable (see
Example 1.3 in the previous subsection).

For simplicity, below any propositional variable is said to be an atom. The truth and the falsehood of a given
formula ¢ will be symbolised by "1” and "0, respectively. Some introductory notions are first introduced (Chang
and Lee 1973). Below we shall assume the logical value of a propositional formula ¢ , denoted by v(¢) € {0,1}
(see Definition 1.1).

Definition 1.3

"Let @ = @@1.p2 .. pn) € P and v(p) =4 (V(p1),V(p2), ... .V(pn)). Hence, the 0-1 verification of @(a)/i.e. @(p) for v(p) =a isnota
logical consequence of the 0-1 verification of @(b) / v(p) =b ( for any different a, b € {0,1}" ).And so, we have not the structure of a typical
assumptional proof (having a connected set of lines). In fact, the 0-1 verification method and the assumptional system style are very similar to the
notions of ‘black box’ and of ‘white box’, respectively (well-known in automata theory).
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Let ¢ = o(pi,p2, ... ,.pn) € P be a given propositional formula where p; are the corresponding atoms of ¢
(1= 1,2,...,n). Thenany (v(p1),v(p2), ... ,v(pn)) € {0,1}"1is said to be an interpretation I of ¢ .

It can be observed the number of possible interpretations of a given formula ¢ having n different atoms is:
| {0,137 = 2" Let v:(¢) be v(¢) for I.

Definition 1.4

A propositional formula ¢ is truein I iff vi(p) = 1. Otherwise we shall say that ¢ is false in I.

According to Definitions 1.2 and 1.4 it follows two propositional formulae ¢ and y are equivalent iff vi(@)
=1 < vi(y) = 1 (for any I). Moreover, the logical value of a propositional formula ¢ € P can be considered
asamap v:P — {0,1} (fora given I).

Definition 1.5
Aformula ¢ € P is:

(1) satisfied (called also thesis, true formula, valid formula or tautology™) iff ¢ istrueinany I,
(i1) satisfiable iff there exists some I such that ¢ istruein I,
(iii)  contradictory iff ¢ isfalseinany I.

Let @ € P beathesis. Then ~ ¢ is contradictory. Hence, according to CC (contraposition of implication), if @
is contradictory, then ~ ¢ is a thesis. For example, let ¢ be the law p v ~ p (excluded middle), then ~(p v ~p),
i.e.~p A p iscontradictory. Similarly,since E(p A (q & 1) = s) = (pPAqAT=>8)A(p=>qVTrIV
s)then ~(p A (@< 1) =5 = {pPArqAar=35)A(p=qVrvVvs) iscontradictory, etc. In the case of
the classical propositional calculus this follows immediately by the considered below zero-one verification method.

A more formal proof is given in Subsection 2.2 (assuming basic fuzzy propositional logic systems: it can be observed
that {0,1} < [0,1]).

The zero-one verification requires the use of some tables, called truth tables, which show how the truth-value of
the considered compound proposition is determined by the truth-values of the component propositions. The truth-
values related to the basic two argument logical operations are shown in the table given below (according to
Definition 1.1: provided there is no ambiguity, for simplicity instead of v(¢@) the same formula ¢ is used, e.g. p
instead of v(p), q instead of v(q),p A q instead of v(p A q), etc.). Obviously, v(~ p) =4 if v(p) = 1 then 0
else 1 fi. The implication values follow immediately from T 1.15 (or also: T 1.19). It can be observed that the
conjunction and disjunction connectives correspond to the logical operations minimum and maximum, respectively.
Moreover, the logical value of the implication p = q isequalto 1,ie.p = q = 1 iff p £ q. And hence, the
equivalence p < q =1 iff p < q and q < p,ie.iff p = q (see Subsection 2.1).

pla| prg | pPva | p=d | peg
00 0 0 1 1
01 0 1 1 0

1 {0 0 1 0 0
1|1 1 1 1 1
Example 1.8

Consider the formula: (p = q) Ap = q (corresponding to the rule of detachment — C ). So we can obtain the
following table.

* From the Greek word tovtoAoyia: in formal logic, a formula that is true in every possible interpretation.

T Filon of Megara, 4" — 3™ century b.c.
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Pla| p=gq P = 9Aap P=9Arp = ¢
0] o 1 0 1
0] 1 1 0 1
1] o0 0 0 1
1|1 1 1 1

The same result can be obtained by using the Hilbert's abbreviated verification (Hilbert D. 1862 — 1943). The
last approach is most often used for formulae having the form of an implication. We can assume the antecedent
(consequent) of the whole implication is true (false) and then examine whether its consequent (antecedent) can be
false (true)".As an example, consider the above formula (p = q) Ap = q. Assume that v(q) = 0 (inshort: q =
0). Since the antecedent of the whole implication is a conjunction, the logical value of p have to be equal to 1.
Then the value of the first element of this conjunction, i.e. the implication p = q,isequalto 0 (# 1).So the
verification is completed (see below: the index "¢’ denotes that the corresponding logical value is critical, i.e. there
is no any other possibility).

=0(=1)

1€ 0c 1°

P=>99Arp = ¢

=12 0°1

A more complicated example may be the verification of the Hauber’s law (see T 1.13). So initially we can obtain:

0° 1° x x 0° x 1°¢ x 1° 0 x x
(P=PA@=)A(pvI)A~(qAs) = (@=p)A(s=1)
=17? =0!

where x € {0,1}.

Now it is necessary to verify if the antecedent of the main implication is equal to 1 (similarly for the rest two
cases of the consequent of this implication: this is left to the reader). Since q is 1¢ the value of ~(q A s) will be
1" iff s is 0° In a similar manner, the value of pvr willbe 1" iff r is 1°. Then the value of r = s is
uniquely specified from " 1¢ = 0°¢ ". Hence the obtained value of the antecedent of the main implication is 0 (#
1) and the verification process is completed. It can be observed the number of possible interpretations of this
formula is equal to 2* = 16 (we have four different atoms: p,q,r, and s). The reader is invited to verify the formula
considered in Example 1.6. o

The reader is invited to verify the following implications:

pPAq=>@(@=29

(P=9=00=0C=q@=71)

(P=d=20D=>0@PArq=1

P=qviaABAt=1u) = ((r = 8) Ap At= q V u):seeExample .14 of Subsection 1.8.
PA~PA qQV T ST

A

" One of these two approaches may not be applicable for some formulae, e.g. for the zero-one verification of the following formula:

pvVvq= (p = q Vv p Thelogical value of the consequent (p = q) v p is # 0 (forany p,q € {0, 1} ). And hence, the considered
formula is a thesis.
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The zero-one representation of a given formula ¢ may be also useful for obtaining the corresponding (disjunctive
or conjunctive) normal form of ¢ . This is illustrated in the next example.

Example 1.9

Consider the truth table for exclusive disjunction:

101
0011
0

The disjunctive normal form for p < q can be easily obtained as a disjunction of all elementary conjunctions”

corresponding to all 1's of p < q. So we have two such conjunctions: ~p A q and p A~q (for
v(p),v(q)) = (0,1) and (v(p),v(q)) = (1,0), respectively: see Example 1.7). In a similar way, the conjunctive
normal form can be obtained as a conjunction of all elementary disjunctions corresponding to all 0’s of p < q
.We have two such disjunctions: p v q and ~p v ~q (for (v(p),v(q)) = (0,0) and (v(p),v(q) = (1,1),
respectively). The conjunctive normal form can be considered as a negation of the corresponding disjunctive normal
form obtained for ~ (p ¢» q), i.e. for p < q by using De Morgan’s laws (the proof is left to the reader). o

According to the last example, it can be shown any conjunctive normal form is a true formula iff each elementary
disjunction includes at least one variable which is at the same time with and without negation.

Example 1.10

In the case of the law of Duns Scotus (see T 1.22),by using the law of implication T 1.15, the following
conjunctive normal form can obtained: p = (~p = q) < ~p Vv p Vv q. So we have only one elementary
disjunction including at the same time the propositional variable p with and without negation. Similarly, in the case
of the rule of detachment we can obtain:

< ~pA(P=9)Vvq

& ~pVpA~qQV(q

S (pVvpPA(pV~Q Vq

< (pVvpVvVaPA(rp v~qV Q).

pAr(P=>9 =q

We have two elementary disjunctions including at the same time: ~p and p (in the first) and ~q and q (in
the second). o

The reader is invited to verify and to proof the following formula: (p A q & pAT)A(pV qgepVD =
(@ < .

Let @ =4t @(p1,p2, ... ,pn) be an arbitrary propositional formula (n € N: the set of natural numbers). The following
thesis is satisfied: = @ = F < ~@.o And hence: ~¢ =4 @ = F (left to the reader).

In general, the Hilbert's abbreviated verification can be considered as an analysis method, more effective than
truth tables and usable in the case of verification if a priori given formula ¢ is a thesis or not. However in the case

" In general, the notion of an elementary conjunction can be introduced as the following formula  pi'A p2?A ... A p.™ , where any ¢; €
{0,1}  and pe =g if ¢; = 1 then p; else ~p; fi (i =1,2,...,n). The notion of an elementary disjunction can be introduced in a similar way
by considering v and ¢’ =4 1 — c; (see:Mostowski and Pawlak 1970). The Boolean constants c¢; can be interpreted as some latin
exponents. We shall say cnf(¢) is a conjunctive normal form of a formula ¢ iff it is equivalent to ¢ and is either an elementary disjunction or a
conjunction of (two or more) elementary disjunctions. In general, cnf(¢) can be obtained from: ~ dnf(~¢) (similarly for dnf(¢) wrt the cnf(¢) ).

 Use two times the absorptive, distributive axioms and the rule SR (starting with q <> ...).
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of synthesis of a formula ¢ having a priori required properties the only usable method are truth tables (e.g. see the
proof of T 2.33 of Subsection 2.3). And hence, the last method is more universal.

1.5. Logical consequence

In the exact sciences and engineering, as in the usual life, often it is necessary to decide if a given assertion (i.e.
thesis, sentence, declaration, etc.) follows from some others. The last involves the notion of “logical consequence’
(or “entailment’””, i.e. a relation between set of sentences and a sentence). For example, the system fault diagnosis (or
e.g. patient’s disease diagnosis) should be a logical consequence of the obtained test outcomes (or consistency of the
obtained measures, i.e. patient results). The single most important factor in general aviation flight safety is the
decision of a pilot to begin or to continue with a flight in unsuitable weather, e.g. the landing of the plane at the
airport should be a logical consequence wrt the corresponding set of conditions. The safety of nuclear central should
be a logical consequence wrt the corresponding set of conditions related to the selected place of building, proposed
type of project, the general concept of this project and quality of its realisation, and of course the human factor. The
declaration of a candidate should be a logical consequence of the corresponding set of propositions used during the
electioneering campaign. The judge’s decision should be a logical consequence wrt the corresponding set of facts of
the specific case. The specification validity of a reactive program should be a logical consequence wrt the a priori
required properties associated with this program, etc.

The intuitive concept of consequence, the notion that one sentence follows logically from another, has driven the
study of logic for more than two thousand years. But logic has moved forward dramatically in the past century,
largely as a result of bringing mathematics to bear on the field (Etchemendy 1990). A generalised model-theoretic
analysis of logical consequence was introduced by Tarski (Tarski A. 1902 — 1983). Here the following three simple
axioms were assumed: Cn(@) = @, A <€ B = Cn(A) ¢ Cn(B),and Cn(Cn(A)) = Cn(A), where "Cn” denotes
‘consequence’, A and B are some finite sets of axioms. Some works concerning an examination of this model have
been recently undertaken, e.g. the above cited work (a more formal treatment is omitted). Below only some
introductory notions concerning the concept of a logical consequence are given (Chang and Lee 1973).

Definition 1.6

Let @1,02, ... ,0n, € P be formulae. We shall say v is a logical consequence wrt @1,02, ... , @n (or follows
logically from ©1,02, ... ,@n) iff V(i A@2A...AQn) =1 = v(y) =1 (forany I). We shall say ¢1,¢2, ... ,0n
are axioms for .

Theorem 1.23

The formula v is a logical consequence Wrt @1,02, ..., @n <> E Q1AM A ..AQn = Y.

Proof:

(a) Assume that y is a logical consequence wrt ©1,92, ..., @n . Let I is an interpretation such that v(@; A @2 A ...
A @n) = 1. According to Definition 1.6 and the rule of detachment — C, we have v(y) = 1. Hence v(pi A @2 A ...
A¢Gn = y) = 1 in I.On the other hand, if v(¢i A @2 A ... A@n) = 0 in I (i.e. there exists some @k having
v(pr) = 0 in I) thenalso V(i A@2 A ... A@n = W) = 1 inI.Hence V(pi A@2A ... AQGn = V) = 1 (for
any I). So according to Definition 1.5() we have: E @i A2 A .. APy = VY.

" The notion of entailment is used in (at least) three meanings: implication connective (having some properties), the name of the logical
system characterising this connective as well as the area in which this system is defined (see Subsection 2.4: Relevance logic).

T The generalised form of an expression can be transformed in a form similar to the right side of Theorem 1.23: using (n — 2) times T 1.12
(since logical equivalence is transitive).
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(b) Letnow = @i A@2A...AQ, = . Inaccordance with the rule of detachment — C, for any interpretation I

we have: V(i A@2 A ... A0n) = 1 = v(y) = L. According to Definition 1.6, y is a logical consequence wrt
Q1,025 ... , Pn .0
It can be observed y is not a logical consequence wrt ©i,02, ... , On < OI A P2 A ... A Op A~ Y IS a

contradictory formula (by using the rule NC: see T 1.19). Below we shall denote ¢ € Cn({@1,92, ..., ¢n}) <ar W
is a logical consequence wrt ©1,02, ... , @n .

Consider the generalised form of an expression, i.e. 1 = (¢» = (03 = ...= (¢ -1 = ¢n) ...). By T 1.12 it
follows: ¢1 = (b2 = (b3 = ... = (Ph-1= ) ...) < 01 A 02 A O3 Ao A On-1 = On (the proofis left to
the reader). Hence, according to T 1.23 we can obtain: ¢n € Cn({01,02, ..., ¢n -1}) < = &1 = (o2 = (¢35 = ...

= (bn-1= ¢n) ...).

Example 1.11

(a) Let 01 ©@or p = q and vy <4 q.According to T 1.23, we can obtain: q is a logical consequence wrt
p=>q< FE (p = q = q? The last requirement is not satisfied (for v(p) = v(q) = 0 wehave v(p = q) =

1).So q ¢ Cn({p = q}).

(b) Assume now that @) < p = q, @2 <dar p,and ¢y < q.Since E (p = qQ)Ap= q then q isa
logical consequence wrt p = q and p (the rule of detachment). Hence q € Cn({p = q, p})-

(¢) In asimilar way for ¢ <¢r p = q, @2 <ar p vV r,and Yy < q Vv r wehave: q v r isa logical
consequence wrt p = q and p v r (is equivalent to the "law of a new element’: using the law of exportation, see
T1.12). Hence q v r € Cn({p = q,p V 1}).

(d) Let consider the case (¢) having  as one of the following three formulae: q v ~r,~q v r,and ~q v ~r
.Itcanbe shownthat : q v ~r,~qvr,~qv ~r ¢ Cn({p = q,p Vv r}). According to the rules + NK and
ER,also ~(q A1) ¢ Cn({p = q,p Vv 1}),e.g.

X 1° x 1¢ 1¢ 1¢
(p=>PA(pvr) = ~qv~r
=17? =0!

It can be observed for any x e {0,1} the antecedent of the last implication is always true. According to
Definition 1.5, the last formula is satisfiable, but not satisfied. In fact, it is not satisfied for I = (v(p),v(q),v(r)) =
(x,1,1). o

1.6. The consistency and completeness

Consider an arbitrary formula ¢ € P of the propositional calculus such that vi(p) = 1 (for any
interpretation I). In accordance with Definition 1.5, ¢ is satisfied and hence a thesis of that calculus. The problem
arises whether every thesis provable by the rules of the assumptional system of the propositional calculus is a true
formula. In particular, a resolution of the last problem is related to the notion of order of a thesis, given in the next
inductive definition (Stupecki J. and Borkowski L. 1967).

Definition 1.7
Let ¢ € P isan arbitrary formula. Then:

(i) ¢ isathesis of order 1 iff there exists a (direct or indirect) proof from assumptions of ¢ by using only the
primitive rules, i.e: —C, £ K, £ A,and £ E,
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(11) ¢ 1isa thesis of order n iff there exists a proof from assumptions in which only theses of order < n — 1 are
used and ¢ isnota thesis of order < n,

(i) ¢ isa thesis iff there exists some n € N suchthat ¢ isa thesis of order n.

According to the last definition, it can be shown any thesis of the propositional calculus implicate proof of its
corresponding metathesis (this is omitted). The proof of the next theorem is inductive wrt the order of the considered
thesis.

Theorem 1.24

Every thesis of the assumptional system of the propositional calculus is a true formula.

Proof:

(1) Let &1 = (02 = (03 = ... = (bs-1 = ¢s) ...) be a thesis of order 1 which is not true (aip). For simplicity,
letalso ¢ <ar (02 = (¢35 = ... = (ds—1 = bs) ...). So there exists an interpretation I, such that the logical value
vro (¢0) = 0. Hence we have: vio(¢x) = 1 (for k = 1,...,s — 1) and vwo(dps) = 0. Then vro(~ds) = 1.
According to the assumption that &= ¢ of order 1, it follows there exists an indirect proof of ¢ such that the rules
—-C, K, t A, and *E, applied to the assumptions ¢« (k = 1,...,s — 1) and ~ ¢s generate two contradictory
lines, e.g. y1 and ~ xi . Any primitive rule applied to formulae having value 1 for I will produce corresponding
formulae having also 1 for I . Since vro () = 1 (for k = 1, ...,s — 1) and vio (~ ¢s) = 1 then all the
formulae obtained from the former will have the logical value 1 for I, .But this is a contradiction wrt the above
formulae y; and ~ y.

(2) Letnow any thesis of order < n — 1 be a true formula (an inductive assumption) and = ¢ of order n which

is not true, where n > 2 (aip). As in the previous case (1), there exists an indirect proof of ¢ . Starting with the
assumptions 1, ¢2, ... ,0s-1 ,~ ¢s and theses of orders lower than n , two contradictory lines, e.g. ¥n and ~ yn,
are generated.. Since vro (px) = 1 (for k = 1,...,s — 1), vio (~ ¢s) = 1, and any thesis of order lower than n
have the value 1, then by the same reasons as in case (1) we shall obtain a contradiction wrt ¥, and ~yn.o
Definition 1.8

A system is said to be consistent iff its theses do not include two contradictory formulae.

According to T 1.24, every thesis of the assumptional system is true. So, it is no possible to meet two
contradictory formulae being at the same time theses in this system. Hence, the following theorem is satisfied.
Theorem 1.25

The assumptional system of the propositional calculus is consistent. o

Theorem 1.26

Every true formula of the propositional calculus is a thesis of the assumptional system.

Proof:

Consider an arbitrary true formula ¢ . Let cnf(¢p) be the corresponding equivalent conjunctive normal form,
obtained in an unique way for ¢ (it can be shown forany ¢ and y: ¢ A y < cnf(p) A cnf(y), and ¢ v y
< cnf(p) v cnf(y): the proof is left to the reader). According to Definition 1.2, we have: = ¢ < cnf(¢). From
T 1.24 it follows this equivalence is a true formula. Since ¢ is a true formula then a true formula is also cnf(¢).
Moreover & cnf(¢). In accordance with the rule of detachment for equivalence DE (see T 1.16) wrt the theses ¢ <

cnf(¢) and cnf(¢d), it follows that & ¢ . o

Definition 1.9
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A system is said to be semantically complete iff every true formula implemented in the language of that system
is a thesis.

According to Definition 1.9, the above theorem T 1.24 cam be reformulated as follows.

Theorem 1.27

The assumptional system of the propositional calculus is semantically complete. o

Hence the process of verification of an arbitrary formula ¢ € P of the propositional calculus can be reduced to
the process of checking whether cnf(@) is a true formula.

Definition 1.10
A system is said to be syntactically complete iff every propositional formula ¢ € P implemented in the
language of that system either is a thesis or (when joined to the theses of that system) results in a contradiction.

Theorem 1.28

The assumptional system of the propositional calculus is syntactically complete.

Proof:
Let ¢ € P and & ¢.By T 1.24and T 1.14 (the law of transposition of implication) it follows that ¢ is not

a true formula. Hence there exists an interpretation I such that v (¢) = 0, e.g. for v(p;) = 1 and v(q;) = 0 (i
= 1,2,..,n and j = 1,2, .. ,n;: according to Definition 1.3 the propositional variables p; and q; correspond to
the set of atoms of ¢ and n; + nj = n). Starting with ¢ ,by using the substitution rule SR ,it can be obtained a
new formula @* such that each p; is substituted by a true formula and each q; - by its negation, e.g. by p = p’

and ‘'~ (p = p), respectively. Since vr (¢*) = 0 then vi(~@*) = 1 (for any I). According to T 1.24,

= (~ @*). Hence the system of the propositional calculus extended by ¢ is a contradictory wrt ¢* and ~ ¢*. o

Definition 1.11
A system of rules is said to be independent iff none of these rules is secondary wrt the remaining rules.
According to the last definition, a system is independent if there is no a rule being a logical consequence of the
remaining rules of this system.
Theorem 1.29

The system of primitive rules of the propositional calculus is an independent system. o

Let @ = o(pi,p2 ... .pn) € P be a given propositional formula under Definition 1.1 and v(p) =ar (V(p1),v(p2),
....V(pn)) € {0,1}™ Since {0,1}" is finite then, in accordance with Definition 1.5, it is always possible to decide if ¢
is satisfied or not. In fact, the following theorem can be shown (e.g. see Grzegorczyk A. 1969).

Theorem 1.30 (decidability of the classical propositional calculus)

There exists an algorithm of determining in a finite number of steps whether a given ¢ < P is a true formula
(i.e. thesis). o

Moreover, it can be shown the subset of all theses (say T) of the classical propositional calculus is a theory, i.e. T
= Cn(T) (see the last cited work).

There exists some closed relationship between the classical propositional calculus and the algebra of sets (i.e. the
classical propositional logic has its corresponding set theory). So we have a possibility of obtaining directly from theses of
the propositional calculus corresponding theorems of the algebra of sets consisting of two expressions, incorporating
set operations, and connected by the symbol of equality or inclusion (Stupecki J. and Borkowski L. 1967). For
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example, from p = q < ~q = ~p (law of transposition of implication, see T 1.14) we can obtain: P < Q
& Q' < P’ (°7 denotes complement of aset). From (p = q) = (p vq < q Vv (p A q < p) we can obtain:
PcsQ=PuQ=Q) v (P nQ=P).Similarly, from (p = QAT = s)A(pvi)aA~(q A s) = (q
= p)A(s = 1) (the Hauber's law, see T 1.13) wehave: (P < Q) A(R € S)A(P UR=2)A(Q n S = Q)
= (Q € P)A(S < R), where 7 is the universe, etc. (a more formal treatment is omitted, see Subsection 5.2).

1.7. The axiomatic approach

In general a scientific theory can be considered as an axiomatic system that obtains an empirical interpretation
through appropriate statements called rules of correspondence, which establish a correlation between real objects (or
real processes) and the abstract concepts of the theory. The language of a theory includes two kinds of terms:
observational and theoretical. The statements of a theory are divided in two groups: analytic and synthetic.
Observational terms denote objects or properties that can be directly observed or measured, while theoretical terms
denote objects or properties we cannot observe or measure but we can only infer from direct observations. Analytic
statements are a priori and their truth is based on the rules of the language; on the contrary, synthetic statements
depend on experience, and their truth can be acknowledged only by means of the experience. This conception about
the structure of scientific theories is perhaps the most durable philosophical principle of the logical positivism
(Reichenbach H., Carnap R., etc.: see the Internet Encyclopaedia of Philosophy 2001).

The axiomatic approach as a rule involves a number of propositions that are not proved by means of the other
propositions. Such propositions are said to be the axioms (or postulates) of the system. The next stage in the
construction of the propositional calculus is related to the specification of the corresponding primitive rules of
proving (inference) and hence the possibility of obtaining new theses. Usually the following two primitive rules of
proving are introduced: the rule of definitional replacement of one formula by another, denoted below by RR and
the rule of detachment (for implication: '— C"). The proof style used is always the direct style. For example, starting
withtherule (p = q) A ~q = ~p (modus tollendo tollens, see T 1.6), by replacing each p with p =
q" anew thesis can be obtained: (p = q) = Q)A~q = ~(p = q) (the proofis left to the reader).

The rule of definitional replacement is introduced as follows (Stupecki J. and Borkowski L. 1967):

@ =ay
xp)
(v /@)

13

where the Lukasiewicz’s symbol of definitional equality ‘=g is not a logical connective, but it has a metalogical
sense). As in SR, x(¢ // y) is obtained from y by the replacement of its parts ¢ by the formula . In fact, RR
can be considered as a derived rule which is a generalisation of SR (since it is not necessarily usable only for
equivalent formulae).

There exist very many different axiomatic systems”, e.g. including only one axiom or also having a relatively
large set of axioms. A more enlarged axiomatic system seems to be preferable. In fact, we have a possibility of
setting off some logical rules and also an easier way of deriving logical theses. However, independently of the
transparent way of the obtained proof notations and in comparison with the assumptional style, the proofs in
axiomatic systems are considerably difficult, complicated and hence, not so natural. Any axiomatic system is , in a
sense, “dogmatic” (i.e. conservative, closed). In fact, there is not possibility of extending the actual set of axioms
with new formulae derived by the same system. Moreover, any axiom can be considered as thesis and proved by
using the assumptional style.

As an illustration, the following axiomatic system is presented below (Grzgorczyk A. 1969)".

Positive axioms for implication

* The first such axiomatic system was introduced by Frege (Friedrich Ludwig Gottlob Frege 1848 — 1925).
* Andrzej Grzegorczyk (1922 —2014).
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@an p=(@=p {law of simplification’}
Ay p=@=1n0)=2>2(g=>q9 = =r) {Frege’s law (or syllogism): 1879}

Axioms describing the logical equivalence by means of implication
w) pPegd=>0=>9

“y) (=9 =(@q=p

@w) P=9=>@=p=0C<=9)
Axioms describing the logical conjunction and disjunction

A6) pvq=49qgVvp

An pAqQ=49gAp

(A8) p=pVvyq

A9 pAqQ=p

(A10) p=> (@ =p A9
@Al p=2A(@=1=>pPvqg=>r1

Rules for negation

Aa12) (p = qA~q = ~p
(A13) p AN ~p = (q

The law of the excluded middle
(Al4) p Vv ~p

The set of axioms Al — All corresponds to the so called positive logic (theses including negation are omitted).
The set of axioms Al — A13 is related to the so called intuitionistic logic (Brouwer L.E.J. 1881 — 1966, Heyting A.
1898 — 1980): see Subsection 2.4. Here the law of the excluded middle is omitted.

An example using of this axiomatic system is given below (provided there is no ambiguity, the use of Ai is denoted by
ai, for any 1).

Example 1.12

The proof of the thesis p = p can be realised as follows.

M p=>@=2p)=(p=>9=0=0p) {RR: p//t wrtas}

@ p=>9=>0=0p {-C:lay}

B p=>@=p)=0@=0p {RR:(q = p)//q wrt 2}
p=p.o {-C:3,a}

A more simple is the following Lukasiewicz’s implication-negation axiomatic system (Stupecki J. and Borkowski
L. 1967).

(A1) (the first law of the hypothetical syllogism): P=>9=>@=01=@(E=>r)
(A2) (is one of the laws of reduction ad absurdum) ~p=0p =0p

(A3) (law of Duns Scotus) p=>(~p=9
In accordance with the last system, the following proof of the above example thesis p = p can be obtained.

D Pp=2cCp=29) = (~p=9 =1 = (p=1) {RR:(~p = q)//q wrtai}
2 (rp=q9=>1=@pP=r {-C: l,as}
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B ((~p=p =>p =>@P=>p {(RR: p//q,p//t,2}
p=rp.o ~C: 3}

It is easily to express the remaining connectives in the Lukasiewicz’s system (by means of implication and
negation: left to the reader). Obviously, the proof of the above law of identity for implication, i.e. p = p becomes
very simple if an ordinary indirect proof is used. This is shown below.

M p {a}
2 ~p {aip}
contr.o  {1,2}

To be proved the equivalence between two deduction systems, it is necessary to show that any axiom in the first
system is an axiom or a thesis in the second one and also any primitive rule in the first system is a primitive or
derived rule in the second one. In this way it is possible to show the equivalence between the assumptional system
and any such axiomatic system (this is omitted). But any such proof is related to the well-known deduction theorem
given below”. And so, the next considerations are a summary presentation under Stupecki J. and Borkowski L.
(1967).

It can be observed that any axiomatic system is equivalent to a such one, where the only primitive proof rule is
the rule of detachment, i.e. '— C' and also having as axioms all possible replacements related to the axioms of the
original system. As an example, the above considered Lukasiewicz’s implication-negation axiomatic system is
equivalent to the following one.

@Aan (o= vy) = (v=>% = (=)

A2 (~¢ =09 =0
A3 0= (~o=>vy)

And so, in accordance with the above considered axiomatic systems, the letters p, q and r serve as
metavariables for formulae.

Let '—= C' be the only primitive proof rule in the considered propositional calculus. The notion of a proof is
presented as follows.

Definition 1.12

Let ¢1 = (b2 = (03 = ... = (¢n-1= On) ...) be a generalised form of an expression. The finite sequence of
formulae i, yo, ... , Wm is said to be a proof of ¢. wrt the formulae (antecedents) &1, ¢2, ... , dn—1 Iff Ym = ¢n
and forany i = 1,2, ...,m: ; is either an axiom or belongs to {¢1, ¢, ... , ¢n -1} or also there exist some k,j < i
such that  wx = (y; = wvi).

Definition 1.13
o1, ¢2, ..., dn—1 E ¢n iff there exists a proof for ¢, wrt the formulae ¢1, ¢2, ..., Gn—1.

In accordance with the last definition, we shall say that ¢, is a logical consequence wrt (or follows logically
from) the formulae 1, ¢2, ..., ¢n—1 (see Definition 1.6, Subsection 1.5). And hence, ¢pn € Cn({d1, ¢2, ..., Gn—1}).

Let i, 2, ..., ym be a proof of the implication ¢ = . From Definition 1.13 it follows that ym= (¢ = v).
Then the sequence i, W2, ..., Wm, Ym+1, Ym+2 1S a proof of y, by assuming ym+1 =¢r ¢ and next using '— C'. We
can obtain: ym+2= . And hence, the following corollary is satisfied.

Corollary 1.1

" As a precursor of this theorem it is reckoned Bernard Bolzano (1837: 1781 — 1848) and the contemporary formulation of deduction theorem
was given independently by Alfred Tarski (1923: 1901 — 1983) and Jacques Herbrand (1930: 1908 — 1931). The term itself was first used by
David Hilbert (1862 — 1943) and Paul Isaac Bernays (1888 — 1977): The little encyclopaedia of logic (1988).
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SO =Y > (0 y)e

Corollary 1.2
(¢1> ¢2> ~-~,¢n E \V) A (\V E X) = ((I)l’ ¢27 7¢H = X)

Proof:
Let ¢1,¢2, ..., F v and y E 7. Inaccordance with Definition 1.13, there exists sequence i, Vo, ...,

Y which is a proof of y wrt the formulae ¢1, do, ..., ¢n, Wwhere ym = . In a similar way, let i, %2, ..., % be the
corresponding proof of y wrt y, where %, = %. And hence, according to Definition 1.12, the sequence i, yo, ... ,
Wm, X1s A2 - » Ar 18 @ proof of y wrt ¢1, d2, ..., On. o

Corollary 1.3
((I)l’ ¢2’ L) ¢H = (\V = X)) N (¢17 ¢27 ety (I)n = \lj) = (¢17 ¢2’ ey (I)n = X)

Proof: left to the reader. o

Consider now axiomatic systems in which the only primitive proof rule is the rule of detachment, i.e. '—C' and
having as theses the following formulae (C follows from A and B: see Example 1.12):

@ o= (v =9 {law of simplification }
B G=>W=20)=(=v) =@ =7yx) {Feeslaw}
© o6=0 {law of identity for implication }

The following theorem is satisfied for any such system.

Theorem 1.31 (deduction theorem)

((I)l’ ¢2’ ey (I)n—l = (I)n) = (d)l’ ¢25 ey ¢n—2 = ((I)I‘l—l = (I)n))*

Proof:

Assume that 1, ¢, ... , dn—1 = ¢n. Hence, in accordance with Definition 1.12, there exists a sequence i, Va2,
.., Ym which is a proof of ¢, wrt the formulae ¢, ¢o, ..., Pn—1.

Consider the following sequence of implications: ¢n-1 = Wi, ..., dn-1 = WYm , Where any ;i is replaced by
On-1= vi (i = 1,...,m). Since ym = ¢n the last implication in this sequence will be as follows: ¢n-1 = On. And
so, after some completion, this way obtained sequence becomes a proof of the implication ¢n-1 = ¢n Wrt ¢1, do, ...
, On - 2. This is shown below.

One of the next three cases follow directly by Definition 1.12 (i = 1, ... ,m).
1. wyj is an axiom
2. i belongs to {1, ¢2, ... , Gn—1}
3. thereexistsome k,j < i suchthat wx = (yj = i)

Let w; be an axiom (case ). By using '— C' wrt y; and the law of simplification A, ie. yi = (¢o-1 =
vi), it follows that ¢n-1 = i is a thesis.

Assume that i € {1, ¢2, ... , On -1} (case 2). If yi =4 ¢n-1 then in accordance with the law of identity for
implication C, it follows that ¢n-1 = ¢n-1 is a thesis. Otherwise i € {1, ¢2, ... , dn-2} and hence by the law of
simplification A, it follows that y;i = (¢n-1 = i) is a thesis. By using '— C' we can obtain ¢y -1 = Vi
According to Corollary 1.1, dn-1 = i is a logical consequence wrt the formulae ¢1, ¢2, ... , Pn-2.

* The opposite implication in Corollary 1.1 becomes a particular case with n = 2 by assuming ¢; =4 ¢ and 2 =g .
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Consider now case 3. Since (pn-1 = Yi) = (bn-1 = (y; = yi)) and o¢n-1 = W are earlier formulae
than ¢,-1 = wy; then in accordance with Frege’s law B, (¢n-1 = (yj = i) = (dn-1 = Vi) = (bn-1 =
yi)) is a thesis. And hence, ¢n-1 = i can be obtained by using two times '— C'.

According to the above considered three cases, any formula ¢,-1 = i (i=1, ... ,m) of the sequence ¢,-1 =
Vi, ... , On—1 = W is either a thesis or a logical consequence wrt the formulae ¢1, ¢2, ... , on-2 or also obtained
from earlier formulae of this sequence by using '— C'. The last sequence of implications can be completed as
follows: any thesis ¢,-1 = w; is completed by the corresponding proof preceding this thesis (wrt the axioms) and

any formula ¢, -1 = ;i being a logical consequence wrt the formulae ¢, ¢2, ... , dn - 2 is completed by the
corresponding proof of ¢n-1 = wyi wrt ¢1, d2, ..., On-2. And this way completed sequence of implications is a
proof of ¢n-1 = ¢n wrt the formulae ¢1, ¢2, ... , ¢ - 2. In fact, in accordance with Definition 1.12, any formula of

the last obtained completed sequence is either an axiom or belongs to {¢1, ¢2, ... , dn - 2} or also obtained from
preceding formulae using '— C' and the last formula of this sequence is ¢n-1 = ¢n. o

It can be observed that, intuitively, the construction used in the above proof can be recognised as a ramified direct
proof from assumptions (see Subsection 1.3). The above deduction theorem can be considered as a substantiation of
the (earlier existing) natural deduction methods. In fact, the next two theorems hold.

The following theorem can be obtained by using multiple times Theorem 1.31.

Theorem 1.32
(¢1, (1)2, ey ¢n—l = ¢n) = E ((I)] = ((I)z = (¢3 = .= (¢n—1 = (I)n) )) o

The following formula is a thesis in the last two axiomatic systems.

D ~o=>y) = (0 =>~y) = 0)

Assume that Theorem 1.31 and thesis D are satisfied in our propositional calculus. Then the following
theorem is also satisfied.

Theorem 1.33
(4)1’ ¢21 ey (l)n—l, ~ (I)n = \ll) N ((I)l’ ¢25 ey (I)n—l, ~ (I)n E o~ \V) = F (¢1 = (¢2 = (¢3 =.= ((I)n—l =

Proof:

(1) ¢z -t~ E W

{a}

2) b2 -~ E ~y
(3) 002, Pn-1 E(~ =) (T 131:1}
4) 0102 .., 0n-1F(~o=>~Y) {T131:2}
5) o=y E (v =>~y) = 0n) {D, Coroll. 1.1}
6) 9102 s dn-1 E ((~ o=~ y) = ) {Coroll. 1.2: 3,5}
(7)) 092 Gn-1F On {Coroll. 1.3: 4,6}

E@=0=> (¢ =..= (u-1= ¢n)..))0 {T1.32:7}

The notion of logical consequence introduced in Definition 1.12 can be extended by including beyond of '— C’
also rules £ K, + A, and * E. The proof of the obtained extent of Theorem 1.31 would be similar. And this extent of
Theorem 1.31 would correspond to the rule of joining an implication '+ C' used in the assumptional system. And
hence, Theorems 1.32 and 1.33 would correspond to the rules for constructing a direct and indirect proof from
assumptions, respectively. The above rules = K, = A, and * E which are primitive in the assumptional system
become derived in the considered axiomatic system. On the other hand, any axiom of the axiomatic system becomes
either a thesis or primitive rule in the assumptional system. And then, the last two systems become equivalent.
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In general, the deduction theorem can be considered as a formalisation of the common proof technique in which
in proving some implication it is sufficiently to assume its antecedent and try to prove its consequent, using
corresponding logical inference rules, e.g. in proving the implication p A q = p v q itis sufficiently to assume
the antecedent p A q and try to prove the consequent p v q using corresponding logical inference rules (left to
the reader). Andso, if (p A q) E (p Vv q) is true then by deduction theorem and '— C' it follows that & (p A q

= p Vv q) istrue. And this theorem provides rules for constructing proofs in the natural deduction systems. A
more general version of the above theorem, known as a metatheorem of first-order predicate logic, can be presented
as follows:

(@0 Fy) = (PE(@=vy) o (pF VY = F(@ = y)for®=07,

where @ is a set of formulae in this theory and ¢ is a closed formula, i.e. a logic formula with no free variables
(see Section 3 of Chapter II).

There is also satisfied the opposite implication of this theorem, called sometimes “opposite deduction theorem”,
which is presented as follows (The little encyclopaedia of logic 1988):

@OFE@=>v) = (@¢oFy o F(@=y) = (¢F y),for ®=0

By using the opposite deduction theorem we have a possibility of introducing new inference rules wrt the already
proved earlier formulae, e.g. having proved (or assumed as an axiom) the law ~~ @ = ¢ we can accept the rule
~~@ F o,i.e.itis allowed to deduce ¢ by assuming ~~ ¢ (see T 1.3a: rule of omitting double negation '—N").

The deduction theorem is an important property of the well-known Hilbert’s style systems where this theorem is
used as a primitive rule of inference. But this approach is not generally followed. Moreover, there are first-order
systems in which new inference rules are added for which the deduction theorem fails (Kohlenbach U. 2008). And
finally, there exist systems in which this theorem is not satisfied, e.g. the classical deduction theorem does not hold
in paraconsistent logic. Here, only the following “two-way deduction theorem” does hold in one form of this logic
(Hewitt C. 2008): = (¢ = v) = (0 E y) A (~y E ~ @), ie. the contrapositive inference is also required

(see T 1.14 of Subsection 1.3)".

In general, methodological problems such as consistency, completeness, independence, etc. arise when a given
axiomatic system is considered (in ways analogous to assumptional systems). Obviously, the most important of these
properties is the consistency of a system.

1.8. Sequent calculus

Reasoning is the ability to make inferences, and automated reasoning is concerned with the building of
computing systems that automate this process. Although the overall goal is to mechanise different forms of
reasoning, the term has largely been identified with valid deductive reasoning as practised in mathematics and formal
logic. In this respect, automated reasoning is a kind of mechanical theorem proving (Portoraro F.D.2001).

The above-considered logical calculi were based on a system of rules, which define the methods used in proofs
from assumptions. Some elements concerning direct reasoning and automated deduction methods are related to the
Gentzen’s sequent calculus (called also sequent deduction or consecution calculus) , originally denoted by LK, in
contradistinction to the natural deduction calculus, denoted by NK': Gentzen G.K.E. (1934, 1935)*. A brief
introduction to the notion of sequent is given below. Axioms and some used logical inference rules for a Gentzen’s
style presentation (called below in short: reduction rules) are also presented®.

" The Free Encyclopaedia, The Wikimedia Foundation, Inc.
 The same designation is used as in the case of the corresponding rule of negating a conjunction.
 Gerhard Karl Erich Gentzen (1909 — 1945).

§ Another interesting approach having similar notation is the Lambek’s calculus (concerning formal grammars: Joachim Lambek 1922 —
2014): a syntactic calculus that formalised the function type constructors along with various rules for the combination of functions. This approach
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Let ¢ and w be some propositional formulae (see Definition 1.1). Next by I' and A we shall denote some
sequences of such formulae.

Definition 1.14
Any expression of the form A + T is said to be a sequent. The first and the second elements of a sequent (here
A and TI')are called its antecedent and its consequent, respectively.

Any sequent of the form  @1,02....0m +  WiL,W2,..,y¥n can be represented in an unique way by some
propositional formula (known as a generic interpretation). In fact, the last sequent can be represented as follows:

QILAP2 AN Pm = Y1V Y2V..V Yy

An illustration of Definition 1.14 are the following sequents: p - p,q or pvrLp = q - q Vv r or
also H~(p v qQ & ~p A ~q ,etc.

Provided there is no ambiguity and to explain the use of the reduction rules given below, before using a rule wrt a
given sequent, any missing element in this sequent is interpreted as an empty such one and denoted by the symbol A.

After using this rule, . symbols are omitted in any new obtained sequent. And this process is continued as long as
only elementary sequents are obtained (see below).

For example, the last of the above given sequents can be interpreted as follows: A = A, ~(p Vv q) < ~p A

~ g. And hence, in accordance with the rule '— E.' and for convenience, the missing symbols A and I can be
interpreted by A And so, by using this rule the following two new sequents can be obtained: ~(p v q),A A, ~D

A~q and ~p A ~qAi A ~(p Vv Q) Inthe nextstep any such empty symbol is omitted. Then we have: ~
P v QdQrH~p A~q and ~p A ~q F~(p Vv q) Similarly as in the case of using '— E', i.e. the classical
rule of omitting an equivalence. In the same way, the following simplified rule of removing an implication in the

. .. —A=B . . .
consequent of a sequent can be obtained: —C;: T o e.g. the rule of removing an equivalence in the
A — B

. —A<B . .
consequent of a sequent: —E : (a more formal treatment is omitted: see rules —C_ and

" A-B A_B

—E,_ given below).

The considered system includes only one axiom”. This is a sequent having at least one elementary formula (i.e. at
least one tiny latin letter such as: p, q, 1, s, ...) in common in its antecedent and its consequent. So, according to the

above example sequents, only the first of them p + p,q is anaxiom. Any sequent A — I having A and T as
elementary sequences, i.e. sequences of elementary formulae without any logical connectives, is said to be an
elementary sequent or atom. So any axiom is an atom, but not vice versa, e.g. theatom p F r,q isnotan axiom.

In general, the Gentzen’s sequent calculus can be used wrt some sequent transformations. This is done by
introducing some (finite) set of rules. The used set of rules may be different depending on the following two cases:

1) Generation of some true formula (i.e. thesis) for a priori given axiom by using introduction rules’ (e.g.
Glushkov V.M. 1964: 1921 - 1982), or also

is an effort to capture mathematical aspects of natural language syntax in logical form (a very influential work in computational linguistics): The
Free Encyclopaedia, The Wikimedia Foundation, Inc. The logical system called full Lambek’s calculus is obtained by removing the following
three structural rules: exchange, contraction and weakening. On the other hand, by adding all or some of the last three structural rules we can
obtain various intuitionistic substructural logics (Kawaguchi M.F. et al. 2005). See Subsection 2.4 of this book: linear logic.

* In fact, any Gentzen’s system uses only one axiom: A |— A, known as ‘identity’ and denoted by Id. Moreover, introduction rules become
an important proof technique (e.g. see Subsection 2.4: Relevance logic).

T In particular, such rules are used in relevance logic, e.g. + C, or + C. (known also as ‘arrow on the left’ and ‘arrow on the right’,
respectively: see Subsection 2.4).
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(i1) Validation if a priori given formula is a thesis by using reduction (called also: elimination) rules (e.g. Pawlak
Z. 1965, Huzar Z. 2002, etc.).

Example 1.13

A—AA BT -0

i) +C, :
O+ T RAr_Ae

is an example rule, shortly denoted by "+ C." , of adding an implication to the antecedent of a sequent (composed wrt
the previously given two sequents A ~ A,A and B,I' = ® ,where A, A,T" and ® denote some sequences
of propositional formulae).

B ANA=B-T
(i) —-C,:
AB—T A-T,A
is an example rule, shortly denoted by '— C." , of removing an implication in the antecedent of a sequent. In

consequence, two new sequents are obtained. o

Any rule of the considered Gentzen’s sequent calculus can be represented in an equivalent way by some
propositional formula, which is a thesis. Some proofs of the above given two rules + C, and — C, are given in the
next example.

Example 1.14

Below any sequence, say A , of propositional formulae @1,¢2,...,px is replaced by some conjunction @; A @2
A..A @k (if A belongs to the antecedent of the considered sequent) or also by some disjunction i v Y2 V...V Wi
(if A belongs to the consequent of this sequent, in accordance with the above given sequent interpretation). By Wa
we shall denote the obtained propositional formula associated with A (similarly: Wr and We, associated with I"
and O, respectively).

(i) +Co: E (Pa = ¥a v A)ABAYr = Vo) = (A = B)APanYr = P v Po)

Proof:

(D Ya = YA v A
2) BAYr = Yo

3) A =B {12345/ a}

4 Wa

5)  ¥r

(6)  ~(¥r v Yo) {aip}

(7 ~¥a {NA : 6}

®) ~WYe

9 WYiv A {(-C: 14}

(10) A {-A:79}

(1) B {(-C: 3,10}

(12) BAYr {+K:511}

(13) Yo {(-C: 2,12}
contr. o {8,13}

Unfortunately, the opposite implication is not satisfied (the reader is invited to use the Hilbert's abbreviated
verification).

(i) —Ca: = (WaA(A=B)= %)= WanB=¥)AWa> ¥rvA
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Proof:

(1)

(2)

3)

(1.1)
(1.2)
(1.3)
(1.4)
(1.5)
(1.6)
(1.7)
(1.8)

@.1)
2.2)
2.3)
2.4)
2.5)
(2.6)
2.7)
2.8)

Ya A (A= B) = ¥r

~(Ya A B =Yr) A (Wa= ¥Yr v A)
YaABA~Yrv Yan~¥Yra~A

Wa

B

~Yr

~(Wa A (A = B))
~%Ya v ~(A = B)
~(A = B)

A

~B

contr.

Wa

~Yr

~A

~(¥a A (A = B))
~%Ya v ~(A = B)
~(A = B)

A

~B

contr. o

{a}
{aip}
{NK,NC,NA: 2}

{1.1,1.2,1.3 / ada}

{Toll : 1,1.3}
{NK: 1.4}
{-A:1.1,1.5}
{NC: 1.6}

{1.2,1.8}
{2.1,2.2,2.3 / ada}
{Toll : 1,2.2}
{NK: 2.4}
{—A:2.1,2.5}
{NC: 2.6}

(2.32.7}

Without loss of generality and for simplicity, instead of Wa, Wa, ¥r, Yo, A, B, etc. we can use some
propositional variables, e.g. such as: p, q, 1, s ...p1, p2, etc. For example, in the case of proving (ii), i.e. the above rule
— C,, we can obtain the following propositional formula: (p A (@ = 1) = s) = (p AT = 5) A (p = s Vv Q).
And hence, it is sufficiently to prove that this formula is a thesis.

According to case (ii), the opposite implication, i.e. (¥a A B = ¥Yr) A (Ya = ¥Yrv A) =>Wa rn (A =
B) = Yr), is also satisfied.
Proof:

(D) Ya A B = ¥r
2) Ya= Y¥Yrv A

3) v, {1234 /a}
4) A =B

5)  ~¥r {aip}

(6) Yr v A {-C: 23}
7 A {(—A:56)
® B {(-C: 4,7}
9) WYa A B {+K:3,8}
(100  w¥r {-C: 1,9}

contr. o {5,10}

And so the following rule can be generated:

AB-T A-T,A
AA=B_T

The last rule can be obtained from + C, by interchanging I" with A andnext A and ® with I'.o
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Below we shall restrict our attention only to the problem of validation of propositional formulae. For any of the
logical functors (i.e. the basic symbols ~, A, v, = and <) two reduction rules are given, depending on the fact
if this logical functor belongs to the antecedent or also to the consequent of the considered sequent. So the following
ten reduction rules can be used”.

(1) Rule of removing a negation in the ~AA T
antecedent of a sequent —Ng: A_T.A

2) Rule of removing a negation in the A—T,~A
consequent of a sequent - Ne: AALT

3) Rule of removing a conjunction in the AABA T
antecedent of a sequent - Ky ABA_T

4 Rule of removing a conjunction in the A—T,AAB
consequent of a sequent - K A—T,A A_T,B

5) Rule of removing a disjunction in the A AvBA T
antecedent of a sequent & AALT BA_T

(6) Rule of removing a disjunction in the A—T,AvB
consequent of a sequent —Act A_T.AB

(7 Rule of removing an implication in the ANA=B-T
antecedent of a sequent -Gy AB—T A-T,A

®) Rule of removing an implication in the c A—T,A=B
consequent of a sequent c- AA—T,B

9) Rule of removing an equivalence in the E AMASB-T
antecedent of a sequent a ABA T A_T.,AB

(10)  Rule of removing an equivalence in the E A—T,A<B

consequent of a sequent T AA " T,B BA_T,A

As an example, since A is distributive over v, the rule of removing a disjunction — A, can be proved directly by
using the law of addition of antecedents of two implications having the same consequent. Also, the following two
different indirect proof versions for —E;,ie. (p A (q & 1) = s) > pPAgAT=S)A(pP=qgVTVsys),
can be obtained.

Proof of — E. (the first version is ramified):

(1) pA(@er)=s {a}
2 ~((PrgarrT=s5A(P=>qVvrvVvs) {aip}
3) PAQATA~SVDA~]A~T A~S {NK,NC,NA,SR : 2}

* Since the rules corresponding to the first three connectives are very simple, only these rules can be considered as sufficient. But the obtained
proofs may be longer than these ones related to the use of complete set of rules, e.g. the obtained proofs of T 1.10 (the law of compound constructive
dilemma) without using '— C,” and with using '— C,” have different complexity (left to the reader). We observe that commas placed in the
antecedents or consequents are “commutative” (since A and v are commutative). In general, any of the above inference rules ( called also ‘cur
rules’ can be considered as a generalisation of the classical modus ponens, i.e. '— C’. It was shown (the Gentzen’s cut-elimination theorem, 1934)
that any judgement that possesses a proof in the sequent calculus making use of the cut rule also possesses a cut-free proof (The Free
Encyclopaedia, The Wikimedia Foundation, Inc.).
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(L) p

Sg ;1 {1.1,1.2,1.3,1.4 / ada}

(14)  ~s

(1.5) ~pv ~(qer {TolLNK,SR : 1,1.4}

(1.6) ~(qe 1) {-A: 1.1,1.5}

(L7) ga~rv~qAr {SR: 1.6}

(1.8) gAarAa(@A~rv ~qAr {+K: 1.2,1.3,1.7}
contr. {1.8}

@20 p

22) ~q

23) ~r {2.1,2.2,2.3,2.4 / ada}

24) ~s

25 ~pv~(@er {TolLNK,SR : 1,2.4}

26) ~(qe) {—A: 21,25}

27 qa~rv~qAar {SR: 2.6}

28) ~gqA~rA(@QA~rv~qAar {+K: 2.2,2.3,2.7}
contr. o {2.8}

Since q & r <4 ~(q < 1) the above-ramified proof can be simplified. In fact, by using the (corresponding

short forms of the derived) rules of omitting an exclusive disjunction — EA"" (wrt lines (1.2) and (1.6) we can
obtain a contradiction: r and ~r) and — EA" (wrt lines (2.2) and (2.6): the same two contradictory lines can be
obtained, see remark to "— A", Subsection 1.2). Another proof technique is given below.

Proof of — Ea (the second version):

(1) PA(@QeT1) =8 {a}
2) ~(pArgAarT=8)A(P=>qVTrVs) {aip}
3) PAQATA~SVDA~]A~TA~S {NK,NC,NA,SR : 2}
“4) PA~SA(QATYV ~qA~T) {A is distributive over v}
5
56; I:s/\ @< {— K, Ais commutative and associative, SR : 4}
(7) S {-C: 1,5}
contr. o {6,7}

Another version can be obtained by using Toll wrt the lines (1,6) and then — A (this is omitted). Instead of two
contradictory lines, in the first version two contradictory formulae are obtained (in accordance with the considered
cases). Similarly, the last rule of removing an equivalence — E. can be proved directly by using the following two
theses (thisis lefttothereader): E (p = qv r <s) > p = qv =) and E(p = q v (r <539) =

(p = q Vv (s = 1)), ete. The reader is invited to prove the rule — Ec by using T 1.5.

In general, any Gentzen’s rule is provable using indirect proof techniques.

Any propositional formula ¢ can be considered as a sequent of type "+ ¢ “, where the symbol "' is said

to be the main sequent connective for ¢ . The validation of ¢ and so the process of reduction of the logical
functors associated with ¢ is started always wrt the main sequent connective. This process is repeated as long as
the whole set of logical functors is reduced and so only a set of atoms is obtained. Hence, ¢ is a thesis iff any such
atom is an axiom.

Any of the above presented rules (1 — 10) can be considered as a derived (or secondary) wrt the natural deduction
approach. The corresponding proofs are similar to these ones given in Example 1.14 (the reader is invited to present
proofs for the remaining rules). Moreover, as in the axiomatic approach, the proof style used is always the direct
style. The methodological aspects of the above calculus are omitted here. The proposed system is exact wrt any
propositional formula ¢ .
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An illustration of the above-considered approach is given in the next example (the proof style used below is related to

the so called ‘turnstile’).

Example 1.15

{msc}

{23/—-E¢: 1}

{4,5/_Ca: 2}

{—Cc: 3}
{—Ac: 4}
{—Ac: 5}
{9,10/ — Aa: 6} (axiom)
{=N¢: 7}
{—N¢: 8}
{=Na: 9}

{axiom}
{axiom}

{axiom}

The following proof of the law of negating a disjunction (see T 1.7) can be obtained.

{msc}

{23/—-E.: 1}

{=Na: 2}
{-Ka: 3}

{6,7/—K¢: 4}

{=Na: 5}
{~N¢: 6}
{-N¢: 7}
{=Na: 8}
{—Ac: 9}
0 10}
s 11}
{1516 / — A, : 14}

{axiom}

{axiom}

{axiom}

Eléllx)vays is corresponding to the main sequent connective (shortly: msc )"
() Fp=>q&e ~pvg

) p=9 F ~pvq

3 ~pvaq F p=gq

4 49 F ~pvg

6 +F~pVvagp

6) p.~pvaq F q

(7 a9 F ~pq

® = ~pgp

9 p.~pP F ¢q

(10) p.q F q

(1) p.q = q

(12) p F @p

(13) p F @p-o

(b)

(1) F~(P v @ < ~p A~q
2 ~PvVvad = ~pAar~q
3) ~p A~q = ~( Vv q
4 = ~p A~qp Vv q

6 ~p.~q = ~(p Vv 9
6) = ~pp Vv q

(7 +F ~ap Vv q

® ~qa = ~(p v 9,p

9 pFEPVQ

(10) a9FpvVvgq

(1) = ~@ v 9,p.q

(12) p F pq

(13) a9 F pq

(14 p Vv q F pq

(15) p F pq

(16) 9 F p,q.o

" In general, in accordance CR and SR, the sequent
— A. and then ¢® = oy

represented as:

—N. we can obtain:

And finally, we have: ¢ + vy and vy + o.

{axiom}

= @ = wy can be equivalently represented as:

F (@ > y)A(y = ). Accordingto — K., the following two sequents can be obtained: +— ¢ = y

Let consider the proof of the law of implication (see T 1.15).It is assumed below the first line of the proof

= ~¢ v y. Nextby using

In a similar way, by using — E and SR, the sequent ~ ¢ < y can be equivalently

and ~ vy = o.
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The reader is invited to show the law of addition an arbitrary proposition to the antecedent and consequent of a
given implication (see Example 2.7 of Subsection 2.2) and also the following two theses:

P=>dDArpepag
and
P=>qVviDAsAat=>>u)=>((r=>s)ApAt=qvVvu.

It can be observed that the size of the generated proof for a given ¢ will depend on the number of possible
branchings (i.e. the size of the obtained branch-out tree, in each step of the reduction process for ¢ ). For example,
the direct proof of the converse implication T 1.5b (of the law MC of multiplication of consequents) requires two
times '— C” and then "+ K’. At the same time, the corresponding sequent calculus will require eight possible
branchings. The reader is invited to prove the following laws: addition of antecedents, compound constructive and
compound destructive dilemmas, and the law of conversion of implications (i.e. T 1.9, T 1.10, T 1.11, and T 1.13,
respectively).

An extension of the above given set of reduction rules (1 — 10) is omitted here. It will be given in the next
chapter, where the (first-order) predicate logic is presented. And hence, four new reduction rules should be added wrt
the universal (V) and existential (3) quantifiers (depending on the fact if any such quantifier is in the antecedent or
also in the consequent of the sequent associated with the considered predicate formula: see Subsection 3.4).

The sequent calculus becomes elusive for some non-classical logic systems. A generalisation of Gentzen-style
sequent systems (known as ‘hypersequent calculus’) is considered in Subsection 4.1.

A brief survey of the commonly studied non-standard logics, e.g. such as: many-valued, fuzzy, modal, temporal,
and some others is given in the next section.

2. Non-standard logics

Non-standard logics such as many-valued, fuzzy, modal, temporal, etc. have been increasingly gaining the
attention mainly wrt the following two reasons. First, the natural desire to extend the existing classical deduction
techniques to new domains of logic. And second - the need of providing a suitable foundation for artificial
intelligence. Any such system is constructed on the basis of classical logic, e.g. by deleting or also introducing some
axioms (e.g. intuitionistic logic or paraconsistent logic), by introducing some new connectives ( called also functors,
e.g.suchas: O, ¢, =>>,<<>,!,8,0,/, U, etc. in the modal and temporal logics), by introducing more than two

(but a finite number of) logical values or also an extension to a non-countable set of values in the closed interval, i.e.
based on the truth-values set [0,1] (e.g. many-valued or fuzzy logics) and so on. The first non-classical systems were
introduced to the middle of the 20" century, e.g. such as: the 3-valued Lukasiewicz’s system (Lukasiewicz J. 1917),
system of strict implication (Lewis C.I. 1918), intuitionistic logic (Heyting A. 1930, Gentzen G.K.E. 1935 and
Kleene S.C. 1952)".

The Lukasiewicz’s intention in the construction of the 3-valued system was to use a third additional truth value
for “possible”, and to model in this way the modalities “it is necessary that” and “it is possible that”(considered as
special or alethic such ones). This intended application to modal logic was not materialised. The outcome of these
investigations are, however, the Lukasiewicz’s systems, and a series of theoretical results concerning these systems,
e.g. such as: the basic idea of additional truth degrees wrt problems of the representability of functions (Post E.L.
1921), reasoning the intuitionistic logic in terms of many truth degrees (Godel K. 1932), an infinite valued
characteristic matrix for intuitionistic logic (Ja§ S. 1936), a philosophical application of 3-valued logic to the
discussion of paradoxes (Bochvar D.A. 1938), and a mathematical one to partial functions and relations (Kleene S.C.

" See Subsection 2.4: Intuitionistic and fuzzy intuitionistic logics.
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1938), the determination of the fixed points in the revision theory of truth (Kripke S. 1975), and so on (see Gottwald
S. 2000).

The construction of the systems of many-valued logic can be considered as one of the most important logical
discoveries in the past century (Stupecki J. and Borkowski L. 1967). Below we shall first concentrate our attention to
some such systems.

2.1. Systems of many-valued logic

Many-valued logics are non-classical logics. But they are similar to classical logic because they accept the
principle of truth-functionality, i.e. the truth of a compound proposition is determined by the truth-values of its
component propositions (and so remains unaffected when one of its component propositions is replaced by another
having the same truth-value). Here a fundamental fact is that the above logics do not restrict the number of truth-
values to only two, e.g. in the grey-scale images the assertion that some colour is not white is not equivalent to the
assertion that this colour is the black itself and vice versa. And this is because the set of all possible colours in the
grey level scale gradation {0,1, ..., 255} includes more than two elements (i.e. the black colour '0' and the white
one '255").

There are two kinds of semantics for systems of many-valued logic: standard logical matrices and algebraic
semantics. The main types of logical calculi are all available for these systems (such as: the natural deduction
approach, Gentzen’s type sequent calculi or tableau calculi). The main systems of many-valued logic often come as
families, which comprise uniformly defined finite-valued as well as infinite-valued systems such as: Lukasiewicz’s
logics, Godel’s logics, t-norm related systems, 3-valued systems, product systems, Dunn/Belnap’s 4-valued system,
etc. (Gottwald S. 2000).

Lukasiewicz’s logics (Jan Lukasiewicz 1878 — 1956)

The systems L, and L. are defined by means of the following two truth degree sets:

W =ar {L/k e{0,l,...m—1},m> 2} and W =g [0,1] = R+ (the set of all nonnegative real numbers),

m-—1
respectively”.

The degree 1 is the only designated truth degree. The main conjunctions of these systems are the strong and
weak conjunctions, denoted by & and A , respectively. The following two truth degree functions are used:

p & q =4 max{O,p + q — 1}7 and
P A q =u min{pq}.

It can be observed that the logical value p & ¢ = p A q =0 for p=0 or q = 0. Letnow p,q > 0.
Thenwehave: p & q = p A q, for p+ q > 1 and max{p,q} = 1. Similarly p & q # p A q, for p +
1 1
q £ 1. Forexample, p & q = paAaq = —, forp = % and q = 1. Inasimilarway, p & q =0 # —
2 3
1
=pAgq forp = % and q = — . Butthe above two truth degree functions coincide for m = 2.
3

" The first Lukasiewicz’s system (a ternary logic system with W3 =4 {0, 1/2, 1}) was given in 1918: usually 0, 1/2 and 1 are denoted by
the logical constants F, U (unknown) and T, respectively.

 Below we shall assume the logical value of a propositional formula ¢ , denoted by v(¢) € W, oralso v(¢) € W.,, depending on the
used system. Provided there is no ambiguity, for simplicity instead of v(p) the same formula ¢ is used, e.g. p instead of v(p), q instead of
v(q), pA q instead of v(p A q), etc. Moreover, to minimise the number of used parentheses we shall assume the logical functors bind more
strongly than the sign of equality. Hence, e.g. (p = q)Ap = q = 1 denotes ((p = qQ)Ap = q)= lorequivalently: v((p = qQ)Ap =
q = L.
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In accordance with the above two conjunctions, the following two (strong and weak) disjunction connectives can
be introduced:

p ¥ q =¢ min{l,p + q} and
P vV q = max{p,qj.

The last two disjunctions also coincide for m = 2 (a similar verification of the relations ‘=" and ‘#’ between
the logical valuesof p ¥ q and p v q is left to the reader).

The Lukasiewicz’s negation and implication connectives are defined as follows:

~p =dr 1 — p and
p = q =¢ min{l,1 — p + q} (orequivalently: p = q =¢ if p < q then 1 elsel — p + q).

There were given also another many-valued logic systems, e.g. Kleene’s ternary logic (1952: Stephen Cole
Kleene 1904 — 1994): Kleene's ternary implication differs in its definition in that ‘U implies U’ is ‘U° (instead of
‘T*, as in the case of Lukasiewicz’s one): In accordance with the law of implication (T 1.15 , Subsection 1.3), the
logical value of this implication, p = q =4 ~p Vv q =« max{l — p, q}. The corresponding definitions for
negation, conjunction and disjunction connectives are the same as in Lukasiewicz’s system: concerning the weak
conjunction and disjunction connectives. Instead of W3 =4r {0, 1/2, 1}, there was used the set {F, U, T}, where 0,
1/2 and 1 correspond to F, U and T, respectively: Kleene’s symbol ‘U’ denotes ‘unknown’. Kleene’s ternary
implication was used as a natural way of generating a paraconsistent logic (see Subsection 2.4: left to the reader).

Proposition 2.1
P=>Pr@=>p =0 =>9P&(@ = p)

Proof:

Let L =¢ (p = 9)A(qQ = p) = min{min{l,1 — p + q},min{l,1 — q + p}}. Also assume that R =4 (p
= q) &(q = p) = max{O,min{l,1 — p + q} + min{l,1 — q + p} — 1}. Obviously, for p = q we have: L,
p-a = 1 = Ryp-q.

Assume now that p < q.Hence min{l,1 — p + q} = min{l,1 + (@ — p)} = 1 and min{l,1 — q + p}
= min{l,]1 —(q-p)} =1 —-q+ p. Andsowecanobtain: L,,<q=min{l,1 —(q-p)} =1-q+p-=
max{0,1 + (I — (q—-p) — 1} = R/p<q.

In a similar way for p > q wecanobtain: L,,>q=1+q—-—p=R/p>q.0
It can be observed that v(¢) = v(y) will implicate ¢ < . An example equivalence connective defined for

L4 is shown in the next table (independent on the used type of conjunction: strong or weak). This table is a
generalisation of the classical corresponding to £ .

= 0 1/3 2/3 1

0 1 2/3 1/3 0

1/3 | 2/3 1 2/3 1/3

2/3 1 173 2/3 1 2/3

1 0 1/3 2/3 1

Next we shall assume that the symbol of negation binds more strongly than the remaining symbols. An algebraic
interpretation of De Morgan's laws is given below.

(i) ~p&q=~pY¥ ~q,

(i) ~p¥Yq=~p& ~q,
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(ii1) ~(pAq=~pvVv~q, and
(iv) ~(pVvag=~pA~q.

Proof (i):

The following equality has to be shown:
I —max{O0p + q— 1) £ min{l,(1-p)+(1-q)}

We have three cases for consideration depending on the value of the sum p + q (=1 or < 1 or > 1). For
example, assuming p + q > 1 theleftside L=¢1 — max{0,p + q — 1} =2 — (p +q).Since p+q > 1
then 2 — (p + q) < l. Hence the right side R =¢ min{l,2 — (p +q)} = 2 — (p + q) = L (similarly for the
rest two cases). o

It is easily to show the weak operations A and v satisfy the commutative, associative, absorptive, idempotent,
and distributive axioms. Unfortunately the strong conjunction and disjunction are only commutative and associative.

For example, the absorptive axioms are not satisfied for p = L and q = 1 (or 0, depending of the considered
2
axiom), the distributive axioms are not satisfied for p = L and q=1r = L, etc. In fact, the following
3 2

properties are satisfied:

v) p&ag=q&p,

(vij p¥Xqg=gqXp,

(vi) (p& @ &r=p&(q&r), and
(vii) (p Y @¥X r=p Y (Q X0

According to the associative axiom, the above strong and weak operations can be generalised for a finite number
of more than two arguments. As an example, the proof of (vii) is illustrated below.

Proof (vii):
The following equality has to be shown:
max{0,max{0,p + q — 1} + r — 1} £ max{0,p + max{0,q + r — 1} — 1}
Hence the following 3% = 9 cases have to be shown depending on the valuesof p +q - 1 and q + 1 —
1 (iftheyare = 0 or < 0 oralso > 0). For example, assuming p + q — 1 < 0 and q+r -1 > 0
the left side L =¢r max{0,r — 1} and the right side R =4 max{0,p + q + r — 2}.Since 0 < r < 1 we have: L

= 0.Ontheotherhand: p+q+r=(p +q +r < 1 +1r <2 Hence R = 0 andso L = R (the rest cases
can be analysed in an similar way). o

The following monotonic property is satisfied

IA

p<q >p&r<q&r and

P<q =>pArs<qgAar.
Post’s logics (Emil Leon Post 1897 — 1954)

Let i, m € N (the set of natural numbers) be some parameters such that i < m and m > 2. Consider the
following family of many-valued logic systems Pim =4t (A, B,n™, a™), where the sets A =4 {0,1,2,..., m—i—1,
m—-im-i+1l,., m—-1}, B=¢ {m—-im—-i+1,.., m—-1} S A and the two functions n™ and a™ are
defined as follows (see: Formal logic. Encyclopedical outline with applications to informatics and linguistics 1987):
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n™(x) =¢r if x = 0 then m—1 else x—1 fi and

a"(x,y) =d¢r max{x,y} (forany x,y € A).

The above two functions are functionally complete. It can be observed that n? and a’ in P12 correspond to the

classical negation and disjunction (i.e. logical alternative), respectively.

Example 2.1

Consider the example system Pl3 = ({0,1,2}, {2}, n%, a%). In accordance with the above definitions, the following

two tables for n® and a? are shown below.

X n’(x) a‘(x,y) 0 1 2
0 2 0 0 1 2
1 0 1 1 1 2
2 1 2 2 2 2
Since n? and a’ are functionally complete in Pﬁ , any other function can be expressed by them. o
Example 2.2

It can be observed that the variables x and y in the above given definitions can be considered as logical
values of some propositional variables, say p and q, respectively. This is in accordance with our previous style,
and so n™(x) can be denoted by ~p and a™(x,y) by p Vv g, and vice versa. So, e.g. assuming m = 3, the

Lukasiewicz’s negation and implication connectives can be defined as follows: ni (x) =¢¢ 2 - x and

ci (x,y) =¢r min{2,2 — x + y} (multiplying each element in W3 by 2). And hence, e.g. in the Lukasiewicz’s

implication can be expressed as follows: ci (x,y) = 213(213 (n3L (x),y),ni(a3 (n3 (x),n3(y)))). The last obtained

expression is equivalent to the original one, i.e. min{2,2 — x =+ y}. In fact, the columns in the corresponding
two truth tables will be identical (for any (x,y) € {0,1,2}?). The reader is invited to find the expression related

to n;_(x).
The logical values 0, 1, and 2 can be expressed as follows: n3(n3(a3(a3(x,n3(x)),n3(n3(x))))),

n3(a3(a3(x, n3(x)),n3(n3 (x)))) (s the famous Stupecki’s t function) , and a3(a3(x, n3(X)),n3 (@’ (x))),
respectively. In accordance with the previously used style, e.g. the last expression corresponds to the following
propositional formula: p v ~p Vv ~~p.o

It can be observed that the involutivity property is not satisfied in the case of Post’s negation, i.e.

n"(n"(x)) # X (in contradistinction with the Lukasiewicz’s negation, see below: t-norm related systems).

Obviously, different expressions may correspond to the same function, e.g. g = h (i.e. g(x) =h(x), for any x

€ {0,12)), where g(x) =ar 1'(n’(a'(n’(a’(x,n’(x)),a°(x 0’ (X)) and h(x) =g 0'(0"(a’(x,0"(x)))) (the
corresponding propositional formulae are equivalent and hence we can obtain a thesis).

The following interesting interpretation was proposed by Post. So, any element of the universe A can be
interpreted as a binary sequence of length (m — 1). Moreover, if some element of a given sequence is equal to 1,
then all rest elements of this sequence are also equal to 1. And hence, the logical value m -1 € A is
interpreted as a sequence of 1’s of length (m — 1). The value m —2 e A is interpreted as a binary sequence
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having the first element equal to 0 and the rest (m — 2) elements equal to 1. Similarly, the element 1 € A is
interpreted as a binary sequence of length (m — 1) having all elements 0’s except the last one, equal to 1. And
finally, the logical value 0 € A is interpreted as a sequence of length (m — 1) having all elements equal to 0. In
accordance with the above given interpretation, the distinguished elements of B S A are considered as binary

sequences of length (m — 1) having less than i 0’s. Moreover, it can be observed that the logical values in A
for different systems Pirrl will be also different. And hence, the elements of A (and B & A) will depend on

the parameter m. And so, more formally the above sets A and B can be introduced as follows: A =g
{om1m2m o om—-i—-1" m-i""m-i+1™ ..., m—-1" and B =¢ {m—-i",m—-i+1™ ..., m— 1"},
respectively.

Example 2.3

Let A =4 {0,1,2,3,4,5}. Consider the system P{ =4 ({0,1,2,3.4,5}, {3,4,5}, nf, a®). The following
interpretation of the elements of the universe A can be obtained:

0 = (0,0,0,0,0) the strongest false value
1 = (0,00,0,1)

26 = (0,0,0,1,1) the weakest false value
3 = (0,0,1,1,1) the weakest true value
4 = (0,1,1,1,1)

56 = (1,1,1,1,1) the strongest true value

. 0

It was shown by Post that any many-valued formula can be presented by a composition of classical logic
formulae. In fact, according to the above interpretation, any X,y € A can be considered as binary vectors x, y
e {0,1} ™! where x =4r (X1, X2, ... , Xm-1) and y =4t (Y1, y2, ..., ym-1). Let a, k and n be the functions
corresponding to the classical disjunction, conjunction and negation, respectively. Also assume that z: {0,1} ™~
' — {0,1} be amap such that z(x) = z(X1, X2, ... , Xm—-1) =ar a(a( ... (a(a(x1,X2), X3) ...), Xm - 2), Xm - 1). Hence,
the following interpretation can be obtained for n™ and a™.

n™(x) = (n(2), a(n(z), k(x1, x2)), a(n(z), k(x2, X3)), ... , a(n(z), k(Xm-2, Xm-1))) and
am(X3Y) = (a(Xl, yl)’ a(XZa y2), cer sy a(Xm* I, Ym— 1))
Example 2.4

Let consider the system Pf of Example 2.1. We have: A = {03, 13,23}, Since z = a(x1,x2), the following
interpretation can be obtained for n’ and a’.

n’(x) = (n(a(x1,x2)), a(n(a(x1,x2)), k(x1, x2))) and
3.3(X,y) = (a(Xl, y])s a(X23 y2))

The integers 0%, 13 and 2° (i.e 0,1and 2 with m = 3) are interpreted as follows: 0° = (0,0), 1> = (0,1)
and 23 = (1,1). Directly by the above definitions we can obtain, e.g. n’(0) = 2 and also a’(1,2) = 2. By
using the last interpretation we can obtain for n® and a® binary vectors corresponding to the same values. In fact,
we have: n*(0) =4 (n(a(0,0)), a(n(a(0,0)), k(0,0))) = (n(0), a(n(0), 0)) = (1, max{1,0}) = (1,1) = 2°. Since
x = (0,1) and y = (1,1) then in a similar way we can obtain: a(1,2) =4 (a(0,1), a(1,1)) = (1,1) = 2°. The
reader is invited to find the corresponding interpretation for the functions n® and a® of Example 2.3. o

From historical point of view the philosophical hopes related to Lukasiewicz’s logics have not been
completely satisfied. Doubtless, the Lukasiewicz’s three-valued system is now recognised as one of the most
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important developments of the past century”. On the other hand, the Post’s interpretations initiated the today’s use
of many-valued logics in such areas as: discrete mathematics, in particular combinatorics and (the chain-based)
Post algebras and their technical applications in multiple-valued switching theory (e.g synthesis of multiple-
valued or also quantum logic circuits). And so, all these applications are a confirmation of their own increasing
importance.

Some other many-valued systems were also introduced, e.g. such as: Sobocinski’s logics (using two
connectives related to the Lukasiewicz’s negation and implication), Stupecki’s logics, etc (see: The little
encyclopaedia of logic 1988). In particular, the last system can be considered as the largest finite such one. A
brief presentation of this system is given below.

Stupecki logics (Jerzy Stupecki 1904 — 1987)

Consider the system S;“:df (A,B,C,R,S), where i < m and m > 2 (i, m € N). The universe A =g

{1,2, ..., m} and B =q4 {1,2, ..., 1} is the subset of distinguished elements. The logical connectives C, R and S
are defined as follows (for any p,q € A):

1. if 1 <p <1ithen Cpq = q else Cpq = 1,
2. if 1l <p<m-1then Rp=p + 1 else Rp = 1 and
3. if p=1(2) then Sp = 2 (1) else Sp = p.

The used designation C corresponds to the Lukasiewicz’s symbol of implication. It was shown that any S’

is a semantically and syntactically complete system (see Definitions 1.9 and 1.10 of Subsection 1.6). Moreover,
with any such system a corresponding set of axioms was associated (a more formal treatment is omitted).

Gadel’s logics (Kurt Godel 1906 — 1978)

The systems Gm and Ge are defined by means of the above two truth degree sets: W, and W . The
degree 1 is the only designated truth degree.

The basic connectives of these systems are a conjunction and a disjunction, denoted by A and v,
respectively. They are defined as follows:

p A q =4¢ min{p,q} and
p v q =« max{p,q}.

The negation and the implication connectives are defined as follows:

~p =a¢ if p=0 then 1 else 0 fi and
p = q =a if p < q then 1 else q fi.

The Lukasiewicz’s and Godel’s systems Lo and Ge are directly related to fuzzy logic (see the next
Subsection 2.2). These two systems together with product logic are defined as basic (Hajek P. 1998). Another
two many-valued systems are summarised below.

Three-valued systems (Stephen Cole Kleene 1904 — 1994)

Multiple-valued logics have been introduced for many reasons: philosophical, as with Lukasiewicz, or purely
mathematical, as with Post. Three-valued systems seem to be particularly simple cases, which offer intuitive

" Early ideas for construction of systems having more than two logical values were presented of the turn of 19" and 20" centuries, e.g.
by the following forerunners of multi-valued logics: Hugh MacColl (1837 — 1909): “logic of three dimensions”, Charles S. Peirce (1839 —
1914): “trichotomic mathematics™ based on “triadic logic” and Nikolai Alexandrovich Vasiliev (1880 — 1940): “imaginary non-Aristotelian
logics”. Vasiliev is reckoned also as the forerunner of paraconsistent logic: see Subsection 2.4.
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interpretations of the truth degrees. Few have been as useful or as natural as the three-valued logics of Kleene
(1952), introduced for computer science purposes (or at least they would have been if computer science had
existed at the time).Kleene thought of the third truth value as undefined or undetermined, rather than as

contingent or of probability L This third truth degree for “undefined” was introduced in the context of partial
2

recursive functions. So this reading suggests a natural condition: the behaviour of the third truth value should be
compatible with any increase in information. That is, if the value of some propositional letter, p say, is changed
from undefined to either true or false, the value of any formula ¢ with p as a component should never change
from true to false or from false to true, though a change from undefined to one of false or true is allowed (Fitting
M. 1990). The above condition, originally referred as regularity can be considered in terms of monotonicity in an
ordering that places undefined below both false and true. It was observed (Kleene S.C. 1952) among three-valued
logics satisfying the regularity condition there is a weakest and a strongest logic and also there are several
intermediate ones. An illustration of Kleene 3-valued systems is given below (Fitting M. 1990).

Most implementations of Pascal require that (classical) truth values of all components of a Boolean
expression be available before the value of the expression itself is calculated. Consider the propositions p and q.
In particular, p A q must be given the value “undefined”, i.e. L , if either p or q has the value L. Otherwise
p A q behaves classically. Similarly for v and ~ . This is the weak Kleeene logic. The third value L can be

interpreted, e.g. as a nontermination of a procedure call calculating some Boolean expression (Fitting M. 1990) or
also as an “indeterminate” value of a signal line (Breuer M.A. and Friedman A.D. 1977).

On the other hand, one can imagine a language allowing a degree of parallelism, in which the calculation of a
value for p A q proceeds as follows. Values for p and q are calculated in parallel, if either p or q turns out
false, work on the other is halted and p A q is assigned the value false on the grounds that the value of the other
won’t matter. If one of p or q turns out true (say p), work must continue on the other component (q) because
its value now is critical. And so, the value of p A q is whatever the value of q turns out to be. In such a system p
A q 1is true if both components are true, p A q is false if one component is false and p A q is L otherwise. This

means pAq is L ifoneof p or q is frue but the otheris L , orif both are L . Similarly for v and ~. This
is the strong Kleeene logic.

There could also be a sequential evaluation of p A q, say from left to right, so that p is evaluated first. If p
evaluates to false, work stops and p A q 1is assigned false. If p evaluates to true then q is evaluated, and its
value becomes the value assigned to p A g. This is an asymmetric logic, e.g. if p is falsebut q is L ,pAq

evaluates to false, but q A p evaluates to L . This logic is also regular in Kleene’s sense, and its connectives
correspond to the AND, OR and NOT of Lisp (also the logic of Prolog with its left-right, top-down evaluation).

The importance of many-valued logics in computer science is generally recognised. They have been used in
artificial intelligence (Ginsberg M.I. 1988), logic programming (Fitting M. 1985), algebraic specification of data
types (Pigozzi D. 1990), epistemic structures (to represent the generally many-valued truth values of propositions
about the external world: Muravitsky A.Y. 1994), digital circuits (e.g. Breuer M.A. and Friedman A.D. 1977, Lu
H.and Lee S.C. 1985, Muzio J.C and Wesselkamper T.C. 1986), etc. As an illustration, an application of three-
valued (strong Kleeene) logic to hazard detection is given below.

Hazard detection using three-valued algebra

One of the most common causes of circuit malfunction is due to circuit delays. Delay is an inherent property
of all circuit elements and interconnections. In combinational circuits one form of malfunction caused by delays
associated with elements is referred to as a hazard. A simple model for gate delays is shown in Figure 2.1 below,
where only pure delay elements are considered, i.e. elements whose output value at time t is equal to its input
value at time (t — d) and gate G; have delay d; (here Gi’ is assumed to have 0-delay, i = 1,2,3).

Suppose that the inputs at some time t; are X; = X = x3 = 1 and attime t; > t;, X; changes to 0.
Ideally, the output of the circuit should be 1 both before and after the change. However, if d; < d», even by a
very small amount g, the output may contain a 0-pulse. Hence, due to delays a combinational circuit may
produce a transient error or spike. This is called a hazard (strictly: static I-hazard, i.e. O-pulse in a stable 1-
signal). Such an error, if applied to the input of a flip-flop, may result in a permanent incorrect state. In
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synchronous circuits this possibility is eliminated by ensuring that no clock pulse occurs until the combinational
circuit stabilises. In asynchronous circuits hazards cannot be masked in this way and they must be eliminated by
proper design, or the circuit must be designed to operate properly in spite of the presence of transients caused by
hazards (Breuer M.A. and Friedman A.D. 1977).

Figure 2.1 A gate delay model

One of the first hazard detection procedures was given by Eichelberger E.B. (1965). It was observed that
when a signal line changes values, it goes through a transition period where its value may be interpreted by each
of its loads, independently, as eithera 0 or 1. To denote this undefined value the symbol ‘v’ was used by Breuer
M.A. and Friedman A.D. (1977), to represent the fact that the value is unknown (Eichelberger used the symbol *
% > rather than ‘u’: here ‘1’ is denoted by u). And so, it was developed a ternary algebra ({0,u,1};0,1; +, - , -),
where +, - correspond to v, A in the strong Kleene logic (the same as the weak disjunction and the weak
conjunction in the Lukasiewicz’s system) and 1 =4 u (it can be observed that any multi-valued logic involves
corresponding algebraic system).

Consider a combinational circuit C having input signals x =g (X1, X2, ..., Xn). Let the current input vector be
x(t) =4 (a1, a, ..., ay) and the next input vector be x(t+ 1) =4 (ci, C2, ..., Cn), Where aj,ci € {0,1}. Assume
now that x(t+) =4 (b, by, ..., by) is a pseudo input vector such that b; =4 if a; = c¢; then a; else u (for any
i). Let the response on line z in C to the input sequence x(t)x(t +)x(t + 1) be z(t)z(t +)z(t + 1). The following
necessary and sufficient condition was shown.

Proposition 2.2

Let X =4 x(t)x(t H)x(t+ 1) be an input sequence for C and Z =4 z(t)z(t +)z(t + 1) be the corresponding
response to X. Then a static hazard on line z exists iff Z € {0u0, lul}.o

Example 2.5

Consider the circuit C of Figure 2.1. Assume that x(t) =4r (1,1,1) and x(t+ 1) =4 (0,1,1). Hence x(t+) =
(u,1,1) and X = (1,1,1) (u,1,1) (0,1,1). Then Z = (1)(u)(1) or for simplicity lul (here u + u = u).We have
a static 1-hazard. o

In accordance with the last example, assuming two OR gates (Gi, Gz) and one AND gate (G3), a static 0-
hazard can be obtained for x(t) =¢r (0,0,0) and x(t + 1) =4 (1,0,0). Then Z = O0u0. Moreover, the above-
considered model can be extended in the case of asynchronous sequential circuits (by using an appropriate
defined iterative array model: this is omitted).

The above proposition was used in the logic level simulation domain”. Systems of many-valued logic were
also used in circuit design and test generation for m-logic circuits, e.g. (Lu H. and Lee S.C. 1985, Tabakow I.G.

* Logic simulation is the process of building and exercising a model of a digital circuit on a digital computer. By exercising we mean the
evaluation of signal values in the modelled circuit as a function of time for some applied input sequence. There are two main applications for
a logic simulator: design oriented simulation, i.e. the evaluation of a new design, and fault analysis simulation. In the first case the logic
designer is interested in testing for logical correctness, as well as timing and signal propagation characteristics. He may desire information
related to race, hazard and oscillatory circuit conditions. In the second case the test engineer or logic designer may desire information related
to what faults are detected by a proposed test sequence, what is the operational characteristic of the circuit under specific fault conditions, or
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1993). Some interesting and practical uses of many-valued logic have been done, e.g. such as: Intel’s flash
memory with more than two levels of logic, applications to standard binary logic synthesis and optimisation,
highly integrated devices, programmable gate arrays, resonant tunneling diodes, vlsi chips, biocomputing,
variable-valued logic, Lukasiewicz’s machines to control mini-robots, etc.

Dunn / Belnap’s” four-valued system

A {T}
o {L1,T}
<t
{L}
................................................................. >
<k

Figure 2.2 A double Hasse diagram for
the four-valued system

Relevance logics are non-classical logics (called “relevance logics” in North America and “relevant logics™ in Britain
and Australasia) these systems have been developed as attempts to avoid the paradoxes of material and strict
implication (e.g. suchas: p=(@=p, p = (C~p=2>q9,. P =@ vg=0p, P =9 Vv (@ =0,
pA~p =>q p=>(qQ v ~q), , p=>(q => q), etc.). Relevant logicians claim that what is unsettling
about these so-called paradoxes is that in each of them the antecedent seems irrelevant to the consequent. In
addition, relevant logicians have had qualms about certain inferences that classical logic makes valid. They have
attempted to construct logics that reject theses and arguments that commit “fallacies of relevance” (Mares E.D.
1998). Hence, any such system assumes a semantical relationship between the antecedent and consequent of the
considered true implication. A shift in emphasis from programming languages to databases makes it natural to
move from a three to a four-valued logic. This particularly interesting many-valued system was the result of
research on relevant logic but it also has significance for computer science applications (Fitting M. 1990,
Gottwald S. 2000). The following truth degree set is assumed (Gottwald S. 2000): {@, {L},{T},{L1,T}}. The

what degree of fault resolution is obtainable with a given test sequence? However, for many simulation applications two logic values (0,1) are
not sufficient, e.g. in ambiguity delay processing, circuit race or hazard detection, etc.(Breuer M.A. and Friedman A.D. 1977).

“ Nuel D. Belnap, Jr., born 1930 and J.Michael Dunn, born 1941.

T In general, these logics can be considered as a kind of paraconsistent logic systems: for a more formal treatment: see Subsection 2.4:
Relevance logic. A more formal definition of strict implication is given in Subsection 2.3 (see: Modal logic).
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truth degrees can be interpreted as indicating (e.g. wrt a database query for some state of affairs, in short: soa)
that there is: no information concerning this soa, information saying that the soa fails, information saying that
the soa obtains, and conflicting information saying that the soa fails as well as obtains.

In accordance with the above given double Hasse" diagram (see: Figure 2.2), the set of truth degrees has two
natural (lattice) orderings: a truth ordering (in short: <) which has {T} on top of the incomparable degrees &,
{1,T},and has {L} at the bottom and also an information ordering (or: knowledge ordering, denoted by < )
which has {L,T} on top of the incomparable degrees {L},{T}, and has @ at the bottom. The truth degree
functions for the conjunction and disjunction connectives can be defined in an unique way by using the
corresponding inf- and sup-operations under <. A negation is determined by a truth degree function which
exchanges the degrees {L} and {T}, and which leaves the degrees {L1,T} and @ fixed. The definition of

implication connective and the choice of the designated truth degrees is depending on the used application
(computer science or relevant logic). This is still an open research topic.

Direct-product systems

The truth degrees can be interpreted as different aspects in the evaluation of a given proposition. By assuming
e.g. k different aspects, the truth degrees may be chosen as k-tuples of values which evaluate the single aspects.
The compound truth degree function over such k-tuples can be defined “componentwise” from truth degree (or:
truth-value) functions for the values of the single components. In this manner, k logical systems may be
combined into one many-valued product system. In this way, the truth degrees of Dunn/Belnap’s 4-valued system
can be considered as evaluating two aspects of soa related to a database: whether there is positive information
about the truth of this soa or not, and whether there is positive information about the falsity of this soa or not.
Both aspects can use standard truth-values for this evaluation. In this case, the conjunction, disjunction, and
negation of Dunn/Belnap’s 4-valued system are componentwise definable by conjunction, disjunction, and
negation of classical logic, respectively. And so, this 4-valued system is a direct-product of two copies of
classical two-valued logic (Gottwald S. 2000). A more formal treatment of topics such as: algebraic systems, in
particular lattices, Cartesian (or: direct-) products of such systems, logical bilattices’, etc., is omitted in this part
of study (will be presented in Part II of this book, e.g. see MacLane S. and Birkhoff G. 1967, Kerntopf P. 1967,
Ginsberg M.L. 1988, Bronstein I.N. et al. 2001, etc.).

2.2. Fuzzy logic

Consider a set of propositions. To any element of this set may be assigned some degree of truth, which may
be “absolutely true”, “absolutely false” or some intermediate truth degree: a proposition may be more true than
another one. And so, any proposition can be represented with some degree of truthfulness and falsehood. In the
analogy to various definitions of operations on fuzzy sets (such as: intersection, union, complement, etc.) one
may ask how propositions can be combined by logical connectives (such as: conjunction, disjunction, negation,
etc.). And also, if the truth degree of a composed proposition (or equivalently: propositional formula) is
determined by the truth degrees of its components, i.e. if the connectives have their corresponding truth functions
(like truth tables of classical logic). Saying “yes” (which is the mainstream of fuzzy logic) one accepts the truth-
functionality principle. And this makes fuzzy logic to something distinctly different from probability theory since
the latter is not truth-functional. In fact, the probability of conjunction of two propositions is not determined by
the probabilities of those propositions (Hajek P. 2002).

The following two main directions in fuzzy logic can be distinguished: fuzzy logic in the broad sense and
fuzzy logic in the narrow sense, i.e. in senso stricto. In the broad sense (older, better known, heavily applied but

" Helmut Hasse (1898 — 1979)

T A bilattice is a system %% =4 (B, <., <y, ~) such that B is a non-empty set containing at least two elements, (B,<,), (B,<y) are
complete lattices, and ~ is a unary operation on B that has the following properties: a <;b = ~a>;~b,a<yb = ~a< ~b,and ~~a =
a (forany a,b € B: see Ginsberg M.L. 1988).
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not asking deep logical questions) this logic serves mainly as apparatus for fuzzy control”, analysis of vagueness
in natural language and several other application domains. It is one of the techniques of soft computing, i.e.
computational methods tolerant to suboptimality and impreciseness (vagueness) and giving quick, simple and
sufficiently good solutions.

Basic fuzzy propositional logic (called also: basic many-valued logic, in short: BL) is symbolic logic with a
comparative notion of truth developed fully in the spirit of classical logic (syntax, semantics, axiomatisation,
truth-preserving deduction, completeness, etc. both propositional and predicate logic). It is a branch of may-
valued logic based on the paradigm of inference under vagueness. BL is a strict fuzzy logic system using the
logic of continuous triangular norms.

Triangular norms (in short: -norms) are a generalisation of the classical two-valued conjunction. They were
originally introduced by Menger K. (1942)" in the framework of the probabilistic (statistical) metric spaces as a
generalisation of the classical triangle inequality for ordinary metric spaces.This paper was followed almost
immediately by a paper of Wald A. (1943). The next investigations (Schweizer B. and Sklar A. 1960, 1963) were
related with axiomatic of these norms. A more detailed treatment was given in (Schweizer B. and Sklar A. 1983,
2005). For infinite valued systems with truth degree set W« =4¢ [0,1], the influence of fuzzy set theory (Zadeh
L. A. 1965, 1974) quite recently initiated the study of a whole class of such systems of many-valued logic. In
fuzzy logic systems, the basic aggregation operations are performed by the logical connectives AND and OR
which provide point wise implementations of the intersection and union operations. It has been well established
in the literature that the appropriate characterisations of these operations in the multi-valued logic environment
are the triangular norm operators (Hajek P. 1998). In general, the most of the studies concerning Héajek’s system
BL focus attention on methodological problems such as compactness, consistency, decidability or satisfiability of
t-tautologies, various proving techniques or also introducing some new t-norms, e.g. (Hajek P. and Godo L.
1997, Klement, E.P. and Navara M. 1999, Navara M. 2000, Cintula P. and Navara M. 2004, etc.).

The basic fuzzy propositional logic is a relatively young discipline, both serving as a foundation for the fuzzy
logic in a broad sense and of independent logical interest, since it turns out that strictly logical investigation of
this kind of logical calculus can go rather far (Héjek P. 1998). It is broadly accepted that t-norms (dually, t-
conorms) are possible truth functions of fuzzy conjunction (of fuzzy disjunction). The best-known candidate for
fuzzy negation is the Lukasiewicz’s negation x' =¢r 1 — x. However, some other notions, e.g. such as Sugeno’s
fuzzy negation or Yager’s fuzzy negation are also applicable (Bronstein I.N. et al. 2001: see below). The fuzzy
implication connective is sometimes disregarded but is of fundamental importance for fuzzy logic in the narrow
sense. A straightforward but logically less interesting possibility is to define implication from disjunction and
negation or conjunction and negation using the corresponding theses of classical logic T 1.15 and T 1.19,
respectively (see Subsection 1.3). Such implications are called S-implications’. In fact, more useful and
interesting are the so-called R-implications (any such implication is specified as a residuum with respect to the
used t-norm).

" Traditional control systems are based on mathematical models in which the control system is described using one or more differential
equations that define the system response to its inputs. Such systems are often implemented as "proportional-integral-derivative (PID)"
controllers. They are the products of decades of development and theoretical analysis, and are highly effective. If PID and other traditional
control systems are so well-developed, why bother with fuzzy control? It has some advantages. In many cases, the mathematical model of the
control process may not exist, or may be too "expensive" in terms of computer processing power and memory, and a system based on
empirical rules may be more effective. Furthermore, fuzzy logic is well suited to low-cost implementations based on cheap sensors, low-
resolution analogue-to-digital converters, and 4-bit or 8-bit one-chip microcontroller chips. Such systems can be easily upgraded by adding
new rules to improve performance or add new features. In many cases, fuzzy control can be used to improve existing traditional controller
systems by adding an extra layer of intelligence to the current control method. Hence, the broad sense fuzzy logic has become a common
buzzword in machine control. However, the term itself inspires certain scepticism, sounding equivalent to "half-baked logic" or "bogus logic".
Some other nomenclature might have been preferable, but it's too late now, and this fuzzy logic is actually very straightforward. This logic is
a way of interfacing inherently analogue processes, that move through a continuous range of values, to a digital computer, that likes to see
things as well-defined discrete numeric values (Goebel G. 2003).

T Karl Menger (1902 — 1985)

*In accordance with T 1.19 and CE (the law of transposition or contraposition of equivalence) we have: p = q < ~(p A ~q).
Lete.g. X' =¢ | — x be the Lukasiewicz’s fuzzy negation and X ® y =¢ min{x,y} be the Zadeh’s t-norm. Hence, the following S-
implication can be obtained: x = y =¢ 1 — min{x, 1 — y} = max{l —x, y} (the logical value of this implication: the proof of the last
equality is left to the reader). Obviously, it is possible also the use of other fuzzy negations and / or t-norms. It can be observed that
sometimes the above two S- and R-implications may coincide, e.g. in £,-BL (and hence in £-BL, assuming Yager’s fuzzy negation: see
Corollary 2.4 of this subsection).
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There exist two classical approaches in constructing of the propositional calculus: the axiomatic approach and
the approach from assumptions (Shupecki J. and Borkowski L. 1967). In general, the actual research
methodology and extensions have been related to the Hajek’s axiomatic approach in constructing of the fuzzy
propositional calculus.

The subject of this subsection is fuzzy propositional calculus. The proposed approach is related to the infinite
valued Lukasiewicz’s system, recognised as one of the most important basic fuzzy propositional logics (in
common with Godel’s and product logic systems, in short: £-BL, G-BL and n-BL). There are first introduced
some basic notions and definitions concerning t- norms and t-conorms. A proof method for fuzzy propositional
logics based on natural deduction is next presented (Tabakow I.G. 2006). This approach seems to be more
attractive, more simpler and natural in practical use than the axiomatic one. Next, a new t-norm and t-conorm are
introduced and then it is defined a generalised Lukasiewicz’s system, denoted by Lo-BL (a0 > 0), where the
previous one becomes a particular case with o = 1. The system Lq-BL is presented in two versions, called first
and second order Lo-BL, depending on the used continuous fuzzy negations (Lukasiewicz’s one or the more
general Yager’s one, respectively). And hence, in accordance with the generalised De Morgan’s laws, two
possible t-conorms are obtained. The used fuzzy implication is specified as a residuum of the above t-norm
(which is continuous) and hence, the last implication is unique. This subsection is an extension of the previously
study (Tabakow I.G. 2006). As an illustration, various assumptional proofs and corresponding derived rules are
given.

Triangular norms and conorms: basic notions and definitions
The t-norm operator (called also: fuzzy t-norm) provides the characterisation of the AND operator. It is a

binary operation ® : [0,1]> — [0,1] with the following properties (for any x,y,u,v e [0,1]: Hajek P. 1998,
Klement, E.P. and Navara M. 1999, Bronstein I.N. et al. 2001, etc.):

X®y = y®x commutative

x®y 2u®v forx 2uandy 2 v monotonic
Xx®(y®z) = (x®y)®z associative

Xx®1 =1®x =x has 1 as unit element

The dual t-conorm operator (called also: fuzzy t-conorm or fuzzy s-norm), characterises the OR operator. It
is a binary operation @ : [0,1]> — [0,1] having properties as follows (for any x,y,u,v e [0,1]):

X@y = yo®x commutative

x®@y 2udv forx 2uandy 2> v monotonic
Xx®O(y®z) = (x0y)dz associative
x@0=00x =x has O as unit element

In accordance with the monotonic property, any t-norm is non-decreasing in both arguments having 1 as unit
element and 0 as zero (or null) element, i.e. x ® 0 = 0 (for any x € [0,1], similarly for any t-conorm with
respect to 1 as a zero element). In fact, the system .v =¢ ([0,1]; 1,0 ; ®) is an Abelian” algebraic system with
the above monotonic property, similarly for .2 =4 ([0,1];0, 1 ;®), where 1,0 and 0, 1 are the constants of
these two algebraic systems. Obviously, the systems .~ and .7 can be considered as Abelian monoids’ with
respect to the constants 1 and 0, respectively.

In general, the notion of (continuous) fuzzy negation can be introduced as a function f:[0,1] — [0,1] with

the following properties (for any x,y € [0,1], Bronstein I.N. et al. 2001):

f(0) =1 and f(1) = 0 the terminal point values
x <y = fx) 2 f(y) monotonicity

" Any algebraic system . =4 (A ; 0) is said to be groupoid, where "o’ is a binary operation, i.e. ©:A’>— A. Thesystem . is
Abelian if o is commutative (Niels Henrik Abel: 1802 — 1829).

Let .~ =4 (A ;e; o) be an algebraic system having e € A as unit element and "o’ as a binary operation. If "o’ is associative
then .. is said to be monoid.
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f(f(x)) = x involutivity
f(x) is a continuous function continuity (for any x € [0,1])

It can be observed that a very simple function satisfying the above properties is the classical Lukasiewicz’s
negation fi(x) =4r 1 — x. Some generalisations were also introduced, e.g. such as: Sugeno’s fuzzy negation” fs(x)
1 —x ] 1/a
=dr To’ where A e (=1, o) or also Yager’s fuzzy negation' fy(x) =4 (1 — x*) , where a € Ry =4
+ Ax

(0, o). For example, the involutivity property for fi(x) is presented as follows:

I-x
- 1+ Ax .
Let y =ar fs(x). Then fs(y) = L=y _ —1-x ~ 0D _ Similarly for the Yager’s
1+Ay [ A+l
1+2Ax

fuzzy negation fy(x) (this is omitted).

It can be observed that the continuity property is not satisfied for the following fuzzy negation, used in G-BL
and n-BL (Héjek P. 2002): x' =¢¢ if x = 0 then 1 else 0 fi.

Let x' =4 f(x) be a continuous fuzzy negation. So any t-conorm is dual to the corresponding t-
norm under the order-reversing operation which assigns x' to x on [0,1]. And hence, for a given t-
norm the complementary conorm is defined as follows (a generalisation of De Morgan’s laws): x ®y
=df (X' ® y') ",

As a continuous fuzzy negation may be selected any one. But the most important representatives are as
follows: the Lukasiewicz’s fuzzy negation x' =41 —x (assumed in L-BL, i.e Lo-BL with o = 1) and Yager’s

fuzzy negation x' =¢ (1 — x“)w (which is a generalisation of the previous one with o = 1), where o > 0.
Since t-conorms are “negation oriented”, we have the possibility of constructing two different versions of the
generalised Lukasiewicz’s BL system. The last two versions are presented below, where traditionally the
Lukasiewicz’s fuzzy negation is first assumed.

We shall say that ® is continuous t-norm if it is continuous as a function, i.e. ¥V €>0 V x1, X2, y1, y2 € [0,1]
FO>0(xi—X2/<d A |yi —V2/ <0 = [x1®y1 —X2®Yy>2 | <e). The left- and right-continuity can be
introduced in a similar way (this is omitted). And ® is said to be an Archimedean t-norm if it has the
Archimedean property?,i.e. Vx,y €(0,1)3In € N (x" < y). Any X isnilpotentif 3n € N (x" = 0), where x"
denotes x ® X ® ... ® x (n times) and N is the set of natural numbers. An element x is idempotent if X ® x =
X. Any continuous t-norm is Archimedean if it has no idempotents between 0 and 1, i.e. there is no any
idempotent x € (0,1)%. And this t-norm is strict if 0 is its only nilpotent element, i.e. if x ® x > 0 for all
x > 0. Continuous Archimedean t-norms which are not strict are called nilpotent. For example, the product t-
norm, i.e. X ® y =¢r Xy is strict and the Lukasiewicz’s t-norm x ® y =4 max{0, x +y — 1} is nilpotent. All
nilpotent t-norms are isomorphic with the Fukasiewicz’s t-norm being their prototypical representative.
Similarly, all strict t-norms are isomorphic with the product t-norm". The partial ordering of t-norms can be

* Michio Sugeno, born 1940.
T Ronald R. Yager, born 1941.

# Named after Archimedes (287 b.c. — 212 b.c. axiom v of Archimedes) and first used in some algebraic systems by Otto Stolz (1842 —
1905). In general, this property is related to the impossibility of having infinitely large or infinitely small elements.

§ More generally, each continuous Archimedean t-norm can be obtained by using an increasing (decreasing) bijection called a
multiplicative (additive) generator, which is not uniquely determined (public domain).

™ The set of idempotents of each continuous t-norm is a closed subset of [0,1] and its complement is a union of countable many non
overlapping open intervals. The restriction of the t-norm to any such interval (including its endpoints) is Archimedean. And hence, the
obtained restriction is isomorphic either to the Lukasiewicz’s t-norm or to the product t-norm. For such x, y that do not fall into the same
open interval, the t-norm evaluates to the min{x,y}. These conditions are known as the Mostert-Shields theorem. And hence any continuous t-
norm is decomposable (public domain). Another characterisation theorem was given by Schweizer and Sklar (this is omitted here: see Larsen
H.L. 1998).
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introduced in an usual manner, i.e. ® < ® <¢ VX, y € [0,1] X ®y < x ® y). The point wise larger t-
norms are sometimes called stronger. It was observed that min{x,y} > x ® y and max{x,y} < x@®y (for any
X,y € [0,1] and t-norm / conorms ® and ®). It can be observed the linear convex combination of two different
t-norms is not necessary t-norm, e.g. for x ® y =¢ min{x,y} and x ® y =g Xy the obtained linear convex
combination A(Xx ®1y) + (1 — A)( X ® y) is not associative ( A € [0,1]). It is desired sometimes to be
introduced some operators which are interpolating between t-norms and t-conorms. Any such operator is said to

be compensating (Bronstein I.N. et al. 2001), e.g. the A-operator xOuy =4t Axy + (1 — A)(X+y —Xxy) and the
jeoperator: XxOyy =4 (Xy)'"% (x+y—xy)? (A, y € [0,1]). In general, these operators are also not associative (a
more formal treatment is omitted).

Some example t-norms with the corresponding dual t-conorms are given in the next table (the parameter
o € R: Bronstein LN. et al. 2001)".The aggregations modelled by Zadeh’s t-norm and t-conorm are sometimes
referred as the pure AND, and the pure OR, respectively.

Author t-norm t-conorm (s-norm)
Zadeh X ®y =¢ min{x,y} X @y =¢ max{x,y}
Lukasiewicz X®y =¢ max{0,x +y—1} X®y =¢ min{l,x +y}
algebraic X®y =4 Xy X@Oy =g X+y—xy
product and
sum
drastic product [ x ® y =¢r if (x = 1) or (y=1)then min{x,y} |x ®y =4 if (x = 0) or (y=0) then max{x,y}
and sum else 0 fi else 1fi
Hamacher Xy X+y—xy—(l-a)xy
X®y =q¢f X®y =af
(a=0) o+ (1-o)(x+y-xy) 1—(1-a)xy
S Xy X+y
Einstein X®y =¢ ——— X®y =dr
I+(1-x)(1-y) 1+ xy
Frank ol @ e - R PO etV Gt
(>0, 1) X@Y Zur 08| 1T a—1 X@y Zar 17108 1T a—1
Yager . o a\la . o al/o
sy | x@y = 1omin{L -0+ (-9 x®y = min{l,(x"+ »"}
- “a “a - XDy =qf
Schweizer x®y = maxi0,(x "+ y - 1) 1 ) . . )
(a.>0) 1-max{0,((1-x) + (1-y) —-1) "}
D bi N o Ve -l « o] Ve -
ombi _ _
X®y =dar 91+ ox + Iy X®y =dar 1+ x ==
((X, > 0) X y 1-x 1-— y
Weber X®y =it max{0,(1+o)(x+ y— 1)} X@y =if min{l,x + y+oxy}
(a=2-1)

" Sometimes there are required additional interpolating operators between t-norms and t-conorms: see Subsection 7.1.
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Dubois Xy X+y-—xy-min{x, y,(1-o)}
X®y = — X®y =
O<as<h T i vl T mx(-0.0-y.0)

A proof method for fuzzy propositional BL-system based on natural deduction

Next we shall say that ® and ® are ¢- conjunction and t- disjunction, respectively. The fuzzy implication
connective is sometimes disregarded but it is of fundamental importance for fuzzy logic in the narrow sense. Next
only continuous t-norms are considered as good candidates for fruth functions of a conjunction. Each t-norm
determines uniquely its corresponding implication = (not necessarily continuous) satistfying for any x,y,z €
[0,1] the following crucial adjointness condition: z < (x =y) iff x ® z < y. For all those t-norms which have
the sup-preservation property, i.e. x ® sup; yi = sup; (x ® y;)* there is a standard way to introduce the related
implication connective with a truth degree function. In fact, any t-norm based fuzzy implication can be
interpreted as a binary operation over [0,1] and specified as a residuum of the corresponding t-norm (called also
R-implication). It was shown that this residuum is unique if the considered t-norm is at least left-continuous. In
general, the logical value of any R-implication can be defined as follows: x = y =4 sup{z € [0,1]/x ® z <
y} (forany x,y € [0,1] and any left-continuous ®: Hajek P. and Godo L. 1997, Hajek P. 1998, Navara M.
2000, Gottwald S. 2000, etc.). Also, the implication and negation connectives are assumed under

Let ® be an arbitrary left-continuous t-norm and x < y. In accordance with the monotonic property, we can
obtain: x ® z<y®z and y® z <y ® 1 =y.Then x ® z <y (forany X,y,z € [0,1] and x <
y). In general, the following well-known property of the logical value of any R-implication is satisfied: x = y
=1liff x <y.

Below we shall use the same names for the primitive and/or derived rules as in the case of classical
propositional calculus (see Section 1). Some additional inference rules of the first-order predicate logic calculus

are also used, e.g. such as: the rule of negating an universal quantifier (denoted by NV), the rules of omitting an
universal and an existential quantifiers (denoted by: —V and —3, respectively: see Subsection 3.3 of the next
Chapter II).

In the fuzzy propositional calculus any formula is constructed by using the following three kinds of symbols: (i)
propositional variables (denoted by p, q, 1, s,...,p1,p2,...), (il) some fuzzy connectives (depending on the used
system), e.g. such as: the Zukasiewicz’s (strong) fuzzy conjunction, fuzzy disjunction, implication, logical
equivalence, and negation, denoted by: &, ¥, =, <, and ~, respectively or the Godel’s (weak) fuzzy
conjunction, fuzzy disjunction, implication, logical equivalence, and negation, denoted by: A, v, =, <, and ~,
respectively or also the product logic’s fuzzy conjunction, fuzzy disjunction, implication, logical equivalence, and
negation, denoted by: - ,v, =, <, and ~, respectively and also (iii) parentheses ( left: ‘(° and right: ©)’ ). The
truth and falsity constants, corresponding to ‘T’ and ‘F’ in the classical case, are denoted by 1 and 0 (or also by
T and L respectively). To minimise the number of used parentheses in an expression, some priorities for logical
connectives can be introduced. The following convention is assumed below (Stupecki J. and Borkowski L.
1967): ~, ®, ®, =, < (i.e. the symbol of negation binds more strongly than the symbol of t-conjunction, the last
binds more strongly than the symbol of t-disjunction, etc.), where ® € {&, A, -} and ® € {¥,v, V} are
depending on the used system (L-, G- or ©-BL). It can be observed that the fuzzy connectives related to £.- and
G-BL are the same as in the case of many-valued logic systems (see Subsection 2.1) but extended to the whole
interval [0,1]. The negation connective in n-BL is the same as in G-BL. The fuzzy conjunction and disjunction

"Let (X, >) be apartially ordered set. An element a e X is said to be an upper bound of Y < X iff a > y (forany y € Y). The
upper bound a of Y is said to be a least upper bound (i.e. supremum ) of Y iff for any upper bound a“ of Y :a" > a. The least upper
bound of Y is denoted by sup(Y) (also supY or supy.y y ). The notions of a lower bound of Y S X, a greatest lower bound (i.e.
infimum) of Y and inf(Y) can be introduced in a similar way, e.g. for Y =4 {—1,+ 1/2,—-1/3,+ 1/4, ..., (- 1)"n, ...} we can obtain:
inf(Y) = — 1 and sup(Y) = 1/2. The used term ‘sup-preservation’ is related to the well-known distributive property wrt an algebraic
system. If Y has a supremum, then the supremum is unique. Let s; and s, are two different suprema of Y (aip).We have:s; < s; and s, <
s;. Since < is weak antisymmetric it follows that s; = s,.
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connectives in n-BL are defined as follows: x-y (the usual arithmetic product) and x Vy =¢ X + y — Xy
(called algebraic or “probabilistic” sum). The following proposition is satisfied.

Proposition 2.3
The sup-preservation property is satisfied forany a € [0,1] and ® € {A, &, }.
Proof:

(i) Let ® =4 A. We have: a ® supxe[o1] X = min{a, supxe o] X } = min{a, sup[0,1]} = min{a,l} = a.
On the other hand supx c 0,17 (a ® X) = sup{x € [0,1]/ min{a,x}} = sup{min{a,0}, ..., min{a,1}} = sup[0,a] =
a.

(i) For ® =4 & we can obtain: a ® supxeo1] X = max{0,a + supxejoi] X — 1} = max{0,a + 1 — 1}
= max{0,a} = a. The right side supxeo,1(a® x) = sup{x € [0,1]/max{0,a + x — 1}} = sup{x € [0,1]/
max{0,a — (I — x)}} = sup{a — 1,...,a} = supla — 1,a] = a (for 0 < x <1 wehave a — 1 < a —
(1 -x)<a)

(ii1) Assuming ® =g - We have: a ® supxejoi] X = a-Supxeqoi] X = a-1 = a.In a similar way the right
side supxcpo,j(@a®x) = sup{x € [0,1]/a-x} = sup{a-0,..,a -1} = sup[0,a] = a.«

The next example is an illustration of the notion of R-implication introduced in the Hajek’s system BL.

Example 2.6 (L-BL, G-BL and 7-BL implications)

(i) Let x®y =¢x&y = max{0,x + y — 1}. So the implication in the LZukasiewicz’s logic system with the
strong conjunction ‘&" can be defined as follows: x = y =¢ if x < y then 1 else 1 — x + y fi (or
equivalently: x = y =¢ min{l,1 — x + y}).

(i) Let x®y =4 x Ay = min{x,y}. In the case of the Godel’s logic system with the weak conjunction "'A" we
have: x = y =g if x <y then 1 else y.

(iii)) Letnow x®y =4¢ x-y = Xy (the usual arithmetic product). So, for the product logic (in short: 7z-logic)
we can define: x = y =¢r if x < y then 1else y/x (is the usual arithmetic division: since a > b then a #
0). o

The logical value of the fuzzy equivalence (a = b) ® (b = a) isequalto 1 for a = b (L-, G-, n-BL)
: . min{a, b}

and equal to: 1 — max{a,b} + min{ab} = | - |a—b| or min{a,b}, oralso —————,for a # b
max{a,b}

(depending on the considered system: t-, G- or m-BL, respectively). The absolute value | a—b| corresponds to

the value of the L-BL fuzzy difference a <»>b defined as follows: ~ (a <> b). And this fuzzy difference
coincides with the notion of M-difference given by Lu H. and Lee S.C. (1984).

In accordance with the associativity axiom, any t-norm (s-norm) can be extended to more than two
arguments. And hence, the logical values of the obtained generalised connectives are given below (the
corresponding proofs are inductive wrt n and they are left to the reader).

n

P, = 4P T 2 p,.p,

<Is

‘&lpi = max{0, ip- -n +1}, Qp. = min{l, ilp} and
i= =1 ! =t =t

I
%)
I
=
A
)

n
+ ..+ (=DM 11 p, (foranypie [0,1](i=1,2, ..., n;n > 2). The algebraic sum connective is very similar

to the well-known Poincaré’s formula concerning the probability P(GAi). The above sum can be also
i=1

n n n
equivalently represented as follows: ;1 p, =1 - ]_[1 (1 — p,). Obviously, forany ® € {A, &, -}: ®1 p, =
1= 1= 1=

1 iff pi = 1(forany i = 1,...,n).
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It can be shown that min and max are definable from ® and =, i.c. the following identities are satisfied
(for any continuous t-norm ®: Hajek P. and Godo L. 1997): (i) min{x,y} = x® (x = y) and (ii)
max{x,y} = min{(x = y) =2 y,(y = X) = Xx}.

In general, the class of all t-norms, even of those, which have the sup-preservation property, is very large.
And so, the infinite valued Lukasiewicz’s and Godel’s systems, also the product logic can be considered as some
particular cases.

The set of fuzzy propositional formulae (called equivalently fuzzy propositional expressions, in short:
expressions or also sentential formulae) of this propositional calculus can be considered as the smallest set which
includes propositional variables, and which is closed under the operations of forming the negation, conjunction,
disjunction, implication and equivalence. Hence, any propositional variable can be considered as an expression
and also the compound formulae formed from them by means of the corresponding logical functors. More
formally, the following inductive definition can be used (a generalisation of the classical one: see Definition 1.1).

Definition 2.1
A fuzzy propositional formula is:
1. Any propositional variable,

2. If ¢ and w are some fuzzy propositional formulae, then such formulae are also: ~ (¢), (¢) ® (v) , () ®
W), (@) = (v),and (¢) < (),

3. Every fuzzy propositional formula in this propositional calculus either is a propositional variable or is formed
from propositional variables by a single or multiple application of rule (2). And this should be in accordance
with the used definitions of fuzzy connectives, depending on the considered system, where ® e {&, A, -}

and ® e {v,v,v}

The main purpose of this calculus is the same as in the classical case. Here,, =" and '«<' denote R-
implication and R-equivalence, respectively.

Any evaluation of fuzzy propositional variables can be considered as a map v assigning to each fuzzy
propositional variable p its truth-value in [0,1]. This extends to each fuzzy propositional formula ¢ as an
evaluation of propositional variables in ¢ by truth degrees in [0,1] (Hajek P. and Godo L. 1997, Hajek P. 1998).
Below by ve(p) € [0,1] (in short: @ € [0,1],e.g. @ = a € [0,1]) we shall denote the logical value of the fuzzy
propositional formula ¢ with respect to ®. In a similar way, e.g. by @ < v we shall denote: ¢ = a, y = b, and
a < b(ab € [0,1]).

Definition 2.2 (Hajek P. 2002)

Let ® be a given continuous t-norm and ve(p) € [0,1] be the logical value of the fuzzy propositional
formula @ wrt ®. So, we shall say ¢ is t-tautology, t-thesis or also standard BL-tautology of that calculus if
ve(@) = 1 for each evaluation of propositional variables in ¢ by truth degrees in [0,1] and each continuous t-
norm.

The following f-tautologies are taken as axioms of the logic L-BL (the used letters p, q and r serve as
metavariables for formulae).

Al. =9 =>(Q=>1=@p=1)

A2. p&q=p

A3, p&q=>q&p

A4 p& (=9 = q&(q@=p)

Asa. p=>@=>1)=>0pP&q=1

ASb. P& q=1=(p=(q=r1)

A6, (p=>9 =1 =>(q=p =1 =71
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A7. 0=p
A8. ~~p=p

In the G- and n-BL systems, instead of A8, the following two axioms areused: p = pAp and ~~p =
(p = p-q9 = q-~~q),respectively. It was shown that any formula ¢ is a t-thesis iff it is provable under
BL (Cignoli, R. et al. 2000). But, the main problem here is the time and space effectiveness of the corresponding
proofs using only '— C” and 'RR’. Another approach is proposed below.

Let now ¢ be a fuzzy propositional formula obtained under Definition 2.1. Hence, as in the classical case, the
main task is to verify if ¢ is a t-thesis. Unfortunately, the usefulness of Definition 2.2 seems to be limited
considering arbitrary t-norms. Next we shall assume only t-norms related to the basic fuzzy propositional logics.
Any such t-thesis is said to be a strong t-thesis (or equivalently: strong t-tautology, strong standard BL-
tautology). The last definition can be modified assuming “t-norm dependence”, i.e. the following definition can
be introduced.

Definition 2.3

Let ® be a given continuous t-norm and ve(p) € [0,1], or v(p) if ® isunderstood, be the logical value of the

fuzzy propositional formula ¢ wrt ®. We shall say ¢ a weak t-thesis if ve(p) = 1 for each evaluation of

propositional variables in ¢ by truth degrees in [0,1].

The proof in the fuzzy propositional calculus can be interpreted as a process of joining new lines by using
some primitive or derived rules and/or other theses in accordance with the used assumptions. The proposed
approach is an extension of the classical one (Shupecki J. and Borkowski L. 1967). An illustration is given in the
next example.

Example 2.7

Consider the following well-known classical law (of addition an arbitrary proposition to the antecedent and
consequent of a given implication):

P=>9d=>@Pvr=qvro

This law can be proved both using a direct or also an indirect proof. In general, the indirect proof is a more
universal approach, but corresponding to more proof lines than the direct one (if it exists). The following indirect
proof can be obtained (a thesisisalso (p = q) = (p A t = q A 1): left to the reader).

Proof:

D p=aq {12/a}

2 pvr

3 ~@vro {aip}

@ ~q {45/ NA: 3}
5) ~r

©® p {—A:2,5}
(7 q {-C: 1,6}

contr. o {4,7}



83

Since any @ € {a} U {aip} is assumed to be a true formula (i.e. true in any interpretation), the following
proof technique can be equivalently introduced”.

(D Vpqge {0l}(p=q=1

{12/a}

2) Vpre {01} (pvr=1
B) ~Vqre{0li(@vr=1 {aip}
4 3Fqre {0l}(qvr=l {NV: 3}
(3) qvrn=0 {-3: 4
(6) (qo = 0)A(ro = 0) {df>v: 5}
g; ?: _ (? {78/ —K: 6}
® po=q=1 {=V:1}
(10) povr =1 {-V:2}
(11) po < qo {df’=": 9}
12) po=Dv(@m =1 {aft>v’: 10}
(13) po =0 {7,11}
(14) 1o =1 {(—A: 12,13}

contr. o {8,14}

The above proof technique can be easily extended to the whole interval [0,1]. Hence, the following
implication is satisfied.

Thesis 2.1 (law of addition an arbitrary fuzzy proposition to the antecedent and consequent of a given
implication)

P=d=>@Pdr=9o0)
Proof (e.g. £-BL: @ =4 v ):

(1) Vp,qe[0l]l(p=q=1)

@ Vprel[01](pyr=1 t2/a)
(3) ~Vgre[0l](@yr=1 faip}
4 3Fqre[0l1](qxr=1l {NV: 3}
5) qo vr #1 {—3:4}
©6) qo+t1 <1 {df> v>: 5}
7 po= q= {=V:1}
@) po v r=1 {-V:2}
9 po < qo {df7E-=: 7}
(10) po + 10 =1 {df> v’: 8}
(I1) po + 10 < qo + 10 {+10: 9}
12) q + 10 21 {10,11}
contr. o {6,12}

* Since the logical value of any fuzzy propositional formula ¢ € [0,1] and provided there is no ambiguity, in the next considerations
of this subsection any quantifier restricted to [0,1] is interpreted in standard predicate logic style (the subset over which ranges any such
quantifier coincides with the universe of discourse, i.e. [0,1] ). And hence, the used designations have only an auxiliary sense. A more formal
treatment concerning the notion of a restricted quantifier is presented in Chapter II.



In accordance with our considerations, T1 is a strong t-thesis. Also, the following example strong t-theses are
satisfied (the corresponding proofs are omitted here).

Thesis 2. 2 (law of compound constructive dilemma)

P=>9OT = 3)®(pd®r1) = q® s.o

Thesis 2.3 (law of compound destructive dilemma)
P=>9®T = 3)®~(q®s) > ~(p ®r).o

Thesis 2.4 (De Morgan’s law of negating a t-disjunction)
~p®q < ~p ®~q->

Thesis 2.5 (De Morgan’s law of negating a t-conjunction)
~p®q < ~p & ~qo

Thesis 2.6 (rule modus tollendo tollens)
P=9®~q = ~p.o

Thesis 2.7 (law of transitivity for implication)
P=9®(@ =>1) = (p = 1o

Thesis 2.8 (laws of exportation and importation)
P®q >r ©p=(qQ=r1).o

Thesis 2.9 (law of reduction ad absurdum)
P=9q®~q = ~p.o

Thesis 2.10 (law of transposition or contraposition of implication)
pP=>q © ~q = ~p.o

Thesis 2.11 (law of the hypothetical, called also conditional, syllogism)
Pp=2q9=>U(q=1)=(P=>1).0 {T2.7, T2.8}
T 2.11 corresponds to the first axiom Al of the logic BL (Hajek P. and Godo L. 1997, Hajek P. 1998, Hajek

P. 2002). It is easily to show any of the remaining axioms (this is omitted). An example proof of A4 is given
below.

Thesis 2.12 (the A4 axiom)
P®(P =9 =>9g®(qQ = po
Proof (L-BL: ® =4 &, the proof'is the same for G- and 7-BL):
(I Vpel0ll(p =1
2 Vpqel0ll(p=>q=1
G ~Vqpe0ll(q@& (@ =p =1 {aip;
4 Fqpel0ll(@& (@ =p =1) {NV:3}
5) o & (@0 = po) #= 1 {—3:4}

{12/a}
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6) (q@=#1)v(Q =p =l {df>&: 5}

(7 po=1 {(-V: 1}

(@) Po = qo =1 {-V:2}

©) pPo = qo {df’L =: 8}

(L) qo =1 {ada}

(12) q =1 (7,9}

(13) q <1 {qo < 1017}

(14) qo =1 {1.2,1.3}
contr. {1.1, 1.4}

(21) g0 = po = 1 {ada}

(22) q > po {df’L =1 2.1}

(23) q > 1 22,7}

24) q =<1 {qo € [0.11}
contr. o {2.3,2.4}

The proof of T 2.12 is a ramified indirect one with joined additional assumptions (see proof lines (1.1) and
(2.1)). An illustration of this technique is also the proof of the next thesis T 2.13: see below).

Thesis 2.13 (law of converting implications, called also law of a closed system of theorems or Hauber's law)

P29 = 9)PAEN®~(q®s) = (q=>p (s = 1.0

Thesis 2.14 (law of multiplication of consequents)

P=>9®(p =1 < p=q®r.>

As an example, the used in T 2.1 assumptional system style is also illustrated in the proof of T 2.13 below,
where L-, G- or n-BL are considered..

Proof (L-BL: ® =y &, @ =4 v):

I Vvpqel0l]l(p=>q=1

(2 Vrse[0l]c=>s=1

(3) Vp,re [01](pyr=1) 1234/}

4  Vaq,s € [01](~(q & s) =1)

(5)  ~Vp,qrs e [01]((q=p&(s=r1) =1 ({aip}

6)  3Ip,qrse[01]1(q=p&s =1 =1 {NV: 5}

(7 (q0 = po) &(so = 10) # 1 {-3: 6

® (@=po#l)v (so=>r%1) {df & 7}

) (q0 > po) Vv (so > 10) {df’L -=",SR: 8}
(10)  po = qo =1 {(-Vv: 1}

(1) po < qo {df’L -=",SR: 10}
(12) 10 = so = 1 {=V: 2}

(13) 1 < so {df’L -=",SR: 12}
(14) povr =1 {(-V: 3}

(15)  pot o >1 {d>vo: 14}

(16)  ~(qo & s0) = 1 {-V: 4}

(17)  qo & s0 =0 {df’E -~ SR: 16}
(18)  qo +s0 <1 {af & 17}

(19)  pot 1o < qo + so {11 +13}
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(20)
(21
(1.1)
(1.2)
(1.3)
(1.4)
(1.5)

2.1
(2.2)
(2.3)
(2.4)
(2.5)

pot o =1
Qo+ so =1
qo > Po
r0:1—po
S():l—qo

I —po <1 —=qo
Po = qo
contr.

So > To

po =1 - 19

qQ =1 —so

1l —190 <1 — 50
o = So
contr. o

Proof (G-BL: ® =4y A, @ =45 V).

(1)
(2)
(3)
4)
(5)
(6)
(7
(3
©)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(1.1)
(1.2)
(1.3)
(1.4)
(1.5)
(1.6)
(1.7)

@.1)
2.2)
2.3)
(2.4)
2.5)
(2.6)
2.7)

Vp.q e [01](p=>q=1)

vVr,s € [0,1]r = s =1)

Vpre [0,l](pvr =1)

Vs € [0,1](~(q A s)=1)

~Vp,qr1,s € [0,1]((q=p A =>r1)=1)
Ip,q, 1,8 € [0,I]((q = p)Aa(s = 1) # 1)
(q0 = po)A(so = 19) # 1

(@ =po#1) v (so=>r=l)

(do > po) Vv (so > 10)

po = qo =1

po < qo

ro = So = 1

ro < So

Po VvV I‘():l

(Po=1 v (0= 1)

~(qo A s0) =1

qo/\So=0

(@ =0) v (so = 0)

(o < po) = (80 > o)

(so < 10) = (qo0 > Ppo)

po=1

Q=1

So = 0
To = 0
qo = Po
So > 1o
So = To
contr

Io — 1

So = 1
Qo =0
po=0
So = Io
do > Po
qo = Po
contr. o

{20,21 / 15,18,19}

{ada}
{20}
{21}
{13}
{1.4}
{1.1, 1.5}
{ada}
{20}
{21}
{11}
{2.4}
{2.1,2.5}

{1234 /a}

{aip}

{NV: 5}

{—3: 6}

{df> A2 7}

{df’G -=",SR: 8}
{-V: 1}

{df’G -=",SR: 10}
{-V: 2}

{df’G -=",SR: 12}
{-V: 3}

{df.” v 14}

{-V: 4}
{df’G - ~",SR: 16}
{df> A2 17}

{+N, CR, SR : 9}
{CC:19}

{ada}

{I.1,11: qo < [0,1]}
{—-A:18,1.2}
{1.3,13: 10 € [0,1]}
{1.1,1.2}
{-C:19,1.5}
{1.3,1.4}
{1.6,1.7}

{ada}

{2.1,13: 50 € [0,1]}
{—A:18.2.2}
{2.3,11: po € [0,1]}
{2.1,2.2}
{=C:20,2.5}
{2.3,2.4}
{2.6,2.7}
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I Vpqel0ll(p=q=1
2) vVr,s € [0,1](r = s =1)
B) Vprel[0l](pvr=1) 1234/}
@ Vas e [01](~(q-s) = 1)
(5)  ~Vpaqrse[0l]((@=p-(s=r1 =1 {aip}
(6) Ip,q, 1,8 € [0,I]((@q =p)-(s = 1) % 1) {NV: 5}
(7) (q0 = po) - (s0 = 10) = 1 {-3: 6}
® (@=poz1) Vv (so=r%1) {df>->: 7}
9 (qo > po) Vv (so > 1) {df’m-=",SR: 8}
(10) po=>q =1 {-=V: 1}
(1) po < qo {df’m-=",SR: 10}
(12) 1o = s0 =1 {=V: 2}
(13) 1 < so {df>m-=",SR: 12}
(14)  pov ro =1 {-V: 3}
(15)  (po=1) v (10 = 1) {df>v>: 14}
(16)  ~(qo-s0) = 1 (-V: 4
(17)  qo-s0 =10 {df m -=",SR: 16}
(18)  (qo = 0) v (so = 0) {df> -1 17}
(19)  pot 10 < qo + s0 {11+ 13}
(20)  po+ 1o =1 {15:po, 10 € [0,1]}
(21) qot s =1 {19,20}
(22)  ~(q+* s> 1) {18}
(23) qot+ so =1 {(—A:2122}
(24) pot o =1 {19,20,23}
(I.1) g0 > po {ada}
(1.2) =1~ po {24}
(13) so=1-qo {23}
(14 1 -p<1-qo {13,1.2,1.3}
(1.5)  po = qo {1.4}
contr. {1.1,1.5}
(2.1) 8o > 1o {ada}
(22) po=1-r1 {24}
(23) q=1-=s {23}
24) 1-rn<1-s {11}
(2.5) 10 2 s 2.4}
contr. o {2.1,2.5}

The following simple property is also a strong t-thesis: p ® q = p ® q ( the corresponding proofs in £-, G-
and m-BL are left to the leader.

The following example weak t-theses are satisfied (L-BL only): ~ ~ p < p (the law of double negation, and
hence the rules = N), p = q < ~p ¥ q (the law of implication, i.e. the rule CR), ~(p = q) © p&~q
(the law of negating an implication, i.e. NC), p = p A p (idempotence of t-conjunction: G-BL only, the
opposite implication is strong t-thesis related to — K), the following axiom (Hajek P. and Godo L. 1997): ~~p
= ((p = p®q = q® ~~q) is not satisfied for G-BL, the well-known absorptive and distributive axioms
are satisfied only in G-BL, the law of addition of antecedents (p = 1)® (@ = r) < p®q = r is satisfied
only in G- and n-BL, etc. The corresponding proofs are omitted.

In general, any strong t-thesis can be considered as a new derived rule. The following strong t-theses are
considered as a generalisation or extension of the classical primitive and derived rules.
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NK :

o=V @
o , +K: vy , -K:
vy POV
o=V
, Toll:
o=V
o=>y\y=0)\
V=0
~ &
oy g, PV
~pO~y x=x(e/y)

¢®W (DC'B\II (P:>\V
o’ +A: —g, -A: ~¢ , +E: \y—:>(p,
AVA v y Py
\}
=V ~(p®Vy)
=
~y o, cc: 2=V A ———
~\Y D~ ~Q
~0 e AR AN
o=y A
V=%, MC: o=y
= P=>yYy

The following example proofs are an illustration of using the above rules (for simplicity only £-BL proofs are
presented below).

Example 2.8

Consider the proof of T2.1 under the above-introduced primitive rules. This proof can be realised as follows.

(1
(@)
3
“
(&)
(6)
)

-
P=4 (12/a}
pyr
~(q ¥ 1) {aip}
~d {45/ NA, NK: 3}
~T
p {_A : 2:5}
q {-C: 1,6}
contr. o {4,7}

A more extended (ramified indirect) proof is given in the next example.

Example 2.9

Let consider the proof of the Hauber’s law T2.13. Since NC is a £L-BL weak t-thesis, the following proof can
be obtained.

(1)
(2)
(3)
4)
(5)
(6)
(7)
(1.1)
(1.2)
(1.3)
(1.4)
(1.5)

@.1)
(2.2)
2.3)

p=4q

r=s

pyr

~(q & s)
~((@=p& =1)
~@=pr~(=1
q&~p ¥ s&~r

q

~P

r

q & s

{1234/ a}

{aip}
(NK: 5}
(NC, SR: 6

{1.1,1.2 / ada}

(—A:3,1.2)
(- C:2,1.3}
(+K: 1.1,1.4}
{4,1.5}

{2.122/ada}

(—A:322)
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(24) ¢ {(-C:1,2.3}
25 q&s (+K:2.1,2.4}
contr. o {4,2.5}

The next definition is an extension of the corresponding classical one.

Definition 2.4

Let ¢ = o(pi, p2, --- » pn) be a fuzzy propositional formula under Definition 2.1. We shall say that ¢ is a
contradictory formula iff ¥V pi, p2, ..., pn € [0,1] (0(p1, p2, - , pn) = 0).

Proposition 2.4

Let ¢ be a fuzzy propositional formula under Definition 2.1. Then ¢ ® ~ o is a contradictory formula.

Proof:

(1) LE-BL: ¢&~¢ = max{0,0+(1-0)—1} = 0,
2) G-BL: ¢A~¢ = min{ep,~¢) = 0, and
(3) =#n-BL: ¢@-~¢ = 0.0 {Df.2.4, df’£-,G -,and 7t- ~*}

In accordance with Proposition 2.4 and + K, any two contradictory proof lines ¢ and ~ ¢ will correspond to a
contradictory formula ¢ ® ~ @. A contradictory formula has any proposition as its consequence (the law of Duns

n

Scotus). A more general form of a contradictory formula, e.g. may be the following: .@1((pi® ~0, ®y,), where
1=

¢i and y; are arbitrary fuzzy propositional formulae (i=1, 2, ..., n).

The following proposition is satisfied.

Proposition 2.5

Let ¢ be a t-thesis (either strong or weak). Then ~ ¢ is a contradictory formula.

In fact, this property follows immediately by the definitions of the notions of fuzzy negation, t-thesis and a
contradictory formula. A more formal proof is given below.

Proof (L-BL):

Let ¢ = o(p1, p2, ..., pn) be a t-thesis. So we have:

(1) v Pt ... .pn € [Oal] ((P(pls p2, ..., pﬂ) =1 ) {a}

(2 ~VYpi...pn € [0,1] (~o(p1, P2, s Pn) = 0) {aip}

(3 3Ipi,pn € [0,1] (~@(P1, P2, e sPn) # 0) {NV: 2}

4 ~oa,a,...,a) =0 {—3: 3}

5) 1 - ¢(a,az,..,a) = 0 {df’L-~: 4}

6)  ¢(a, a,...,a,) = 1 {5}

(7 o(an, az ... ,an) =1 {-V: 1}
contr. o {6,7}

In the case of G- or n-BL the proof is similar and hence it is omitted. A more general form of a contradictory
formula is used in the proof of the next example.

Example 2.10

Consider the following rule of the well-known Gentzen’s sequent calculus called ‘rule of removing an
equivalence in the antecedent of a sequent’ (in short: — E,, the sequent symbol is denoted by “— ):



B 0,A< B A
" ABO A 0 —_AAB’

Since any sequent can be interpreted in an unique way by some propositional formula, the following fuzzy
propositional formula can be obtained (without loss of generality and for simplicity, the used sequences of
formulae 0,A,Band A are interpreted as propositional variables, e.g. p, g, r and s, respectively). And this
formula is a £-BL weak t-thesis as it is shown below.

p&(@er)=535 = p&q&r = s)&(p = qvrys)

Proof:

I p&@ern) =s {a}

@  ~(p&q&r= &P = qurvs)  faip}

B) ~(p&q&r = s)vy~(p = qrrys) (NK: 2}

“4) p&q&r&~s v p&k~q&~r&~s {NC, NA, SR: 3}

1.1 »p

8‘;‘; ? {1.1,12,1.3,1.4 / ada}

(1.4) ~s

(1.5) ~(p&(q < 1) {Toll: 1,1.4}

(1.6) ~py~(q &) {NK: 1.5}

1.7 ~@ e {—A:1.1,1.6}

(18) ~(q=n& =q) {—E,SR: 1.7}

(1.9) ~@=nv~@ =>q {NK: 1.8}

(1.10) q&~r v r&~q {NC, SR: 1.9}

(I11) (q&~r ¥y r&~q) & q&t {+K:1.2,1.3,1.10}
contr. {1.11}

2.1 p

gi; :? (21222324 /ada}

24) ~s

235 ~(p&(q <) {Toll: 1,2.4}

26) ~py~(q <o) {NK: 2.5}

27 ~@er {—A:2.1,2.6}

28) ~((q =& =q) {—E,SR: 2.7}

29 ~@=Dy~@=q {NK: 2.8}

(2.10) q&~r v r& ~q {NC, SR: 2.9}

211) (q&~r ¥ r1&~q) & ~q & ~r {+K:2.2,2.3,2.10}

contr. o {2.11}

The considered formula is also a weak t-thesis in n-BL, but it is not satisfied in G-BL, e.g. for p, q, r, and s

equal to %, %, L ,and % , respectively (the value of the main implication is equal to % #1).
5

Let ¢ be aclassical / many-valued logic formula (see: Subsection 2.1) and t(¢) be the corresponding fuzzy
propositional formula obtained under Definition 2.1 (by interchanging the classical two-valued / many-valued

connectives and the corresponding t- and s-norms ones). Since {0,1} S W, & [0,1], the following proposition
is satisfied.

Proposition 2.6
If = t((l)) then = (I) o
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And hence, the condition that a formula ¢ is a thesis is not sufficient for t(¢) to be a t-thesis.

Definition 2.5

Let ¢1, ..., ¢n, @ be formulae under Definition 2.1. We shall say that ¢ is a (fuzzy) t-consequence of ¢,
n
On (in short: @ € Cn ({1, ..., dn}) ) iff )<C)1¢i = 0.
1=

ceey

The above-proposed approach preserves the BL-provability property, i.e. the following proposition is
satisfied.

Proposition 2.7 (BL-provability)

Any t-thesis provable under the Hajek’s axiomatic approach of the logic BL is also provable under the above-
proposed approach from assumptions.

Proof:

Let A =4 {ai, a2, ..., an} be a finite non-empty set of BL-axioms and ¢ € Cn;(A). Since ¢ € Cn;(A) then
E. @a = ¢.Sinceanya; € A is a t-thesis (e.g. T2.12 is a proof of A4, i.e. as) then any fuzzy propositional
i=1

formula ¢ € Cn(A) can be considered as a consequence of the above-proposed approach from assumptions. A
more formal treatment is given below.

Let Ri# @ be the subset of (primitive and/or derived) inference rules of the first-order predicate logic
calculus related to the proof of a; € A (including the rules for constructing an indirect proof from assumptions)
and R =g ) R, be the whole set of rules covering A. For simplicity, let R =4 {r1, 12, ..., Tm}.

i=1

In general, any inference rule can be interpreted as some axiom. Assume that ¢ is a fuzzy propositional
formula under Definition 2.1 such that ¢ is provable by A. Since any a; € A is a t-thesis in our system then a;
€ Cn(Rj). On the other hand R; < R. Then Cn(R;)) < Cn(R) and ai € Cn(R). Hence, the following
implication is necessary to be shown.

Vaie A(ai € Cne(R)) ® (p € Cne(A)) = (¢ € Cne(R)).
Hence we have:

(1) YV aj e A (a € Cn¢(R))

1,2
)  ¢eCn(A) {12/a}
(3) Vaie A( §1 no = aj) {Df2.5,SR: 1}
2 Ix = a
@ @ n=a
2 Ik = a
G gh=® (45,03 / SR—K: 3}
m 'k = an
(n+3) kC>;>1 ‘
(n+4) k%}l e = _c%ai (MC: 4,5,...n+3)
(+35) @3 = ¢ (DF2.5,SR: 2}
(n+6) kéi)l Ik = ¢ {TC: n+4,n+5}

¢ € Cni(R). o ({Df2.5,SR: 7}
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Since any ¢ is a t-thesis iff it is provable under BL (Cignoli, R. et al. 2000) then the above presented
assumptional approach and the axiomatic approach are equivalent. A more formal treatment of this equivalence
seems to be realised in a similar way as in Subsection 1.7, i.e. by extending the notion of proof, i.e. t-proof,
including beyond of '— C' also the above obtained rules (or their representative subset). And next, by introducing
a (fuzzy) deduction theorem similarly as in the classical case, i.e. Theorem 1.31. But any such approach seems to
be difficult and it is omitted here.

Below it is introduced a new t-norm and then it is defined a generalised Lukasiewicz’s system, denoted by La-
BL (a > 0), where the previous one becomes a particular case with o =1 (Tabakow 1.G. 2010).

A generalisation of the Lukasiewicz’s BL system

Let now consider the following two similar Abelian systems, i.e. of the same type (0,0,2): .1 =4 ([0,1];
1,0; ®) and .2 =4 ([0,1];1,0;®), where & and ® are two t-norms. We shall assume that ® is a

priori given t-norm called source t-norm (or prototypical representative). Assume that f: [0,1] — [0,1] is a
given increasing bijection” and .1 and .»> are isomorphic with respect to f. Hence, the following two
conditions should be satisfied (for any x,y € [0,1]):

1. f(1) =1,1(0) = 0 (the algebraic constants preservation)
2. f(x ® y) = f(x) ® f(y) (the algebraic operations preservation).

Since f is bijection and in accordance with the above assumptions, there exists an inverse function f
(having the same properties as the original function f) such that f ! (f( X® y)) = f1(f(x) ® f(y)). Therefore,

the new & can be obtained in an unique way by the following well-known equality: X ® y =ar 71 (f(x) ® {(y)) .

Let now consider the increasing bijection y = f(x) =4 x* defined in [0,1]. The inverse function y = f!(x)

=4f C\‘/; ,where x > 0 and o > 0. Itis selected as a source t-norm the Lukasiewicz’s one, i.c. X ® y =q¢r
max {0, x +y — 1}. And hence, the following generalised t-norm can be obtained.

A 1/ 1/
X®Y =g (max{0,x* + y* — 1}) = = max{0,x* + y* — 1} .

By assuming Lukasiewicz’s fuzzy negation the following t-conorm is obtained as below.

X®y =g 1 — max{0,(1—x)* + (1—y)* = 1}

Assume now Yager’s fuzzy negation. For simplicity, let z =4 X' & y'. By definition we have:

2= max{o, ()" + () - 1}

1/
max{0, 1 — x* — y*} a.

Hence we can obtain:

A

X(‘By =4 (1 _ Zoc)l/a
_ 1o
= (I — max{0,1 — x*—y%}) |

" A bijection (bijective function: in general bijective map or one-to-one correspondence) is amap f: X — Y which is at the same time
one-to-one (injective,i.e. X, # X, = f(x1) # f(xp), forany x;,x, € X ) and onto (i.e. surjective).
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. . 1/
Since (1 — max{0,1 — x* - y%}) = min{l, x* + y%} ! (The left side and the right side coincide for — x*
+ y* 21 and x* + y* <1). And so, the following generalised Lukasiewicz’s t-conorm is obtained: Xéy =4f

. 1o
min{l, x* + y%} ‘.

[m}

Proposition 2.8

The above systems .1 and .» are isomorphic with respectto y = x* defined in [0,1].

Proof:

We have: f(1) = 19 = 1, f(0) = 0° = 0 and f(x®Yy) = f(max{0,x® + y¢ — 1} ) = max{0, x* +

y* — 1} = max{0, fix) + f(y) - 1) =f(x) ® f(y)'. o
Moreover, the above two norms are well-defined and the corresponding axioms are satisfied (this is omitted)®.

Corollary 2.1

Let ® and & be the new obtained t-norm and t—conorm. Assume that ® and @ are the corresponding source
Fukasiewicz’s ones. Hence, if oo = 1 then ® = ® and & = @.

Proof:
Since ® = ® is obvious, we shall show that & = ®. Andso,let a = 1 and x,y € [0,1]. Then we can
obtain: Xéy =1-max{0,l-x +1 -y -1} =1 - max{0,1 —(x+y)} = min{l,x+y} (since 1 —

max{0, 1 —a} = min{l, a}: this is omitted). o

It can be observed that the graph of & (i.e. of the two-argument function z = X ® y) and this one associated
with Lukasiewicz’s t-norm are different. In fact, assuming z = 0, all points of plane XOY corresponding to the

Yager’s negation y = (1 — x“)l/a will be located on the left side and the right side of the line y = 1 — x (the
Lukasiewicz’s negation), depending on the used values fora (o0 < 1 or a > 1, respectively). And the last two
functions will coincide with o = 1. In accordance with Proposition 2.8, & is a continuous t-norm (it is a
superposition of continuous functions). Moreover, there is no any idempotent x € (0,1) and hence & is
Archimedean t-norm. In fact, by assuming x ® x = x, for some x € (0,1), we can obtain: max{0,2x*—1} = x*
And so, if x* = 0 then x = 0 (acontradiction, since x # 0). If x* = 2x*—1 then x* = 1 and hence x =
1 (a contradiction, since x # 1).

Proposition 2.9

* The generalised Lukasiewicz’s t-norm / conforms can be generalised for more than two (but a finite number of arguments), e.g.

x; = min{ 1, x*}"'“ (the corresponding profs are inductive wrt n : left to the reader)
1 i=1

@

i

e 1/a 1a
T Obviously, the systems .. and ..; are isomorphic with respect to the inverse function y=x . In fact, since 0 = 0 and 1

=1, itis necessary to show that: f'(x ® y) = f~'(x) & f~'(y). This is left to the reader (as in Prop.2.8, starting with the right side of the
last equality). In general, any such isomorphism can be considered as a binary relation of equivalence, i.e. reflexive, symmetric and transitive,
denoted below by "~" and defined on the set of all similar algebraic systems (a more formal treatment will be presented in the next part of
this work) . And hence, the use of the inverse function corresponds to the symmetric property of this relation. More formally: . =f .,

= s R

1t can be observed that In the case of using as a source t-norm the usual arithmetic product xy, the new obtained t-norm would be
identical with the source one ( since §/x%y* = xy).
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The binary operation & is a nilpotent Archimedean t-norm.

Proof:

Let x € (0,1) be anilpotent element in .5 . So, there exists n € N suchthat x ® x ® ... ® x = 0. Assume

that this is satisfied for n = no. Then x"° = 0. In accordance with Proposition 2.8, the two algebraic systems
/1 and ., are isomorphic and hence we have: (X & X ® ... ® X)* = X*®x*® ... ®x* (no times) = ( x*)

n n . . . .
= (x")* =0%=0.Hence Xx & X & ... ® x = 0 and x is nilpotent in 1. And so, the only idempotents
are 0 and 1. Since ® is continuous then & is a nilpotent Archimedean t-norm. o

Consider the following R-implication: x =ay =q¢ sup{z € [0,1]/x & z < y}, where x&z =¢ max{0,
x* + z% — l}”a and o > 0. According to the last considerations, x =«y = 1 iff x < y. In fact, assume
that z = 0. Since x*< 1 then x*—1 < 0 and max{0, x* — l}l/a: % = 0 < y issatisfied. Letnow z = 1.
Then max{0,x* + 1 — I}WS y iff ({/Xia: x < y.And hence,x =ay = 1.

Assume now that x > y. The case z = 0 is the same as in the previous considerations and hence it is
omitted. Since z = | implies x < y then x > y implies z # 1,i.e. z < 1 (contraposition of implication).
Consequently, assuming x > y the above supremum will be associated with some subinterval [0,z] & [0,1].

1/
The least upper bound of [0,z] can be obtained as follows: max{0, x* + z* — 1} ‘< y iff max{0, x* + z* —

1/ .
1} < y* Let x* + z* — 1 > 0. Then we have: z < (1 — x* + y%) a,where I — x* 4+ y* > 0 (since 1 —
x* > 0 and y* > 0). And hence, the following proposition is satisfied.

Proposition 2.10

Let & be the above introduced t-norm. The fuzzy implication x =« y having logical value as follows: x

1/
=ay =ar if x <y then I else (1 — x* + y%) * is a well-defined and unique R-implication, where o > 0.

Since x“ isincreasing in [0,1] then x* < y® if x < y. And hence, y*— x* > 0. Then 1 + y*— x* >

1/ 1/
I and (1 — x* + y% *> 1. In a similar way, assuming x > y we can obtain (I — x* + y%) ‘< 1. And so,
the following corollary is satisfied.

Corollary 2.2
. 1o
X =q¢y = min{l, 1 — x* + y*} .o
Corollary 2.3
The Lukasiewicz’s implication is a particular case with a=1. o

Corollary 2.4

The S- and R-implications coincide in Lo-BL if Yager’s fuzzy negation is assumed.

Proof:
X =ay = X&®Y')'

= q
= q

1/
~  min{l,1 - x* + y*} L

(max{0, x* + (1 -y "y — 13"y

1/
max {0, x* — y*})
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In accordance with Proposition 2.8, the considered two algebraic systems /7 and > are isomorphic all
original properties are preserved. In particular, the following proposition is satisfied.

Proposition 2.11

The sup-preservation property is satisfied for ® and any a € [0,1].

Proof:

We can obtain: a & supxeoi] X = max{0,a* + (supxepoi] X)* — 1}1/Ol = max{0, a* +1* — l}l/a =
a. On the other hand: supxcp,ij(a ® x). = sup{x € [0,1]/ max{0, a* + x* — l}l/a} = sup{max{0, a* —
l}l/a, ... , max {0, a* }l/a} = sup[0,a] = a (since a* — 1 < 0).o

The relations between the Zadeh’s t-norm and t-conorm and the presented ones are given in the next
proposition.

Proposition 2.12
. 1ot . 1/a
min{x,y} > max{0,x* + y* — 1} ~ and max{x,y} < min{l, x* + y%}

Proof:

Assume that x < y. Then min{x,y} = x and max{x,y} =y (x,y € [0,1]).Since x> 0 and y < 1
.- . 1/ 1/ 1/
it is sufficient to show that x > (x* + y* — 1) " and y < x* +y% ‘. We have: x > x*+y* -1 !

1/
iff x* > x*+ y* — 1 iff y* < 1. Onthe other hand, y < (x* + y%) ifr y* < x* + y* iff x* >0
(the proof for x > y is omitted). o

1/ 1/
Therefore, max{0, x* + y* — 1} ‘< min{l, x* + y*} * . The following fuzzy propositional system,
called generalised Lukasiewicz’s system and denoted by Lo-BL is presented below (in short: first-order £.o-BL).
The propositional variables p,q € [0,1]" and o > 0.

1/
1. t- conjunction: p &uq =¢ max{0,p* + q* — 1} a,
1/
2. t-disjunction: PYaq =¢ 1 — max{0,(l —p)* + (1 -q)* — 1} a,
1/
3. t-implication: P =>aq =¢ if p < q then 1 else (1 — p* + q%) aand
4. fuzzy negation: ~p =a 1 — p.

Another system, called second order L«-BL can be obtained by using the Yager’s fuzzy negation, where the
logical value of the obtained t- disjunction is specified as below.

Proposition 2.13

>

* As in Subsection 1.4 and for simplicity, instead of v(¢) the same formula ¢ will be used. Hence, e.g. such notions as: ‘¢ = ...’ or
‘@ € [0,17 oralso ‘@ <y, etc. should be interpreted as: ‘v(p) = ...” , ‘v(p) € [0,1]" and “v(¢) <v(y)’, respectively. Moreover, as in
the previous section and to minimise the number of used parentheses we shall assume the logical functors bind more strongly than the sign of

equality. Hence,e.g. (p = q)Ap = q = | denotes ((p = qQ)Ap = q)= lorequivalently: v((p = qQ)Ap = q) = 1.
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1/
Let ~p =4 (1 — p%) * be the Yager’s fuzzy negation. Then the logical value of p Yo q = min{l, p*
o Vo
Q'
Proof:
1/ . . .
Let ~p =¢¢ (1 — p» ! (p € [0,1]). In accordance with generalised De Morgan’s laws, the logical value
. 1/ 1/ 1o
PYaq =ar ~(~p&x~q).Since ~p&u~q=(1 -p9 & (1 -p* = max{0,1 — (p* + q%} .
1/
Hence,p Yo q = (1 — max{0,1 — (p* + q%)}) " Since 1 - max{0, 1 — (p* + q*)} = min{l, p* + q*}

1/
then p Yoq = min{l,p* + q%} "o

The second order generalised Lukasiewicz’s system (in short: second order £.o-BL) is defined as follows.

o

1. t conjunction: p &« q =ar max{0,p* + q* - 1} ,
2. t-disjunction: P Yaq =¢ min{l,p* + q*} ,
. 1/
3. t-implication: P =aq =a if p < q then 1 else (1 — p* + g% and
) 1/
4. fuzzy negation: ~p =ar (1 = p%) .

Proposition 2.14

. . . 1/
For any order Lq-BL the logical value of fuzzy equivalence p <>« q isequalto (1 — |p*— q*|) * In the

. . . 1/
case of the second order Lo-BL the logical value of fuzzy difference p <&, q is equal to | p*— q“ | (for any
p.q € [0,1]).

Proof:

By definition the logical value of p <>« q is equal to the logical value of the following t- conjunction: (p
=« q) &« (@ =« p). And hence, in accordance with Corollary 2.2 we can obtain: (p =« q) &a (@ =« p) =dr

1/ 1/ 1/
max{0, min{l, (I — p* + g% OL}“ + min{l, (1 — q* + p% 0(}“ - 1} * . Then the logical value of p <«
q isequal to 1 if p = q. Assume that p < q. Hence, the logical value of p < q isequalto (1 — q* + p%)

1/ 1/
* . In a similar way, for p > q this logical value is equal to (1 — p* + q%) ‘. And finally we have: (p =«

1o
D &a(q =ap) = (1 = lp*= q*[) .
1/
According to the Yager’s negation, the logical value of p <% q isequalto (1 — (p ©aq)*) " and hence
l/a

[m}

it is equal to | p* - q“|

Since & is associative it can be extended to more than two, i.e. a finite number of arguments. And so, the
following proposition is satisfied.

Proposition 2.15

n n 1/
The logical value of the generalised t- conjunction &, pi = max{0, 2 p? -n+1} ‘.
i=1 i=1

Proof:
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The proof is inductive with respect to n. In consequence, finally it is necessary to show that max{0, § +

pra — 1} = max{0, max{0, B} + p,,, — 1}, where B =¢ iZ:p? —k+1. But this equation is satisfied for any

B < 0 or B > 0(amore formal treatment is omitted). o

Similarly, the logical value of the generalised t- disjunction in the second order Lo-BL (the corresponding

n T
proof is left to the reader): v p, = min{1, i p, } a.
i 1=1

o
1=1

Provided there is no ambiguity, and to simplify the corresponding proofs, the logical value vi(p) € [0,1] of
any fuzzy propositional formula ¢ will be also denoted by ¢ (depending on the context and used t-norm).
Moreover, since any R-implication is associated with some t-norm, for convenience instead of ‘R-implication’
the term ‘t-implication’ is equivalently used. As an illustration, in the next some proofs in (first or second order)
Lq-BL are presented and new derived rules are given, where the assumptional proof system is used (Tabakow
1.G. 2006).

Assumptional proofs in £.o-BL and derived rules

As in the previous section, the used names for the primitive and/or derived rules given below are in
accordance with the Lukasiewicz’s symbols of negation, conjunction, disjunction, implication, and equivalence
denoted by N, K, A, C, and E, respectively. The following (generalised primitive) rules are considered below: —
C (rule of detachment for t-implication or omitting a t-implication), * K (rules of joining / omitting a t-
conjunction), £ A (rules of joining / omitting a t-disjunction), and + E (rules of joining / omitting a t-
equivalence). The rule of substitution is denoted by SR. Some additional rules are also used, such as: + N (rules
of joining / omitting double negation), CR (implication rule), CC (the law of transposition or contraposition of
implication), NA (rule of negating a t-disjunction), NK (rule of negating a t-conjunction), Toll (rule modus
tollendo tollens), TC (the law of transitivity for implication), MC (the law of multiplication of consequents of two
or more implications having the same antecedents). Some additional inference rules of the first-order predicate
logic calculus are also used below, such as: the rule of negating an universal quantifier (denoted by NV), the
rules of omitting an universal and an existential quantifiers (denoted by: —V and —3, respectively: see Subsection
3.3 of Chapter II). The used construction of any formula in L«-BL (first or second order) is the same as in
Definition 2.1 and the same priorities for logical connectives are assumed. Provided there is no ambiguity, the
notion of t-thesis is interpreted under Definition 2.3.

As in the classical case, the main task of this calculus is to verify if ¢ is a t-thesis. If yes then there exists a
proof. Any such proof in the fuzzy propositional calculus can be interpreted as a process of joining new lines by
using some primitive or derived rules and/or other theses in accordance with the used assumptions. The proposed
here approach is an extension of the previous one (Tabakow I.G. 2006) to L«-BL. Some proofs and new derived
rules are given below.

The next thesis is an illustration of using the same proof technique as in £-BL (i.e. using first-order predicate
logic calculus, see: Example 2.7 and Thesis 2.1).
Thesis 2.15 (law of addition an arbitrary fuzzy proposition to the antecedent and consequent of a given

implication)

(P =a qQ =a (p Ya T =a q Yo 1)

Proof/ first-order L.o-BL:

I Vp,qe[01](p =aq = 1)

2 Vpre[01](p Yar =1)

(B) ~Vqr e [01](q@ Yar=1) {aip}
4 3Fqr e [01](q Yar = 1) {NV: 3}

{12/a}
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(5) qo Yoo # 1 {-3: 4}

(6) po=aq=1 {-=V: 1}

(7 po Yaro=1 {(-V:2}

@) po<qo {df"L-=,7: 6}

©® A-qo*+ (1-10)* > 1 {df.” v 5}

(10) (1=po)* + (1 —10)* <1 {df. v 7}

D (1-qo* > 1 -1 -ro)* {9}

12) (1-qo)* < 1 -1 —r1p)* {Since qo > po then —qo < —po and 1

— qo £ 1—po. Hence (1-qp)* < (1-
p)* < 1—(1-r)* 8,10}
contr. o {11,12}
Proof/ second order L.o-BL:

(D Vpqe[0l](p =uq=1

(2 Vp,re[01](p Yar=1) t12/a}

(3) ~Vq,r e [01](qQ Yo =1) {aip}

4 3Jqre[0l1](qQ Yar = 1) {NV: 3}

(5) qo Yar =1 {(—3: 4}

(6) po=aq=1 {-V: 1}

(7 po Yaro=1 {(-V: 2}

®) po < qo {df L=, 6}

) q* +r* <1 {df.”v,: 5}

(10) po* + r* > 1 {df.>v,: 7}

D) qo* + r* > 1 {Since qo = py then q, > p, and

o o o
-q, £ - p,-Hence,1-q, < 1-

py< 1, :8,10}
contr. o {9,11}

The above two proofs of T2.15 are very similar, in fact the first eight proof lines are identical. In accordance
with our considerations, as an example, the following derived rules have been obtained (the corresponding proofs
are omitted: the used assumptional system style is very similar to this one shown in the proof of T2.15):

P =4V @ P &,y PV P =,V
-C: o , +K: y o, —K: , +A: ¢ , -A: ~¢ |, +E: y=, 0,
\ \(0 q)XuW - -
\\J ¢&a\v P\y v v R
P S,V P =,V - ~(pv,v)
~E: , Toll: ~y , cc: L =¥ | NA: —
Q =,V ~y =~ ~
p=, v\ =, 00\ ¢ ~p v ¢ ~p\~y\

V=, 0 ~y
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0 & v o =¥ ¢ =,V
NK: 2 Za V) TC: vy =, %, MC: Q=% -N, : il +N, 2.
~Q Vo~ — ¢ e
wjax ¢:>a\ll&ax
P S,V

SR: ———¢* |
X<, We/w)

where y(¢ // y) is obtained from y by the replacement of its parts y by the formula ¢.

The rules NA, NK and + N are direct consequence of the involutivity property, which is by definition
satisfied for any continuous fuzzy negation (Bronstein I.N. et al. 2001). The above derived rules are satisfied as
well as in first and in second order Lo-BL. An illustration of using these rules are the next proofs. The proof of
Thesis 2.15 is first presented. It is of the same complexity as in the classical case.

Proof of T2.15:

(1) P =ed 12/}

(2) p Yar j

() ~(q Yar) {aip}

@ ~q {45/ NA: 3}

5) ~r

®6) p {—A:2,5}

(7 q {-C:1,6}
contr. o {4,7}

Thesis 2.16 (law of multiplication of consequents of two or more implications having the same antecedents: MC)

(p a q) &a(p — I') a (p a q&ar)

In accordance with the rule of omitting t-equivalence, i.e. — E, the following two implications have to be
proven.

Thesis 2.16a (if-implication)
(p a q) &a(p — I') — (p a q&ar)

Thesis 2.16b (only-if-implication)
(p a q&ar) a (p a q) &a (p a I')

Proofof T2.16a:

(1) P =aq

(2 p =ar {12/a}
3

4 ~(qé&ar) {aip}

%) q {-C:1,3}
6) r {-C:23}
(7) q&ar {+K:5,6}

contr. o {4,7}
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The proof of T2.16b is left to the reader. It can be observed that some rules satisfied in the classical £.-BL
may be or not satisfied in the generalised Lo-BL depending on the used system version. For example, CR and NC
which are satisfied in £.-BL, are not satisfied in the first-order Lo-BL, but they are satisfied in the second order
La-BL, e.g. the left side and the right side of the formula ~ (p =« q) <u p &« ~ q are different in the first-

order Lo-BL forp=1/2,q=1/3,and a = 2: 1 - \/i /6 and 0, respectively.

An illustration of a more complete use of the above introduced proof rules is given in the proof of the next
thesis. Here, a construction of ramified indirect proof with joined additional assumptions is presented (Stupecki J.
and Borkowski L. 1967).

Thesis 2.17 (law of converting implications, called also law of a closed system of theorems or Hauber's law)

(p a q)&a(r a S)&a(piar)&a“’(q &a S) — (q —a p)&a(S — r)

Proof/ second order L.o-BL:

(1) P =«q

) I =as

(3)  pYar {12345/ a}

@ ~(Q&a«s)

(5) ~((q = p)&a(s =a 1) {aip}

(6) q&i~p Yo s&u~r {NK,NC, SR : 5}

(1.1) «q

(12) ~p {ada}

(13) r {(—A:3,12}

(1.4) s {(-C:2,1.3}

(1.5) qé&as {(+K:1.1,1.4}
contr. {4,1.5}

2.1) s

22) ~r {ada}

(23) p {-A:322}

(24) q {(-C:1,23}

(25 q&as (+K:2.1,2.4}
contr. o {4,2.5}

It can be observed that in accordance with MC, it is sufficient to prove the following two implications.
(p —a q)&a(r —a S)&a(p Xonr)&a"(q &a S) = (q —a p)
(P =0 Q& (r =a 8) & (p Yar) &~ (q &a S) =a (S =a 1)

The proof of the first implication is given below. The proof of the second one is very similar and hence it is
omitted.

Proof:

(1) P =aq

(2) T =aS

(3) pyar {12,345/ a}
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@) ~Q&as)

% q

6 ~p {aip}

(7)) ~qYa~s {NK : 4}

®) ~s {-A:57}

9 ~r {Toll : 2,8}

10) p {—-A:39}
contr. o {6,10}

In accordance with Proposition 2.7, any formula which is satisfied in (the first or second order) L«-BL is also
satisfied in L.-BL and hence provable by using the Hajek’s axiomatic approach, but not vice versa.

The above-introduced approach from assumptions seems to be more attractive, more simpler and natural in
practical use than the axiomatic one and it is related to the infinite valued Lukasiewicz’s system %.-BL,
recognised as one of the most important basic fuzzy propositional logics (in common with Godel’s and product
logic systems). The use of Yager’s continuous fuzzy negation seems to be the most natural extension of £-BL. In
application the obtained t-connectives have very similar properties as the classical ones. And hence, we have a
new possibility of extending the classical notion of logical consequence in terms of the obtained generalised
Lukasiewicz’s system Lo-BL. In fact, with any fuzzy propositional formula in Lo-BL, which is a logical
consequence of a finite set of another such formulae, can be associated some “crisp” formula by using a threshold
value (e.g. 0.5, as in fuzzy sets). And so, we have the possibility of introducing a new generation control systems
using fuzzy logic and corresponding fuzzy rules in senso stricto. Moreover, the obtained Lq-BL is directly related
to binary operations in multiple-valued algebras. Any methodological aspects, e.g. such as compactness,
consistency, decidability or satisfiability of t-tautologies have been omitted in this research. Obviously, the most
important of these properties is the consistency of Lo-BL. Several areas for future investigations of Lo-BL may be
also related to approximative reasoning and automated theorem proving, and also extension of the Hajek’s
axiomatic L-BL system to Lo-BL. In particular, Gentzen’s sequents can be easily introduced as derived rules in
our system.

The notion of fizzy flip-flop was first introduced in (Hirota K. and Ozawa K. 1989): in particular, there was
also considered a group of bounded fuzzy operations. The last operations were also used in (Diamond J. et al.
1994). As an example, it is shown below an application of the above generalised Lukasiewicz’s fuzzy t-norm / -
conorm in the area of modelling and synthesis of control systems using fuzzy interpreted Petri nets (Gniewek L.
and Kluska J. 1998, 2004), (Gniewek L. 2012).The presented here transformation procedure (net into logic circuit)
is based on fuzzy flip-flops using bounded fuzzy operations: there were introduced four such JK flip-flops, of
type SA, AA, AB and SB.

Example 2.22 (fuzzy JK flip-flop of type SA)

Let ®, & and ' be the generalised Lukasiewicz’s fuzzy t-norm, t-conorm and Yager’s fuzzy negation,

where: x&y = max{0,x* + y* — 1} ' xéy = min{l,x* + y} " and x' = (1 — x9 " (for
any x,y € [0,1] and o € (0, c0)). The following generalisation of the first version SA of the fuzzy JK
flip-flop can be obtained: Y = [(J ®Yy') &y] ® (K' &Y'), where the boundary values of the primary inputs
of this flip-flop are as follows: Y = max{J%y*},for K = 0 and Y = min{ (K)*y*}, for J = 0. A proof is
given below.

For simplicity, let a =¢¢ ] & y',b =¢¢ a &y and ¢ =¢¢ K' &y' (andhence: Y = b & ¢ ). And so, we can
obtain:

— 1/
4= max{0,0¢ + (y)* - 1}

“ Instead of Q.1 and Q, the next and present states are here denoted by Y and vy, respectively.
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1/
= max{0,J — yu}

b — aé)y

. 1/
=~ min{l, a* + y%} ‘

1/
= min{l, max{0,J* — y*} + y "

c _ K é_)y'

= min {1, (K)* + () "

. 1/
= min{l,2 — K* — y%} ‘
Y = bec

1/
=  max{0,b* + c¢* - 1} ‘

. . 1/
= max{0, min{l, max{0,J* — y*} + y*} + min{l,2 — K* — y*} — 1} a.

Assume that K = 0. Since Y/k-0 = max{0, min{l, max{0, J* — y*} + y*} + min{l,2 — y*} — 1},
the following equality should be shown. In fact, The left side and the right side coincide for: J =y, J < y, and
J>y.

max{0, min{l, max{0, J* — y*} + y*} + min{l,2 — y*} — 1} = max{J%y*}

Let J = y. Then (the left side) L = max{0, min{l, y*} + min{l,2 — y*} — 1}.Since y < 1 then y* <
1“*=1and 1 — y* > 0. Hence 2 — y* > 1.So min{l,2 — y*} = 1 and L = max{0, y* + 0} = y*
Since (the right side) R = y* then L = R.

If J <y thenJ <y then J* < y* and hence R = y* Since J* — y* < 0 and 2 — y* > 1, we can
obtain: L = max{0,y* + 1 — 1} = y* = R.

Letnow J > y. Wehave: J* — y* > 0, 2 — y* > 1 and R = J* Hence: L = max{0, min{l, J* — y*
+y* +1 -1} =J* =R,

. . 1/
Assume now J = 0. We have: Y/j-o = max{0, min{l, y*} + min{l,2 - K* - y*} - 1} =

1/
max {0, y* + min{l,2 — K* — y*} — 1} ‘ And hence, the following equality should be shown.

max{0, y* + min{l,2 — K* — y*} — 1} = min{ (K)%y%}

1/

By definition, (K")* =4 ((I — K%) a)“ = 1 — K% And hence, It is easily to show the left side and the right
side coincide for: 1 — K* = y*, 1 — K* < y*and 1 — K* > y*

Let 1 — K*=y* Then 1 — K* — y* =0 and L = max{0,y* + min{l,1 + 1 — K* — y*} — 1} =
max{0,y* + 1 — 1} = y* = R.

If 1 -K*< y* then R =1 - K% Since 1 — K* - y* <0 then 1 + (1 — K* - y* < 1 and
min{l,1 + (1 — K* - y*} =2 — K* — y“ Hence L = max{0,y* +2 - K* —y*} — 1}=1 - K* =
R.

Assume now 1 — K% > y* Wehave: 1 — K* — y* > 0 and 2 — K* — y* > I.Hence: L =
max{0, y* + min{l,2 — K* — y*} — 1} = max{0,y* + 1 — 1} = y* = R.
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The above cited fuzzy JK flip-flop of type SA becomes a particular case with o = 1. And so, there exists a
possibility of using more flexible such control systems (i.e. easily changed to suit new conditions: Oxford dictionary). o

In general, among the most important examples of t-norms is the Luasiewicz’s one. It have been introduced
a new generalised such t-norm which implies some new applications, e.g. such as: fuzzy sets, fuzzy rough sets,
intuitionistic fuzzy sets and intuitionistic fuzzy rough sets, fuzzy similarity and fuzzy equivalence relations,
specification of new probabilistic metric space (by using as a definition of the corresponding triangle function the
above introduced t-norm), and so on. Several areas for future investigations may be related to the introduction of
new t-norm based measures or also computations related to the probability of fuzzy events, specification of new
commutative and associative copulas, new possibilities to combine criteria in multicriteria decision making (for
evaluation the truth degrees of compound formulae), new kind of fuzzy t-equivalence relation and hence new
possibilities of using this relation in image processing (fuzzy segmentation and clusterisation), artificial
intelligence (approximative reasoning and automated theorem proving using Gentzen’s sequents, fuzzy
consequence), and so on. Another area of application seems to be the fault isolation in discrete event systems
with partially degradable components or fuzzy control in the narrow sense, in particular interval type-2 fuzzy sets
and systems (Mendel JM. 2001)": e.g. instead of the algebraic product t-norm, using the generalised
Luasiewicz’s one (concerning the notion of firing interval), etc. And so, essentially most remains to be done.

2.3. Modal, deontic and temporal logics

A modal is an expression (like 'necessarily” or "possibly”) that is used to qualify the truth of a judgement.
Modal logic is ,strictly speaking, the study of the deductive behaviour of the expressions ‘it is necessary that’
and it is possible that". However, the term ‘modal logic’ may be used more broadly for a family of related
systems. These include logics for belief, for tense and other temporal expressions, for the deontic (moral)
expressions such as 'it is obligatory ' and it is permitted ', etc. Temporal logic (sometimes used to refer to tense
logic) is a deduction system in which the times at which propositions bear certain truth-values can be indicated,
in which the "tense” of the assertion can be indicated, and in which truth-values can be affected by the passage of
time (public domain). A brief introduction to the modal, deontic and temporal logic systems is given below".

Modal logict

Some preliminary study concerning modal logic have been observed in ancient times (e.g. Aristotelian
syllogistic, Stoic School or also Megarian School of philosophy: Diodorus Cronus’ ideas related to “strict” or
“strong” implication, died ¢.284 b.c., etc.) or also in the middle ages (e.g. John Duns Scotus 1266 — 1308,
William of Ockham 1288 — 1348, etc.). In antiquity and in the middle ages modality was understood as the truth
value of a proposition: it can be necessarily, actually, or possibly true, e.g. (Sulkunen P. and T6rrénen J. 1997): in
nowadays called “alethic” (from the Greek word alétheia: refers to the various modalities of truth, such as necessity,
possibility or impossibility) or sometimes also “special” modality (from the Latin “species”). However, contemporary
theory of modal logic systems is related to the notion of strict implication introduced by Lewis C.I. (1883 — 1964)
and inspired by the earlier work of McCool H. (1837 — 1909). The above strict implication system was extended
in the next work of Lewis C.I. and Langford C.H. (1932).

In general, the main approach in constructing of modal logic systems is the axiomatic one. In fact, there were
proposed several different systems, e.g. such as: S1 — S5 systems’ (Lewis C.I. and Langford C.H., Becker O.),

* Jerry M. Mendel, born 1938.

¥ For a more information see: The little encyclopaedia of logic (1988) or Formal logic. Encyclopedical outline with applications to
informatics and linguistics (1987) or also The Free Encyclopaedia, The Wikimedia Foundation, Inc.

¥ The sequent calculus becomes elusive for such logics as: modal logics, intermediate (i.e. consistent superintitionistic) logics and
substructural logics (logics lacking one of the usual structured rules such as: weakening, contraction, exchange or associativity, e.g. two of the more significant
such logics are relevance logic and linear logic), see: The Free Encyclopaedia, The Wikimedia Foundation, Inc. To treat such systems, a
hypersequent calculus should be used. In particular, hypersequents can be also used to obtain analytic calculi for various fuzzy logic systems
As an illustration, see Subsection 4.1.

§,,8”: an abbreviation from ,,Strict”.
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T - (called also M -) system (Feys R., Wright G.H. von.), K. Gddel’s system, McKinsey J.C.C. and Tarski A.,
Kripke S., and so on. In particular, the set of axioms in S1 is a proper subset wrt S2, S4 and S5. As an example,
a version of S5 is shown below (Lewis C.I. 1918, new edition 1960: Clarence Irving Lewis 1883 — 1964). A8
was introduced by Becker O. (1930: Oskar Becker 1889 — 1964) and this axiom corresponds to the Gddel’s

axiom G3 (see the next considerations). Here "~ =>" and "¢’ denote strict implication and the modal functor of
possibility, respectively.

(A1) PAqQ=>qQAD

(A2) PAQqQ=>D

(A3) P=>pApDP

@A) A Aar =2>pA(qQAar

(as) p => ~(~p)

a6) (p =>q A(@ =>1) =>(p =>1)
A pA=>q9 =>>q

(A8)  ~ O ~p =>~ 0 ~(~0 ~p)

A new approach to S4 was introduced in Gddel’s system, i.e. to any classical propositional calculus there are
added the following three axioms” (for any modal propositional formulae ¢ and \, see Definition 2.6 given
below) :

GH 0o = o,

(G2) (0 = y) = (OD¢p = Ovy) and

(G3) Do = OOq.

Moreover, the following Gdédel’s rule was assumed (necessitation):

(GR) Fo = EOo.

As in the classical logic, the above axiomatic approach uses rules — C and RR, but extended also with GR.
Here, the Godel’s axiom (G2) represents the familiar distribution axiom schema. A more formal treatment is
omitted (see Encyclopedical outline with applications to informatics and linguistics 1987).

The set of constants of the classical propositional calculus can be extended by introducing the following two
new connectives related to the above considered two expressions: O (box) and < (diamond) , i.e. the modal

functors (called also “operators”) of necessity and possibility (sometimes also known as: potentiality), respectively: ©
can be considered as a dual modal functor wrt 0. It can be observed that any of the last two connectives can be
expressed by the another one, i.e. T @ <4 ~ O ~@ and <@ <4 ~ O ~ @. The strict implication and strict

equivalence can be introduced as follows: p => q ©¢ 0(p = q) and p <> q i O0(p & q).
The next inductive definition is a generalization of the classical one (see Definition 1.1).

Definition 2.6
A modal propositional formula is:

1. Any propositional variable,

" Axioms (G1) and (G2), sometimes denoted by * T * and " K ’ respectively, are sufisient for introduction of the so called standard
modal logic system. For convenience, this rule we shall also denote by - O".
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2. If ¢ and y are some modal propositional formulae, then such formulae are also: ~ (¢) , (¢) A (V) , (¢) Vv
W), (@ = V), (0) < (¥),0(®), (@), (9) =>(y),and (¢) <=>(y),

3. Every modal propositional formula in this propositional calculus either is a propositional variable or is formed
from propositional variables by a single or multiple application of rule (2).

The main purpose of this calculus ic the same as in the classical case.

Let ¢ be the implication @i = @;. According to GR, we have: E (91 = @) = E OO = ¢).
Next, by using the above introduced notion of strict implication, SR and TC (transitivity for implication) we
can obtain: = ¢ => @2. And hence, the following corollary is satisfied.

Corollary 2.5

= ((p1 = (pz) = E ((p1 => (pz). o

Corollary 2.6
Fi< ¢, = F ((p1 <S> 02)

Proof:

It can be observed that any event requiring the necessity of a conjunction 'p A q  can be considered as an
equivalent to the event requiring the necessities of each of its arguments p and q. In fact, next we shall assume
that: O(p A q) & Op A Oq (see T 2.23 given below). And this observation can be generalised for any two

formulae ¢ and .

According to the notion of strict equivalence, we can obtain: p <<> q <¢0(p < q). Next, by using
two times SR and the corresponding definitions of strict implication and strict equivalence we have: o0 (p <
q) < o0((p = q A(qQ = p)).Andhence: o(p & q) <o = q A 0(q = p). Then: p <> q
< (p => PAr(q =>p)

Assume now that = (g1 = @) = = (g1 => ¢) and E (2= ¢1) = E (p2=> ¢1) are two

implications under Corollary 2.5. Then, in accordance with the law of multiplication of the antecedents and
consequents of two implications (MAC: see T 1.21, Subsection 1.3), SR and the corresponding definitions for

equivalence and strict equivalence connectives we can obtain: = (@1 = @) A (2= ¢1) = E (g1 => @2) A

(@2 => ¢1). And hence, we have this corollary. o

Let now ¢ be arbitrary. By G1 it follows that 0O ~ @ = ~ ¢. And hence, in accordance with the law of
transposition or contraposition of implication CC (i.e. T 1.14, Subsection 1.3), SR and the definition of the
modal functor of possibility we can obtain: ¢ = ~O0~¢ < ¢ = <. By Corollary 2.5 it follows that ¢

=> ©¢ is a thesis. Moreover, by definition of the above two modal functors, the law of transposition or

contraposition of equivalence CE, —N and SR we have: ~0O0¢ ¢ ¢ ~¢ and ~ 0@ <g¢r O~ Q.

In particular, the following rules are used below.

(1) Rule of omitting a necessity modal functor”
(denoted below by - O):

oo

¢

- 0O:

* In accordance with Gddel’s axiom G1.
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(2) Rule of joining a possibility modal functor
(denoted below by "+ ¢):

Y
+o

<o

(3) Rule of negating a necessity modal functor
(denoted below by "NO):

~0O
NO: ¢

S ~0
(4) Rule of negating a possibility modal functor
(denoted below by "N<'):

~O
No: ®

O~o

(5) Rule of joining a strict implication
(denoted below by "+ SI"):

E(@1= ¢)
+SI:

E (g1 => ¢2)

(6) Rule of joining a strict equivalence
(denoted below by '+ SE’):

E (01 ¢2)
+ SE :

E (g1 <> @)

It can be observed that the above two rules + SI and + SE are directly related to the Godel’s rule GR.
Another way of joining and/or omitting a strict equivalence are the following two rules (see the above Corollary
2.6). The obtained rules are very similar to the classical ones and hence they are said to be ordinary.

(7) Ordinary rule of joining a strict equivalence
(denoted below by "+ OSE’):

¢ =>y
+ OSE : Yy => ¢

@ <S>y

(8) Ordinary rule of omitting a strict equivalence
(denoted below by "— OSE’):

¢ <S>y

—OSE: @:>> vy => 0/ ¢ 2> ¢

Vv =>0

It is illustrated below the use of the assumptional system style. As in the classical propositional calculus, the
obtained theses related to some propositional variables, e.g. p, q, 1, etc. are generalised for arbitrary modal
propositional formulae, e.g. ¢, vy, ¥, etc., respectively. Moreover, by rules + SI and + SE it follows that it is
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sufficiently to show the corresponding proofs for the usual, i.e. non-strict connectives. And such an approach is
realised below, e.g. see T 2.22.

The following simple property is satisfied.

Thesis 2.18

Op = op

Proof:

() op {a}

2 p {-o: 1}
Op .o {+<:2}

Thesis 2.19

(p = q = (@p = ©q)

Proof:

M p=q

@ op {12/a}

3 p {-0: 2}

4 q {-C:1,3}
Q.o {+¢o: 4}

Assume that = @ = y,where @ <ar @1 A Q2 A ... A @n. In accordance with the Godel’s rule GR , we can
obtain = O (¢ = v). And hence, by G2 and — C it follows that = O¢ = Owy. Since O0(Qi A P2 A ... A
Pn) © 0 Q1A O@2A... A0 @n then by SR it follows that = 0 @1 A0 @2 A ... A0 ¢n = 0O y. And hence by
using + SIwe have: =0 @1 AD @2 A ... AD @n => 0 Y. And so, as in the classical case (T 1.23, Subsection

1.5), the notion of modal logical consequence may be introduced, i.e. v may be considered as a modal logical
consequence wWrt ©1,92, ... , ®n. And then, any classical logical consequence involves some modal logical
consequence (a more formal treatment is omitted).

As an illustration of the assumptional system style, some example theses and corresponding proofs related to
the T—system” are presented below. Obviously, any thesis of the classical propositional calculus belongs to this
system. And so, the following formulae are theses in this system (see: The little encyclopaedia of logic 1988).

Thesis 2.20

Op =>p.o

Thesis 2.21

p => <p.o

Thesis 2.22
Op => Op.o {T 2.18, + SI}

Thesis 2.23

“ Robert Feys (1889 — 1961)
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O(p A q <> Op A OQ.o

Thesis 2.24

S(p Vv QqQ <> 0p Vv OQo

Since A and v are associative the last two theses can be generalised for more than two, but a finite number,
arguments. Moreover, in accordance with T 2.23 and T 2.24, the modal functors O and < are distributive

wrt the logical connectives A and v, respectively. An example proof of T 2.24 by using T 2.23 is given below.
In a similar way, the proof of T 2.23 can be realised by using T 2.24. In accordance with the duality property one
of these two theses can be obtained from the another by using the rule CE (contraposition of equivalence: left to

the reader). In particular, e.g. the formulae: ' O(p A q) <& Op A Oq and 'O(p v q) < <¢p v &q ' are
also theses in Feys’ T-system ~.

Proof T 2.24a:

1 o(pva {a}

2 ~(pv<oq {aip}

(3) O~paAd~q {NA,N©¢, SR : 2}

4) O(pAr~9q {T2.23:3}
(35) o~(pvq {NA, SR : 4}
6 ~o(pva {No:5}

contr. o {1,6, + SI}
Proof T 2.24b:
() ©pvVv ogq {a}
2 ~°o(rva {aip}
3 O(CpAr~9 {No,NA, SR : 2}
4) U~p A 0O~q {T2.23:3}
&) ~op (No, SR, — K : 4}
6) ~<q
(7 ©q {(-A:1,5}

contr. o {6,7, + SI, + SE}
Thesis 2.25

Op v Oq=>0(pV Q.o

It is obvious that the possibility of a conjunction of two or more (a finite number) arguments implicates the
conjunction of the possibilities of its arguments, i.e. by CC, NK and SR it follows that a conjunction 'p A q' is
not possible if it is not possible at least one of its arguments. In fact, the following necessary condition holds.

* Provided there is no ambiguity and for simplicity, it is assumed that any rule corresponding to a formula having as a main connective
logical equivalence is two-sided binding (i.e. from top to down and from bottom to up, e.g. NA, NK, N O, N0, etc. Another possibility was

considered in Subsection 1.3 where the “from bottom to up” case was interpreted by the prefix '+, e.g. + NA, + NK, + N O, + N9, etc.).

Moreover, the used priorities for logical connectives are similar as in the classical case, see Subsection 1.1, e.g. the symbol of disjunction
binds more strongly than the symbol of strict implication, the last binds more strongly than the symbol of strict equivalence, etc.
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Thesis 2.26

S(pAq =>COp A ©q.o

T 2.25 can be used as a derived rule in the proof of T 2.26, and vice versa. An example proof of T 2.25 using
T 2.26 is given below (the proof of T 2.26 by using T 2.25 is left to the reader).

Proof T2.25:

( Bpvioq {a}

2 ~o(va {aip}

3 o(kpar~9 {NDO,NA, SR : 2}

4) O~p AO~q {-C:T2.26,3}

(5) O~p

© o~q {(-K:4}

(7 ~0op (NO:S5}

(8 ~0gq (NO: 6}

©) oq {(—A: 1,7}
contr. o {8,9, + SI}

It is obvious that any thesis gives a new derived rule, e.g. the following derived rules follow from T 2.22 - T
2.26.

(9)  Rule of changing a necessity modal functor into
possibility modal functor

(denoted below by "0O/¢7):

oo
o/
o0
(10)  Rule of exchanging a necessity of conjunction by
conjunction of necessities
(denoted below by "OK"):
o(eA W)
oK: —
ODoe/0Oy/ 0@
oy
(11)  Rule of exchanging a possibility of disjunction by
disjunction of possibilities
(denoted below by "~ <©A"):

(o v V)
CA: .
S v Oy
(12)  Rule of disjunction of necessities
(denoted below by "~AO"):

O v Oy
Ao:
O v v
(13)  Rule of possibility of conjunction
(denoted below by " ©K'):
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o(¢ A y)
oK
Sp/ oY/ o
oy
By the law of idempotence: p v p < p. Hence, accordingto CR,'—N'and SR we have: ~p = p <
p. And so, by using SR and '+ SE' the following thesis can be obtained.

Thesis 2.27

Op <> O(~p = p).o
Thesis 2.28
(p=>9 Ap=>>q

Proof:

It is sufficient to show the following implication: (p => q) A p = q.

O fa)
2 P
3 ogp=a9a {df. '=>": 1}
@ prP=q (—o:3}
q.o {=C:24;+SI}

The next two theses (T 2.30 and T 2.31) belonging to the Feys’ T—system are related to the axiom G2
introduced in Godel’s system. And hence, the proof of this axiom is first given below.

Thesis 2.29 (G2)

op=>q = (@Op = 09

Proof:

(I ‘=9 @)

(2 ©p

3 ~ogq {aip}

4 0O@p@=9A0p (+K:1,2}

%) o = q A Dp) {OK:4}

(6) DmAq {=@=arpepnrq,SR:5}

(7 o0gq (0K : 6}
contr. o {3,7}

Thesis 2.30

(p=>q) AOp => Oq

Proof:

@) p=>>q ()

(2 ©p

3 “P=9 {df. '=>": 1}

4y oOp= Oq (—C:T229,3}
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0qg.o {-C:2,4;+SI}

Thesis 2.31

P=>qQ) AO~q => O~p

Proof:
(1) p=>4q (a}
2 ©~q
3) ~o~p {aip}
4) op =9 {df. '=>": 1}
5) Op = 0Oq {-C:T229,4}
(6) op {N¢ ,-N,SR:3}
7 tq {-C:5,6}
(8) ~0Oq {NOo: 2}
contr. o {7,8; + SI}

The above theses T 2.30 and T 2.31 can be considered as equivalent (wrt the laws of exportation and
importation T 1.12, the law of transposition or contraposition of implication T 1.14 and SR (see Subsection 1.3).
In fact, T 2.31 can be transformed as follows: (p => q) A~0Oq =>~0Op, left to the reader).

Thesis 2.32

(P=>4q) A~q =>~p

Proof:

@) P=>q

@ ~q {a}

3 p {aip}

4) ol = q {df. '=>": 1}

) p=4 (—o:4}

(6) q {=C:3,5}
contr. o {2,6; + SI}

The following derived rules can be obtained (according to T 2.28, T 2.29, T 2.31 and T 2.32).

(14) Rule of detachment for strict implication
(or omitting a strict implication)
(denoted below by "— SI'):
¢ =>Vv
¢
]

(15)  Rule of necessity of implication (denoted
below by "O0C"):

o(e=v)

—SI:

oC:  —
=0V
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(16) Modal necessity tollens (denoted below
by “O-Toll "):

¢=>y
O-Toll: <oy

(17)  Strict implication tollens (denoted below
by " S-Toll "):

¢ =>Vv
~v

~ ¢

S-Toll :

Thesis 2.33

P=>q A (@=>>T1) => (p=>71)

Proof:

) p=>q

1 (a}

(2) qQ=>rT

(3) o =9 {df. '=>"1 1}

“4) o(Q =71 {df. '=>1 2}

5y o=adA@=1) {0K:3.4}

(6) O = nAad {SR : 5, i.. it is assumed that there exists some formula ¢
such that the formulae (p = q)A (@ = r) and (p = 1)A
are equivalent, see below}

(7) O = 1) {OK:6}

p=>r.o {df. '=>"1 7,+ SI}

The construction of  is related to the notion of interpretation (see: Definitions 1.3 and 1.4 of Subsection
14).Letnow ¢ =¢¢ (p = QA (@ = r) and y =4 (p = 1) A (. According to T 2.33, the new introduced
formula { should satisfy the following conditions: (1) ¢ should not be equivalent to the previous ones, i.e @
and 'p = r', (2) ¢ should depend on the same propositional variables, i.e. p, q and r, and (3) ¢ and vy
should be equivalent. In fact, by using the Karnaugh’s map method" different such formulae can be obtained, e.g.
Ci=srp=>qQ vqaror §=¢(qQe1)Vv ~pAarT oralso {3 =¢ ~p ATV PAQqQYV~(QVrID),
etc. (left to the reader).

Thesis 2.34

PAQq=>1) 2> (p=>>(Q=r1))

Proof:
) pAq=>>rT {a}
) odpAq =1 {df. '=>"1 1}
3) o = (@ = 1) {T 1.12 : 2, ie. laws of exportation
and importation: see Subsection 1.3 }
p=>(q = 1) 5 {df.'=>": 3, + SI}
Thesis 2.35

* Maurice Karnaugh: 1953, a refinement of Veitch’s diagram: Edward W. Veitch: 1952 (e.g. see Breuer M.A. and Friedman A.D. 1977).



Op => (qQ =2>p)

Proof:
(Hh op
2 ~(@=>p)
3 ~o@=p
4 °o(q A~p)
5)  ©o~p
(6) ~0Op

contr. o
Thesis 2.36

O~p => (@ =>9q

Proof:

)
2
3
“
(6))
(6)

o~p

~( =>>9q
~o0(p = q
o(p A~q)
op

~op

contr. o

{a}

{aip}

{df.'=>', SR : 2}
{N@O,NC,SR: 3}
{OK : 4}

{NO:5}
{1,6; + SI}

{a}

{aip}

{df. '=>", SR : 2}
{NO,NC, SR : 3}
{oK: 4}

{No : 1}

(5,6; + SI}

The following (Gddel’s system G3) axiom can be introduced to Feys’ T-system “:
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Op = OOp. And

hence, the following thesis of reduction holds: 0 Op < Op (left to the reader). In accordance with CE (i.e.

law of transposition or contraposition of equivalence: see T 1.14 and the next text, Subsection 1.3), we can
equivalently obtain: ~ O Op < ~ Op. Then: 0O ~p <& O ~p. Since p is an arbitrary proposition we have:

OO0 < 00 and 00~ < O ~0.

= 0O ~p (left to the reader). In fact, the following two rules can be introduced.

(18)

(19)

‘RO):

RoO:

RO):

Ro:

Rule of reduction of necessity (denoted below by

oo

oo

Rule of reduction of possibility (denoted below by

OO~

o~

* The little encyclopaedia of logic (1988)

And hence, from T 2.18 it follows that the following two formulae are theses: O ¢p = <¢<op and OO ~p
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The following thesis is satisfied.

Thesis 2.37

O(p =>p)

Proof:

(1) ~o( =>p) {aip}

2 o~(p=>p) {NoO:1}

3) o~O(p = p) {df '=>,SR:2}
4) oo~ =p) {NO,SR:3}
(5) o~(@=p  {Ro:4}

(6) ~0O(@ =p {NO:5}
7 g =p) {GR, = C : since £E(p = p),
i.e. law of identity for implication}
contr. o {6,7}

The proofs of the next three theses are left to the reader: Theses 2.38 and 2.39 are known as strict
implication paradoxes. Another one is also the following: p => (q => q)". In fact, since p = (q = q)
is a thesis, in accordance with "+ SI', we have: p => (q = q). The remaining part of this proof is left
to the reader.

Thesis 2.38
pPA~p=>(Qo {+SI}
Thesis 2.39
p=>>qV ~qo {+SI}
Thesis 2.40

(p =>>q =>(@p = 0q9.0 {T229,+SI}
Some additional theses directly related to the above-considered Feys’ T—system are given below.

Thesis 2.41
P =>PAr(P =>1) <> p => q AT
Proof T 2.41a:

@) P =>q

2) p=>>r a}
3) ol = q {df. '=>"1 1}
“) O = 1) {df. '=>"1 2}
3 o= =>1) {OK:3.4}
(6) O = q A1) {MC, SR : 5, i.e. law of multiplication
of consequents T 1.5: see Subsection 1.3}
p => (g ATl.o {df. '=>": 6,+ SI, + SE}

“ It can be observed that there are no propositional variables in common on the left and on the right sides of the corresponding main
implications.
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Proof T 2.41b:

(1) p=>qnr {a}

) O = q A1) {df. '=>"1 1}

3) O = QA = 1) {MC, SR : 2, i.e. law of multiplication

of consequents T 1.5: see Subsection 1.3}

O =

4) ® =9 (0K :3)

6y o=0

6) p =>q {df. '=>"1 4}

@) p=>>r {df. '=>": 5}

P =>PAa(p =>1).0 {+K:6,7;+SI}
The proof of the next thesis is very similar to the previous one. And hence, it is left to the reader.

Thesis 2.42

Pp=>>1)A(@=>1) <&>pvVvqg=>ro

Thesis 2.43

(p =>0q9A(qQ =>0r) =2>(p =0r)

Proof:

(]) p =>0q

) q=>0r {a}

3 P

4 op=n09 {df. '=>": 1}

%) O(q = Or) {df. '=>": 2}

6) p=0Oq (- O:4}

(7) q=0r {-o:5}

(8) oq {-C:3,6}

® a (- 0:8}
Or.o {=C:79;+SI}

Thesis 2.44

(¢p=> 0@ = <o(p = q

Proof:

(1) op= o°q {a}

2 ~op=9 {aip}

3 oO@A~q {No,NC, SR :2}
& op {OK:3}

(5) B~q

6 op (O/0: 4}

(7 ©q {(-C: 1,6}

®) ~°q {No: 5}

contr. o {7,8}
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Thesis 2.45

p=>0q9 A~0q => O~p

Proof:
D p =>9<q (a}
@ ~oq
B) ~o~p {aip}
4 op =9oq {df. '=>": 1}
5) p=>°q {(-0:4}
(6) up {N¢,-N, SR : 3}
(n p (- 0:6}
(®) < q {-=C:5,7}
contr. o {2,8; + SI}

The following De Morgan’s laws are satisfied.

Thesis 2.46

~O0(p A Q) <> ~0Op Vv ~0Oq

Proof:

~o(pArqQ < O(pv~q {NO,NK SR}

= O ~p Vv O ~q {OA}
= ~0p v ~04q.o {NO, SR, +SE}

Thesis 2.47

~Oo(PpVQ <> ~OpA~OQo

The proof of T 2.47 is similar to the proof of the previous thesis and it is left to the reader. The next rules
follow directly from the last considered theses (T 2.38, T 2.39, T 2.41, T2.42, T 2.44 — T 2.47).

(20)  Strict rule of Duns Scotus (denoted below by "SDS’):

DS: ?
SDS : ~¢
v
(21)  Contrapositive strict rule of Duns Scotus (denoted below
by 'CSDS"):
¢
CSDS :
Vv Vv~y

(22)  Strict law of multiplication of consequents (denoted
below by "'SMC):

¢ =>V
SMC : o =>

Q0 => Y A Y
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(23)  Strict law of law of addition of antecedents (denoted
below by "'SAA’):

¢ =>x
SAA : v =>
o VY =>%
(24)  Rule of implication of possibilities (denoted below by
'Co):
CP = oy
Co: I
oo =>v)

(25)  Modal possibility tollens (denoted below by “<-Toll"):

P=>> 0y
<-Toll : ~oy
S~

(26) Modal De Morgan’s law for necessity of conjunction
(denoted below by "NoOK"):

N ~0(e A VY)
NIK :
~O0¢ v ~0OVy
(27) Modal De Morgan's law for possibility of disjunction
(denoted below by 'NOA’):

~o (o v vy
NOA :

~OoQ/ ~OoyY /~S0@
~<>\V

There exist two approaches concerning semantics of modal logic systems: algebraic semantics and Kripke’s
semantics (called also relational or frame semantics: see Kripke S. 1959, 1963, 1965)". Since the most of
research is related to the second approach, a short review is given below.

Let consider the following system .~ =4 (K ; g; p), where K # @ is the set of all possible “worlds”, g €
K is said to be “real world”, and the binary relation p = K x K is said to be an accessibility relation, where

h; p hy iff the world hy is possible wrt h; (i.e. any proposition which is satisfied in h, should be possible in
hy, for any hj, h, € K). In accordance with the law of contraposition of implication, any proposition which is
not possible in h; should not be satisfied in h,.

Let h € K and ¢ be a formula which is satisfied in h. Then ¢ is possible in h. And hence, it is assumed
that the above relation p is reflexive in K, i.e. hp h (forany h € K). Next we shall assume that K is
partitioned into two disjoint and non-empty subsets of normal and non-normal (or quarrel) worlds, denoted by
N and Q, respectively. Any such system .7 is said to be a Kripke'’s frame (or a modal frame). It can be
observed that contradictions are excluded in normal worlds, but in the case of non-normal worlds all becomes be
possible. The need of introducing non-normal worlds follows from the analysis of some modal logic systems
where the Godel’s rule GR fails.

" The models introduced by S. Kripke were oriented to some modal propositional calculi (Saul Aaron Kripke, born 1940). An earlier
similar constructions concerning deontic logics was presented by Kanger S. (1957).
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Let P be the set of modal propositional formulae obtained under Definition 2.6. The Kripke's model is
introduced as a pair (7, f), where f: P x K — {0,1} is an arbitrary map. We shall say that f is a modeling
function for ¢ € P wrt 7 and that ¢ is satisfied in h € K iff f(p, h) = 1. A formula ¢ is a thesis in
Kripke’s model (7, f) iff f(p,h) = 1 (forany h € K). And this formula is a thesis in Kripke’s frame 7 iff
it is a thesis in (7, f) (for all possible choices of f). In a natural manner the last two notions can be extended
for classes of such frames or models by assuming that ¢ is a thesis in any member of the corresponding class.
The contents of the frame 7 is introduced as the set of all formulae satisfied in any h € K and for all possible
choices of f.

The values of f for compound formulae can be defined by an inductive way, e.g. f(~ @, h) = 1 iff f(o, h)
=0, flo=>wy,h) =1 iff f(p,h) =0 v f(y,h) =1, fl¢p A y,h) =1 iff f(p,h) =1 A f(y,h) = 1, etc.

Nextby hi* =¢ {h, € K/ hiphy} we shall denote the subset of all worlds out-incident to h; € K. We
shall say that @ € P is necessary in the world hi,ie. (O, h)) =1 iff Vhy € hi*(f(p,hy) = 1).Ina
similar way, ¢ € P is possible in the world hi,ie. f(0@,h)) =1 iff Fhy € hi* (flo,hy) = 1).

There exists a possibility of obtaining some different Kripke’s frames depending on the required properties
for p, e.g. by assuming a restriction of p to N and g € N we can obtain the S2 - Kripke's frame (related to
the Lewis’ system S2) or also S4 - and S5 - Kripke’s frames, assuming that the accessibility relation p is
transitive and equivalence, respectively, etc.

The above presented notion of thesis, related to a given modal logic system, allows for introducing the
completeness problem associated with any such system (this is omitted here).

The above presented semantics can be generalised for fuzzy modal systems by assuming as a codomain of f
the whole closed interval [0,1]. The last may be topic for a further research.

There exist very many applications in modal logic field, e.g. such as: agentive and situational applications,
terminological logic, topological applications and complex systems, model constructions in set theory (such as:
forcing and non-wellfounded set theory), unravelling, etc. One of them is related to the notion of grounding in
communications”, first introduced by Clark H.H. and Brennan S.E. (1991). And this notion was used in the case
of grounding modal language in communications of artificial cognitive agent systems (Katarzyniak R.P. 2007).
Here, the analysis of grounding requirements was given in the case of logic equivalences extended with modal
functors of possibility, belief and knowledge (a more formal treatment is omitted).

The two basic modal functors of necessity and possibility are used below in the case of constructing deontic
logic systems.

Deontic logic

Deontic logic is a deduction system in which theses appear logical constants such as: 'it is obligatory that'
(or it ought to be the case that'), 'it is permitted (or permissible) that' and 'it is forbidden (or prohibited)
that'. The term ‘deontic’ is derived from ancient Greek “deov”, roughly meaning “that which is binding or
proper”.

This deduction system is a formal study of the normative concepts of obligation, permission and prohibition
represented by the above logical constants. These concepts and their logical relationships to one another are
distinguished from value concepts such as: goodness and badness (or evil) as well as from such agent-based
concepts as: act, choice, decision, freedom, and will. And hence, deontic logic is not itself an ethical theory that
tells us what in fact is permitted, obligatory or forbidden, but it is or should be a part of such a theory. A complete
ethical or moral theory would encompass the logic of all these different concepts and not just the normative ones.
And so, with any ethical theory should be associated some deontic logic system. The study of different deontic
logics is a part of metaethics. Moreover, the normative concepts of obligation and permission are similar in many

. Grounding in communication involves mutual knowledge, mutual beliefs, and mutual assumptions, which are necessary for
communication between two people: “They cannot even begin to coordinate on content without assuming a vast amount of shared information
or common ground — that is, mutual knowledge, mutual beliefs, and mutual assumptions. And to coordinate on process, they need to update
their common ground moment by moment”.
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respects to the modal concepts of necessity and possibility. In fact, the above normative concepts are also modal
ones (Cocchiarella N.B., in the late 1960s).

Some logical relations based on deontic concepts have been observed in ancient times, e.g. Indian Mimamsa
school as a part of Hindu philosophy (' Mimamsa ' derived from the Sanskrit word” ' investigation ' and having
as a central aim the elucidation of the nature of ‘dharma’, understood as a set ritual obligations and prerogatives
to be performed properly and hence this nature is not accessible to reason or observation...), similar constructions
have been observed in Ancient Greece, also in the late middle ages (a comparison of deontic concepts with the
alethic ones, e.g. the logical relations between the notions licitum, illicitum, debitum, and indifferens wrt the
notions possible impossible, necessarium, and contingens, respectively: Gottfried Wilhelm Leibniz 1646 — 1716),
etc. However, the first modern formal system of deontic logic was proposed by Mally E. (1926: Ernst Mally 1879
— 1944). In the Mally’s deontic system were introduced two logical constants, one unary and two binary
connectives. But this system led to some counterintuitive results. (Sart F. 2009). In fact, such earlier attempts
were fragmentary. And so, the first viable system of deontic logic was introduced by von Wright (1951: Georg
Henrik von Wright 1916 — 2003). The formula validation in the last system bears many resemblances with
Wittgenstein’s truth table method (Wittgenstein L. 1922: Ludwig Wittgenstein 1889 — 1951). As in modal logic
systems, the general approach in constructing deontic logic systems is the axiomatic one. An example deontic
system is considered below.

The notion of deontic propositional formula can be introduced in a similar way as in the case of modal logic.
We have the following definition. Provided there is no ambiguity, below the deontic functors of obligation ( O ),
permission ( P) and forbiddance ( F ) are denoted by (the Mally’s unary connective) !, 3 and o, respectively.
Definition 2.7

A deontic propositional formula is:

1. Any propositional variable,

2. If ¢ and y are some propositional formulae, then such formulae are also: ~ (@), (¢) A (), (¢) Vv (y),
(@) = (v),and (9) <= (¥),!(9),5(¢), and & (¢),

3. Every propositional formula in this propositional calculus either is a propositional variable or is formed from
propositional variables by a single or multiple application of rule (2).
The main purpose of this calculus is the same as in the classical case.

In the next considerations we shall use some deontic constant (i.e. 0-ary modal operator), standing for some
sanction or related to some violation (e.g. bad thing, prohibition, conflict situation, etc.) and denoted by asterisk
(). By using this constant we have a possibility of defining the above unary functor ! in terms of the alethic

modal functor 0 (Anderson A.R. 1958)":

lo <o O(~@ = *),

for any deontic propositional formula .

The following two definitions are also used below.

0p <4 © (@ A~ %) and

* Sanskrit (samskrta vak: "refined speech"), is a historical Indo-Aryan language and the primary liturgical language of Hinduism and
Buddhism as laid out in the grammar of Panini, around the 4™ century b.c. Its position in the cultures of the Greater India is similar to that of
Latin and Greek in Europe and it has significantly influenced most modern languages of the Indian subcontinent, particularly in India,
Pakistan and Nepal. Today, it is listed as one of the 22 scheduled languages of India and is an official language of the state of Uttarakhand
(The Free Encyclopaedia, The Wikimedia Foundation, Inc.).

¥ Alan Ross Anderson (1925 —1973)
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GO g ~ 0.

There are a number of possible choices that one can make in regard to what deontic logic to adopt. Much will
depend on various metaethical considerations. The axiomatic approach in any deontic logic system is restricted to
the use of the following three inference rules: RR, - C and also the following implication (obligation rule).

(OBR) E ¢ = F lo,
i.e. that what is provable in deontic logic is obligatory (Cocchiarella N.B., in the late 1960s)".

Let @ =4t y = 7. According to OBR, the following derived rules can be obtained.
Oy =y = 1) = & (y = Iy,
D) E(y = %) = E @y = 8y,
™3 E(y = %) = E (6 = oy) and
O E(y oy = =y < .

The first two derived rules are directly related to theses T 2.55 and T 2.59 given below. The next rule is
related to SR and the law of contraposition of implication CC.

Let y <y be a thesis. Hence, by '— E' it follows that = (y = y) and = (y = y). According to DI,
wehave: E(y = %) = E(y = !Iy) and E (y = v) = E (Ix = ! vy). And then, by using MAC

(rule of multiplication of the antecedents and consequents of two implications), '+ E' and SR we have D4 (a
more formal treatment is omitted).

The assumptional system style is used in the next considerations. Some example theses and their
corresponding proofs are given. Moreover, the following formula is accepted, said to be a basic axiom (of
negating the twofold standards).

~ o A ~0).

And so, contradictory obligations are not allowed. Any iteration of deontic constants, e.g. such as !!p, !op,
!('p = p), etc. is omitted below. In fact, such iterations may lead to difficult interpretation problems. The
following two theses are satisfied (! and & are mutually dual and any of these two connectives can be expressed
by the another one).

Thesis 2.48

~p < d~p

Proof:

~lp & ~0(~p = *) {df. "', SR}
&S O~(~p = %) {NO}
< O (~p A~X) {NC, SR}
< d8~p.o {df. '8}

Thesis 2.49

* But not vice versa, in fact it can be observed the opposite implication may involve some speculative inference.



~dp & I~p

Proof:

~0p & ~O(p A~X) {df. "', SR}
& O(~p Vv %) {No, NK, —
< o = %) {CR, SR}
& I~p.oo {df. "'}

In accordance with T 2.48 and T 2.49, the following two rules can be obtained.

N, SR}

(28)  Rule of negating a deontic functor of obligation
(denoted below by "N!"):

N!:

~ 1o
d~¢

(29)  Rule of negating a deontic functor of permission
(denoted below by "NJ'):

No:

Thesis 2.50

N&P
I'~o¢

' Aq < !IpAalg

Proof:

' A &

g 0090

Thesis 2.51

D(~PAq = %)
O(~p Vv ~q = %)
O((~p = *) A (~q = %))
O(~p = %) ADO(~q = *)

'p A Q.o

d(pvq < dp Vv yq

Proof:

(v g

0 000

O(p v A~)

OS(p A~% v 0 A~ %)
OS(p A~%) vOo(qQ A~ %)
dp Vv 0q. o

{df. 1}
{NK, SR}
{AA, SR}
{OK}

{df. 1}

{df.'8'}

{A is distributive over Vv }
{oA}

{df. '8}
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Since A and v are associative T 2.50 and T 2.51 can be generalised for more than two, but a finite number,

arguments.

Thesis 2.52

pvigq=I!pvVvg
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Proof:

Ip v Iq

Thesis 2.53

< O(p=%)vo(~q=%) {4, SR}
= 0({~p =% Vv (~q=%) {(AO}
< o~V = %) {AA, SR}
< lpv o {ar. "1}

S(p A q = dp A dq

Proof:

dpArq < ©(AqgA~*) {df. '3 associativity for A, SR}
S O ((p A~%) A(Q A~ %)) {associativity and commutativity for A,

idempotence for '~ %', SR}

= O(p A~%) AO(Q A~ k) {oK}
< Op A 8q.o {dr. "8}

Thesis 2.54

Ip = op

Proof:

M 'p {a}

2) ~dp {aip}

3 !~p (NS:2}

4 'PAl~p {+K:1,3}

5) pA~p) {T2.50:4}

6 ~ o A ~D) {is an axiom }

contr. o {5,6}

The following inference rules can be obtained (T 2.50 — T 2.54).

(30)

€2))

(32)

Rule of exchanging an obligation of conjunction by
conjunction of obligations
(denoted below by "!' K"):

(o n W)

o/ y/ 1o
y
Rule of exchanging a permission of disjunction by
disjunction of permissions
(denoted below by "8A"):

K :

(e v V)
op v Oy

Rule of disjunction of obligations
(denoted below by " A!”):



(33)

(34)

The deontic form of the Godel’s axiom (G2) is presented as follows.

o v ly
o v )

Rule of permission of conjunction (denoted below
by "dK"):

Al

(e A v)
3 / dy /3
oy

Rule of changing an obligation deontic functor into
permission deontic functor
(denoted below by "!/3 ):

lo

15:
3¢

Thesis 2.55

p =9 = (p = !9

Proof:
nH p =9
8 o ta}

3 =9 Alp {+K:12}
4 Np =9 Ap {K:3}

S p A9 {E@=>dArpepnrq,SR:4}
1q. o {IK:5}
Thesis 2.56

©p = 8q) = d8(p = 9

Proof:

(1) dp = 8q {a}

2 ~dp =9 {aip}

3 !'~p=9 {N&:2}

4 'A~q {NC, SR : 3}

6) 'p )

© '~q {IK: 4}

(7) ~90q {N&:6}

(8) dp {1/8: 5}

9) dq {-C:1,8}
contr. o {7,9}
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In accordance with the laws of exportation and importation, T 2.55 and the next thesis are equivalent (see T

1.12 of Subsection 1.3). By the way, another two proofs of T 2.57 are given below.

Thesis 2.57

p =9 Alp=1q
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Proof' T 2.57(by using T 2.50)

(H p =9

@ p {a}

3 W =9 ADp UK 1,2}

@ 'p A9 {SR:3,p =9 Ap<pag
Iq. o {IK : 4}

Proof T 2.57(by using T 2.55)

1 =9
B3 =l {-C:T2551}
'q. o (—C:23}
Thesis 2.58
p =9 A ~0q = ~9dp
Proof:
1 =9
2 ~3 ta}
3 !'~q (N&:2}
@ =9 Ar~q9 {+K K:13}
6) N~pA~q {F(®> =9 Ar~qe ~pa~q,SR:4}
6 '~p {IK : 5}
~dp. o (N5:6}

And hence, by using the forbiddance functor o and SR, the last thesis can be presented equivalently as
follows.

(p =q) A oq = op.

Thesis 2.59
' =9 = (p = dq)

Proof:
(H =9
2) op @)
(3) ~9dq {aip}
@ !~q {N&:3}
S Wp =9 Ar~9 {(+K, K :1,4}
6) ~p A ~q {F(=>a9Ar~qe ~par~q,SR:5}
(7 !'~p {IK: 6}
(8) ~dp (NG&: 7}
contr. o {2,8}

Since !(p = q < ~d~(p = q), the following thesis can be obtained (by using rules NC, SR and
definition of o©: left to the reader).

Thesis 2.60
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p =>q < olp A ~q).o
De Morgan's laws of deontic logic are presented in the next two theses.

Thesis 2.61

~lpArq & ~lpv~Iq

Proof:
~pArqg < 8(~pvVv~q {N!,NK, SR}
< O6~pvid~q {8A}
< ~pv~lgo {N!, SR}
Thesis 2.62

~8(p v q) < ~dp A ~dq
Proof:

~8pvq < ~pA~q {NS, NA, SR}
< !~pal~q {IK}
< ~08p A ~8q.c {N3, SR}

In an equivalent way T 2.62 can be presented as follows.
o(p v q) < op A 0Oq.
Thesis 2.63
p=0DAlgq=1<!(pvg=r
Proof:

p=>0DAllq=>1 < p=>0)Ar@=>1) (K
o lpvg=r1).o {SR}

In fact, since E((p = 1) A (Qq = 1) < p v q = 1) the above T 2.63 follows directly from the rule D4,
IK and SR. In a similar way the following thesis can be obtained.

Thesis 2.64
p=PArlp=1<!(p=>qgqAr.o
Thesis 2.65

p=PAlrt=3=UpAr1r)=Uq A s)

Proof:

1 =9

2 =y {a}

3) 'pAm

4 =14 {—C:T255,1}
5) Ir=Is {—=C:T2.55,2}

(6) !p arw .9
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(7 I

®) 'q (—C:4,6)

9 s {-C:5,7}
I(q A s).o {!IK: 89}

The proof of T 2.65 can be also obtained by using the rule D1, 'K, SR, T 2.55 and T 2.69 (given below: left
to the reader).

Thesis 2.66
3p = q = (Ip v or = 8q v 1)

Proof:
(1 8p =9
@ pvor ta}
(3) ~d8(q v {aip}
4) ~dq _
(5) ~ér {T2.62,—K:3}
(6) 8~p v dq {CR, SR, 8A : 1}
@7 'p {(~A:25)}
®) 8~p {—A:4,6)
©® ~'p {N!:8}
contr. o {7,9
Thesis 2.67
'p=1!pva
Proof:
1 v {a}
2 ~'va {aip}
(3) 8(~pA~q  {N,NASR:2}
(4) 8~p (6K : 3}
5 ~'p {N!: 4}
contr. o {1,5}
Thesis 2.68
op = l(p = 9
Proof:
(1) op {a}
2 ~'=9 {aip}
(3) ~9p {df.'o': 1}
4 8 A~q {N!,NC, SR : 2}
(5) dp (8K : 4}

contr. o (3,5}



127

In accordance with the law of transitivity for implication TC, wehave: E((p = Q) A (@ = 1) = (p =

r)). And hence by the obligation rule OBR and '— C' it follows that E !(p = q) A (@ = 1) = (p = 1)).
And so, the following thesis is satisfied.

Thesis 2.69
p=>dDAllg=1=!p =1
Proof:

1 Np=adAr@=>1=(@=1) {TC,0OBR,-C}
2 NWp=>dAr@=01)=>!1p=>1 {-C:T255]1}
p =9 Allq=>r1) = p = 1.0 {IK,SR:2}

Obviously, the proof of T 2.69 can be also realised without using the obligation rule OBR. In fact, since (p
= q)A(qQ = 1) and (p = r) A are equivalent the following proof can be obtained (see the proof of T 2.33).

Proof T 2.69:
1 p=aAlN=>71 {a}
2 p=dA@=1) {IK: 1}
B3 =n1nr0 {SR:2,(p = q)a(q = 1) and
(p = 1) A are equivalent}
p = 1o {IK : 3}
Thesis 2.70

p=>9 =Cpvn=I!qvr)

Proof:

H =ad=@Evr=qvi) {F@=a=0vr=qvn), OBR-C}
2 p=2>q9=>(pvr=>qvr {—-C:T2.551}

B) pvr=qvr={Upvr=UqvVri) {T 2.55}

p =9 =>Upvr)=1qvVvrI))eo {T2.69:2,3}
The proof of the next thesis is similar to the proof of the previous one and hence it is left to the reader.

Thesis 2.71 (Hauber’s deontic law of conversion of implications)

Ip = PAalr = s)Alpvi)ac(gAas) = (q=pAls =)o
Some derived rules related to the above proved theses are given below.

(35) Rule of obligation of implication (denoted below by ~

1C):
(o=v)
c: —
lop=ly
(36)  Rule of implication of permissions (denoted below by
'Co’):
0p = dy
Co:

(e =)
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G37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

Deontic rule of detachment for implication (or omitting
an implication, denoted below by — !C"):

o = W)
-1C: e
y
Deontic obligation tollens (denoted below by "!-Toll’):
o = v
I-Toll : Sy
~ 80

Deontic De Morgan's law for obligation of conjunction
(denoted below by "N!K"):

~U o A W)
~lo v ~ly

Deontic De Morgan's law for permission of disjunction
(denoted below by "NOA’):

NIK:

~3(¢ v )
~d¢p/ ~dy /~d¢p
~ By

Deontic law of addition of antecedents (denoted below
by "TAA"):

NOA :

o = 1)
v = 1)

ovy =)

Deontic law of multiplication of consequents (denoted
below by "'MC"):

1AA :

o = v)
o = %)
o= wv A

Deontic rule of multiplication of the antecedents and
consequents of two implications (denoted below by
"IMAC):

IMC :

(o1 = y1)
(o2 = y2)

o1 A 92) = Hy1 A y2)

Deontic rule of joining a disjunction (denoted below
by "+A"):

IMAC :

lo
o v v)

Deontic rule of transitivity for implication (denoted
below by "ITC"):

+1A
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o = wv)
y= 1)

o =)

Let v be a logical consequence wrt ©1,P2, ... , @n. Then by T 1.23 (see Subsection 1.5) it follows that = ¢
A@2A ... A@n = V. Using in turn rules OBR, — C, !C, K, and SR we can obtain: & i Algz A ... A lQn
= ly. And hence, as in modal logic, any logical consequence involves some deontic logical consequence.

Besides the beginning of intensive investigations in deontic systems, there can be observed calls in question in
regards to certain theses, i.e. any such thesis have been considered as non-intuitive and hence distinct from the
common sense. As an example, the above thesis T 2.67 is a deontic representation of the well-known Ross’
paradox for obligation” (Ross A.N.C. 1941). It was argued that a proposition of the form !(p v q) is a
confirmation of possessing a choice between realisation of two activities. The contra-argumentation was mainly
based on the fact that the possessing of choice should be depending on some additional circumstances. And
hence, the sense of the above proposition do not decide in advance if really such choice is necessary (similar
considerations have been given wrt T 2.51, etc. (see: The little encyclopaedia of logic 1988). In fact, a good
intuition should not necessary be a correctness criterion for a given proof.

Generally, there were presented various deontic systems, e.g. DKr, D, DM, DBEr, etc. In particular, there have
been made an attempt of constructing the deontic logical constants !, 5, and ¢ in a way more adequate to their
common sense. And so, the interpretation difficulties seem to be the main reason in constructing relative deontic
systems. Such extensions are based on the idea that a de re obligation may depend on circumstances in different
situations. And this idea suggests that a conditional binary concept of obligation and similarly of permission may
be more appropriate than the above monadic one (Cocchiarella N.B., in the late 1960s). For example, the
propositional formula !(¢ / ), associated with the conditional (or relative) obligation functor (---/ ---), might
be read as: “it is obligatory that ¢ given (or conditional on) the circumstances that y”, where ¢ and y may be
arbitrary classical logic formulae (see Definition 1.1 of Subsection 1.1). Obviously, if y is a thesis then this
functor becomes equivalent to the previous unary one. The rest two conditional deontic functors, i.e. &(--/ --)
and o(---/--) can be introduced in a similar way. In fact, the conditional forbiddance functor can be defined as
follows: o(¢ / y) <t I( ~ ¢/ wy). But, in the case of conditional permission functor the corresponding
definition & (¢ / v) <4 ~ o(ep / y) will contribute a more specific sense of this notion (7he little
encyclopaedia of logic 1988). The following two axioms are presented in the last work (some example derived
rules and theses are also given below).

®DD (@ Ayl vE & (o/x) A lly/x) Alle/E) A l(y/E
®RD2) ~(N@/yv ~y) A l(~p/yVv ~y))

Since o, y, x and & may be arbitrary in accordance with the laws of idempotence and SR, the following two
shortened versions of RDI can be obtained.

(RDL o) Ho/y vE) & o/ Al(ell)

RDL ) o Aw/yx) < oln) A v/

Moreover, since = (v v ~ ) (the Aristotelian law of excluded middle), by Thesis 2.50 it follows that RD2
is equivalent to the basic axiom: ~ (¢ A ~ @).

Let &= (¢ = wv) be a classical logic thesis. Then the following rules can be considered as derived:

* Alf Niels Christian Ross (1899 — 1979)
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®RD x/v) = /o)
R2) No/x) = Wy/x)

Similar rules can be derived by assuming the conditional deontic functors & and o (this is omitted: see
Formal logic. Encyclopedical outline with applications to informatics and linguistics 1987). Some example
theses are given below. Obviously, any such thesis should involve some new derived rules related to arbitrary
classical logic formulae (the use of assumptional system style in the proofs given below is left to the reader).

Thesis 2.72
p/q) = p/q A1)
Proof:

Since E (@ A r = (), corresponding to '— K, the proof follows directly from the above rule RI1, by
assuming: y =ar p, W =dar ¢, and @ =¢r q A I. 0

The proof of the next thesis is similar wrt R2 and classical rule '+ A’,since =(p = p Vv 1).

Thesis 2.73

p/q) = p v r/q).o

Thesis 2.74

p = q/r) < I(~p v q/r1)
Proof: left to the reader. o

Thesis 2.75

p = q/r) A l(p/1r) = (q/1)

Proof:

In accordance with the law of transitivity for implication TC, we can obtain.

b = qm) Allp/t) = Up = Ap/r) (RDI . )
= p Arqlr) {E(@ =9 ~rp<p~rq,SR}
= '(p/r) A '(q/r) (RDlsv/E:~x)
= Nq/r).o (- K}

The following theses are also satisfied.
Thesis 2.76
(~p/@) = (p = a/q A D
Proof:

'(~p/q) = !~p v q/q (T2.73, 1 = q}
= '(p = q/q) {T 2.74, SR, r =4 q}
= lp=>q/qAarn.. {T272}

Thesis 2.77
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p = q/s) A (q=>r1/s) = l(p = r1/5)

Proof:

p=> a8 All@q=>r1/s) = Wp =9 A(Q=>1/3) RDI )

sV /&= X

= H(p =>1) AL/ {SR, it is assumed that there exists some
formula C such that the formulae (p =
QPdA(@ = 1) and (p = 1) A are
equivalent: e.g., see the proof of T 2.33}

= lp =>r1/s)o

Thesis 2.78
(~(p v q/1) & (~p/D) A (~q/D)

Proof:
(~pVva/n < N~pnaA~qln) {NA, SR}
< N(~p/t)y A N(~q/1). o (RDlsv/g:M)

Thesis 2.79

(p/~@ A1) < !p/~q) A lp/~1)

Proof:

(p/~(q@ A1) & Np/~qvVv ~1) {NK, SR}
< p/~q) A lp/~1).0 (RDI, )

Any temporal logic system uses the notion of time. The next considerations are a brief introduction to such
logic systems.

Temporal logics

Temporal logic (or in general: logics) is a deduction system for representing and reasoning about propositions
qualified in terms of time. This logic is sometimes also used to refer to tense logic, a particular modal logic —
based system of temporal logic, with reference to the grammatical tenses and introduced by Prior in the late
1950s (e.g. see: Prior A.N. 1957, 1967)". And so, there was studied the possibility of using Diodorus Cronus’
ideas (related to “strict” or “strong” implication) to contemporary works in modal logic by taking into
consideration time. Subsequently, it was shown a possibility of defining the whole temporal functors in terms of
“since” and “until” (by assuming a continuous linear ordering: Kamp H. 1968).

Typical examples of dependencies between modal notions having application also to temporal notions are
given below (Formal logic. Encyclopedical outline with applications to informatics and linguistics 1987).

If always ¢ then o oo = o

If ¢ then sometimes ¢ o = 00

If always ¢ then sometimes @ o = <¢

It is not true that always ¢ iff sometimes not ¢ ~O09 < O~

* Arthur Norman Prior (1914 — 1969)
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It can be observed that any relationship between the grammatical tenses is not possible to be described using
classical propositional logic. An example of such inference may be the following: “If you have finished this
course then you were given a student visa” (obviously, the opposite implication is not always satisfied). And
hence, the above linguistic motivation was well-argued. In fact, there were also some philosophical motivations
of using such logic (e.g. the notion of determinism”).

Subsequently, temporal logic has been developed further in the area of computer science, in particular it has
found an important application in formal verification to state requirements of hardware or software systems. For
instance, one may wish to say that whenever a request is made, access to a resource is eventually granted, but it is
never granted to two requestors simultaneously. Such a statement can conveniently be expressed in a temporal
logic (public domain).

The use of Petri nets is another way for modelling such processes as above (in general: for modelling of
discrete event systems, e.g. computer or communication networks, automated manufacturing systems or other
large-scale plants, reactive programs such as computer operating systems, embedded and process control
programs or other concurrent and real-time programs, office information systems and so on). These nets, as a
general purpose mathematical model, were originally introduced for describing relations existing between
conditions and events (Carl Adam Petri 1962: 1926 - 2010). The Petri nets has gained increased usage and
acceptance as a basic tool for representation, analysis, and synthesis. So firstly, by using Petri nets we have a
possibility to model and visualize types of behaviour involving parallelism, concurrency, synchronization and
resource sharing. Secondly, the theoretical results are plentiful. The properties of these nets have been and still
are extensively studied. There exist many net models (from special to higher net models, e.g. condition-event
nets, place-transition nets, individual-token nets, etc. see: High-level Petri Nets 2000, 2005). Petri nets are
conventionally represented in terms of sets and operations on sets (a more formal treatment is omitted in this part
of the study).

The following two aspects of temporal logic systems are considered below. Initially it is considered the
Prior’s tense logic system (Formal logic. Encyclopedical outline with applications to informatics and linguistics
1987). An extension of tense logic in the area of computer science was originally given by Manna Z. and Pnueli
A. (1992, 1995).The proposed temporal logic system was used in the specification and verification of reactive
programs. A brief introduction to this excellent work is next presented.

Prior’s tense logic
The logical features of the grammatical tenses can be described by means of introducing the following two

primary tense functors: ‘it was the case that...” and it will be the case that...” corresponding to the past and
future tenses and denoted below by P and F , respectively. Moreover, it is assumed that the lack of functor is

associated with present tense. Let ¢ be arbitrary classical logic formula. The next two functors can be
introduced as follows.
GO <ar ~ F~0o, i.e. it will always be the case that...

He <4 ~ P~ , i.e. ‘it has always been the case that...

In accordance with the last two definitions, the conjunction Go A H@ can be interpreted as: "¢ is eternal
truth . Moreover, by using the law of contraposition of equivalence CE and '— N’ we can obtain: F ~¢ <

" Determinism is the general philosophical thesis that states that for everything that happens there are conditions such that, given them,
nothing else could happen. There are many versions of this thesis. Each of them rests upon various alleged connections, and
interdependencies of things and events, asserting that these hold without exception. The wide variety of deterministic theories throughout the
history of philosophy have sprung from diverse motives and considerations; some of which overlap considerably. All should be considered in
the light of their historical significance, together with certain alternative theories that philosophers have proposed (see The Free
Encyclopaedia, The Wikimedia Foundation, Inc).
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~ Go. Since ¢ may be arbitrary, by assuming ¢ <4 ~\y and using SR we have: Fy < ~G~vy. Ina
similar way, Py < ~H ~y. And hence, £ and P can be dually introduced by using G and H.

The following minimal tense logic system was introduced by Prior A.N. (1967).
ey G = y) = (Go = Gy)
(P2) H(Q = y) = (Hp = Hy)
(P3) @ = HFo
P4 ¢ = GPo

In addition to the rule of detachment for implication, i.e. '— C’, the following two rules have been also
introduced.

(46) Tense logic rule of joining G functor
(denoted below by "+G"):

¢

+G: —_—
Go

(47) Tense logic rule of joining H functor
(denoted below by "+ H’):

¢
+H: —
Ho

The assumptional system style is illustrated below. As in the classical propositional calculus, the obtained
theses are generalised for arbitrary tense logic formulae. The following example theses are satisfied.

Thesis 2.80
G(p = 9 A Gp = Gq

Proof:

() G =9

@) Gp {a}

3) Gp = Gq {-C:Pl,1}
Gq. o {-C:2,3}

Thesis 2.81

Gp = g A ~Gq = ~Gp

Proof:

(I G =29 (a)

2) ~Gq

(3) Gp = Gq {-C:Pl,1}
~Gp. o {Toll : 2,3}

The proofs of the next two theses are similar and can be obtained by using axiom P2. Hence they are omitted.
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Thesis 2.82

Hp = @ A Hp = Hq.o

Thesis 2.83
Hp = q) A ~HqQ = ~Hp.o

Similar theses can be also proved in replacing formulae G(p = q) and H(p = q) in the antecedents of the
main implications of T 2.80 — T 2.83 with the (present tense) implication p = q and next using rules + G and
+ H (left to the reader).

The following two additional distributive axioms are assumed below.
P5) G(@ A y) & Go A Gy
(P6) H(p A W) < HO A Hy

For example, by PS5 it followsthat G(p & q) © G(p = 9 A (@ = p) © Gp = 9 A G(q = p).
Similarly for H using P6.

In accordance with CE, we have: F~¢o < ~Go and P~ ¢ < ~ He. And hence, the next two
distributive properties can be obtained (the proof of T 2.85 is left to the reader).

Thesis 2.84

F(p v q) < Fp v Fq

Proof:
Fpvqg & F~~(pvVvQ {-~N, SR}

< ~G~(p Vv {F~0 o~ Go}

o ~G(~p A~Q {NA, SR}

& ~G~pAG~q  {P5SR}

< ~G~pv~G~q {NK}

i FpVFqD {FNQQNG’@:_NasR}
Thesis 2.85

P(p v qQ & Pp Vv Pq.o

The following De Morgan’s laws are satisfied. The proofs of T 2.86 and T 2.87 given below follow directly
by PS5, P6 and SR. And so, they are left to the reader.

Thesis 2.86
~GpAqQ & ~Gp v~GQq.o

Thesis 2.87

~H(p A q) & ~Hp V~HQq. o

The proofs of the next two theses are direct consequence of T 2.84 and T 2.85, respectively and they can be
obtained by means of CE, NA and SR (left to the reader).

Thesis 2.88
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~Fpvq © ~Fp A ~Fqo
Thesis 2.89
~P(p Vv qQ & ~Pp A ~Pq.o
The following transitivity property is satisfied.
Thesis 2.90

Gp =9 AGl@=>r1) =GP =1

Since (p = qQ)A(qQq = r) and (p = r) AL areequivalent, where = C(p, q, 1), the following proof
can be obtained (see the proof of T 2.33).

Proof:

(1) Gp=q9AGq=>1 ({a}
2 Gp=>adA@=1) {P5:1}

3 Gl(p=>1A0 {SR:2,p = q9A(q = 1) and
(p = )A( are equivalent}
4 G =1 AGE {P5:3}
Glp = 1).0o {-K:4}

The corresponding proof of the transitivity property for H functor is left to the reader. The obtained
inference rules related to T 2.80 — T 2.90 are illustrated below.

(48) Tense logic G rule of detachment for implication (or
omitting an implication, denoted below by '— GC"):

Gl = v)
Go

Gy

(49) Tense logic H rule of detachment for implication (or
omitting an implication, denoted below by '— HC"):

He = v)
Ho
Hy
(50) Tense logic G tollens (denoted below by * G-Toll"):

G = )
G-Toll : Gy
~ G.(P
(51) Tense logic H tollens (denoted below by " H-Toll"):
He = v)

H-Toll: _ Hy

~|—|'(p
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(52) Distributive property rule of ¥ functor (denoted below
by "FA"):
F(o v y)
Fo v Fy
(53) Distributive property rule of P functor (denoted below
by "PA"):
P(o vV )
Po v Py
(54) Tense logic De Morgan’s law for G functor of
conjunction (denoted below by 'NGK"):

~G(p A W)

NGK : [
~GOo Vv ~Gy

(55) Tense logic De Morgan's law for H functor of
conjunction (denoted below by "NHK'):
~H(e A W)
NHK : [
~Hp v ~Hy
(56) Tense logic De Morgan’s law for F functor of
disjunction (denoted below by "NFA"):

~Fo v vy
NFA: I
~Fo/~Fy/~Fo
~FW

(57) Tense logic De Morgan's law for P functor of
disjunction (denoted below by "NPA"):

~P(@ Vv )
NPA:

~Pp/~Py/~Po
~ "P\lj
(58) Tense logic rule of G-tranmsitivity for implication
(denoted below by 'GTC"):

G(o = v)

G = %)

(59) Tense logic rule of H-transitivity for implication
(denoted below by "“HTC"):

Hio = v)
Hy = %)

H(e = %)

HTC :

It can be denoted that the Prior’s tense logic system is semantically complete under Definition 1.9 (see:
Subsection 1.6). However, the corresponding proof would require the introduction of the following two
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additional conditions related to F and P, where "~ & ¢  denotes 'the formula ¢ in time instance Tt is

satisfied in model .~ "~ and O is a time instance set ( a more formal treatment is omitted here).
€ 7 EFpe<gdveb(t<v A .7 Eov)

(C2) 7 EPopc<gr Ived(V<TA .7 EQv)
Manna and Pnueli’s temporal logic

Temporal logic, first proposed by Pnueli A. around 1976, see: (Pnueli A. 1977)." In the next research, this
logic was used in the process of specification properties of reactive and concurrent systems (Manna Z. and
Pnueli A. 1992, 1995)". Some introductory notions related to Manna and Pnueli’s temporal logic are given
below?. First, the notions of reactive program and fair transition system are briefly considered. Next it is
illustrated the proposed language of temporal logic as a tool for specification of reactive systems (i.e. the
description of the desired behaviour or operation of the system, while avoiding references to the method or details
of its implementation).

From theoretical point of view, programs and systems that they control can be partitioned into
transformational and reactive programs and systems. A reactive program is a program whose role is to maintain
an ongoing interaction with its environment rather than to compute some final value on termination (as in the
case of transformational programs). A fundamental element in reactive programs is that of concurrency. By
definition, a reactive program runs concurrently with its environment. A reactive program is often strongly
intertwined with the hardware system that it controls. The software component is then considered as an integrated
part of the whole system referred to as “embedded”. Hence, the notion of a reactive program is sometimes
considered more generally as a reactive system and there is no preferred a sharp distinction between the program
and the system that it controls. In fact, the most of proposed techniques, with very few changes, are applicable
and have been successfully used for digital circuit specification and verification (Manna Z. and Pnueli A. 1992,
1995).

The main part of the Manna and Pnueli’s generic model of reactive systems is given by a basic transition
system. Any such system is considered as a quadruple including a finite set of flexible state variables (i.e. data or
control variables which may assume different values in different states), a set of states, a finite set of transitions,
and an initial condition. Next the above basic computational model is completed by introducing two different
notions of transition fairness (called weak and strong fairness) representing some additional restrictions on the
computations allowed by this model (justice and compassion requirements, respectively). This way, any
computations that do not correspond to actual executions of real concurrent programs are excluded. The obtained
model containing two additional subsets of transitions (justice and compassion sets of transitions) is said to be a
fair transition system.

The behavioural level for describing semantics of reactive systems is assumed below. And hence, the
semantics of any such system is identified with its behaviour and represented by the set of computations.
Subsequently, any program is interpreted as a generator of a set of computations™”.

" The usefulness of (linear) temporal logic for specifying global properties of concurrent systems for the future fragment. The advisability
of using past modalities was introduced in (Lichtenstein O. et al. 1985). Other earlier works: (Kroger F. 1977) and (Moszkowski B. 1983),
see: file:///F:/Temporal%20predicate%20calculus/paper%206.pdf.

¥ Zohar Manna (1939 — 2018), Amir Pnueli (1941 —2009).

¥ An extension of this system by additional axioms and rules, to deal with the first-order elements such as: variables, equality and
quantification is given in Subsection 4.2 (temporal predicate calculus).

§ In fact the variables are partitioned into rigid and flexible ones. A rigid variable must have the same value in all states of computation.
Rigid data variables do not appear in the program itself and they are used to relate values at different states in the sequence. All state variables
of transition systems are flexible.

" This interpretation is related to the theory of Pawlak’s machines (Pawlak Z. 1971)
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The Manna and Pnueli’s temporal logic can be considered as an appropriate, and at the same time convenient
language for specifying the dynamic behaviour of reactive programs and describing their properties (the
interaction either between a program and its environment or between concurrent processes within a program).
This language defines predicates over infinite sequences of states. Hence, any temporal logic formula is (in
general) satisfied by some sequences and not satisfied by some other sequences and this formula, interpreted over
a computation, will express a property related to this computation.

Let p be a property required for a given program P. We shall say that p is a valid property of P iff p is
true of all computations generated by P. It can be observed that the finite set of all required properties related to
P can be considered as a specification of P. And this approach enjoys the important advantage of incrementality.
Moreover, this notion viewed as a set (or list) of properties can be used to any other program requiring the same
set. In fact, a specification rarely specifies an unique program. Next we shall say that P has a valid specification
or equivalently that P is an acceptable solution iff all required properties are valid. And hence, in accordance
with Theorem 1.23 of Subsection 1.5, the specification validity of a reactive program should be a logical
consequence wrt the a priori required properties associated with this program.

Example 2.11 (Manna Z. and Pnueli A. 1992)

Consider a program P implementing mutual exclusion between two processes P; and P,. The following
example properties of computations of P can be expressed in temporal logic.

(po) For all states of computation , it is never the case that P; and P, occupy their critical sections at the
same state.

(p1) If a computation o contains a state at position j > 0 in which P; is waiting to enter the critical
section then o also contains a state at position k > j in which P; is inside the critical section.

(p2) The same requirement as p; but for process P».

In other words, here two processes request one distributed resource. At any time, only one of the processes at
the most is allowed to use the resource.

Let po, p1 and p> be valid properties of a program P. Hence, the compound property po A pi A p2 is

valid and P should be considered as an acceptable solution of the mutual exclusion problem. o

Let Sat(p) =4 {o /o satisfy p} and Comp(P) =4 {c /o is a computation of P}. The following definition
was introduced.
Definition 2.8

We shall say that P implements the single specification p or P satisfies p iff Comp(P) < Sat(p).

Corollary 2.7
Let {po, pi, ... , pn-1} be a specification of P. If this specification is implemented by P then Comp(P)

n—1

c O Sat(p,)-

Proof:

Assume that all single specifications p; are implemented by P. And so, by Definition 2.8 it follows that
Vie {01,..n-1} (Comp(P) < Sat(pi)). But the following implication is a thesis:* Vi e {0,1,...,n—1}

(Comp(P) < Sat(p;))) = Comp(P) < HSat(pl). Hence, the proof is obtained immediately by using '~ C'. o

Vi(Xe X)) =>Xc¢c (X, : see Subsection 5.3 of Chapter II.
1
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The main advantage of the Manna and Pnueli’s temporal logic is the possibility of obtaining a succinct and
natural expression of frequently occurring program properties using a set of special operators (called below
functors). The proposed language of temporal logic is built from a state language, used to construct state
formulae and a set of logical and temporal functors. A state formula can be evaluated at a certain position j > 0
in a sequence G and it expresses properties of the state s; occurring at this position. The vocabulary 7 of the
state language consists of a countable set of typed data and control variables. The data variables range over data
domains provided in the programming language, such as Booleans, integers, lists and sets. The control variables
assume as values locations in programs. The type of each variable indicates the domain over which this variable
ranges. The Boolean variables are usually referred to as propositions. In addition to the variables of 7 there are
also assumed constants, functions and predicates (considered as concrete individual elements). An example
semantics of some introduced constructs is given below.

Let V € 7. Astate s over V is defined as an interpretation that assigns to each variable u € V a value
from the appropriate domain, denoted by s[u]. A model ¢ over V is an infinite sequence of the form o: so, si,
S2, ..., where each s; is a state over V.

For any state s and expression e over V, the value of an expression e at s, denoted by s[e] is defined
inductively as follows: (1) the value of any variable x € V (possibly Boolean) is s[x] and (2) the value of
an expression f(ei, €, ... ,em), i.€. s[f(e1, €2, ... ,em)] =ar f(s[e1], s[e2], ..., s[em])-

The logical value of a formula of classical logic ¢ over a state s, denoted by s[¢], is defined as follows: (1)
the logical value of any atomic formula s[P(ei, €2, ... , em)] =ar P(s[e1], s[e2], ..., s[em]) and (2) the logical
values of any propositional formulae ¢ and : s[~ @] =ar ~ s[@], s[@ o y] =4 s[e] o s[y], for o € {A, vV,
=, &)

Let s and s’ be two states over V and x € V. We shall say that s' isa x-variant of s iff s'[y] = s[y]
(forany y € V — {x}). Any (propositional) state formulae ¢ and y over V are evaluated as follows: s IF
¢ iff s[e@] = true, where 's I ¢ denotes '@ is true or holds at s'. Obviously, the last two-argument
predicate can be interpreted as a binary relation (called a satisfaction relation). And hence, in the case that s[¢]
= true we shall say that s satisfies ¢ and s is said to be a ¢-state. In a similar way: s I ~¢ iff s It @
and s IF (¢ v y) iff (s F @) v (s Ik y). The remaining logical functors can be expressed in terms of
negation and disjunction and this is left to the reader (the quantification is omitted here: see Subsection 4.2 of
Chapter II). Next any formula ¢ is said to be a state-satisfiable iff 3s (s It ¢ ). And @ is state-valid iff Vs
(s = @ ). We shall say that ¢ and y are state-equivalent iff Vs ((s IF ¢) < (s Ik y)) (or equivalently: Vs
(s IE (@ & w)). Itis sufficient to consider in these definitions only states over V that contain only the variables

appearing in .

Example 2.12

Let a,b,c € Z (the set of integer numbers) and x € V be an integer variable. Assume that b =4 a + 1
and ¢ =¢r b + 1. The formula ¢ =4 (a < X) A (X < ¢),inshort: a < X < c, is state-satisfiable for s: (x: b)
since s = @. On the other hand, the formula vy =¢ ~((a < x < b) v (b < x < ¢)) is state-valid since the

disjunction (a < x < b) v (b < x < ¢) is false in all states. It can be observed that ¢ and y =4¢ x = b are
state-equivalent, i.e. ¢ < 7y is state-valid. o

The above notions of state-satisfiability, state-validity and state-equivalence can be restricted to some subset
of states. Assume that C is a set of sequences, e.g. C may be the set of computations Comp(P) related to a
program P. We shall say that a state s is C-accessible iff 36 € C3j =2 0 ((6 = S0,S1, .0 » Sjp ... ) A (s =
sj)). Let now ¢ and y be two state formulac. We shall say that ¢ is C-state-satisfiable iff 3s ((s is C-
accessible) A (s Ik @)). Similarly, ¢ is C-state-valid iff ¥V s ((s is C-accessible) = (s IE ¢)). The formulae

¢ and y are C-state-equivalent iff Vs ((s is C-accessible) = ((s IF @) < (s |E y))).

In accordance with the proposed Manna and Pnueli’s language of temporal logic, a temporal formula is
constructed from state formulae to which are applied some temporal functors, Boolean connectives and
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quantification. The proposed set of temporal functors is partitioned into two classes: future and past functors”.
The interpretation of any temporal formula is based on the notion of a formula ¢ holding at a position j,j > 0,
in a sequence o, denoted by (c,j) = ¢, where o: so, S, ..., Sj, ... . And then (o)) E ¢ iff Ij > 0 (s; IF @).

Hence: (o,j) F ~o iff (o)) ¥ ¢ and (o,)) F (0o v y) iff (((c)) E ¢) Vv ((c)) E v)). The extension
of these definitions to other logical functors is left to the reader.

A more formal inductive definition of the notion of a temporal propositional formula is omitted here. As an
example, this definition would be very similar to Definition 2.6 (a modal propositional formula), having some
modification in step (2) wrt the introduced below future and past functors. And so, the future functors are first
presented.

Assume that ¢ is a temporal propositional formula. Then such formula is also 0@, read as 'next ¢'.The
semantics of this formula is defined as follows: (c,j) E o¢ iff (o,j+ 1) E ¢,i.e. 0¢p holds at position j iff
¢ holds at the next position j + 17.

An illustration of using the last temporal functor are the next two examples. As in the case of modal or
deontic logic systems, the priorities of the new introduced temporal functors can be introduced in a natural way.
Obviously, any such functor should bind more strongly than the classical two-argument conjunction,
disjunction, implication and equivalence. The elementary state formulae are denoted below by p, q, etc. And any
such formula is related to the notion of a propositional variable. The verification process described below is very
similar to the classical Hilbert’s zero-one verification method (see Subsection 1.4). However, this verification
will require the use of the above definition of 'O" by considering a pair of adjacent positions in o, e.g. j = k
and j = k+ 1. Provided there is no ambiguity, instead of 0 and 1 (reserved for positions) the logical constants
F and T are used.

Example 2.13

state formula k k+1
p T F
~p F T
Oop F
O~p T
~Oop T =

The following formula is satisfied: ~ Oop < © ~ p. To check this property, we have 2 -2 = 4 possible

cases. Since any pair of values can be presented as vertex of a graph, we can obtain the clique K, (Berge C
1973). The verification process related to the case p =¢r T at j = k and p =4 F at j = k+ 1 is presented
in the above given table. Any other case can be considered in a similar way (left to the reader). And this property
can be generalised for any state formula . o

Example 2.14

Consider the following formula: o(p v q) < op v 0q. The set of all possible logical values for the
above formulac p and q should be taken into account for each of these two adjacent positions. And hence, we
have 4 -4 = 16 possible cases to be analysed (corresponding to the clique Ka4).

The verification related to the case (p, q) =ar (T, F) at j = k and (p,q) =ar (F,T) at j = k+1 is
presented in table given below. Any other case can be considered in a similar way (left to the reader). Since

* As an extension of Prior’s tense logic system in the area of computer science

 This approach is very similar to the notion of an iterative array model (for synchronous sequential machines) where positions are
known as 'time frames' (Breuer M.A. and Friedman A.D 1977).
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disjunction is associative the above considered formula can be extended for more than two, but finite number of,
arguments.

A similar analysis is related to the following state formula: o(p A q) & Op A 0Oq (left to the reader). And
hence, the temporal functor O is distributive wrt the classical disjunction and conjunction. And this can be

generalised for arbitrary state formulae ¢ and y and also for arbitrary (finite) linear combinations of such
connectives. o

state formula k k+1

p T F
q F T
pVvq T T

Oop F

0q T

o(p v 9 T
op v oq T B

The following rules can be obtained.

(60)  Rule of negating a temporal next functor
(denoted below by "NoO’):

~0
No: ?

o~0
(61) Distributive property rule for temporal next functor of
disjunction (denoted below by "O0A"):

o(¢ Vv V)
OA :

.O(pv oy

(62) Distributive property rule for temporal next functor of
conjunction (denoted below by "oK"):

o(e A vy)
okK: -
op A Oy
The following De Morgan’s laws are satisfied (the proof of T 2.92 is left to the reader).
Thesis 2.91

~o(p v q < ~0p A~0q

Proof:
~opvyqg < O~(pVvQ {No}
& O(~p A~Q) {NA, SR}
& O~p AO~(q {oK}
& ~O0p A~0q.o  {No,SR}
Thesis 2.92

~0(pAQq < ~O0p V~O0Q.o
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In accordance with the last two theses, the following rules are obtained.

(63) De Morgan’s law for temporal next functor of
disjunction (denoted below by NOA"):

~o(p v vy)
NOA : .
~0(p A ~OVy

(64) De Morgan’s law for temporal next functor of
conjunction (denoted below by 'NoK’):

~0(p A W)
NoK : I
~00Q vV ~0oy

The next two functors are very similar to the modal functors of necessity and possibility. Hence, provided
there is no ambiguity, the same designations are used. The 'always" functor (known also as 'henceforth' or 'from
now on' functor) is first presented.

Let @ be a temporal propositional formula. Such formula is also O ¢, read as "always @' (or "henceforth @").
Its semantics is defined as follows: (c,j) = O¢ iff Vk(kk > j = ((c.k) F ¢)),i.e.c. O¢ holdsat j iff ¢
holds at j and all following positions 'from now on' and hence the set of positions satisfying O ¢ in a sequence
is upwards closed. Consequently, the following implication is satisfied (if O ¢ holds at j): O ¢ = o, read as
'if always @ then ¢’ (similarly to the Godel’s axiom G1).

If ¢ is a temporal formula, then so is <@, read as ‘eventually @' (or 'sometimes @'). Its semantics is as
follows: (o,j) E <@ iff Ik > j((c,k) = ¢ ). The set of positions satisfying <¢ in a sequence is
downwards closed, i.e. if ¢¢ holds at j, then it also holds at any k such that 0 < k < j. As in modal logic,
this functor is dual to the previous one, i.e. ¢¢ holds at j iff O~ ¢ does not hold there. And these two future
functors are mutually dual and any of these two connectives can be expressed by the another one. In fact, directly

by the above two definitions and in accordance with De Morgan’s laws for quantifiers we have: ~ ké'/_ ok) < k\Y/]

~ ¢(k), where ¢(k) =4 '(0,k) = @' (see Subsection 3.3 of the next Chapter II). Here, for convenience, instead of
the standard quantifiers their equivalent bounded versions are used, i.e. restricted to the range of k.

According to the existing dependencies between some modal and temporal expressions, some theses in modal
logic can be in a natural way interpreted as theses in temporal logic, e.g. 0@ = <o, ie. T 2.18, T 2.29 (G2), De

Morgan’s laws, and so on. An example is illustrated by the next thesis (here, the set of all k such that k > j is
considered as an universe and denoted by J).

Thesis 2.93

dp = <p

Proof:

(1y op {a}

@ ~°p {aip}

3) k\jj (k) faf. o, SR : 1}
4 ~3 oK) {df.'o", SR : 2}

k>j

5) V ~ (k) {N3*: 4}

k2j
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(6) ko> j = d(ko) {-V"3}
7 ko> j = ~ d(ko) {-V"5}
& ko> j {koe I}
Q) d(ko) {-C:6,8}
10)  ~ d(ko) {-C:7,8}

contr. o {9, 10}
Thesis 2.94

Op A q) & Op A Oq

Proof:

Since (O(p A q) < Op A 0q) < (o)) FO@(@ A q < ((o)) =E0Op A (o,) E OqQ)we can obtain:
(o) FOP A q = ij((G’k) E@ A Q) {df. '0'}
S V((ck) Ep) A0k Fq) 4 DEra]
S V(@ Ep A T(ck Fq  {rYBOACK S ¥ BRAYCH
< (o)) FOp A (o)) FOQ. o {df. 'o0'}
Here A(x), B(x) and C(x) denote one-argument predicates. The proofs of the next theses is very similar to

the proof of the above T 2.94 and hence it is left to the reader. And so, the first-order predicate calculus should be
used (bounded quantifiers: see: Subsection 3.3, Chapter II), e.g. the proof of T 2.99 given below is related to the

following thesis: ( A%'X) B(x) = A%'X) Cx)= A%'X)(B(X) = C(x)).

Thesis 2.95
S(p v Q) & Op Vv ©Qq. o

Thesis 2.96

OpvioOq = Op vV Q.o

Thesis 2.97

OS(p A Q) = Op A ©Q.o

Thesis 2.98

Op = q = (Op = 0Qg).o

Thesis 2.99
(¢p = ¢q) = o(p = 9=

De Morgan’s laws are presented as follows.

Thesis 2.100

~O0(pAqQ < ~0p Vv ~0q.0o

Thesis 2.101
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~o(pVvqQ S ~OpA~3SQao

Obviously, as in the previous considerations, T 2.93 — T 2.101 can be generalised for any temporal formulae
(this is omitted).

Let now ¢ and y be two temporal formulae. Then such formula is also ¢ U y, read as "¢ until y'. Since
oy predicts the eventual occurrence of y and O ¢ states that ¢ will hold continuously from now on, then the
above until-formula will combine these two statements by predicting the eventual occurrence of v and stating
that ¢ holds continuously at least until the (first) occurrence of . The semantics of this formula is defined as
follows: (o) E Uy iff 3k > j((ok) Fy) A Vi(j <i<k = (o) Fo¢).If oUy holdsat j
then also ¢y holds there, i.e. since 'Ik > j((c,k) Fy) A ViG<i<k = (o) Fo) =3Ik >j
((o,k) &= v )’ is a thesis, the following implication is satisfied.

Thesis 2.102

pUq = <>q.D

The last of the presented class of future functors is the unless (waiting-for) functor W introduced as follows:
(c,)) E oWy iff ((o)) EoUw) v ((o,)) E Oo), where the formula ¢ Wy is read as '@ unless y' (or '@
waiting-for y'). This weaker property states that ¢ holds continuously either until the next occurrence of v or
throughout the sequence.

The above Manna and Pnueli’s set of basic future functors can be completed by introducing the following
one: @/, read as 'first ¢ then y'. The proposed semantics can be as follows: (o,j) E o/y iff 3k Fi(j < k

<i) A ((o.k) Eo) A ((0,) Ewy)).Since IkTi(G <k <i) A ((c,k) Eo) A ((0,0) Ewy)) iff Ik >
j((ok) E@) A Ji > k((c,i) F y) then by assuming (c,j) = ¢/ we canobtain 3k > j((c,k) E @)
and hence the following thesis is satisfied.

Thesis 2.103

(P/q) = ©p.o
The last functor is transitive and we have (the proof is left to the reader).

Thesis 2.104
(p/q) A (q/1) = (p/1). 0

The above presented future temporal functors require analysis also of forward positions of the considered
program computation o. A similar analysis related also to the backward positions of & corresponds to the past
temporal functors. A brief presentation of the Manna and Pnueli’s past functors is given below. It is first
presented the one-argument functor previous, denoted by 'o".

Let ¢ be a temporal propositional formula. And so, such formula is also ©¢, read as ‘previously @'. The
following semantics is introduced: (o,)) E o¢ iff (G > 0) A (o,j—1) = ¢. And hence, ©¢ is false at
position 0.

The properties of the temporal previous functor are very similar to these associated with the functor 'next'.
And so we can obtain (forany j > 0): ~op < o~p, o(pv qQ & op v oq and o(p A q) & ©p A

"Ix(AKX) A Ty (B(y) < IxTy(AX) A B(y)):see Subsection 3.3 of Chapter II.



145

oq, e.g. the verification process of the last formula related to the case (p,q) =4 (T,F) at j = k—1 and (p,
q) =« (F, T) at j = k (k > 0) is presented in table given below.

state formula k-1

p

q

[ | =

pAqg

©p

©q

o(p A q)

R A N

ep A oq

The following De Morgan’s laws are satisfied (for any j > 0: the proofis left to the reader).

Thesis 2.105

~o(pvq < ~0p A~0OQ.o

Thesis 2.106
~o(p A Q) & ~O0p Vv~0OQ.o

The properties of the next two past functors are very similar to the corresponding future functors ‘a/ways' and
‘eventually'. The functor 'has-always-been', denoted by 'E'" is introduced as follows: (c,)) F e iff V k(0 <

k<j = ((o,k) E ¢)),ie. @e holds at j iff ¢ holds at j and all preceding positions. And hence, the set of
positions satisfying @@ is downwards closed.

The functor 'once’, denoted by '@ is specified as follows: (o)) E ¢¢ iff 3k (0 < k <)) A ((0,k) E
¢)). And so, ®¢ holds at j iff ¢ holds at j or some preceding position. And this functor is also dual to the

previous one, i.e. @ holds at j iff @~ ¢ does not hold there, i.e. @ and @ are mutually dual.

Example 2.15

An example evaluation of the last two past functors is presented in table given below.

j o1 |23 |4]5
X 1|2]5]2]3]4
x=3 F|F|F|F|T]|F
B(x <3) T|T|F|F|F|F
®(x<3) T|{T|T|T|T]|T
~Bx<3) | F|F|T|T|T]|T
(x> 3) F|F|T|T|T]|T
@(x=3) F|F|F|F|T]|T
®(x #3) T|T|T|T|T]|T
B(x =3) F|F|F|F|F|F
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~B(x=3) T|T|T|T|T]|T

It can be observed that ~E(x=3) < ¢(x#3) and ~E(x<3) < ¢(x>3).0

The semantics of the next past functor 'since’, denoted by 'S’ is defined as follows: (c,j) &= @Sy iff 3k ((0
Sk<j) Aok BEy) AVi(k <i=2])) = ((0,0) E @)). And directly by this definition we have.

Thesis 2.107

pSq = @Q.o

A weaker version of the above functor since is the functor 'back-to', denoted by ‘B’ and defined as follows:
(0,)) E @By iff either (o,j) = e or (c.,)) E @Sw.

The above introduced version of the functor ' previous ' can be considered as a strong one, i.e. ©¢ is false at
position 0. In a similar manner as in the case of the functors "until' and 'since’, the following weaker version of
the functor 'previous’ was introduced, read as ‘weak previous': (c,j) = 6¢ iff either j = 0 or (j > 0) A
(0,j — 1) E 0). And hence, &¢ is always true at the first position. At all other positions these two versions are
equivalent, i.e. ©¢p < S¢ (for any temporal propositional formula ).

The notion of the Manna and Pnueli’s temporal propositional formula is summarised by the next inductive
definition.

Definition 2.9
A temporal propositional formula is:
1. Any propositional variable,

2. If ¢ and y are some temporal propositional formulae, then such formulae are also: ~ (@), (¢) A (W), (@)
VW), (@) = (), (@) <), 0(0), (@), 8 (), " (9), B(P), ©(0), ¢(¢), (@) U(Y), (@) S (¥), (@) W
(y), and (@) B (y),

3. Every temporal propositional formula in this propositional calculus either is a propositional variable or is
formed from propositional variables by a single or multiple application of rule (2).

The notions of satisfiability and validity (see Definition 1.5, Subsection 1.4) can be extended to the case of a
given temporal formula ¢ (Manna Z. and Pnueli A. 1992). And so, we shall say that (c,j) & ¢ iff the model

o satisfies @ at position j, j is said to be a ¢@-position. The model o satisfies ¢ (or equivalently: the program
computation ¢ is a ¢@-model), i.e. ¢ E ¢ iff (5,0) = ¢. Let C be the set of computations Comp(P) related
to a program P. Then we shall say that ¢ is C-satisfiable iff 306 € C(c E ¢) oralso C-valid iff Vo € C
(o = @). Moreover, we shall say that ¢ and  are equivalent iff ¢ < y is valid (have the same truth value at
the first position of every model) and also ¢ and v are congruent iff o(p < ) is valid (have the same
truth value in all positions of every model). The following abbreviations were introduced: ¢ => y for o (@
= y) and ¢ <> y for o( @ < vy ), known in modal logic as strict implication and strict equivalence,
respectively”.

Let Sats (@) =4 {j/ (0,)) = ¢ }. And so, we can obtain: o satisfies ¢ => vy iff Sats (@) S Sats(y)
and o satisfies ¢ <<> vy iff Sats (¢) = Sats (V).

* Originally denoted as: ¢ = y foro(@ = y) and ¢ < y for (@ < y)
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The temporal interpretation of SR is related to the above two notions of formulae equivalence and formulae
congruence.

And so, the corresponding rules of substitution for equivalence and for congruence are introduced as follows:
1. If ¢ and y are equivalent then y(p) and x(y) are equivalent (the state substitutivity case) and
2. If @ and y are congruent then y(¢p) and y(y) are congruent (the temporal substitutivity case).
For example, since 0 q <&>~0 ~q then pU(Oq) <&> p U (~0 ~q), similarly: ¢(p v (~0q))
<&> 0p v ©(0 ~q) for ~0q <> 0 ~q, etc.

A state formula can be considered as a formula without any temporal functors. Moreover, a past (a future)
formula can be considered as a formula that contains no future (past) functors. The Manna and Pnueli’s basic set
of temporal functors is presented as follows: ~, v, O, W, &, B. And hence, the remaining temporal functors can
be expressed using the basic ones as it is shown below.

op <&>~8~p
Up <&> pWF
Op <&> pBF
Op <> ~0~p
ep <> ~d~p
pUq <&> (pWQ) A ©q
pSq <=> (pBg) A @q

And so, to prove a certain property it is sufficient to consider only the above set of basic functors and all of
their Boolean combinations.

In accordance with the above considerations, the present is considered to be a part of both the future and the
past. A strict basic set of temporal functors, in which the present is neither a part of the future nor of the past, was
also presented. Moreover, some basic properties of these temporal functors and corresponding inference rules
were proposed.

And so, the proposed by Manna Z. and Pnueli A. (1992, 1995) proof system for temporal logic uses some
sets of future and past axioms, primitive (originally called 'basic’) and also derived inference rules. Hence, the
axiomatic system style was used. To obtain a proof system with a small number of temporal functors, as basic the
above presented four functors (0, W, &, B) were accepted. The following future and past axioms were proposed.

(FA) dp = p (PAl) ©p => &p

(FA2) O ~p <&> ~0p PA2) 6(p = q) <&> ép = 8q
(FA3) O(p = q) <&> O0p = 0Oq ®A3) B(p = q) => (Ip = BQ)
Fa4) O( = q =>(@p =00  (pa4) Op = B6p

(FA5) Op = OOp (PAS) (p => ép) = (p => Op)
(FA6) (p => Op) = (p => Op) (PA6) PBq <> q Vv p A S(pBQ)

(FA7) pWq <&>qvVv paAolpWwWq (A7) &F
(FA8) Op => pWq

For example, in accordance with FA1 if p holds at all positions, then in particular p holds at the first
position. FA2 corresponds to the self-dual property of the next functor and this functor is also distributive wrt
implication (FA3). FAS (if always p then always next p) is in accordance with the used definitions for O

and O. Axiom FA7 represents a future expansion formula, i.e. p W q holds at position j iff either q holds at
j or p holdsat j and pw q holds at j+ 1. Similarly e.g. FA8 claims O p as one of the ways to satisfy pW q

at j (since p holds at j and all following positions). The above presented past axioms are almost symmetric wrt
the future ones. For example, PA6 represents a past expansion formula, i.e. p B q holds at position j iff either
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q holdsat j or p holdsat j and p B q holds at j — 1, if it exists. Axiom PA7 states that the first position of
every sequence satisfies SF. By the above introduced semantics of the weak previous functor it follows that (o,j)
= SF iff j = 0.

In general, a future (a past) expansion formula expresses the value of a future (past) functor at position j as a

function of the values of its arguments at j and the value of the functor itself at j+ 1 (at j— 1, if it exists). The
following expansion formulae for the other future functors were given (Manna Z. And Pnueli A. 1992).

Op <&>p A OUp
Op <&> p v OO
puq <> qvpAaopUuq

Some past expansion formulae for other past functors were also introduced, e.g. @p <&> p A SMEp, le.
Op holds at position j iff p holdsat j and T@p holds at j— 1, if it exists. Similar expressions were given for
¢p and p S q (are symmetric to the above future expansion formulae: left to the reader). The obtained
expansion formulae are provable, e.g. the proof of Ep <<> p A Sdp follows immediately in accordance
with the used definitions for @ and &.

It can be observed that any such future (past) expansion formula is provable in this system (a more formal
treatment is omitted).

The following two mixed axioms were also presented.

(FA9) p => O6p
(PA8) P => 60p

For example, in accordance with FA9, if p holds at position j, then going forwards one step to j+ 1 and
then backwards one step, the same property for p at j is obtained.

In a natural manner the above axioms can be generalised for any two temporal propositional formulae ¢ and
y. The state-tautology axiom (denoted by TAU) was introduced as follows.

Let ¢ be a state-valid formula. Then as a new proof line we can introduce I ¢. The last axiom shows the
link between state validity and temporal validity in this deductive system. In fact, 'l ¢ requires the state
validity of @, i.e. ¢ holds on every state. On the other hand, "= ¢’ requires validity of ¢, i.e. ¢ to hold at the

first state (of any sequence of states G: so, si, S2, ..., i.e. of every model). Obviously, as in the case of modal
logic, any thesis of the classical propositional calculus is a state-valid in this system.

Primitive rules”

Any state-valid formula I ¢ , obtained by axiom TAU can be transformed into temporally valid one. And
hence the following generalisation rule (in short: GEN) was introduced.

IE ¢
GEN :

EO0

* Originally called “‘basic inference rules”
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And so, if ¢ is state-valid then O ¢ is temporally valid. The opposite implication originally called
“specialisation” (in short: SPEC) is also satisfied.

E O
SPEC :

0]

Since ¢ is state-valid iff O ¢ is temporally valid, the main connective is two-sided binding. And hence,
without loss of generality, GEN and SPEC can be reduced to only one rule.

%

INST : m

This instantiation rule (in short: INST) allows to infer the instantiated formula x[¢] from the more general
%x- We observe that INST is related to RR (the rule of definitional replacement of one formula by another:
Subsection 1.7).

And finally, the rule of omitting an implication '— C' is used (i.e. modus ponens, originally denoted by
'MP’). Here the main implication is represented in a more general form (related to the notion of logical
consequence: see T 1.23 of Subsection 1.5). An illustration of using '— C" is the following thesis.

Thesis 2.108

Op =pWq

Proof:

() Bp=>pWq {FAS8}

2) B@p=pwWq {df. '=>": 1}

3 B@Ep=pWqg = (@p=pWq) { FAI, INST}
Op = pWq.o {(-C:2,3}

In a similar way, e.g. op = &p (the proof is left to the reader). As in the case of classical propositional

calculus, any proof in this system can be interpreted as a process of joining new lines by using some axioms,
primitive or derived rules and/or other theses in accordance with the used assumptions. Some selected derived
rules of the Manna-Pnueli proof system are presented below”.

Derived rules

The following temporalisation rule can be obtained by assuming I+ p and then using in turn GEN, FA1 and
'—C' (in short: TEMP: this is left to the reader).

IE ¢
TEMP: ——
Eo

The next derived rule of particularisation (in short: PAR) is represented as follows.

" Originally, the notions of “conditional proof” and “premise” were used (instead of the notions of assumptional proof and assumption,
respectively).
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oo
PAR: ——
¢

The proof of PAR can be obtained by assuming 0O p, FA1 and '— C' (left to the reader). PAR corresponds
to the rule - 0" used in modal logic. For example, according to Toll (see T 1.6 of Subsection 1.3) the following
implication is satisfied.

Thesis 2.109

(Op= ¢q9 A~0q = ~0Op

Proof:
() E@E= @ A~q = ~p {TAU}
2 BP=9 A~q = ~p) {GEN : 1}
3 O{@p =909 A~0q = ~0Op) {INST : 2}
(Op= ¢9 A~%q = ~0Op.o {PAR : 3}

Let now @i, @2, ... , @n, ¥ be propositional state formulac and y be a logical consequence wrt @1, @2, ... ,
¢n". Since @I A Q2 A...AQn = 1V is a thesis, i.e. state-valid, then having lines @1, @2, ..., @ to our proof we
can join W (using '+ K' and '— C'). To abbreviate this process, in the Manna-Pnueli proof system was

introduced a special derived rule called “propositional reasoning” (in short: PR) as it is shown below.

(Pla (PZ, LRI (Pn

PR:
]
The following formula is a classical logic thesis (the proof is left to the reader).

@eFvparn=(q=p

And hence, the last formula is state-valid, i.e. IF(q & F v p A 1) = (q@ = p). Itisused in the proof of
the next thesis.

Thesis 2.110

pBF = p

Proof:

(1) PBF <&>F v pASpPBF)  (PA6: q=4F}

2) PBF S FvpnaGSpBsF) {df. '<o>', PAR : 1}
pBF = p.o {PR : 2}

In accordance with T 2.110, the above text “PR :2” is equivalent to the following one: “{i=(q <& F v p A 1)
= (q@ = p),q=upBF, r=4S@pBF), TEMP, INST, — C:2}”. Inasimilar way pWF = p’ (left to the reader).

The following thesis is satisfied.

Thesis 2.111

“see T 1.23 of Subsection 1.5
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PrLAPACADPE=>q = @piAOpP2A ... ADOpa = 0OQ)

Proof:

(1) Pt A P2 Ao A Pn => Q
{a}

) O@(@i1 A P2 Ao A Pn)

(3) 0@ A P2 AweA Po= Q) {df. '=>" 1}

“4) 01 Ap2A..Apn) = 0¢q (—C:T298/¢ = pi AP A A o
and y =4 q: 3}

0q.= {(-C:2,4}

Obviously, proof line (4) of the last thesis can be obtained by using in turn FA4, df. '=>" and PAR (left to
the reader). Consequently, the following derived rule of entailment” omission of implication is obtained. This rule
was originally called “entailment modus ponens”( in short: E-MP). Equivalently bellow is used “E(— C)”.

Pl A P2 ACA Py D>
E(-C): ROl

O ¢2

O @n

=R

The following proof of the next rule “entailment transitivity” (in short: E-TRNS) was given. For
convenience instead of E-TRNS, the abbreviation “ETC”, i.e. entailment transitivity for implication, is used
below.

Thesis 2.112

Pp=2>99A(@=>1) =P =>>1)

Proof:

(1 p=>q (a)

2 q=>r

3 BlP=9 {df. '=>": 1}

4 B@=r {df. '=>": 2}

35 Fe=29dAr@=>1=>(@=>r1 {TAU}

6 O=>adAr@=1=((p=1) {GEN : 5}

7 PG=>dAr@=>1=>>p=>1 {df. '=>": 6}

8 oO@=r {E(-C):3,4,7}
p =>T.o {df. '=>": 8}

The proof of T 2.112 can be realised without using E(— C): see T 2.33 (modal logic: left to the reader).
Consequently, the following derived rule is obtained.

" The notion of entailment is used in (at least) three meanings: implication connective (having some properties), the name of the logical
system characterising this connective as well as the area in which this system is defined (see Subsection 2.4: Relevance logic).
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p=>4q
ETC: 9 =>T71

p=>>r

In accordance with rule PR, @i A @2 A ... A @n = W is a thesis (i.e. state-valid). Hence, using in turn
GEN, FA4, df. '=>", PAR, T 2.94 (extended for more than two formulae) and SR, we can obtain.

OpAO@A...AO0n = OV

We observe that the last formula is similar to the notion of modal logical consequence (see modal logic). And
so, as a result, the rule of “entailment propositional reasoning” (in short: E-PR) can be obtained. Below is used
the abbreviation “EPR”.

O ¢, O0¢2,...,0 0@

EPR :
=R

And so, using EPR the proof of T 2.112 can be reduced. In fact, we have a possibility of omitting proof
lines (5), (6) and (7).

The rule of omitting a strict equivalence in the Manna-Pnueli proof system is the same as in the case of modal
logic (see rule ‘— OSE"). In particular, the following thesis is satisfied.

Thesis 2.113
(p<=>q = (p=>>q

Proof:

(1) p<e>q {a}

2 BPea {df. <> 1}

@) 0=~ @=Dp) {-~E,SR:2}

4 BP=>9Ar0@=Dp {T2.94:3}

5) o =9 (-K:4}
p=>4q.e {df.'=>" 5}

Thesis 2.114

o(p = q) <& Op = Oq

Proof:

°p = 9 < okpva {CR, SR}
& O~p VvV Ogq {OA : see Example 2.14: O(p v q) < Op v Oq}
& ~0pvVv oq { No, SR : see Example 2.13: ~Op < O ~p}
& op = oq.o (CR}

The following two theses are satisfied (the monotonicity property of a temporal next functor).
Thesis 2.115

(p => q = (op => 0oq)

Proof:



)
2
3)
“

p=>q {a}

o =9 {df. '=>": 1}

oo(p = q) {(—~C:FA5,2/9=4p = q'}
o(op = ©0q) {T2.114,SR: 3}

op => 0q.o {df. '=>": 4}

The proof of the next thesis is left to the reader.

Thesis 2.116

(p <> q) = (0p <&> 0Q). o

following two formulae are state-valid:

Subsection 1.2). The following thesis is satisfied.

Thesis 2.117

Op A Ep => Op

Proof:
(1) EFprgq=p {TAU}
2 O@Aq=p {GEN: 1}

(€))

O(Op A BOp = Op )  (INST:2/¢=4Op y=sBEp'}

op A Ep => Op.o {df. '=>": 3}

In a similar way we can obtain: Op A Ep => Op (left to the reader).

A. 1992).

Thesis 2.118

Op A Ep => 0Ep

Proof:

(1) ©eHp => oup {PAl/¢=y'ap'}

(2) ©edp => osoup {(~C:T2115,1/¢=y'00p,y=x6ap'}

(3) Bp => oenp {FA9 /9o=4'mp'}

(4) ©Bp => ocnp {ETC :2,3}

(5) ©Op A Ep => Op (T2.117}

(6) ©p A Bp => [p {similarly as in 5}

(7) ©Op A Bp => 06Hp {ETC : 4,6}

(8) (op A @p = Op) A (Op A Ep = 0S8HEpP) {T 1.5b : generalised for arbitrary ¢, y and n:
= (Op A Bp = Op A 08ED) by INST we have: ¢ =4 Op A Bp’, y =4 'Op’

(€))

and n=¢'06@p'}
(op A @p = Op) A (Op A Ep = 08HEp) {GEN,df '=>': 8/ 8is state-valid}
=> (Op A Ep = Op A 08ED)

(10) B (op A Ep = Op) {df. '=>": 5}
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Any (primitive or derived) rule of the classical propositional calculus is a state-valid formula. And hence, the

pAq=p and p A q = q (in accordance with '— K': see

To end with this Subsection, it is given below a proof of the following example formula (Manna Z. and Pnueli
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(11) O(op A Bp = 08mp) {df. '=>" 7}

(12) B(op A BOp = Op A OSHp) { E(-C):9,10,11}

(13) Op A Op => Op A OSUp {df. '=>"1 12}

(14) p A ©Op => Op {T2.113: @p <=> p A 63p /apast
expansion formula}

(15) o(p A éap) => onp {(—~C:T211514/ 9= p A 68 p’, v =g
'@p'}

(16) ©p A oémp => o(p A 6Ep) {T 2.115, Example 2.14: O(p A q) < Op A
oq /o=4¢'p, W=¢ 60", GEN, df. '3>‘}

(17) ©p A 06mEp => Obp {ETC : 15,16}

Op A HOp => OOp. o {ETC; 13,17}

The above presented Prior’s tense logic and the extension of this system in the area of computer science, i.e.
the Manna-Pnueli proof system, can be considered as two basic temporal logic systems. Other important such
systems have been also developed, e.g. interval temporal logic (reasoning about periods of time, see:
Moszkowski B. 1986), p-calculus and so on. Some introductory notions related to the theory of the modal p-
calculus are given below (for a more detailed information, see: Venema Y. 2008)".

Modal p-calculus and dynamic logic

We shall give first some introductory notions concerning sets and used below (see Subsection 5.2 of Chapter
IIT of the last work: Basic notions and definitions).

Let p < A x B bea binary relation, where A and B are two sets and apb <qr (a,b) € p (forany a €
A and b e B). By p! we shall denote the converse of p,ie. ap~'b <>¢r bpa. For X A we define p[X]

=4 {b € B/ agx (apb)} = B and p[x] =4 p[{x}] if X =4 {x} is asingleton. For Y < B the set
<p>Y =4 p[Y], while [p]Y =4 {a € A/ bYY (apb)} < A. Obviously, by omitting all a € A related to

B — Y we can obtain all the elements a € A related to Y. And hence: [p]Y = A — <p> (B = Y), where

'—" denotes set difference (the reader is invited to show this property).

The propositional modal p-calculus (in short: g-calculus) originates with Scott D.S. and J.W.de Bakker',
further developed by Hitchcock P. and Park D.M.R. (1973) and others. A more complete study was presented by
Kozen D.C. (1983). The results of the last work were mostly inspired by the work of Pratt V.R. (1981), in
particular the Pratt’s propositional Pu calculus.

In general, the propositional modal p-calculus is an extension of the classical propositional modal logic and it
can be considered as a multimodal system having two additional fixpoint operators: a least fixpoint operator |
and a greatest fixpoint operator v (more strictly: ‘ux” and 'vx’, where the variable x e P, see below). Such logic is
said to be fixed-point and it is used for description and verification of a special class of systems, called labelled
transition systems. Any such system can be considered as a process graph.

Let P be a set of proposition letters and D be a set of atomic actions (called also labels). The following
definition can be introduced (by P(S) it is denoted the power set of S, i.e. the set of all subsets of S: obviously @,
S € P(S)). The elements of P are denoted as: p, q, 1, X, y, 7, ... ,and the elements of D as: d,c, e, ... Below

we shall assume that p, g, r, ... are propositional variables, called here atomic propositions (and also any such
propositional formulae defined inductively: see Definition 1.1 of Subsection 1.1). On the other hand, the

" See also: The Free Encyclopaedia, The Wikimedia Foundation, Inc.
 Jaco W.de Bakker (1939 —2012)
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propositional letters X, y, z, ... are here considered as some fiee or bound variables of a formula ¢". The last
notions are similar to these ones, used in the first-order predicate logic wrt the introduced here (least and greatest)
fixpoint operators.

Definition 2.10

A (P,D)-(labelled) transition system or (P,D)-Kripke model is the following triple S =g (S,V,R), where: S
is a set of objects called states or points, V: P — P(S) isavaluation and R =g {ps < S x S/d € D} is
a family of binary accessibility relations’”. The pair (P, D) is said to be a type of S. The set of all d-successors
of s (i.e.all states t € S which are out-incident to s in pq) is defined as follows: pa[s] =ar {t € S / spat},
forany s € S. The system S is finitely branching (or image-finite) if pq[s] is finite (forany d € D and s
€ S). The notion of a pointed transition system or Kripke model is introduced as a pair (3, s), where s is a
designated state in S.

For convenience, the following alternative, coalgebraic representation of S can be obtained (Venema Y.
2008): instead of V equivalently the map ov: S — [P(P) can be used, assigning to each state s € S the
subset of atomic propositions that hold in s (i.e. which atomic propositions are true at each state). Similarly, any
binary relation p = S x S can be represented as amap p[-] : S — [P(S), mapping a state s € S to the
subset p[s] of its successors. And hence, the set R of binary accessibility relations can be seen as a map or :
S — P(S)P, where P(S)P is the set of all maps from D to [P(S).

As a consequence, any transition system S can be equivalently defined as a pair (S, o), where c: S —
P(P) x P(S)P such that o(s) =4 (ov(s), or(s)), forany s € S. Next,by K = KppS =4 P(P) x P(S)° we
shall denote the Kripke functor associated with D and P. Hence, (X,Y) € K iff X € P and Y =4 {Yq <
S/d e D}. Obviously, the last family Y corresponds in an unique way to some map hy € [P(S)P. In

particular, the Kripke models are sometimes referred as Kp pS - coalgebras or Kripke coalgebras. And so, any
state transition system S can be equivalently considered as a Kripke coalgebra.

Example 2.16

Let D =4 {di, d, d3} and S =4 {si1, s2}. Hence, P(S) = {2, {si1},{s2},{s1,82}}. Since D is finite, hy €
P(S)® may be represented as a vector, e.g. hy =4t ({s2},{s2},{s1,82}). Then, the following multifamily can be
obtained: Y = {{s2},{s2},{s1,8}}, where Y, = Y, = {s2} and Y, = {si,%2}. 0

The polymodal logic in D and P, in short: PML(D,P), introduced here can be considered as a generalization
of the basic modal logic system (called also ordinary or monomodal logic: see Definition 2.6, by assuming that
D is a singleton). And so, in the case of polymodal logic the modal functors of necessity and possibility are D-
indexed, i.e. instead of O ¢ and <¢¢ we have: Oa¢p and <4, respectively. The last two functors can be
interpreted using the corresponding accessibility relation pg. And hence, the notion of truth (or satisfaction) is
defined as follows.

Definition 2.11

" Provided there is no ambiguity, the originally notion “propositional variable” used for the free or bound variables is omitted here. In
fact, this notion is contradictory to the classical one, e.g. under Definition 1.1 of Subsection 1.1 (ShupeckilJ. and Borkowski L. 1967).

T It can be observed that the graph of S can be equivalently described by using the following ternary labelled transition relation:
¢ €S x D x 8, rather than the family R.
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Let S = (S, o) be a transition system of type (P, D). The satisfaction relation 'I' between states of S and

polymodal logic formulae can be defined inductively as follows (Venema Y. 2008)".

S,slFp
S,slF~p
S,sIFF

S,s T
S,sF9 Ay
S,slF vy
S, sl 0a@
S, sk Gag

<>df

<>df

df
df
<>df

<>df

s € V(p),
s ¢ V(p),
never,

always,
S,sl-¢@ and S, s -y,

S,sl-@ or S,s Iy,
S,ti-¢ forall t € pg[s],
S,tl- ¢ forsome t € pg[s].

Here, 'S, s I- @' denotes "¢ is true or holds at s'.

In accordance with the above considerations, we can obtain: S, s I- Oa @ < V[ ]( S, t - @ ). In the same
epyls

way: 5,8k 04 & . pa[ ]( S, t I- ¢ ). Hence, the following thesis (similar to T 2.93) can be obtained.
epyls

Thesis 2.119

S,8IF0ap = S,8IF Cd@ .o

Letnow [|9[]® =ar {s € S/S,s - @} be the meaning or extension of ¢ in S. We have: S,s - ¢ iff

s € [lo[]°. And hence, the above semantics of modal formulae was also (equivalently) given in terms of the
meaning [|@|]°. Such an approach is more suitable in the context of fixpoint operators.

[p[1®
[~ pl]® -
[IF1®

[T)®

o A w®
o v wI® =
[0aol]®
[[oap]® =

V(p),

S - V(p),

<,
S

llol]®

A [wlls,

loll® v [Jw®,
[palllol®,

(pa) [lolIS.

The state set S can be considered as an universe. Hence, in accordance with the last set equations, we can
obtain (forany s € S):

S € [\P|]S S
=

S,slFp

s € V(p).o

* The satisfaction relation 'I+' is very similar to this one introduced into the Manna-Pnueli proof system. Also, provided there is no

ambiguity and for convenience, instead of T, L and — the following symbols are used: T, F and ~, i.e. the logical constants (called also:

constant formulae) "true’ ,

"false” and the symbol of negation, respectively.
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e [lvl®)

s e [~p]® <« Ssk~p
< s ¢ V(p)
= s €S - V({p)o
s e [IFS < S,sHF
& s € S
= S € J.o
S € [‘T|]S <>df S, S I+ T
= s € S.o
sefloAvy]® <« SskoaAy
PN S, sl-9) A (S, s1-vy)
o (s e [lo®) A (s
& s e [loP o [vlP. o
sefo vyl < s e [lo1Pu [y o {left to the reader}

S € [\Dd(P|]S df S,S I~ I:\d(p

=

vV (S,to)

tepyls]

For any singleton {s} we have: t € pg[s] iff S,t - ¢, and hence, iff t € [|p[]®. So, we can obtain:

[|Dd(p‘]s =dr

{s
{s
{s
{s

€ S/S8,s I Ousop}
\

€ S/tepd[s](S,tll—(p)}
\

€ S/tepd[s](S,tll—(p)}

e S/ V (S,tho)}

tefloff®

[palllol]®. o

The proof of the set equality: [|0a @|]° =

satisfied.

Thesis 2.120
(00l < [[oa0l]®

Proof:

s € [0 o
=
=
=
=

S, s - 0ae
V (St
@dm(, ?)
3 (S, ti-
tEpdm(, ?)

S, 8- a0
S €[|<>d(P‘]S, a]

<pd> [lo[]® is left to the reader. The following property is

{df. [lol]® }
{df. S, s - Oaop}

E YV (St 3 (8t
{ o (StEe) = 4 (5, ¢)}

{df. S, s - 040}
{df. [ol® }
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Next we shall say that two transition systems S and S’ are similar iff they have the same type (P,D). The
notions of modal equivalence, bisimulation and bisimilarity are introduced as follows (Venema Y. 2008).

Definition 2.12

Let s and s’ be two states in the similar transition systems S and S', respectively. We shall say that s and
s’ are modally equivalent, i.e. S;s ~pp) S',s" if for any polymodal logic formula ¢ we have: S,sl-¢ <

S, s' Ik .

A transition system S is deterministic if pq[s] is a singleton, for any s € S. This determinism does not
allow pq[s] = @, foranys € S.

The above considered semantics was also interpreted as a two-person evaluation board game associated with
a fixed formula y and a fixed labelled transition system S. A match of the game consists of the two players
moving a token from one position to another. Any position corresponds to some pair (¢,s), where ¢ is a
subformula of y and s € S. The first of the players is trying to show that ¢ is true at s, and the second one is
trying to deduce that ¢ is false at s (a more formal treatment is omitted here).

The notion of bisimulation between two transitions systems is one of the most fundamental in the model
theory of modal logic and it is introduced as follows.

Definition 2.13

Let S and S’ be two similar transition systems and @ # ( < S x S'. We shall say that { is a
bisimulation iff the following three conditions are satisfied, for any pair (s,s') € ("

(prop) v (s e Vp)es eV
peP

(forth) \ 3t
dYD tepyls] t"EP(VJ[S’]( C )’

(back) v It
dYD t'epyls'] tepd[f](c )

Two states s € S and s e S' are bisimilar, i.e. Ss o S's" < 3 (sCs). And also, { is a
O-bisimulation if the (prop) clause is satisfied only for a subset Q < P. The corresponding relation of Q-
bisimilarity is denoted by '©q'.

We observe that the bisimulation relation is very similar to the notion of machine isomorphism used in the
theory of Pawlak’s machines (Pawlak Z. 1971), see Example 1.5 of Subsection 1.3.

It can be shown that bisimilar states satisfy the same modal formulae, i.e. the following theorem is satisfied
(Venema Y. 2008).
Thesis 2.121 (bisimulation invariance)

Let S and S' be two similar transition systems. Then:

“Instead of Z it is used the small Greek letter  (zeta).

¥ Zdzislaw Pawlak (1926 —2006)
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v (S5 o 8,8 = 8s «ep S, ).o

(s,8")€SxS'

Unfortunately, the above notions of modal equivalence and bisimilarity coincide only for some classes of
models, satisfying the so-called Hennessy-Milner property (Hennessy M. and Milner R. 1985). In particular, this
property holds in the class of finitely branching transition systems.

Thesis 2.122 (Hennessy-Milner property)

Let S and S' be two similar finitely branching transition systems. Then:

\v4 (S,S o985 < S8 ~~(P,D) S's' ) o

(s,8")€SxS'

The above presented bisimilarity was considered as a kind of behavioural equivalence. In fact, as a more
general, the notion of behavioural equivalence was also used in other areas of application, e.g. trace theory: trace
equivalence (Mazurkiewicz A. 1995), B-equivalence under a subset of distinguishable transitions (André C.
1983: it was shown the set of all possible traces is not a sufficient condition to be described this kind of
equivalence), Petri net reduction rules (Brams G.W. 1983), Boolean interpreted Petri nets:behavioural
equivalence of two nets”, and so on.

Next, by definition, S of type (P,D) is a tree-like transition system iff the structure (S, Up, ) is a tree. It
deD
can be observed that any transition system can be represented, i.e. restructured in a more ordered form, into a

bisimilar (behavioural equivalent) tree-like model. Any such process of representation is said to be “unravelling”.
In fact, the following theorem is satisfied.

Thesis 2.123 (the model property of modal logic)

Let @ be a satisfiable modal formula. Then ¢ is satisfiable at the root of a tree-like model. o {T 2.121}

It was shown that the above notion of bisimulation can be completely defined in terms of the Egli - Milner
lifting" (Venema Y. 2008). The last relation, here denoted by P( ) or in short P( , is defined as follows.

Definition 2.14
Let @ # { < S xS and P{ ¢ P(S) x P(S'). Then:

FC =or { (XX / XYX XEX,(XE;X') A x'v erlx (xCx7) §.

eX'

In a similar way, for the Kripke functor K = KppS the following relation can be introduced: K¢ <
KS x KS' suchthat K¢ =4 {((X,Y),(X,Y'))/ (X =X) A dYD((Yd, Yq') € PC) ).

The above two relations P¢ and K¢ are called the lifting of ¢ wrt P and K, respectively.

The following proposition was shown (Venema Y. 2008).

*

N NV BIPN (N; b= N, <¢ SM(N;) = SM(N,) ), where BIPN denotes the class of Boolean interpreted Petri nets, SM(N;) is the
11V, €

finite-state sequential machine corresponding to N; (i = 1,2). Here, the behavioral equivalence and state machine equivalence relations are
denoted by ' b=" and ‘=’ , respectively: see Definition 5.23 of Subsection 5.4. We observe some relation between the notions of state
transition systems and Petri nets.

¥ As an example, another interpretation of this notion was early introduced in number theory, the so-called Hasse - Davenport lifting
relation (Davenport H. and Hasse H. 1935).
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Proposition 2.16
Let S and S’ be two Kripke coalgebras for some Kripke functor K and @ # £ < S x S’ be some
binary relation. Then ( is bisimulation iff (S ;V)/ei ((5(s),6'(s")) € K& ). o

In accordance with the model theory of modal fixpoint logics, the modal p-calculus is a natural generalisation
of the basic modal logic system and it can be regarded as a bisimulation invariant, a fragment of the second order
predicate logic. The use of fixpoint functors” can be considered as a very important extension of the modelling
(or expressive) power of the above presented labelled transition systems.

A good illustration of the notion of a fixpoint functor can be obtained using dynamic logic developed by Pratt
V. R. in 1974 (e.g. see: Pratt V.R. 1980). This system, used in the area of program verification, is related to
Hoare’s logic: reasoning about program correctness (Hoare C.A.R. 1969). A system similar to Hoare’s logic was
early presented by Floyd R.W. (1967)'.

Pratt’s dynamic logic can be viewed as a refinement of algorithmic logic (Mirkowska G. and Salwicki A.
1987), and the weakest-precondition predicate transformers Dijkstra E.W. (1976)). Moreover, this logic
becomes a good connection to the axiomatic and Kripke semantics of modal logic (Venema Y. 2008).

In dynamic logic, the basic modal functors ‘0" and "¢ are extended by associating to every action 'a’ the
(two dual) modal functors ' [a] "and ' <a> ', where [a](p and <a>go denote the facts that after performing a it
is necessarily and it is possible the case that ¢ holds, respectively (for an arbitrary formula @: there is one-to-one

correspondence between [d](p , <d>q) and the polymodal logic formulae Os @ ,©4 @, respectively). And so, De Morgan's
laws are satisfied: ~ [a](p & <a> ~¢ and ~ <a>go & [a] ~ . Moreover, as in the case of the basic modal
functors (see T 2.23 and T 2.24), [a] and <a> are distributive wrt the logical connectives A and v,

respectively. The monotonicity rule (in short: MON) is given as follows: (¢ = y) = ([a](p = [a]\u ).

In particular, the following rule is also satisfied: [a]((o >V = ([a]¢> = [a]\y ), see axiom AO given
below. The corresponding proof is similar to this one given in T 2.29 (left to the reader). Also we have the
following necessitation rule: = ¢ = k= [a](/) (see the Godel’s rule GR). We shall say that this logic is normal if
it follow A0 and the last necessitation rule.

The notion of a propositional formula is similar to this one used in the classical propositional calculus (see

Definition 1.1 of Subsection 1.1), extended in step (2) by two new formulae: [a](go) and <a>(¢)) . Moreover, it is

assumed that if ‘a’ is an event, then such events are also: (a) ¢ (b), (a) U (b), (@)%, and (). An example

axiomatic system used in propositional dynamic logic (in short: PDL) is given below, e.g. see: (Troquard N.
and Balbiani P. 2015), (Fischer M.J. and Ladner R.E. 1979), (Baskent C. 2010), or the Handbook of
philosophical logic (2002) 8. Here p serves as metavariable.

AO. [a](p = q = ([a]p = [a]q) {Kripke axiom}

AL [olp {the empty promise axiom}
A2 [ip o p (the identity function axiom)
A3. [aub]p & [a]p A [b]p {union axiom}

* Provided there is no ambiguity, instead of “fixpoint operator “, here the term “fixpoint functor is used.
" Robert W. Floyd (1936 —2001)
# Edsger Wybe Dijkstra (1930 — 2002)

§ See also: The Free Encyclopaedia, The Wikimedia Foundation, Inc.
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A4, [aob]p = [a]blp {concatenation axiom}
AS. [a *]p S pA [a][a *]p {fixed point axiom}
A6 [l e p=q {test axiom}

AT. [a *](p = [a]p) =>@p= [a *]p) {induction axiom}

The axiomatisation based on axiom schemes A3, A4, A5, A6 and A7 were originally introduced by
Segerberg, K. (1977). The above used symbols: "w”, 0" and "+ are the well-known algebraic operations:

union (or nondeterministic choice of events, called also regular expressions), concatenation (called also
catenation, sequencing or composition: sometimes o " is omitted, e.g. ‘ab” instead of "aob ") and the Kleene

star operator, called iteration (Kleene S.C. 1952, 1956)". The event '?p' , related to A6, means: “fest p and
proceed only if true”. In accordance with the laws of exportation and importation (see T 1.12 of Subsection 1.2),
A7, given e.g. in (Troquard N. and Balbiani P. 2015) or (Vetter B. 2015), can be equivalently transformed to

the following form: p/\[a *](p = [a]p) = [a *]p, e.g. given in (Baskent C. 2010) or in the Free

Encyclopaedia. The induction axiom A7 (in short: 'IND') is very similar to the third axiom (the principle of
mathematical induction) of Dedekind — Peano’ axioms. In fact, assume that p is true in the current state and
assume further that after any number of iterations of a: if p is still true, then it will be true after one more
iteration of a. Then p must remain true after any number next iterations, i.e. no matter how often we perform a.

To minimise the number of used parentheses in an expression, some priorities for logical connectives can be
introduced. The following precedence of functors from highest to lowest is used below, e.g. (Baskent C. 2010):

<a>’[a]’~’ /\sVa:>,<:>,?,*,°,u.

The following property is satisfied (Kozen D.C. 1994): a=*o a* = a*, where a* =g luUaoca*. And

hence, we can obtain (provided there is no ambiguity, below the use of Ai is denoted by aj, for any i).

pefash o farearh  ta

= [a*]p.u

" Provided there is no ambiguity, instead of “ ; * the concatenation operation is here denoted by "° ". The Kleene algebra of regular events
will be presented in the next part of this work.
fJulius Wilhelm Richard Dedekind (1831 — 1916), Giuseppe Peano (1858 — 1932). An earlier formulation of this principle was also given

by Pascal (Blaise Pascal, 1623 — 1662). The principle of induction concerns the arithmetic of natural numbers. In particular, this principle can
be represented by means of the following rule:

F(0) 4
V(F(k) = F(k + 1) [a *](¢, - [a](!))
X (theequivalent form of A7, represented as arule: ——=——=——— | is very similar to this principle).
Y F(n) [a *](p

Here 'F(n)" denotes an arbitrary formula or theorem. For convenience, it is assumed here that 0 is a natural number. Obviously,
k,n e N.
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Since a** = a*,in asimilar way we can obtain: [a * *]p o [a *]p .
Proposition 2.17 (fixed point axiom)
ol < p A [alasp

Proof:
[a*]p = [luaoa*]p {df. "a*", SR}

o [pafeasp ey
S pA [a][a >1<]p.D {az, a4, SR}

The following rule, called loop invariance (in short: 'LI' ), was given in (Troquard N. and Balbiani P. 2015):
= [a]p) = p= [a *]p). A more simpler and equivalent version of LI is given in the next thesis.

Thesis 2.124

pala = [ o 0=l = 0=
Proof T 2.124a:

M p A falp = [l

fa)

@ p=llp
3 ~ 0= faip}
@ P (NC : 3
5) ~[axp
© [alp - C:24}
D p A fap [+K:46}
(3 [a*]p {(-C:1,7}

contr. o {5,8}

Proof T 2.124b:

M =l =e=hd) @

@ ~0 b = ) taip}
3 pa [a]p
{NC:2}
@ ~[ash
S pArlp= [a]p) = [a*]p {T 1.12 of Subsection 1.2 : 1}

© pa~pvlap) = [axlp (CR, SR : 5}
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7 pAa [a]p = [a *]p {A is distributive over v, SR : 6}
®)  [axlp (-C:3,7)
contr. o {4,8)

Since E @ A y = (¢ = V), the opposite implication, i.e. T 2.124b, can be shown by assuming: ¢ =4 p

v =dr [a]p in line (3) and next using '— C’. Moreover, a more simplified proof of T 2.124 can be obtained by
starting with the right side of T 2.124 and next using T 1.12 of Subsection 1.2, CR and SR (left to the reader).

Thesis 2.125 (induction axiom)

[+l = [a]p) = @ =[ap)

Proof:

(1) [a *](p = [a]p) < = [a]p) A [a][a *](p = [a]p) {RR: p= [a]p //p wrtas}
) [a *](p = [a]p) = (p= [a]p) A [a][a *](p = [a]p) {(—~E: 1}

3 p=p {=p=0p)

@ e=pa o=l = 0= Ao =) xi2s
) pafladlo=fal) =pr 0= A oo =)  MAG-C:@.0.@ /=@

SWYVApP=>2pD=>@0@Ap=>VvA

p) }

© prldo=bb = kb oap o llalo= kb Comtnin e SRS
D pa [a *](p = [a]p) = [a](p A [a *](p = [a]p)) {[a] is distributive over A, SR : 6 }
® pa o=l = e A [axp = falp) {LL-C:7)
© pa 2ol = [axh A 2] axkp = [ap) ([ #] is distributive over A, SR : 8}
00 5 beJo = b = b ~ 4o = i) o bbb dosteo
(1 [a*]p/\ [a*](p:[a]p): [a*]p {Forv = o
(12) p A [a*]p = [a]p) = [axp {TC: 10, 11}

[a *](p = [a]p) = p= [a *]p). a g}l.lz of Subsection 1.2, exportation:

The following diamond version of the above fixed point axiom A5 can be obtained.

Thesis 2.126 (dual fixed point axiom)
(a)p < p v(a)anp
Proof:

(1) [a*]~p<:>~p/\ [a][a*]~p {RR:~p//p wrtas}
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@ ~fas]~p o ~¢p A [afad]~p (CcE:

<a *>p & p Vv <a><a *>p.m {= ~[a]rp o <a>~(p,—N, NK, SR : 2}

The following properties are satisfied (Harel D., Kozen D.C. and Tiuryn J. 2000): some of the presented
properties are in accordance with the above considerations, e.g. 5, 7,9, 10 and 11 (the right-to-left implication).

Thesis 2.127

The following formulae are valid in PDL.

Lo fash=0p
2. p=(axp
. b= b
4 (a)p = (axp
b > oo ash
6. {(ax)p o (axoax)p
ob o fieh

8. <a *>p = <a * *>p

10. (ax)p < p v(a)ax)p
11. [a*]p S pAa [a*](P = [a]p)
12. (ax)p < p v{ax)(~p A (a)p).o

Since 1 and 2 are valid, then so is: [a *]p = <a *>p (by using rules TC and — C: as in modal logic, see

T 2.18). Moreover, from 1 and 3, by using + K, MC and — C, we can obtain: [a *]p = pA [a]p. According
to T 2.124, the opposite implication is equivalent to LI. The line 4 is obtained by 3 using rule CC.

The proof of the last formula 12 can be obtained immediately by 11 and it is given below.

M faxp = p A 2] = [a]p) (T2.127: 11}

@ ~fah o~ A faxlo = b)) {CE: 1)

@ (ax)~pe~pv @) (@)~D (i o (a)~e.NK.NC, SR : 2}
(ax)p @ pv (a%)(~p A (a)p)e  {RR:p,~p//~p.p}

The reflexive transitive closure rule (in short: RTC) is given as follows.
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v (a)g = q = ((ax)p = q

Semantically, the properties of the Kleene star operator "«  follow directly from the classical notion of

reflexive and transitive closure p* of a binary relation p defined in a given set X. In fact, it can be shown that
a * is a reflexive and transitive relation containing a (see T 2.127, lines 2, 6 and 4, respectively: these three
properties are also summarised in line 10). Moreover, it is necessary to show that a * is the least such relation.
There are several equivalent ways that this can be done: by using RTC, LI or IND, which are interderivable
(Harel D., Kozen D.C. and Tiuryn J. 2000). As an example, the rule LI was used in the proof of IND (in line (7)
of the proof of T 2.125), and vice versa: IND may be used in the proof of LI. This is illustrated by T 2.128, given
below.

Let ¢ be valid. Then, in accordance with the necessitation rule and — C we have: [a](p is valid. Assume
now that [a](p is valid. Then by the necessitation rule and — C it follows that [a][a](/) is valid. Hence, according
to A4, [aoa]<p is valid, i.e. [az](p, etc. Hence: [ai]go is valid (for any i > 0). Since [1]g0 < @, from A2 and
A3 it follows that a valid formula is the following: [1Uaua2 u](p Therefore, the following modal

generalisation of the necessitation rule can be obtained (in short: MGEN): = ¢ = & [a *](/)
Thesis 2.128 (loop invariance)

@ =)= o =[x

Proof:
M p =l fa}
@ o = ) {p=sp = |a]p .~ C: MGEN, 1}
@ o=l = @ =l ooy
p = [ax]p.o {-C:23)

The following equivalent dual form of the reflexive transitive closure rule, i.e. dualisation of RTC, can be
obtained.

M) (v {(a)g=q = ((a*x)p = q (RTC}

@ v ~pl~a= 9= pdp =0 {=(a)p = ~[a]~g, SR: 1}

3 ~¢v-~plova=~chl-pve  ersRiY

@ ~pafaj~qvq= fat]~pvg {NA, —N, SR : 3}

& paA [a]QV~q = [a*]PV~q {RR: p,q,~q//~p,~q,q}
@=p A a0 = @ =t {CR, SR : 5}

The use of LI in the proof of dual RTC is illustrated in the next thesis.

Thesis 2.129 (dual RTC)

@=p~A [a]CI) = @q= [a*]p)
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Proof:
() qa=p~ g
1a}

2 4
@ 4=P (MC, K : 1}
@ q= [a
5) q= [as]q (LL,—C:4)
© [alg = [alp {MON : 3}
@ [alg (—C:2,4)
®)  [alp (—C:6,7)

[a#]p. - {MGEN : 8}

In general, the use of PDL for formal verification of programs (e.g. describing correctness, termination and
equivalence of programs) involves program models called “regular programs” because of their similarity to
regular expressions. Some example standard block structured programming constructs are illustrated below, by
definitional abbreviation (Fischer M.J. and Ladner R.E. 1979), (Baskent C. 2010), (Troquard N. and Balbiani P.
2015). Here ‘acb’, ‘"a u b” and "a * " mean: ‘begin acb end’, ‘nondeterministically do a or do b’ and

‘repeat a a nondeterministically chosen number of times’. The last two commands “abort” (“fail” or "blocked”)
and ‘skip” correspond to: ‘immediately terminate” and "does no operation’, respectively.

Program operator PDL syntax
if p then a else b peau?~pob
while p do a (7pea)«o?~p
repeat a until p ao(?~pea)xo?p
abort 20
skip 71

In accordance with the Pratt’s interpretation of Hoare’s triples, PDL (extended with the first-order dynamic
logic can be considered as a generalization of Hoare’s calculus. In particular, the Hoare’s partial correctness

assertion {@}a{y} can be equivalently encoded by the following implication: ¢ = [a]\|l. Some rules of

inference were used in this calculus, e.g. such as: composition rule, conditional rule, iteration (or while) rule, two
rules of consequence, etc. As an illustration, the Hoare’s composition rule is given as follows:

{ofalyl {wib{x}
{oya;biy}

This rule describes the elementary sequential composition of two programs ‘a” and 'b’. The first triple
{(/)}a{l// } is related to the assumption that when ‘a’” is executed in a state satisfying o, then it will finish in a

state satisfying , whenever it halts (similarly for l//}b{ X } ). The conclusion {(/)}a;b{ }(} of this rule concerns
the partial correctness of the obtained program a;b” (denotes: ‘a” sequentially composed with 'b") and follows



167

from the above two assumptions. We can conclude that if "a;b” is executed in a state satisfying ¢, then it finishes
in a state satisfying y , whenever it halts (Troquard N. and Balbiani P. 2015).

The proof of the Hoare’s composition rule is given below.

Thesis 2.130 (composition rule)

p = [a]q) A Q= [b]r) = (p = [aob]r)

Proof:

M p= [

2 q= [b]r {a}

G) P

@ [ala = [a]bk {MON : 2}
) [l —C:i13
©  [a]bk —C:45)

[aob]r. - (A4:6)

A little more complex than the previous one, is the proof of the Hoare’s rule of iteration. This rule is shown
as follows.

{0 A yialo;
{o} while v do a {~y A ¢}

A version of the proof of the Hoare’s rule of iteration, given in (Troquard N. and Balbiani P. 2015) is
illustrated below. Here, the program operator ‘while q do a” is equivalently represented by its corresponding
PDL syntax, i.e. "(?qoa)«°? ~ q". And so, we have the following thesis.

Thesis 2.131 (iteration rule)

®Aq= [a]p) = @ = [(qea)*e2~q](~q A p)

Proof:

1 prqg= [a]P @)

2 p

B p=(@= [a]p) {T 1.12 of Subsection 1.2 : 1}
@ p = [2q]alp (A6, SR : 3}

5 p= [2qea] {A4, SR : 4}

© p = [2gea)p (LL,—C: 5}

(7 p=>((-a=>~qAp (Fo=>W=vnro}
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®  [Pqea)sp = [Pqea)*]~q = ~q A p) {MON : 7}
© p=[C0e0*~qa= ~qrp) (1C:6.8)
10) p = [2qea)*][?~a](~q » p) (A6, SR : 9}
(1) p = [(?qea)*o2~q](~q A p) (A4, SR : 10}
[(?qoa)¥c2~q)(~q A p).o (—C: 2,11}

It was shown by Pratt V.R. (1981) that Pu subsumes PDL and extends the exponential-time decision
procedure for PDL to Pu. However, it was not known whether strictly PDL is contained in Pu. Moreover, a
deductive system was not given (Kozen D.C. 1983).

In general, the proposed and studied by Kozen D.C. (1983), calculus Lu contains essentially of propositional
modal logic with a “least fixpoint operator”. It was shown that Lp is syntactically simpler yet strictly more
expressive than PDL.

In accordance with the above considerations, the use of fixpoint functors is a very important extension of the
expressive power of any labelled transition system S. Provided there is no ambiguity, below an event ‘a’ is
denoted by ‘d” and interpreted as an atomic action, d € D (the set of atomic actions or labels).

Let now consider the PDL formula <d *>p. By definition, this formula holds at those states in S from which
there exists a finite pg-path, of unspecified length, leading to a state in which p is true, where: a path through S
is defined as a non-empty sequence of the form (so,d1,s1, ... ,dn,Sn) such that s_,p 45> forany i < n (VenemaY.
2008). According to T 2.126, we have: S I+ <d *>p & pVv <d><d *>p , forany S (here, itisused <d> ’

rather than "¢4” ). And hence, the following example was presented.

Example 2.17

In accordance with the above dual fixed point axiom, <d *>p might be informally interpreted as a fixed point

or solution of the following ‘equation”: x < p v <d>x.

Let o4 be a formula that is valid at those states of S from which an infinite pg¢-path emanates. Then, the
formula <d *>p v o4 is another such fixed point. Moreover, it can be shown that these two fixpoints are the

smallest and the largest such possible solutions, respectively. o

Generally, the modal pi-calculus allows us to refer explicitly to such smallest and largest solutions, according
to the last example: px.p v <d>x and vx.p v <d>x , respectively (Venema Y. 2008).

The polymodal logic PML(D,P) can be extended as a polymodal fixpoint logic in D and P, in short:
UPML(D,P), by introducing the following two additional formulae: px.¢ and vx.p, where 'ux’ and "vx’ are
called the least and greatest fixpoint operators (x € P)". The last two fixpoint formulae are called z- and 1~
formulae, respectively. Moreover, any fixpoint formulae are usually assumed to be in positive normal form, i.e.
the only admissible occurrences of the negation symbol is in front of atomic formulae. And so, no occurrence of
X in ¢ may be in the scope of the negation functor. The notions of subformula and proper subformula are
similar, as in the classical case. So, they are omitted.

“ It can be observed that the used designations of these two fixpoints coincide with this one used in A-calculus (Alonzo Church 1903 —
1995), in particular the notion of A-abstraction: )\x.t, binding the variable x in the term t, e.g. Ax.2x>+ 5 is a lambda abstraction for the
function f(x) =4 2x>+ 5, see: (Church A. 1941) or e.g. (Cardone F. and Hindley J.R. 2006).
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Syntactically, the fixpoint operators ux and vx are very similar to the quantifiers of first-order logic in the
way that they bind variables (see Section 3 of Chapter II). Let n € {u, v}, FV(p) and BV(p) be the sets of
free and bound variables of a formula ¢@. The inductive definition of the last two sets and also the definitions of
the notions of a clean formula ¢, dependency order on BV(¢) and a guarded variable (or formula) are presented
below (Venema Y. 2008). Here, for convenience, are exclusively assumed such formulae in which every bound
variable uniquely determines a fixpoint operator binding it. Moreover, there is no overlap, i.e. partly cover,
between free and bound variables.

Definition 2.15
The sets FV(p) and BV(@) are defined as follows.

FV(F) =df ) BV(F) =df @

FV(T) = 9@ BV(T) = @

FV(p) =i {p} BV(p) T

FV(~p) =  {p} BV(~p) = 9

EV(e A y) =ar FV(p) U FV(y) BV(e A W) =ar  BV(9) u BV(y)
FV(p v y) =ar  FV(p) v FV(y) BV(e v vy) =ar  BV(p) v BV(y)
V(@) = FV(e) BV(Ca0) = BV(9)

FV(©a9) =i FV(p) BV(249) =i BV(9)

FV(nx.p) =i  FV(p) - {x} BV(nx.p) =i  BV(p) u {x}

Definition 2.16

Any ¢ € uPML(D,P) is clean iff there are no two distinct occurrences of fixed point operators in ¢ that
bind the same variable, and there is no variable that has both free and bound occurrences in .

Let x be a bound of the clean formula ¢. By ¢x =4 Mxx.0x we shall denote the unique subformula of ¢,
where x is bound by njx.

Let ¢ € uPML(D,P) be a clean formula and x,y € BV(@). The following partial ordering relation, called
dependency order (or a ranking relation) on BV(¢p) and denoted by '<,", can be introduced.

Definition 2.17

X So ¥y <dr Ox < @y, where "< " denotes: “is a subformula of .

In fact, if y ranks higher than x then the meaning of ¢y will depend on the meaning of ¢y. And finally, the
notion of guardedness is presented as follows.

Definition 2.18

Let @,y € uPML(D,P). We shall say that a variable x is guarded in ¢ iff any occurrence of x in ¢ is
in the scope of a modal functor. A formula y is guarded iff for any subformula of y of the form nx.5, x is
guarded in 9.

The semantics of modal fixpoint formulae can be described algebraically or also by means of evaluation
games (the more easier variant). In fact, the algebraic semantics of px.p and vx.p in S is related to some
algebraically defined meaning formulae. Any ¢ can be represented as an operation on the power set of S. And
hence, it would be necessary to show the existence of a least and greatest fixpoint for any such operation (a more
formal treatment is omitted here, see: Venema Y. 2008).

The above introductory notions related to modal fixpoint logics are an illustration of the last excellent work.
Another topics concerning the modal p-calculus were also presented, e.g. such as: deterministic and
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nondeterministic stream automata and their logical presentations, transition system theory, some methodological
aspects with regard to the notions of decidability, expressive completeness, preservation results, axiomatisation
and so on The existence of an effective procedure transforming a given alternating Kripke automaton into an
equivalent nondeterministic one was presented (using bisimulation based on the notion of relation lifting, see
Definition 2.14). And this can be considered as the most fundamental result concerning the automata-theoretic
approach with respect to the modal pi-calculus.

In general, the modal p-calculus can be considered as a very interesting and important theory in mathematics
and theoretical computer science. This calculus is a well-behaved extension of the basic modal logic and at the
same time by using mathematical structures that model processes, such as labelled transition systems, it can be
considered as a good balance between computational efficiency and expressiveness.

The relationship between a program’s syntactical structure and its behaviour is fundamental in program
analysis. This relationship is often exploited to phrase program correctness problems in terms of the structure of a
program rather than in terms of its behaviour. However, in the other direction, this relationship is much less
understood and more complex: given a program behaviour, how can one capture the program structures that
admit this behaviour? A natural way to capture both program structure and behaviour is the use of temporal logic
formulae: structural properties are concerned with the textual sequencing of instructions in a program, while
behavioural properties consider their executional sequencing (Gurov D. and Huisman M. 2013). Here, it was
shown that every disjunction-free behavioural formula can be precisely characterised by a finite set of structural
formulae: a program satisfies the behavioural formula if and only if it satisfies some structural formula from the
set. Several extensions to behavioural formulae with disjunction were also considered. As a property specification
language, it was used a fragment of the modal pi-calculus with boxes and greatest fixed points only. The obtained
temporal logic system, called a simulation logic and capable of characterising simulation, was suitable for
expressing safety properties. However, in accordance with the proof correctness requirements, sometimes the full
modal p-calculus was used. In fact, the considered simulation logic was defined as a restriction of the full logic,
where negation was restricted to atomic propositions only. The last research paper is a good study concerning
use of the modal p-calculus in program verification and correctness. Some introductory notions are given below.

Let E < S be a set of entry states. The pair (S, E) is said to be an initialised transition system. For
convenience, the set of proposition letters P is partitioned into the following two disjoint and non-empty
subsets: the set of atomic propositions (e.g. p, q, 1, ...) and the set of free or bound variables (e.g. X, v, z, ...),
denoted below by A and X, respectively. It can be observed that the graph of S can be equivalently described

by using the following ternary labelled transition relation: ¢ = S x D x S, i.e. some subset of ordered triples,
rather than the family R (used in Definition 2.10). Also, the valuation V, restricted to the set A of atomic
propositions and denoted here by A, is defined as follows: A : S — P(A). Simulation logic can be considered
as a fragment with negation over atomic propositions only. The language of this logic is obtained recursively as
follows: @ =4 p/X/~@/ oAy / Qv y/ [d]go /v (p € A,d € D,x € X). The considered labelled

transition system S is said to be a model". And hence, this model can be represented as follows: S =4 (S, D, ¢,
A N).

The semantics of the used simulation logic was defined in the standard fashion (Kozen D. 1983), through the
notion ||| i , where ¢ is a formula relative to the model S and environment e. The corresponding meaning or

extension of @ in S wrt ¢ is given as follows (S is considered as an universe).

lIpll = {s e S/pe M),
x| = &©x),
I~ ol = s lell®,

* Provided there is no ambiguity, instead of V, L, — and the model ./ (Gurov D. and Huisman M. 2013), the letters X, D, ¢ and S
are used here, respectively. And also, Instead of big letters, in the next considerations we shall denote variables by small letters (e.g. X, X1, X2,
etc. instead of X, X, Xy, etc.).
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lo A vl = loll} ~ Iyl
lo vowlll = loll} o Iy},
e 11° = ses/V(Gdyec > te loll®1,

”VX-(P”§ U{S, €S/ 8 ¢ ”(PHE(S X)}'

In accordance with the above extensions, e.g. the dynamic logic formula [d]qo holdsinastate s € S if ¢

holds in all states accessible from s via an edge labelled by d e D. The initialised transition system (S, E)
satisfies a formula o, i.e. (S, E) IF ¢ iff all its entry states satisfy ¢. It is assumed here that formulae have

pair-wise distinct fixed-point binders, and unless stated otherwise, are closed, i.e. all variables x € X are in the
scope of a fixed-point binder and guarded, i.e. every occurrence of a variable x is in the scope of a box-functor
(Walukiewicz 1. 1995)".

For convenience, let s —q t < (s,d,t) € ¢. We shall say that s —q t* is an usual (or strong) transition.
(forany s,t € S and d € D). Letnow a € D be a distinguished (silent or understood) action. The notion
of a weak transition is introduced as follows: s =at <4 s(—>a)*t and s =gt <ar S Dao Ddo Dat

(forall d # o, where: " “ denotes composition of relations” and "( —« )* " is the corresponding transitive and
reflexive closure of "—a” ). And hence, the observable behaviour of a system can be described by using only
weak transitions. In fact, we have a possibility of interpretation the box modality of the logic over the weak

transitions rather that the strong ones. And so (S, s) IFw [d](ﬂ holds iff ¢ holds in all states accessible from s

€ S via an edge labelled by d , preceded and followed by an arbitrary number of a-steps (Gurov D. and
Huisman M. 2013). Here, the existence of a standard translation of formulae interpreted over weak transitions
into equivalent formulae interpreted over strong transitions, was also cited (Stirling C.P. 2001). This translation,

denoted by "d" has the following property: (S, s) IFw @ exactly when (S, s) I- d().

The presented in (Gurov D. and Huisman M. 2013) program model is control-flow based and there are
considered two different views on programs: a structural and a behavioural one. Both these views are
instantiations® of the general notion of model (see also: Soleimanifard S., Gurov D. and Huisman M. 2011). In
particular, these instantiations yield a structural and a behavioural version of the logic. Any program structure,
i.e. program’s flow graph, is considered as a collection, i.e. disjoint union of control-flow graphs (called below
“method graphs”: one for each of the program’s methods). Moreover, all data in the original program is
abstracted away. The question of adding data to the program model is also discussed (related to the notion of a
Boolean flow graph: Ball T.and Rajamani S.K. 2000 - Boolean programs were proposed as a model for software
analysis, and in fact, as ‘‘a starting point for investigating model checking of software’’, in the context of an abstraction-
refinement. In this model, Boolean variables, or sets of such variables, are used as an abstraction of the actual program
variables. A Boolean program is essentially a C program over Boolean values; it has global and local variables and methods
that take Boolean arguments and return Boolean values).

The next definition is an extension of the notion of a Boolean flow graph, that allows a faithful representation
of Boolean programs based on models over finite sets of labels and atomic propositions (Gurov D. and Huisman
M. 2013).

" Provided there is no ambiguity, in the place of “box-operator” here it is used the term “box-functor”.
¥ Only for convenience, sometimes "o  is omitted.

 The principle of instantiation or exemplification, known in ancient times (Socrates, Platon) is a concept in metaphysics and logic (e.g.
see: Monaghan P.X. 2011 or The Free Encyclopaedia, The Wikimedia Foundation, Inc.). In nowadays, the term “instantiation” have some
different interpretations, e.g. an event can be considered as an exemplification of a property in an entity. And this identity is represented as an
ordered triple of an entity, property type and time (see: exemplification theory). In the case of computer science, the notion of instantiation
have applications e.g. in generic programming (algorithms are written in terms of types) or also in object-oriented programming, where
instantiation is a process of creating of instance of an object from a class (and hence, as in the above given considerations).
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Let Meth be a countably infinite set of method names, M < Meth be finite and m < M. The notion of a
method graph is introduced as follows (for convenience, 'Sn" is used below, instead of "V, given in the

original definition (obviously, there is one-to-one correspondence between states in Sm and vertices, called also nodes or
points in V).
Definition 2.19

A flow graph for method m € Meth over a finite set M < Meth of method names is a finite model
Sm =df (Sm, Dm, Gm, Am, Am), Where: Sy is the set of control nodes of m, D, =¢¢ M U {a}, Am =g {m, 1}
and Am: Sm — P(An) sothat m € An(s) forall s € Sn ,i.e. each node is tagged with its method name.

Thenodes s € Sm with r € Am(s) are said to be return points. A method graph for method m € Meth over
M is an initialised model (Sm, Em) such that Sy, is a flow graph for m over M and @ # E, < S, isasetof
entry points of m.

In accordance with the above definition, there are assumed only two types of atomic propositions: related to
method names, and to return points.

The control flow graph sequencing can be realised by means of some “interface”, ensuring that these graphs
can only be composed if their interfaces math. The notion of "flow graph interface” is given below.

Definition 2.20

Let 1", I" S Meth be two finite sets of names of provided and externally required methods, respectively’. A
flow graph interface is the pair T =g (1", 17). Letnow I, =g (I, ;) and I, =¢ (I;, [,) be two such
interfaces. The following binary operation, called interface composition, is introduced: 1, v I, = (I; U I3,
(v L) - (Iju L))

In accordance with the above considerations, the program’s flow graph is essentially a disjoint union of its
method graphs. The following notion "(Si, Ei) W (52, E2)” of disjoint union of initialised models is used below,
where each state is tagged with 1 or 2, respectively and (s,1) —a/6.E) v (8,,E,) (t,1) <ar S —a/6,E) t
(i = 1,2: Gurov D. and Huisman M. 2013).

Definition 2.21

A flow graph G with interface 1, written 'G : I, is defined inductively by: (1) (Sm, Em) : ( {m} , M —
{m}) if (Sm, Em) is a method graph for m € Meth over M and (2) Gw G,: I, I, if G;: [
and G,: I,.

In accordance with the last work, the above flow graph is said to be closed if 1" = @, i.e. if G does not
require any external methods. Satisfaction, instantiated to flow graphs and denoted by ’I-s", is said to be

structural one. And hence, G s ¢ <4 G I+ @.

The instantiation of the initialised models on the behavioural level requires the use of the following three
kinds of labels.

* More precisely, any m € M should be understood as a method definition, consisting of a method name, the types of the return value
and the parameters and its implementation: concerns the modular verification of temporal safety properties. Modularity at the procedure—level
is a natural instantiation of the modular verification paradigm, where correctness of global properties is relativised on the local properties of
the methods rather than on their implementations, and is based here on the construction of maximal models for a program model that abstracts
away from program data (Soleimanifard S., Gurov D. and Huisman M. 2011).

"1t is required I” to contain the methods that are not provided by I".
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(1) the transition label t: to designate internal transfer of control,
(2) my call my: for the invocation of method m, by method m; and

(3) my ret my: for the corresponding return from the call.
The following definition was introduced (Gurov D. and Huisman M. 2013).

Definition 2.22 (flow graph behaviour)

Let G =4 (S, E) : I be a closed flow graph where S =4 (S, D, ¢, A, 1). The behaviour of G , denoted by
B(G), is defined as follows: B(G) =4 (S, Es), where S =4r (Ss, Ds, G, As, As) such that Sg =4 S x S*,
i.e. elements of Sg are pairs of control points s and stacks® o (also called configurations), Des =ar {1,

my callmy, myretm;} (mi,mx € 1), Ae =ar A, As((s,0)) =ar A(s), and ce S Se x Ds x Se 1is defined

by the rules:
(transfer) (s,6) =/e (s, 0) if me I',s Da/ms,s Ik ~r
(call) (s1,0) > mpllm, /5 (S2, 51+ ©) if m,m e 1,5 —>m,/m s1,81 |- ~1,
S2 I my, s € E
(return) (s2, 51" 6) —> m,ret m; /5 (51, G) if m,m e I, Ik m A 1,8 Ik My

Here ' is a stack push. The set of initial configurations is defined as: Ee =¢¢ E x {e}, where "e” denotes
an empty sequence over S.

An alternative approach of describing the behaviour of a flow graph was also cited (using a pushdown
automaton, i.e. a type of automaton extended with a stack (a more formal treatment is omitted).

£ f I3 "
\I‘ :‘v‘
¢ €

e £ [3 A?Oﬂ ..

ovea

T R S &uﬁ

Figure 2.3 A simple Java class and its flow graph

Example 2.18 (Gurov D. and Huisman M. 2013)

A simple Java' class and the corresponding (simplified) flow graph that it induces are shown in the above
Figure 2.3. The flow graph consists of two method graphs: one for method even and one for method odd. The
entry nodes are depicted as usual through edges without source.

Let U be the set of edges of the above flow graph and u* and u~ be the terminal vertices of u € U (we
shall assume u is connected from u* to u™: Mayeda W. 1972). We shall say p =4 (uj, uz, ... , ux) isa

A stack or LIFO (last in, first out) is an abstract data type model considered as a collection of elements having two basic operations:
push (insert element into stack), which adds an element to the collection and pop (remove element from stack), which removes the last added element
(The Free Encyclopaedia, The Wikimedia Foundation, Inc. For a more detailed information, see: Knuth D.E. 1997: Donald Ervin Knuth,
born 1938).

T Java (first designed by James Gosling: 1995) is one of the most popular today’s programming languages because of its possibilities in
the implementation of concurrence, application of classes, object orientation and platform independence.
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(directed) path if all edges have the same orientation, i.e. ui” = ui'+; (i =1,2,...,k—1)". By p =ar p[ w", us ]
we shall denote a path having u,” and wo as initial and terminal vertices, respectively. Below by 1(u) € Ds
we shall denote the label associated with u.

According to Definition 2.22, the elements of Sg are ordered pairs of type (s, o), considered as vertices in

the above program’s flow graph. An example execution of the program is illustrated by the following path: p =
1[(so, €), (s3, €)]. Moreover, instead of the original given branching structure a table representation is shown
below. o

u’ 1(w) u
(s0, €) /B (s1, €)
(s1, €) /B (s2, €)
(s2, €) even call odd / B (ss, S3)
(ss, 83) /B (86, 83)
(s6, S3) t/B (s7, s3)
(s7, 83) odd call even / B (S0, S9 - S3)
(so0, S9 - 83) /B (s1, 89 - 83)
(s1, 89 - 53) T/B (s4, S9 - 83)
(sS4, S9 - 83) even ret odd / B (89, S3)
(89, 83) odd ret even / B (s3, €)

The behavioural satisfaction related to G and denoted by “I-s ~ is introduced in a similar way, i.e. G g

<dr B(G) I+ .

The above presented two kinds of satisfaction (structural and behavioural) will also involve and two kinds of
formulae. For example, in accordance with the last example, the structural formula "vx.[even]r A [odd]r A [a]x”
expresses the property: “on every path from a program entry node, the first encountered call edge goes to a
return node”, in effect specifying that the program is tail-recursive’. Similarly, the behavioural formula "even =
vx.[even call even]ff A [T]x" expresses the property: “in every program execution, starting in method even, the
first call is not to method even itself”, where 'ff ~ denotes the constant formula “false” (Gurov D. and Huisman
M. 2013).

Method graphs allow return points to have outgoing edges. However, the proposed characterisation of
behavioural properties by a set of structural formulae, defined in the last work, is only correct if the flow graph
has no such edges and such graphs are called clean. The operation of cleaning, defined on method graphs, can be
lifted to flow graphs. In fact, the following definition was introduced.

Definition 2.23 (the unary operation of cleaning)

" Because of the one-to-one correspondence between vertices and states, instead of v; the states s; are used below (i = 0, 1, ..., 9).
Similarly, instead of & the distinguished action is here denoted by o. Moreover, provided there is no ambiguity, the Greek letter "n” also
denotes a path (ofa graph G, e.g. Berge C. 1973): depending on the context.

¥ In computer programming, a subroutine is a sequence of program instructions that perform a specific task. A tail call is a subroutine
call performed as the final action of a procedure. If a tail call might lead to the same subroutine being called again later in the call chain, the
subroutine is said to be tail-recursive, which is a special case of recursion. Tail recursion (called also: tail-end recursion) is particularly
useful, and often easy to handle in implementations (see The Free Encyclopaedia, The Wikimedia Foundation, Inc). In accordance with the
last considerations, any subroutine can be considered as a subprogram similar in most respects to a function. Moreover, recursion is generally
favoured over iteration in very many languages because of its elegancy, minimal form, implementation with regular functions and easier to
analyse formally. In particular recursion is preferred and promoted in functional programming (starting with Church’s A-calculus, as a
theoretical framework for describing functions and their evaluation: Alonzo Church 1903 — 1995 and since the introduction of Lisp, in the late
of 1950’s: John McCarthy 1927 — 2011, many partially and fully functional languages have been developed, e.g. the Haskell’s language in
the late of 1980’s: Haskell Brooks Curry 1900 — 1982). However, some languages may not have iteration, e.g. the general purpose logic
programming language Prolog (developed in 1972, see: Colmerauer A. and Roussel P. 1996). Moreover, in the case of more functional calls
and stack operations (context saving and restoration) recursion can also be less efficient.
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Let Sm =d¢r (Sm, Dm, Gm, Am, Am) be a method graph. The unary operation of cleaning is defined as follows:
(Sm)® =dt (Sm, Dm, {(5,d,t) € G / T & Am(S)}, Am, Am).

In accordance with the last definition, we have: (G*)* = G* ( the idempotence” of cleaning) and G* Iz y

< G ks ¢ (the behaviour preservation). Moreover, the following implication is satisfied:  (G®s) s 1 =

dYD Z/ ((G%9) I [d]¢). And hence, the structural box formulae are trivially satisfied by return points.

The mapping behavioural into structural properties was realised by a map I1, defined as follows (Gurov D.

and Huisman M. 2013): G ks ¢y <t HEI( ) (G I ¢ ). It is assumed that the considered flow graphs are
oell(y

clean, and that behavioural properties are disjunction-free. An extension of Il to behavioural formulae with
disjunction was also considered (though at the expense of completeness).

It was shown that 1 computes a set of structural formulae that characterises y and I (for any behavioural
property v and closed interface I, i.e. for any closed flow graph G : I and w that only mentions labels that
are in the behaviour of G:see Ds , Definition 2.22).

An implementation of the above explicit translation T was developed in Ocaml’ and it can be tested on-line.
Moreover, this translation of simulation logic formulae also allows the label sequences to appear in box

modalities. And so we have: [E]X =¢¢ % and [dew]y =ar [d]w]y, where ® denotes a label sequence, y is

already a standard formula and d € D. The map II was defined by a finite tableau construction, in accordance
with the fixed-point formulae of this logic. And hence, the obtained translation was based on a symbolic
execution of the behavioural property by means of a such construction. When tracing a symbolic execution path,
subformulae of  are tagged with unique constants related to the variables associated with this path. The set of
all constants is denoted by <. Let ¥ =4 {w /G Ire y}. The following global, injective map was introduced:
/¥ — ¢ tomap formulae to their tags and this map was considered as an implicit parameter of the tableau
construction. Moreover, this tableau construction operates on sequents® of the shape "+uyyc W’ parameterised
on (Gurov D. and Huisman M. 2013):

(1)  Anon-empty history stack H € (1" x (I" v {a} U # )*)"is a pair consisting of the
current method name and a sequence, called frame and denoted by F, of edge labels and
constants abbreviating subformulae of y. By F itis denoted F cleaned from constants

x} € /1 €=¢ MoG = Mo0, 06 = 0o0 and X°G = 0.

s

" A property of some operations that can be applied multiple times without changing the result beyond the initial application (Benjamin
Peirce 1809 — 1880): see The Free Encyclopaedia, The Wikimedia Foundation, Inc.

T Objective Categorical Abstract Machine Language, in short: Ocaml is an extension of the Caml programming language, created by
Xavier Leroy at all in 1996, with object-oriented constructs (see The Free Encyclopaedia, The Wikimedia Foundation, Inc). Not be confused
with the concurrent programming language Occam, first developed by David May at all, 1984 (advised by Tony Hoare, communicating
sequential processes: Charles Antony Richard Hoare, born: 1934 and named after William of Ockham of Occam’s razor fame: 1285 —
1347). Occam was mainly considered as a programming language for transputer microprocessor systems, e.g. hardware realisation of data
flow Petri nets.

7 see: Definition 1.14 of Subsection 1.8

§ Provided there is no ambiguity and for convenience, the symbols used for variables are “overloaded”: for reasons related to the notion
of an induced structural formula, later considered in (Gurov D. and Huisman M. 2013). In addition, the frame F we shall denote by the

symbol F.
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)

(€)

Let @um,du and @c be the single-element history stack (m, ), the empty fixed-point stack and the empty
store, respectively. The construction of a maximal tableau with root o, 2., 2. ¢ that induces a set of structural

formulae through its leaves was described as below (for any given closed behavioural formula v and method

m).

Let mm(y) be the set of induced structural formulae associated with y and m. The translation of y wrt a
given interface I is defined as all possible conjunctions of the induced structural formulae for each method m

A fixed-point stack U, defining an environment for variables by a sequence of definitions
of the form x = vx.x. An open formula y in a sequent parameterised by U can then
be understood via a suitable notion of substitution. Let (6 / x) be a substitution of a
formula 6 for a variable x in a formula y. And so, the substitution of y under U is

inductively defined as follows: w[e] =ar ¥ and [x=vxyp U] =ar(w(vx.y/x))[U].
A store C, used for accumulating structural constants during symbolic execution (using

stores can in principle be dispensed with, but simplifies the presentation of the extraction of
structural formulae and the correctness proofs).

that is proved by I IL,(y) =ar { A L Om On € T(y) ).

During tableau construction the stacks H and U, and the store C are updated as follows (it is assumed that

the current sequent is not a repeat of an earlier one, see: Gurov D. and Huisman M. 2013 ):

(M

2

First, if y is not a fixed-point formula, the constant .~/(y) tagging the behavioural
property v of the current sequent is appended to the end of the frame of the top element
of H (instead of using constants as tags, alternatively there exists a possibility of introducing fresh
variables, and add their defining equations to U);

Next,
(2.1) if y is a conjunction, both conjuncts are explored in two separate branches;

(2.2) if y is (the negation of) an atomic proposition, exploration terminates for this
branch, and a set of structural constraints based on the atomic proposition and the
current history stack are produced,

(2.3) if the behavioural property of \ prescribes an internal transfer of the form [T]\y’,

then o is appended to the end of the frame of the top element of H and the
symbolic execution is continued with formula y’;

(2.4) if y prescribes a call from a to b of the form [a call b]\y', and the top element
of H is in method a, then b is added at the end of the frame of the top element
of H, a new element (b, €) is pushed onto H, and the symbolic execution is
continued with formula y';

(2.5) if y prescribes a return from a to b of the form [a ret b]\y', the top element of
H is in method a and the next element is in method b, then a new structural
constraint is added to C, reflecting the possibility of currently not being at a return
point, the top element is popped from H, and the symbolic execution is continued
with formula ’;

(2.6) if y isa fixed-point formula vx.y’, then a new equation x = vx.\y’ is pushed
onto U, if not already there, this conditional addition being denoted by
(x = vx. y') o U, and the symbolic execution is continued with formula x;

(2.7) if y is avariable x for which there is an equation x = vx.y’ in U, then the
symbolic execution is continued with formula y’. o
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The tags were used to signal repetition in the symbolic execution of the considered formula and for ensuring
termination of the tableau construction. The structural constraints and the elements in the call stack denote
conditions under which the actual property holds. Moreover, each step of the symbolic execution adds new
constraints. An informal illustration of symbolic execution is given below (Gurov D. and Huisman M. 2013).

Example 2.19

Consider the following behavioural property of a formula y: “invocation of a method cannot return without
making a method call”, formalised as follows: vx. ~1 A [T]x. The obtained steps, when executing
symbolically for method a, are given below.

(1) Ttis started with the initial H,i.e. (a, €) and formula y =g VX. ~1 A [T]x;
(2)  Theequation X = VX.~r A [T]x is pushed onto U, and it is proceed with formula x;

3) The definition of x is retrieved from U, and it is continued with formula ~r A [T]x;

(4)  Each conjunct of the last conjunction is explored separately;

(5)  The first conjunct ~ r is the negation of an atomic proposition, and hence exploration
terminates for this branch, producing a constraint that essentially requires ~ r to hold;

(6)  The second conjunct [T]x appends o to the frame, i.e. H becomes (a, a), and it is
proceed with formula x;
(7)  This is recognised as a repeat of a situation that arose before (at step 3), therefore the

exploration terminates, producing a constraint that essentially requires x to hold for all
nodes that can be reached by passing a transfer edge. o

In accordance with the last example, the two constraints produced by this symbolic execution can be
combined for obtaining the following recursive structural formula: a = vx. ~1 A [(X]x (see steps 5 and 7).

Formally, this symbolic execution should require the introduction of the next notions given in (Gurov D. and
Huisman M. 2013): tableau system, repeat conditions and structural formulae induced by a tableau. The last
three notions are briefly presented below.

The tableau system is a proof system, considered as a labelled tree T with a set of goal-directed axioms
called rules with an empty set of premises denoted by '—". In particular, the used in return rules condition

Ret(i,a,b,H) <4 (1 = a) A (H# ¢) A lela(H =4t (b, F) « H"). The labelling function, denoted here by f,
maps each node of T to a triple consisting of a sequent, a rule name (the rule applied to this sequent), and a set
of triples of the form (i, F, q) where q are literals (i.e. atomic propositions in positive or negated form or

variables x € X)". The triple sets are non-empty only at applications of axiom rules. Such leaves are termed
contributing. The corresponding set of triples is depicted (by convention) as a premise to the rule. A tableau for

Twm(y) is maximal if all its leaves are axioms.

Let FiF) - u,u,cy be aleaf node for which there is an internal one Hry . w,u, ¢ such that F’ is a prefix
of F, U’ is a suffix of U, and C" = C. The former node is said to be a pseudo-repeat and any node of the latter

* In accordance with the above work, the used symbol A denotes: a valuation, labelling function or a choice set (depending on the
context). Provided there is no ambiguity, the labelling function and the choice set are here denoted by f and A, respectively. Moreover,
instead of p(n), the return depth of a tableau node n is here denoted by rd(n).
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kind is called a companion. An internal tableau node is said to be stable if all its descendant leaves are axioms or
pseudo-repeats. A tableau is called stable if its root node is stable.

The process of tableau construction was realised as follows. A minimal stable tableau is first computed (i.e.
pseudo-repeat nodes are not further explored). If all pseudo-repeats in this tableau satisfy some repeat condition
for any of their companions (see below), the tableau is maximal and construction is complete. Otherwise, all
pseudo-repeats that are not satisfying any of the repeat conditions are simultaneously unfolded, using a breadth-
first exploration strategy, and tableau construction continues until the tableau is stable again, upon which the
checking for the repeat conditions is repeated. As it was shown, this process is guaranteed to terminate, resulting
in a finite maximal tableau. The tableau system is shown in Figure 2.4 given below (Gurov D. and Huisman M.
2013).

The following three repeat conditions were introduced into the above tableau system: internal, call and return
repeat conditions, involving tree types of nodes. The internal repeats are related to recursion in structural
formulae. In contrast, the other two call and return repeat conditions only recognise that a similar situation has
been reached before. In fact, the first repeat condition requires only the examination of the top frame of H of the
current sequent, the second one requires the examination of the whole path from the root to the pseudo-repeat,
while the third one requires the examination of all remaining paths.

The return depth of a tableau node n, denoted by rd(n), was defined as the maximal difference between the
number of applied return rules and the number of applied call rules on any path from n to a descendant node. By
using the translation & (of formulae interpreted over weak transitions into equivalent formulae interpreted over strong
transitions) we have:

rd’'(5) + 1, if r € {reto, ret;}

rd'(e) =4 O, rd'(r - 0) rd’(8) — 1, if r € {cally, call;}
=dr rd’(3), otherwise
and

rd(n) =q¢r max({rd (rules(l))/ n is a path from n to a descendant node} U {0}),
where r and & range over rule names and sequences of rule names, respectively and rules(i) denotes the
sequence of rule names along a tableau path p.

Let x be .“(y), ¢ be the companion node of the pseudo-repeat, and H. be the history stack at c. More
formally, the above three repeat conditions were defined as follows.

IntRep(x, (1,F) - H) &g X € F
CallRep(x, (i,F) - H,c) <4 (x ¢ F) A (take(rd(c) + 1, (1,F) « H) = take(rd(c) + 1, H.))
RetRep(x, (i,F) - H,c) <o (,F) - H = He.

i *, P i .
mme’?*f'«";‘«r.rnm P {F i

SN NS FanaucX =vX.9) el
VA i 0 e et X X unf Far s nucd x é)
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Figure 2.4 Tableau system
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Let Twm(y) be maximal. The set nm(y) of induced structural formulae was generated in the following
manner (Gurov D. and Huisman M. 2013)

(1) Let « be the family of non-empty triple sets collected from the leaves of the tableau.
Build a family of choice sets A(~") by choosing one triple from each element in

(2)  Foreach choice set A € A(¥),
2.1 Group the triples of A according to method names: for each m e 1", define
Em =ar {(F,q9)/(m,F,q) € a};
(2.2) For any non-empty =, build a formula m = QEn), where QE)
—t Aveom v and QE) =« (AJOE) /2 € T A0 % = (Fa)/
(a-F,q € B} U{vxQE)/x € v A @ # E =4 {(F,q/(x-F,q € E}
v iq/(e,q € Ef

(2.3) The induced formula ¢ for A is the conjunction of the formulae obtained in the
previous step;

(3)  Theset mm(y) is the set of induced formulae for A € A(¥). o

A formal symbolic execution of y of Example 2.19 is given in Figure 2.5 below.

S{ETR

vX.-r Alr]X X3|=-r |
X Xs | [T]X 5
= ATEIX
}“a.n.:u.?. vX.—r AT]X
sl A e
'}_mu X=¢. 0 \ 4
——————————— — — _‘\' lll]'
Flaxox=eoc =T A[T]X
w2tk s [
Fax; X200 = Fraxy Xg X=¢.0¢ 1T1X
R i fhr
(a.X; - X ) Fax Xgt3.X X
IRep(#*]

X:)
Figure 2.5 An example tableau Tai(vx.~r1r A [T]x)

The non-emptiness of H and closedness of  are invariants during the construction of such a tableau
system. In particular, it was shown that the proof tree induced by the unfolding of the tableau for behavioural
formula y and method m generating the set of structural formulae -+ constitutes a proof that every flow graph
satisfying some ¢ € .~ also satisfies y. In fact, the following fundamental properties were shown: maximal
tableaux are finite; 7/ Fou.2v.2. Y holds whenever there is a proof with root -~ g, .. 2. \y; translation I1 from

behavioural to structural formulae is sound and complete. A more formal treatment is omitted here (left to the
reader).

In general, the above proposed tableau construction gives rise to a correctness argument that allows to view a
maximal tableau as a proof that the structural formulae resulting from the tableau entail the original behavioural
formula. The combination of this construction with the above properly translation IT provides a solution to the
problem of computing maximal program structures from behavioural properties. Further, this translation can be
used to reduce infinite-state verification of behavioural control flow properties to finite state verification of
structural properties. Thus, tools for checking structural properties can in effect be used for verifying behavioural
ones. Unfortunately, computing the set of induced structural formulae is exponential (i.e. the running time
increases exponentially). And hence, some ad hoc simplifications were also used (e.g. see: ProMoVer:
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Soleimanifard S., Gurov D. and Huisman M. 2011). The possibility of introducing more optimisations was also
discussed. In particular, a considerable difficulty is presented by (greatest fixed-point) recursion in the
behavioural formula vy, which has to be captured by recursion in the structural ones. So, this recursion was
handled by means of a tableau construction that maintains (during the symbolic execution) a symbolic “call
stack” indicating which subformulae have been explored for which method m. The study of a parallel
implementation of the above proof system seems to be an interesting topic for further research. Moreover, there
exist problems that can be described by different algorithms (e.g. see Example 1.4 of Subsection 1.3, we shall say
that these two algorithms are functionally equivalent)’. Each such algorithm should involve different program’s
behaviour and hence different program’s syntactical structure (in consequence: different degrees of
computational complexity).

An alternative solution, can be based on the theory of nested words (Alur R. and Madhusudan P. 2009)".
Using the results of this theory, a p-calculus formula can be translated into an equivalent formula in a fixpoint
calculus for nested words, and then in turn be translated into an equivalent alternating parity nested tree
automaton. The latter automaton has a structural content that, in principle, can be used as a representation of
program structure. In contrast, the above presented solution (Gurov D. and Huisman M. 2013) is “direct”, in the
sense that the presented symbolic execution directly follows the operational semantics of the program model,
which relates structure with behaviour. This makes the obtained construction easy to adapt for variations and
extensions of this model, as was explored in (Huisman M., Aktug I. and Gurov D. 2008).

Another interesting approach should be the use of high-level Petri nets, e.g. coloured Petri nets, introduced in
(Jensen K. 1981), for software verification (a more formal treatment is omitted here)?.

A brief survey of the background and history of modal and temporal logics was given by
Bradfield J. and Stirling C., see: http:/www.dis.uniromal.it/~degiacom/didattica/semingsoft/SIS05-06/materiale/3-
servizi/altro%?20materiale/bradfield-stirling-HPA-mu-intro.pdf. In particular, the modal p-calculus was also discussed
(a logic which subsumes most other commonly used logics: left to the reader).

2.4. Other non-classical systems

Below are briefly presented some other non-classical systems, such as: epistemic, game, intuitionistic and
fuzzy intuitionistic, linear, (intuitionistic) computability, paraconsistent, relevant and non-monotonic logic
systems. Some comments concerning fractal logic are also given.

Epistemic logic

The term ‘episteme’ , used in the Ancient Greece philosophy, is etymologically derived from the word
“€motnun” to denote knowledge or science (e.g. Platon’s term for common belief or opinion or also some aspects
of the logic of knowledge and belief mentioned by Aristoteles). Aristoteles’ insights were extended in the middle
ages (e.g. Jean Buridan, John Duns Scotus and William of Ockham).

" There exist also problems that cannot be algorithmically solved, and so their solution cannot be automatically found by means of
computers (public domain).

¥ The model of nested words, introduced by Alur R. and Madhusudan P. (2004), was proposed for representing and querying data with
dual linear-hierarchical structure. A nested word consists of a sequence of linearly ordered positions, augmented with nesting edges
connecting calls to returns (or open-tags to close-tags). The edges do not cross creating a properly nested hierarchical structure, and we allow
some of the edges to be pending. This nesting structure can be uniquely represented by a sequence specifying the types of positions (calls,
returns, and internals). Words are nested words where all positions are internals. Ordered trees can be interpreted as nested words using the
following traversal: to process an a-labeled node, first print an a-labeled call, process all the children in order, and print an a-labeled return.
Note that this is a combination of top-down and bottom-up traversals, and each node is processed twice.

¥ The coloured Petri nets, the numerical Petri nets (developed originally in: Symons F.J.W. 1978) and other similar models were
considered as a good theoretical basis for the introduction of a new international standard: the high-level Petri nets, as a well-defined semi-
graphical technique for the specification, design and analysis of systems. This technique is mathematically defined, and may thus be used to
provide unambiguous specifications and descriptions of applications. It is also an executable technique, allowing specification prototypes to
be developed to test ideas at the earliest and cheapest opportunity. Specifications written in this technique may be subjected to analysis
methods to prove properties about the specifications, before implementation commences, thus saving on testing and maintenance time (see:
ISO/IEC 2000, 2005).
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The contemporary epistemic logic is the logic of knowledge and belief. It provides insight into the properties
of individual knowers (called also agents), has provided a means to model complicated scenarios involving
groups of knowers and has improved our understanding of the dynamics of inquiry. The work (Wright G.H.von.
1951) was one of the most important initiation of the formal study of epistemic logic. This work were extended
by Hintikka J. (1962), considered now as a classical ( The little encyclopaedia of logic 1988, Hendrics V. and
Symons J. 2006).

More formally, the following two unary functors were introduced (originally called “operators”, as an
syntactical augmentation of propositional logic): K. and B, called epistemic and doxastic (from Ancient Greek
term“doéa”), respectively. Here, K.p denotes “Agent ¢ knows p” and B, denotes “Agent c believes p”,
for some proposition p. Moreover, the following semantic interpretation was introduced (Hintikka J. 1962).

Kep: in all possible worlds compatible with what ¢ knows, it is the case that p, and

Bep:  in all possible worlds compatible with what ¢ believes, it is the case that p.

The following axiomatic system was proposed (Lemmon E.J. and Scott D.S. 1977), next improved in (Bull R.
and Segerberg K. 1984). The axiom abbreviations are under the first of these two works.

K(p = q) = (Kp = Kq)
Kp = ~Ke~p
Kp =1p

~Kp = Kc~Kp
~Kc~ch = KCNKc‘Np

K

D

T

4  Kp = KKp
5

2

3 K(Kp = Kq) v K(Kq = Kcp)
4

p = (~Kc~Kp = Kp)

The above axioms are very similar to the corresponding ones or also to some properties satisfied in modal
logic (see Subsection 2.3: modal logic), e.g. K corresponds to Godel’s axiom (G2), D to T.2.18 (¢¢ <« ~0O~
¢0,SR), T totherule - O°,4 to Godel’s axiom (G3), etc. Provided there is no ambiguity and for simplicity,
sometimes the subscript '¢c” may be omitted (if ¢ is known), e.g. that “the Agent knows that p” is written as Kp,
that “She does not know that p and q” as ~K(p A q), that “She knows whether or not ¢” as Kq v K~ q,
that “She knows that she does not know that if p, then q” as K ~K(p = q), etc. Similarly, that “the Agent c
believes p” is written as Bp (Holiday W.H. 2016).

There exist various applications of epistemic logic. Some of them are cited below. As a natural way,
applications to epistemology” are first cited.

In general, the contemporary epistemology is organized around two major goals: providing a definition of
knowledge and modelling the dynamics of epistemic and doxastic states. The first of these goals, for the most
part, concerns philosophers who rely on thought experiments, traditional conceptual analysis or intuitions-based
methods of various kinds. By contrast, philosophers working with epistemic logic are pursued the second goal.
However, the last two goals are related to a third, and possibly more general problem, namely the problem of
understanding the rationality of inquiry (Hendrics V. and Symons J. 2006). A brief introduction to propositional
epistemic logic and its applications to epistemology is also given in (Holiday W.H. 2016). Epistemic-logical
topics, presented here, include the language and semantics of basic epistemic logic, multi-agent epistemic logic,
combined epistemic-doxastic logic, and a quick look of dynamic epistemic logic. Epistemological topics

" The Nyava school of logic, based on Hindu philosophy, can be considered as a form of epistemology (i.e. theory of knowledge) in
addition to logic (see: the introduction of Section 1).
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discussed include Moore-paradoxical phenomena®, the surprise exam paradox, logical omniscience and epistemic
closure, formalized theories of knowledge, debates about higher-order knowledge, and issues of knowability
raised by Fitch’paradox’. Obviously, some considered topics are similar as in the previous work (a more formal
treatment is left to the reader).

Epistemic logic has, in the past few decades, grown beyond its origins in philosophy, to be embraced in
several other disciplines, including economics (e.g. game theory or also the study of various social and coalitional
interactions), linguistics and computer science. Within computer science, its application can be found in several
subdisciplines: artificial intelligence (e.g. applications in robotics, groups of knowers, i.e. multi-agent systems, for
instance: grounding modal language in communications of artificial cognitive agent systems: Katarzyniak R.P. 2007),
distributed computing and computer security, i.e. network security and cryptography (Meyden R. van der 2011).

The main purpose of the last work was identification of situations in which questions about the security of
systems and communication protocol designs should be amenable to automated analysis. There were studied the
decidability of logical problems into the following two distinct types: model checking and synthesis, where model
checking involves the question of whether a given formula is satisfied in a given semantic structure and synthesis
concerns the existence of strategies that lead to the satisfaction of a formula in a given context. The relevance of
this in computer security is that an active adversary, who not only observes but also interferes with the system,
can be viewed as seeking a strategy that satisfies certain conditions on the adversary’s knowledge. Hence, the
system is secure if no such strategy exists. Finally, there was presented a protocol designed to enable information
to be transmitted anonymously: Chaum’s Dining Cryptographers? protocol (Meyden R. van der 2011).

Game logic

Game logic is an interesting extension of propositional dynamic logic, it does not use Kripke semantics but
neighbourhood semantics (known as Scott - Montague semantics®: instead of accessibility relation a neighbourhood
function was introduced), a generalisation of the standard Kripke semantics, invented independently by (Scoot D.
1970) and (Montague R. 1970). Game logic is a logic to reason about determined two-player games. It presents
a good example of mathematical and practical application of propositional dynamic logic (Parikh R. and Pauly
M. 2003). Dynamic logic can also express change in knowledge. And so, we can abstract variety of knowers and
their respective knowledge, i.e. a multi-agent system (in terms of computer science and artificial intelligence) and
formalise their interaction. The basic system of modal epistemic logic (Hintikka J. 1962) can be extended by
incorporating a dynamic functor to express knowledge update (Plaza J.A. 1989).The corresponding epistemic
states are updated as follows. It is assumed that knowers are exposed a truthful public announcement by an
external agent. Then, they update their epistemic states in such a way that they get rid of the states and epistemic
situations that do not agree with the announcement. Obviously, the syntax of this logic, known as public
announcement logic, is an extension of the basic epistemic logic. The semantics is given under Kripke models,
e.g. see (Bagkent C. 2010).

" Sentences of the Moorean form p A ~ Kp cannot be known (1942: G.E. Moore 1873 — 1958), e.g. “It is raining, but I don’t believe
that it is raining” or “It is raining but I believe that it is not raining”, referred by Philosophers nowadays as the omissive and commissive
vertions of Moore’s paradox, more formally: p A ~Bp or p A B~ p,respectively. There doesn’t seem to be any logical contradiction
between “It is raining” and “I believe that it is not raining”: the former is a statement about the weather and the latter is a statement about a
person’s belief about the weather (The Free Encyclopaedia, The Wikimedia Foundation, Inc, for a more formal treatment: Holiday W.H.
2016).

T Fitch’s paradox of knowability (1963: F.B. Fitch 1908 — 1987) is another fundamental puzzle of epistemic logic. It provides a challenge
to the knowability thesis, which states that every truth is, in principle, knowable (in correspondence with the omniscience principle (“having
total knowledge”, “knowing everything”), which asserts that every truth is known. Hence, Fitch’s paradox asserts that the existence of an unknown
truth is unknowable. And so, if all truths were knowable, it would follow that all truths are in fact known (The Free Encyclopaedia, The
Wikimedia Foundation, Inc). A more formal treatment is given in (Holiday W.H. 2016), where Fitch’s thesis is represented as follows:

v (p = ©Kp). Here, a question may be the interpretation of the last functor of possibility.
P
¥ David Lee Chaum (born 1955) is the inventor of many cryptographic protocols , as well as such systems as: the electronic cash system

(in short: ecash), digital cash, blind signatures and so on. His paper (Chaum D.L. 1981) laid the groundwork for the field of anonymous
communications research (The Free Encyclopaedia, The Wikimedia Foundation, Inc).

$ Dana Stewart Scott, born 1932; Richard Montague, born 1930.
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Quantum dynamic-epistemic logic

Quantum theory (also known as quantum mechanics or quantum physics) gradually arose from Max Planck’s
solution in 1900 to the black-body radiation problem (Max Karl Ernst Ludwig Planck 1858 — 1947) and Albert
Einstein’s 1905 paper which offered a quantum-based theory to explain the photoelectric effect (Albert Einstein
1879 — 1955)". Some structural similarities of current research in the foundations of quantum theory and the
foundations of computer science are given e.g. in (Coecke B: http://www.cs.ox.ac.uk/people/bob.coecke/SLS.pdf, a
quick draft version of a course), see also (Lindley D. 1998: a guide incl. Quantum Computers), (Svozil K. 1998) or the
Handbook of quantum logic and quantum structures (2009).

In the quantum computational framework, there are polynomial time solving algorithms for problems having
exponential classical solutions. Obviously, the question is the existence of such algorithms for other similar
problems. The most feasible implementation of quantum algorithms is based on the quantum circuit (gate
network) model. Quantum computing’ itself emerged from the attempt to simulate quantum systems. The
simulation is often considered as a tool used in theoretical approaches. However, it could also be employed for
quantum hardware design. Simulation of quantum computational systems is usually exponential. The quantum
circuits make no difference to this rule. In quantum computation the circuits are prone to fail, and safe recovery is
difficult. Therefore, a straightforward classically-inspired solution is not feasible because the overall fail rate will
be given by ancillary qubits (i.e. quantum bits) preparation. The only conceivable solution to the safe recovery
problem is to use structural redundancy (Udrescu-Milosav M. 2005)%.

Dynamic epistemic logic can be also used to model and interpret quantum behaviour (Baltag A. and Smets S.
2005, 2006). Here, it was given a complete dynamic - logical characterisation of quantum systems The main
thesis is that “all the non-classical properties of quantum systems are explainable in terms of the non-classical
flow of quantum information”. And hence, any real understanding of quantum behaviour should require non-
classical logical dynamics of information, rather than having non-classical logical laws governing static
information (such as in non-Boolean, non-distributive, partial or fuzzy logics etc.). As a fundamental action of
this logical dynamics was considered the quantum test (corresponding to a successful yes-no measurement
performed on a quantum system: a measurement of some yes-no property ¢). Any such test can be considered as a
form of information update and this form was compared with other dynamic informational functors (called also
“operators”) in logic, such as: the classical test functor '?" in dynamic logic, the (public) announcement functor
in dynamic epistemic logic and the belief revision functor (Belief revision is an action of revising a previously held
belief “theory” T about the world after receiving some new information ¢ , that may contradict T. The belief revision action
*@ changes the state to a new information state, given by the revised theory Tx@. The classical AGM postulates express
minimal rationality conditions that belief revision must satisfy: Tsx¢ must incorporate the new fact ¢. The theory is left the
same if ¢ € T implies Tx¢e = T. Otherwise, the theory is “minimally revised” in order to accommodate the new
fact)’. Quantum tests share some common features with all these operators, but there are also important

* For a more information see: The Free Encyclopaedia, The Wikimedia Foundation, Inc.

¥ Quantum computing studies theoretical computation systems, called quantum computers, that make direct use of quantum-mechanical
phenomena, such as superposition and entanglement, to perform operations on data. Quantum superposition states any two or more quantum
states can be added together (i.e. “superposed”) and the result will be another valid quantum state and vice versa, any quantum state can be
represented as a sum of two or more other distinct states (similarly as a property of solutions of Schrodinger’s partial differential equation,
describes how the quantum state of a quantum system changes with time 1925 / 1926: Erwin Rudolf Josef Alexander Schrodinger 1887 —
1961). Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are generated or interact in ways such
that the quantum state of each particle cannot be described independently - instead, a quantum state must be described for the system as a
whole (The Free Encyclopaedia, The Wikimedia Foundation, Inc). In the case of quantum computational systems, the entanglement is a
source of simulation complexity. When entanglement is detected in processed state, the circuit has to be described with a behavioural
architecture and exponential resources must be used in this case (Udrescu-Milosav M. 2005). A very difficult problem seems to be quantum
circuits testing (which is not possible directly). Some interesting results were given by Biamonte J. and Perkowski M. (2005): the “gate
insertion / removal” model was used in place of the classical “stuck-at”” model.

¥ The first universal quantum Turing machine was theoretically build by (Deutsch D. 1985) and the first quantum algorithms were given
by (Shor P.W. 1994), able to solve polynomially: discrete logarithms and integer factoring.

SA formal definition of the notion of public announcement is given e.g. in (Pacuit E. 2013: Definition 2.1,p.4). The classical theory of
belief revision (known also as AGM theory) was introduced in (Alchourron C., Gérdenfors P. and Makinson D. 1985). A more information
concerning belief revision functors is given e.g. in (Gabbay D.M., Rodrigues O.T. and Russo A. 2010) or also in (Perrussel L., Marchi J. and
Zhang D. 2010). Revision operators are often judged based on whether they satisfy the well-known 4GM postulates. These postulates are
formulated for logically closed sets of formulae (belief sets), but they can be modified so as to apply to belief bases. The modified postulates
(omitted for lack of space) are known as the KM postulates (Katsuno H. and Mendelzon A. 1991). The AGM/KM postulates have been
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differences, which make apparent the non-classical nature of quantum information flow (Baltag A. and Smets S.
2006). In accordance with the last work, in contrast to classical informational actions, quests typically change the
ontic state” of the “observed” system. The considered here approach is logic-based and mainly concerned with
qualitative (or semantic) information. And this is in contrast to the syntactic, i.e. quantitative approach (based on
Shannon’s theory of information: in quantum information, instead of the classical Shannon entropy, the notion of von
Neumann entropy is used). However, the proposed in (Baltag A. and Smets S. 2006) approach intersects with the
similarly qualitative such one, known as “quantum logic”, in short: QL (Neumann J. von. 1932), (Birkhoff G.
and Neumann J. von. 1936)". In particular, it was observed that any testable property of a quantum system
corresponds to a closed linear subspace of a Hilbert space, denoted below by J¢ (David Hilbert, 1862 — 1943)%,
Moreover, the actual “state” of a system is given by an atomic such property, i.e. a one-dimensional subspace (a
“ray”). And hence, states are represented by ‘rays’ in Jf. The lattice of such closed linear subspaces (with
inclusion as an ordering relation) does not form a Boolean algebra (i.e. a distributive lattice with complements). The
quantum disjunction (called also “join™) , defined as the closed subspace generated by the union, and the quantum
negation (called bellow “orthocomplement”)’ are here two non-classical operations. The syntax of QL, i.e. the
language of this logic, is obtained recursively as follows (here any proposition p denotes some basic testable
property): @ =4 F/p/~@/ 0o Aw/@uy (‘A denotes the classical conjunction; note that the falsity of a proposition
does not imply the truth of its orthocomplement and also the truth of "¢ u y' does not imply that either '@’ is true or "y’ is
true). In accordance with the last formula ¢ U , the current state of the system is defined as a superposition of
states satisfying ¢ and states satisfying . Moreover, ‘v’ is not distributive over ‘A" (i.e. pu(q A 1) and
(puq) A (pur) are not equivalent: generalised for any @, v and ). The quantum implication ( known also as: “Sasaki
hook”, as an orthocomplement of the Sasaki projection: Sasaki U. 1964) is defined as follows: ¢ =s vy
=i ~¢ u (¢ A v), introduced by Finch P.D. (1970) and Mittelstaedt P. (1970). As a consequence of the
above nondistributivity, the classical deduction theorem (see: Theorem 1.31 of Subsection 1.7) fails for the
quantum implication (Baltag A. and Smets S. 20006).

There are five different operations of implication in an orthomodular lattice™ related to the classical
implication in a distributive lattice (Kalmbach G. 1983). A comparative study of quantum implication algebras

criticized for admitting revision operators that discard beliefs that have no real connection with the incoming information (Bienvenu M.,
Herzig A. and G. Qi 2006). An additional postulate for relevant revision was proposed in (Parikh R. 1999). Belief revision can be considered
as a process of incorporating new pieces of information into a set of existing beliefs. It is usually assumed that the operation follows the
following two principles: (i) the resulting belief set is consistent and (ii) the change on the original belief set is minimal (Perrussel L., Marchi
J. and Zhang D. 2010). In the last work, agent’s beliefs are represented in prime implicants and express agent’s preference on beliefs as a pre-
order over terms. It is shown that the introduced here belief revision operator satisfies the KM postulates for belief revision as well as Parikh’s
postulate for relevant revision (a more formal treatment is omitted here: left to the reader).

" Ontic states describe all properties of a physical system exhaustively. Exhaustive in this context means that an ontic state is precisely
the way it is, without any reference to epistemic knowledge or ignorance (Atmanspacher H. 2001).

T George David Birkhoff (1884 — 1944), John von Neumann (1903 — 1957), Claude Elwood Shannon (1916 —2001)

£ A complete unitary (or inner product) vector space (Bronstein LN.. et al. 2001), a particular case of Banach space (Stefan Banach, 1892
— 1945). Sometimes, inner product spaces over the field of complex numbers are referred to as unitary. Also, inner products are referred as
“abstract scalar products” (corresponding to the usual notion of a scalar, called also “dot” product in the case of an Euclidean space). The
term “inner space” itself may also denotes, e.g. “the environment beneath the surface of the sea”: physical geography. The above notion of a
complete space is defined as follows: a given metric space (X, p) is said to be complete (or Cauchy space: Augustin-Louis Cauchy, 1759 —
1857) iff every Cauchy sequence of points {x };O:l in X convergesin X, i.e. iff VO I3V ( p(XnyXm) < € ).

&) n, n,m, n,

¥ An orthocomplementation on a complemented lattice is an (order-reversing) involution which maps each element to a complement. An
orthocomplemented lattice (in short: ortholattice) is a bounded lattice with orthocomplementation. The ortholattices are most often used in
quantum logic, where the closed subspaces of a separable Hilbert space (i.e. admitting a countable orthonormal basis: all unit vectors are
orthogonal) represent quantum propositions. Ortholattices satisfy De Morgan’s laws, like Boolean ones (e.g. The Free Encyclopaedia, The
Wikimedia Foundation, Inc or also: Barnum H. et al. 2014).

" Lattice is an algebraic system < =4 (L; u, n) having two binary (i.e. two-argument) operations which are at the same time
commutative, associative and the following law of absorption is satisfied: X U(X n'y) = X = X n (X U y), forany x,y € L. By this
definition it follows that x Uy = X < x ny =y (left to the reader). Consider the partial ordering relation: x > y <4 XUy = X V X
ny =y, forany x,y € L. The above two binary operations can be introduced as supremum and infimum and (L, >) is a lattice (and vice
versa: the corresponding proofs will be given in Part II of this work). We shall say that ~ is modular (or Dedekind) lattice (Julius
Wilhelm Richard Dedekind 1831 — 1916)  iff vV ((x2z = xn(yvz=&ny) vz ) ltcan be shown that any

X, y.ze L
distributive lattice is modular (but not vice versa). However, the orthocomplemented lattices used in quantum logic would require the
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(such as: orthoimplication, orthomodular implication , and quasi-implication algebras) was given in (Megill
N.D. and Pavic¢i¢ M. 2003): a more formal treatment is omitted here.

Another very important problem is the quantum non-locality, i.e. the appearance of non-trivial correlations
between the results of measurements performed simultaneously on systems that are spacially remote (Baltag A.
and Smets S. 2006). The corresponding problem, known as “entanglement” is usually modelled by representing a
“compound” system S, composed of two subsystems S; and S, as a tensor product #; ® I, of the two

Hilbert spaces. A global state s of S is separated iff s =4 (s1,$2) € FH1x > = I ® I, Hence, each of
the subsystems S; is in a well-defined (“pure”) local state s;. Otherwise s is called entangled.

In general, the global state s of S cannot be exactly separated into two /local states s; and s,. Hence, the
notion of a “mixed state” is used (a higher-order representation, to capture all the available information concerning the
local state of an entangled subsystem). But finding, a correct generally-agreed interpretation of mixed states is still a
very much debated open problem (Baltag A. and Smets S. 2006). Here it is proposed an interpretation in terms of
“objectively imperfect information” (rather than subjective “ignorance interpretation”: one of the most popular previous)
that an entangled subsystem has about its environment. Moreover, in accordance with the above problem of
entanglement, it seems to be impossible to construct a general lattice-theoretic analogue of tensor product (Aerts
D. 1981: Theorem 11 /p.395). A more formal, logical description of the above entanglement still remains an open
problem.

It was shown that Hilbert spaces can be structured as non-classical relational models of propositional dynamic
logic (Baltag A. and Smets S. 2005). Any such model, called quantum transition system consists of a set of states
S (originally denoted by £ and representing complete descriptions of possible states of a physical system) and a family
of basic transition relations, which are binary relations between states in S (describing the changes of state induced
by possible actions that may be performed on the system: similarly as in Definition 2.10). The stafes correspond to rays,
i.e. one-dimensional subspaces of J¢f. The actions correspond to specific linear maps on Jf. For quantum
information change the actions vary from unitary evolutions (corresponding to the so-called “quantum gates” in
quantum computation) to various types of measurements (Baltag A. and Smets S. 2006). The following two main
types of basic actions were presented: quantum tests * ?¢ ~ and quantum gates U~ (in short below: qutests
and gugates)'. There were also introduced some spacial features related to the local properties of given
subsystems of a quantum system. Hence, a given unitary action is associated with some type, depending on its
location.

Let @ be tested and the obtained answer be “yes”, then the state of the observed system collapses to a state
satisfying this property @: "~ ?¢ ~ corresponds to a projector’ onto the subspace of Jf generated by ¢. Qugates
U represent reversible evolutions of the observed system (corresponding to unitary transformations on 3¢ ). The
program expressions 7 are interpreted as quantum programs. Hence, the language of the propositional dynamic
logic is interpreted in a quantum transition system (keeping the classical interpretation of all other functors, in particular
such as Boolean negation and conjunction, etc.). The resulting logic is called a logic of quantum actions, in short:
LOA (Baltag A. and Smets S. 2006). Here, dynamic logic formulae denote possible properties of quantum states:
any such property either holds at a given state or does not hold. And hence, this logic is bivalent satisfying all the
classical laws of propositional logic (see Subsection 1.3). Since not all the expressible properties are “festable”
(i.e. corresponding to an “experimental” property, e.g. the negation of a testable property might not be testable), only
negation-free formulae are assumed in this logic (Baltag A. and Smets S. 2006). Here, the following (dynamic)
reinterpretation (of the non-classical connectives) of QL inside LQA was proposed. The orthocomplement ~ ~ ¢ *

following special case: y =4 Z (the complement of z is defined as follows: z v Z =V and z n Z = A, where V and A are the

corresponding maximal and minimal elements). Since x n (Z vz ) = x n V = x, the following implication should be satisfied: x > z

= (X n z) u z = x. Hence (in accordance with this modification of the above modularity law) an orthomodular lattice is defined as an
orthocomplemented one, for which the last implication holds (forany x,z € L).

* We shall denote qutests by ~ ?¢ " instead of "@? " (in accordance with the previous considerations). More formally, the event ~ ?¢ ~ means
“test ¢ and proceed only if true”.

A self-adjoint idempotent linear operator (e.g. see Coecke B: http://www.cs.ox.ac.uk/people/bob.coecke/SLS.pdf, a quick draft version
of a course or Bronstein LN. et al. 2001).

 Provided there is no ambiguity, since * ~ “ denotes “orthocomplement”, the classical symbol of negation is here denoted by * — .
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of a property ¢ is interpreted as the impossibility of a successful test and defined as: ~ @ =g [?(p]F. In

accordance with De Morgan’s laws, the quantum disjunction is next defined by: ¢ u y =4 ~(~ @ A ~ ). The
quantum implication (Sasaki hook) is simply given by the weakest precondition of a qutest: ¢ =s Yy =g

[?(D]W (i.e. after performing qutest " ?¢ " it is necessarily the case that y holds: see the classical '— C'). Measurements
are here expressed as complex LQA programs (i.e. nondeterministic sums of qutests of mutually orthogonal properties).

In accordance with De Morgan's laws, the classical dual <?(p>\|/ =4 — [?(D]—'\V (expresses the possibility of
actualising a property y by a successful qutest of ¢ ). In particular, ©¢ can be defined as the possibility of testing
for ¢ andso: ¢ :df<?go>T.

Consider the compound system S composed of two subsystems S; and S,. The above presented quantum
transition system will now also include, besides the global actions U affecting S, i - local unitary actions Uj
only performed on S; (i=1,2). Letalso ¢ =4 (c1,¢c2) € FHix IHr» = 1 ® F> be a (specially distinguished)
separated state, designed by a constant symbol c. The notion of “local state of an entangled subsystem S;” is
internalised as follows (Baltag A. and Smets S. 2006).

Provided there is no ambiguity and for convenience, by GS we shall denote below the set of all global states
associated with S. Let 1 e {1,2} — {i} and pi < GS x GS be an equivalence” defined as follows

(i =12): SSZIGS( s pis’ <ar l?!(s' = U.(s))). Hence, the local state s; of S; instate s € GS can be defined

as the equivalence class  [s] =a {s"/ spis"} of s,ie. si=a [s] = GS (the subset of global states that

are “possible” according to S;, i.e. that are consistent with all the information available at location i: Baltag A.
and Smets S. 2006). Hence, the local state s;i of (an entangled subsystem) S; could be interpreted as an
“epistemic” (or “informational”) state. In fact, s; encodes all the information that S; “has” about (the global
system) S. The following “epistemic” functor (originally called “operator”, associated with the above indistinguishability
relation pi) was introduced (by 't inve ' and 'si ass @ ' are denoted below: “the quantum state t € GS is involved
by (property) ¢” and “the equivalence class si is associated with @”, respectively)’:

Ko =4 {s € GS/ tjés (tpis = tinve)} = {s € GS/si ass ¢}, for every testable

property ¢ of the quantum system S and every component i = 1,2.

In accordance with the above work, K; has the formal properties of a “knowledge” functor , satisfying the
axioms of the Lewis system S5 (see: Subsection 2.3: Modal logic). Hence, "K;¢" could loosely be read as:
“Subsystem S; knows . The last text is only considered as potential local information (not as “subjective”
knowledge by an actual “observer”). And so, the following better reading of 'K was also proposed: “The
information that the global system S satisfies ¢ is potentially available at location i” (Baltag A. and Smets S.
20006). In particular, assuming ¢ = (ci, ¢2), the local state of Si, e.g. {s/spic} = {(c1,d)/d e >}
corresponds to a pure local state of S; ,i.e. ci.Hence, a separated subsystem can be said to be in a well-defined
ontic state.

Let ¢ be a testable property. We shall say that ¢ is i - local (denoted by i) iff it entails i - separation
and it can only hold when it is known to subsystem S;. Hence: ¢; < K. Any local measurement on S; is a
qutest of the form "?¢;". The local proposition variables (ranging over testable local properties) are denoted below by
‘pi’. The proposed language of this quantum dynamic-epistemic logic is obtained recursively as follows
(Baltag A. and Smets S. 2006): in accordance with the previous considerations, only negation-free formulae
(more precisely, wrt the quantum negation) are assumed below.

* For convenience, instead of the original symbol '=; ', the equivalence relation is here denoted by 'p; .

TKip =ar {s: t € ¢ forall t = s} = {s: s; S ¢} (Baltag A. and Smets S. 2006).
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¢ =dr G/Gi/ﬁ(p/(p/\\ll/[n}p/Ki(P

T =g A/ i/?2Q0/ MUK/ oK/ Tx

Here, o is either a propositional variable p or the constant state c (a specially distinguished separated state)
and o is either an action variable a or a constant action symbol (denoting some special qugate, from a given list of
unitary evolutions). Similarly, ¢ and v (n and k) denote some properties (some program expressions,
interpreted as quantum programs), respectively.

Let s € GS be a separated state. It can be shown that S; is separated in s iff s’eEIGS (sp;s” A s’pic). The

following characterisation of entanglement can be also obtained: s is entangled iff it satisfies K>K;— c. In
accordance with the last sentence two subsystems are entangled if they have some (specific and non-trivial)
“knowledge” about each other, prior to any communication (Baltag A. and Smets S. 2006). Some more formal
results related to this work are illustrated below.

Entanglement involve non-local ontic effects of local measurements and hence, two systems are entangled if
every local measurement in the first system changes the other one. So s € GS is entangled iff s pl 20¢i (s).

A more stronger property of entanglement (assumed in quantum theory) requires a deterministic non-local ontic
impact, i.e. the existence of a deterministic correlation between the results of a local measurement on S; and the

subsequent ontic state of the environment S. (i € {1,2}). Let w5 be a deterministic program related to s. We

have Sls nEl ( ?7pi(s) p; ms(pi)). The following dual representation was also given (below i denotes a deterministic
program sending i - local states into i- local states): Y SEE(I]S( Ty = mi). Below, by T, itis denoted the state s €

GS entangled in accordance with 7;. So we have: ?pi( ﬁi) p; mi(pi).

In the next considerations of the above cited work (more formally) are discussed such notions as:
entanglement, non-locality, Bell’s states™ and various known quantum computing protocols (e.g. teleportation,
super-dense coding, quantum secret sharing, etc.). It was also presented a comparison of qutests with other forms
of information update.

The above introductory notions (related to quantum dynamic-epistemic logic) are only an illustration of this
excellent work. A more formal treatment is omitted here (this is left to the reader).

Intuitionistic and fuzzy intuitionistic logics

Intuitionistic logic encompasses the principles of logical reasoning used by Brouwer L.E.J. (Luitzen Egbertus
Jan Brouwer: 1881 — 1966) in developing his intuitionistic mathematics (1907). An early basis of these principles
was the Kant’s philosophy of mathematics, in particular the laws of “intuitive cognition” and “intuitive
Jjudgments”. So, the human intuition (a priori time and space) was considered as foundations of mathematics and
hence the construction of any mathematical concept (Immanuel Kant: 1724 — 1804). A similar point of view was
given by: Leopold Kronecker (1823 — 1891), Henri Poincaré (1854 — 1912), Félix Edouard Justin Emile Borel
(1871 — 1956), Henri Lebesgue (1875 — 1941), Herman Klaus Hugo Weyl (1885 — 1955) and so on'. Because the
above principles also underlie Russian recursive analysis (known also as recursive constructive mathematics: Andrei
Andreevich Markov, Junior: 1903 — 1979) and the constructive analysis (Bishop E. 1967: Errett Bishop 1928 —
1983) and his followers, intuitionistic logic may be considered the logical basis of constructive mathematics

(Formal logic. Encyclopedical outline with applications to informatics and linguistics 1987, Moschovakis J.R.
1999).

* Bell’s states (Bell J.S. 1964: John Stewart Bell: 1928 — 1990) are a concept in quantum information science and represent the most
simple examples of entanglement (considered as four specific maximally entangled quantum states of two qubits)

T In fact, intuition is only necessary condition in any such construction.
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An important stage in introduction of intuitionistic logic was the work given by Heyting A. (1930, Arend
Heyting: 1898 — 1980, who was a student of Brouwer): an interpretation of propositional and (first-order) predicate
formulae using proof terminology. Heyting’s intuitionistic calculus /N7 is now considered as one of the best
known constructive logics.

In fact, from the intuitionistic point of view, the ascertainment that ¢ is true requires the existence of a proof
for ¢. And so, we have:

(1) the proof m of "@ A ' is considered as an ordered p9air (mi,m2) such that:
m; 1is the proof of ¢ and m is the proof of y ;

(2) the proofof "¢ v y’is a construction, which selects one of the formulae o, y
and next gives the corresponding proof ;

(3)  the proof m of ‘@ = W’ isa construction such that, for each proof « of @,
it is obtained a corresponding proof n(x) of y together with a further
reference that this condition is in fact satisfied by = ;

(4) since E~@ < ¢ = F (isa thesis: the rule '—= N’ is not satisfied in this system),
the proof of "~ ¢ “corresponds to the assumption that the logical value
‘0 = F° = T. Butthen, we shall obtain a contradiction with any proof of ¢
(wrt: ' T = F" = F);

(5) the proof m of '§A(x)' is a construction which selects an object a € # (the

universe under consideration) and gives a proof m(a) of A(a), where a is a name
for a;

(6) the proof m of "V A(x)" is a construction such that for each object a € 7/

it is assigned a proof m(a) of A(a) together with the ascertainment that the

above conditions are satisfied by .

We observe a logical consistency between cases (5,6) and the corresponding primitive rules of joining the
existential and universal quantifiers, i.e. '+3° and "+V ', respectively (See: Classical first-order and higher order
predicate logics: Chapter II, Subsection 3.3).

An approach, similar to the above presented, was proposed by Kolmogorov A.N. (1925, Andrej Nikolaevich
Kolmogorov: 1903 — 1987): in accordance with Kolmogorov’s known thesis ( ‘INT = logic of problems”), the above
formulae are here interpreted as “problems’ (e.g. the solution of the problem "¢ A ' is considered as an ordered pair
of solutions corresponding to the problems associated with ¢ and w, respectively).

The axiomatic system (of the intuitionistic propositional logic), introduced by Heyting A. (1930), is shown
below”.

A) p=pApD

(A2) pAqQ=qAp

A3 p=qQ9=>PATr=qgAr
@) Pp=29dAr@=>1=0=1
@) q=@=09

a6 pAp=9=9q

A7) p=pvVvq

(A8) pvq=qVvp

A p=2nNA@=21nn=>0pPvqg=>r
A1) ~p = (p = q

Ay p=9 AP =>~q9 = ~p

" Brouwer’s ideas on the formalisation of intuitionistic logic were studied also by Kolmogorov A.N. (1925) and Glivenko V. (1929).
Heyting’s system was universally accepted.
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We observe that any of the above axioms is a thesis of the classical propositional calculus, but not vice versa.
As an example, the following formulae are not satisfied in the above system: p v ~p (the Aristotelian law of the
excluded middle), ~~p = p, ~(p A qQ) = ~p Vv ~q (are the ifimplications of T 1.3 and T 1.8, respectively:
Subsection 1.3), (~p = p) = p, (p = q = p) = p, etc. In particular, the following equivalence was
shown (Glivenko V. 1929: Valery Ivanovich Glivenko 1897 — 1940, Gdodel K. 1930: Kurt Godel 1906 — 1978):
= @ (is a thesis in classical logic) iff = ~~ ¢ (is a thesis in intuitionistic logic). An embedding of classical logic into

intuitionistic one was also given (Godel K. 1930).

In general, the expressive power of intuitionistic logic involves various applications, in particular in the field
of discrete mathematics and computer science. Some brief considerations on the fuzzy intuitionistic logic (known
also as: intuitionistic fuzzy logic)” are given below.

Fuzzy intuitionistic logic was introduced by Takeuti G. and Titani S. (1984) as the logic corresponding to
intuitionistic fuzzy set theory: as in classical propositional logic, this logic has its corresponding set theory (see
also: Atanassov K.T. 1986, 19887 and Turunen E. 1989, 1991%). Fuzzy intuitionistic logic also coincides with
the first-order Godel’s logic (Godel K. 1933) based on the truth-values set [0,1]. Here, one of the basic t-norm
logics is used (Hajek P. 1998), see Subsection 2.2.

The validity of modus ponens (i.e. the rule of omitting an implication '— C': Heyting’s axiom A6) is a critical
aspect for any form of knowledge inference, as it guarantees the correctness of reasoning. In classical
propositional logic this rule is indeed a valid one. However, fuzzy intuitionistic logic introduces more
expressivity, in a gradual logic framework: it allows not only to define degrees of truth, but also to
simultaneously observe degrees of falsechood (Atanassov K.T. 1986). As observed in some particular cases, the
validity of the modus ponens is not guaranteed for most fuzzy intuitionistic implications, e.g. see (Detyniecki M.
et al. 2014, Rushdi A.M. et al. 2015)%. In particular, there was proposed in (Detyniecki M. et al. 2014) to
interpret the last observation as due to the fact that the classical fuzzy intuitionistic tautology (Atanassov K.T.
and Gargov G. 1998) is too optimistic. And so, as an alternative there were introduced several more strict
definitions. It was also presented a more intuitive approach to tautology wrt ignorance processing (through the
expressivity allowed by the 2 degrees, of truth and falsehood, intuitionistic fuzzy logic makes it possible to model distinct
levels of knowledge and in particular ignorance: as neither positive, i.e. formula with degree of truth greater than degree of
falsehood nor negative, i.e. formula with degree of truth lower than degree of falsehood). The considered tautology
definitions make it possible to express the notion of being “certainly true”, whereas the classical definition
considers ignorance as a tautology. In this way we have a more intuitive approach wrt ignorance processing
(Detyniecki M. et al. 2014). Some results, given in the last work, are presented below. In particular, it is also
shown below that the generalised Lukasiewicz’s fuzzy t-norm (Tabakow 1.G. 2010, 2014), redefined as
generalised Lukasiewicz’s intuitionistic fuzzy t-norm is a t-representable intuitionistic fuzzy t-norm™.

The notion of intuitionistic fuzzy set is introduced as follows (Atanassov K.T. 1986): here, pa and va are
two maps from X (the universe) to [0,1].

" The notions “fiizzy intuitionistic logic” and “intuitionistic fuzzy sets” are here used in their chronological order (wrt intuitionistic logic and
fuzzy sets).

 An earlier was the work, given by Atanassov K.T. (born 1954): Intuitionistic fuzzy sets, VI ITKR’s Session, Sofia, Deposed in Central
Sci-Techn. Library of Bulg Acad of Sci. 1697/84 (1983), in Bulgarian. Fuzzy sets are special cases of intuitionistic fuzzy sets and the last have
better modeling power than the fuzzy sets.

! The starting point in fuzzy intuitionistic logic is to fuzzify truth. There are accepted formulae as have different truth values (instead of
the classical true-false-dualism). In fuzzy intuitionistic logic a half true expression is not always half false. Since we are not interested in the
false sentences of a theory we let the falsehood be crisp. There is only one falsehood in fuzzy intuitionistic logic. Here, similarly as in
classical first-order predicate logic, it is introduced a set ./ of well formed formulae, a partially ordered set L of truth values (assuming
some binary operations defined in L, corresponding to the classical one) and an interpretation T , represented as the map T : . — L
(satisfying some required properties).

§ As in fuzzy logic, some formulae may be or not be satisfied, depending on the used t-norm, e.g. £-BL, G-BL and n-BL considered in
Subsection 2.2.

" In particular, the generalised Lukasiewicz’s fuzzy t-norm, redefined as generalised Eukasiewicz’s intuitionistic fuzzy t-norm, is t-
representable and hence this t-norm seems to be an interesting application in intuitionistic fuzzy rough sets (Tabakow 1.G. 2014).
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Definition 2.24 (intuitionistic fuzzy set)"

Letaset X be fixed. An intuitionistic fuzzy set A in X is defined as: A =4 {(X, pa(x), va(x))/x € X},
which assigns to each element x a membership degree pa(x) and a non-membership degree va(x), where

pHa(x), va(x) > 0, with the condition: XYX (La(x) + va(x) < 1).

This definition is an extension of the classical one (Zadeh L. A. 1965). Provided there is no ambiguity and
for simplicity, let pa =¢r pa(x) and va =4¢r va(x), X € X. By %a =ar 1 — Wa — va it is denoted the hesitancy
degree or an intuitionistic index of x to A, which represents the indeterminacy degree of x to A (Szmidt E.
and Kacprzyk J. 2000). Each pair of (pa, va) in A is called an intuitionistic fuzzy number, in short: IFN. Here,
(1,00 and (0,1) are the largest and smallest IFN’s, respectively. Obviously, each IFN has a physical
interpretation (e.g. (0.7,0.2): pa = 0.7, va = 0.2 and ya = 0.1, which can be interpreted as: ‘the vote for resolution is
seven in favour, two against, and one abstention’). For convenience, IFN is denoted by a =4 (Ua, Va), Where
May Va = 0, ta + va < 1. And also, by sa =¢f la — Va and ha =g Ha + Vva are denoted the score and the
accuracy degree of the IFN a, respectively (Xu Z.S. and Yager R.R. 2006, 2011).

An intuitionistic fuzzy set can be represented algebraically on the complete lattice’ & =4 (L, <L) defined as
follows (Detyniecki M. et al. 2014).

Definition 2.25

The intuitionistic fuzzy lattice ' =4 (L, <p), where L =4 {(x,y) € [0,1]?/x + y < 1} & [0,1]? is the
set of elements of " and <y < L x L is a binary relation (originally called: “comparison operator”) defined as:

v <L (zt) < < >t
oGy S @) Su (x <2 A @ 0).

We observe that L corresponds to the set of points of the rectangular equilateral triangle defined by the
inequalities: x > 0, y > 0 and x + y < 1. Moreover, it can be observed that the above relation '<." is a
partial order, i.e. a reflexive, weak antisymmetric and transitive. In fact, for any x,y, z, t,u,v € [0,1] we have
(the proof is left to the reader)®:

(Xay) <L (Xay)a
xy) <0 () A (zt) <0 (xy) = X =2 A(y=1 and
xy) < () A (zb) <0 (wy) = xy) <0 (uv). o {Df2.25}

Corollary 2.8

x,yzo,l] ((0,1) < (xy) <u (1,0)). 5

The above two ordered pairs (0,1) and (1,0) correspond to the minimal and maximal elements of this lattice.
The last two pairs are denoted below by Or and 11, respectively. Another extreme point of special interest is the
pair (0,0) denoted below by Uy (by definition, (1,1) ¢ L).

The notions of intuitionistic fuzzy t-norm and t-representable intuitionistic fuzzy t-norm are given in the next
two definitions.

" The characterisation of fuzzy sets is that the range of truth value of the membership relation is the closed interval [0,1] of real numbers.
And hence, a more general approach (by using L. S. Hay’s extention of Lukasiewicz’s logic) was presented in (Takeuti G. Titani S. 1984).

T is complete iff v 3! (a = sup(B), b = inf(B)): Definition 2.25 is a version of the original one, given in (Detyniecki M. et al.
empty#zBcL a,bel

2014). Moreover, lattice theory is omitted in this part of study: will be presented in Part II of this book.

¥ Provided there is no ambiguity and for simplicity, it is assumed below that '<;" binds more strongly than the symbol of conjunction
‘A’ Weobservethat: x +y < 1 iff x < 1 —y =y' (the Lukasiewicz’s fuzzy negation).
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Definition 2.26

Let ®; be a binary operation defined in L with the following properties (for any (x.y), (z.t), (w,v), (p,q)
e L ¢ [0,11»:

(xy) O (z) = (z1) O (xy) commutative

(xy) ®; (uyv) 12 (zt) O (p,q) for (x,y) 1= (zt) and (u,v) > (p,q) monotonic

(xy) ®; ((zt) B (u,v) = ((Xy) @y (z,0) Oy (u,v) associative

xy) ®; 1L = (x,y) has 1. as unit element

We shall say that ®,; is an intuitionistic fuzzy t-norm”.

The notion of an intuitionistic fuzzy t-conorm, denoted here by @, , can be introduced in a similar way

(having O. as unit element: left to the reader). Among the intuitionistic fuzzy t-norms, the category of t-
representable t-norms is of special interest.

Definition 2.27
For any (x,y), (zt) € L ¢ [0,1]*:

® is t-representable wrt ® and @ iff (xy) ®; (zt) = x®z,y®t) and
@ is t-representable wrt ® and ® iff (x,y) @ (zt) = x®Dz,y®t).

Obviously, the last definition assumes the existence of such fuzzy norms ® and ®. It can be observed that
any such t-representable intuitionistic fuzzy t-norm (e.g. ®,; ) is considered as a binary operation related to the
direct product of the two Abelian’ monoids v =4 ([0,1]; 1 ;®) and 7 =4 ([0,1]; 0 ; ®), i.e. .~ x .7, where
®, is the obtained binary operation restricted to L and defined in the corresponding algebraic subsystem of this
direct product (preserving the monotonicity property)*.

In applications the often used as a t-norm is the classical Lukasiewicz’s such one because the notion of fuzzy

t-equivalence relation is dual to that of a pseudo-metric. The generalised Lukasiewicz’s fuzzy t-norm was used to
represent and improve fuzzy rough approximations (Tabakow 1.G. 2014). It is shown below that the generalised

Lukasiewicz’s intuitionistic fuzzy t-norm (denoted as: ®, ) satisfies the last two definitions. Moreover, ®,. is
well-defined, i.e. closed in L.

Consider the direct product ../ x .7 of the following two similar Abelian® monoids ./ =q¢ ([0,1];1; &)
and .7 =4 ([0,1];0; &), where "® "and " & "denote the generalised Lukasiewicz’s fuzzy t-norm and t-conorm,

" Equivalently, the algebraic system (L ; 1 ; ®i¢ ) is Abelian monoid with the monotonicity property for ®;¢ . Similarly, for ®;¢
wrt OL.

T Any algebraic system .~ =g (A ; 0) is said to be groupoid, where "o’ is a binary operation, i.e. ©:A’>— A. Thesystem . is
Abelian if 'o" is commutative (Niels Henrik Abel: 1802 — 1829).

£ A more formal treatment concerning the notion of direct product of two algebraic systems will be given in the second part of this book.
In particular, .~ and .7 are similar, i.e. are of the same type: (0,2).

§ Any algebraic system . =4 (A ; 0) is said to be groupoid, where "o’ is a binary operation, i.e. ©:A>— A. Thesystem . is
Abelian if "o” is commutative (Niels Henrik Abel: 1802 — 1829).
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respectively”. By definition, .~ x 7 =¢ ([0,1] x [0,1]; (1,0) ;® ), where ® is the new obtained binary
operation, defined in [0,1]? and ® ((X1,y1),(X2,y2)) =ar (& (Xx1,X2), & (y1,y2)), for any xi, X2, y1, y2 € [0,1].
Provided there is no ambiguity and for simplicity, below instead of xi, X2, y1, y2 , etc. we shall denote variables
by X, y, z, t, etc. And also, instead of & (x1,Xx2) and & (y1,y2), we shallusee.g. x&y and z& t.

Let now ~ =4 (L; (1,0); ®if ) £ v x .7 be the corresponding algebraic subsystem defined for L <
[0,1]? , where ®if is the binary operation ® restricted to L, i.e. dom( @if ) =d¢ dom(®) n L. Now it is
necessary to show that ®if is t-representable wrt & and & . Hence, in accordance with Definition 2.27, it is

necessary to show that (x ® z,y @ t) € L, forany (x,y), (zt) € L, i.e. that ®if is closed in L.

. 1/ . . 1/ . e
Let x&® z =¢ max{0, x* + z* — 1} * and y&t =¢ min{l, y* + t*} * . The following proposition is
satisfied.

Proposition 2.18 (®if is t-representable )

1/ . 1/
Vo2 DA+ <) = max{0x + 2 - 1 "+ min{l,y* + t*} "< 1), forany o
xyztel0,

> 1.
Proof:

Let x +z<landy+t<1(x,y,zt €[0,1]). Assumethat o > 1. Since x + z < 1, x > x* and
z > z%then | > x + z > x* + z% Hence: x* + z* — 1 < 0. In a similar way we can obtain: y* + t* < 1.

1/ . 1/ 1/
Therefore, max{0, x* + z* — 1} "y min{l, y* + t*} . (v +t%) “<1s

~

Proposition 2.19 (the intuitionistic fuzzy t-norm &, )

Let & be the generalised Lukasiewicz’s fuzzy t-norm. Then ®if defined in L is an intuitionistic fuzzy t-

norm.

Proof:
Let (x.y), (z.0), (W), (0,q) € L & [0,11% We have:

A

1. ®. is commutative.

xy) @if (z,t) =af (x®zyodt)
= (Zoxtdy)

=it (z,t) ®if (x,y).

2. @if is monotonic, i.e. (X,y) ®if (u,v) > (z,t) ®if (p,q) for (x,y) 2L (zt) and (u,v) > (p,q).

Let (zt) <0 (xy) and (p,q) <u (u,v). So, we have: z < x, t >y, p < u and q > v. Since
(z,t) ®if (P,q) =d¢ (z&p,t&q) and (xy) ®if (u,v) =4 (X&u, y®v) we can obtain: z&p < x&u and
té&q 2 ydv.Hence: z&p,tdq) <L(x®Uu, yd v). Then (zt) ®if (P.9) <L (xy) ®if (u,v).

~

3. ®,; is associative.

* See: Subsection 2.2: A generalisation of the Lukasiewicz’s BL system.
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(x,y) ®if ((z,t) ®if (wv)) =ar (x,y) ®if (z®u,tdv)
= (xX®@Zeou,yd(tadv))
= (x®@7)&u,(ydt)dv)
= (x&zySH® (W)

=i (%) ® (21) O (uv).
4. ®if has 1. as unit element.
xy) ®p It =g (xy) & (1,0)

= xolLyd0)
(xy). o {Df2.25, Df.2.26,Df.2.27,Prop.2.18}

Let now or:L x L — L be a map such that:

1. oy satisfies the following four boundary conditions: o#(00,00) = 11, oa(OL,1L) = 11, on(1,00)
= 0p and Gﬁ(lL,lL) = 1L*,

2. of is decreasing in its first component: b 1> a = os(b,c) <L cr(a,e) and

3. op isincreasing in its second component: d 1> ¢ = of(a,d) 1> Gri(a,c),
where a =g (X,y), b =d¢r (z,t), ¢ =4r (u,v) and d =4 (p,q), forany a,b,c,d € L.

Definition 2.28 (the fuzzy intuitionistic R-implication "=>)

Let on be asaboveand a =i b =4 or(a,b). The fuzzy intuitionistic R-implication is introduced as follows

(forany a,b,¢ € L): a =1 b =g sup{c € L/a ®; ¢ < b}.

In accordance with the last definition, there exists a possibility of obtaining some different fuzzy intuitionistic
R-implications depending on the required intuitionistic fuzzy t-norms (Cornelis, C. and Deschrijver G. 2001).

An illustration of the above considerations are the next two examples. Here, the intuitionistic fuzzy t-norm ®if is
used.

Example 2.20 (o5(1,0;) = 01)

os(1L0L) =4 supfe € L/(1,0) ®; ¢ < (0,1)}

L/(1,0) ®, (uyv) <. (0,1)}
L/(1&u,0&v) < (0,1)}

m

= sup{c
= sup{ec
= suple e L/(max{0, 1% + u¢ — 13", min{l, 0% + v} ") < (0,1)}
= sup{c € L/(uv) < (0,1)}

= sup{c € L/c <o O}

= Op.o {Coroll. 2.8}

m

Example 2.21 (op is decreasing in its first component)

* According to Corollary 2.8: og(a,b) = 1. iff a<g b (a,b € {0, 1.}), similarly as in classical logic, where p = q = 1 iff p < q,
{p,q € {0,1}): see Subsection 1.4.

T See (Detyniecki M. et al. 2014) and also Subsection 2.2 of this book.
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Let K =4 {0, 1/4, 1/2,3/4, 1}. Consider the set Q =4 {(x,y) € K*/x +y < 1} ¢ L, |Q[= 15. Suppose
that a =g (0,1/2), b =4 (1/2,1/4) and ¢ =g (1/4,3/4). We have: a = (0,1/2) < (1/2,1/4) = b,ie. b (> a.

Assume the intuitionistic fuzzy t-norm @if ,e.g. for o =4r 2. We have:

oi(b,¢) =4 sup{d € Q/b ®,d < c}

= sup{(p.g) € Q/(1/2,1/4) ®; (p.a) <. (1/4,3/4)}

= sup{(p,q) € Q/(12&p, 1/4®q) <L (1/4,3/4)}

—  supi{(p,q) € Q/(max{0, (1/2)*> +p?> — 1}'?,min{l, (1/4)* +q*} '?) <p (1/4,3/4)}.
= supi(p,q) € Q/(max{0,1/4+p> — 1} < 1/16 and min{l, 1/16 + g%} > 9/16}

= sup{(0,1), (0,3/4)}

- (0,3/4).

In a similar way, we can obtain (left to the reader):

oi(ae) =  sup{(0,1), (0,3/4), (1/4,3/4)}
= (1/43/4).

And hence: cg(b,c) = (0,3/4) <L (1/4,3/4) = cs(a,e)”. o {Df.2.25,Prop.2.18,Df.2.28}

In formal logic, the term ‘fautology’’ translates the idea of universal truth, i.e. a formula that is true in every
possible interpretation (see: Definition 1.5 of Subsection 1.4). However, in accordance with Definition 2.28, any
‘logical value’ of the fuzzy intuitionistic R-implication is represented by ordered pair in L. And hence, it is
necessary to know how such pair is related to the above notion of tautology.

In the case of fuzzy intuitionistic logic, the following definition was proposed: confusing a formula with its
truth value (Atanassov K.T.and Gargov G. 1998).

Definition 2.29 (fuzzy intuitionistic tautology)

An ordered pair a =¢r (x,y) € L isa fuzzy intuitionistic tautology iff x > vy.

According to the last definition, it is assumed that the degree of truth should be greater than the degree of
falsehood for an intuitionistic pair to be considered as tautology. And hence, the validity of modus ponens (i.e. the
rule ‘= C', in terms of truth values) was characterised as follows (Cornelis, C. and Deschrijver G. 2001).

Definition 2.30 (the validity of modus ponens)

Let a =5 b be a fuzzy intuitionistic R-implication (a, b € L ). Assume that this implication is tautology
and the antecedent a is tautology. Then the consequent b is tautology.

By the last definition it follows that the validity of the above fuzzy intuitionistic implication directly depends
upon the definition of the tautology*.

In accordance with Definition 2.29, fuzzy intuitionistic tautology can be any pair (x,y) € L such that
x > y. This way Ur = (0,0) becomes a tautology, which is counterintuitive. In fact, the both truth and
falsehood degrees equal 0, is closer to the notion ‘unknown’, modelling total ignorance, rather than to the one of

" As in the case of real numbers: X < Y = supX < supY (X,Y < R).

T Called also, equivalently: thesis, satisfied formula, true formula or valid formula.

#In accordance with Definition 2.28, the ‘logical value’ of a =>5 b corresponds to some ordered pair, e.g. ¢ and hence the consequent
b is tautology if a and ¢ are also tautologies (a, b, ¢ € L).
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‘true’ (Detyniecki M. et al. 2014). Some remarks were also given by (Cornelis, C. and Deschrijver G. 2001, El-
Hakeim K. and Zeyada F. 2000, etc.).

As an improvement of the above Definition 2.29 (i.e. to exclude some cases from being considered as true), the
following two definitions were introduced (Detyniecki M. et al. 2014).

Definition 2.31 (certain fuzzy intuitionistic tautology)

An ordered pair a =¢ (X,y) € L is a certain fuzzy intuitionistic tautology iff x > y and 1 — x — y <
0.5".

Definition 2.32 (truth fuzzy intuitionistic tautology)

An ordered pair a =¢r (x,y) € L is a truth fuzzy intuitionistic tautology iff x > 0.5.
By Definition 2.31 it follows that x > y and 0.5 < x + y < 1.

Corollary 2.9
Let (x,y) € L. If x > 0.5 then x > y.

Proof:

Let (x,y) € L. Assumethat x > 0.5. Then x + y 2 05 + y.Since 1 > x + y then 1 > 0.5 + y and
so y < 0.5.Hence x 2 y.o

And so, in accordance with the above considerations, it follows that Definition 2.29 gives a necessary but not
sufficient condition for tautology.

The validity experimental study was also presented (Detyniecki M. et al. 2014), i.e. a study concerning the
validity of modus ponens wrt the considered 18 fuzzy intuitionistic implications for 10 000 pairs a,b € L (a
random generation, using the uniform distribution).

In general, the contemporary investigations in fuzzy intuitionistic logic and intuitionistic fuzzy sets have both
theoretical and practical aspects. (i.e. involving some research and development). There were studied, e.g. fuzzy
intuitionistic lattices and fuzzy intuitionistic Boolean algebras (Tripathy B.K. et al. 2013) or also an algebraic
structure for fuzzy intuitionistic logic (Eslami E. 2012), new modal predicate logics: global intuitionistic and
global fuzzy intuitionistic logics (Ciabattoni A. 2004), complex intuitionistic fuzzy classes (Ramot D. et al. 2002,
Ali M. et al. 2016)f, quantum logic and (different forms of) nonclassical logics (Cattaneo G. et al., see:
https:/pdfs.semanticscholar.org/9e4a/2d6900cec7671dd68adc5de6c44aa33858a9.pdf, neutrosophic logict: considered as
a generalisation of the fuzzy intuitionistic logic (Smarandache F. 2002), intuitionistic fuzzy Bonferroni means®
(Xu Z.S. and Yager R.R. 2006, 2011) and so on. An implementation-oriented research was also presented, e.g.
concerning the use of fuzzy intuitionistic logic techniques in image processing (Rajarajeswari P. and Uma N.
2013), the use of intuitionistic fuzzy classifiers in intrusion detection systems (Kavitha B. et al. 2011), noise
removal from images using fuzzy intuitionistic logic controllers (Radhika C. et al. 2016), techniques for
developing large scale fuzzy logic systems (Ervin J.C. and Altekin S.E. 2008), fuzzy intuitionistic logic applied
to real-time traffic (Alodat M. 2015), etc.

Linear logic

" Corresponds to the notion of crisp set A" associated with a fuzzy set A (using a threshold value 0.5): [ a+ (X) =g if pa(x) > 0.5 then
1 else 0 (forany x € X —the domain: see Chapter III, Section 7 of this book).

 See also Subsection 9.1.

¥ This logic is based on the non-standard analysis, originated in the early 1960s by Abraham Robinson (1918 — 1974): a formalization of
analysis and a branch of mathematical logic, that in particular rigorously defines the infinitesimals (i.e. the infinitely small numbers: x is
infinitesimal iff 1x| < 1/n, for any n € N). Here, the notions of ‘non-standard real subsets” and ‘non-standard unit interval’ are used
(Smarandache F. 2002).

§ A mean-type aggregation operator called the Bonferroni mean (Bonferroni C. 1950: Carlo Emilio Bonferroni 1892 - 1960).



196

Linear logic, introduced by J.- Y. Girard”™ in 1987, is considered as a refinement of classical and intuitionistic
logics. Instead of emphasizing fruth, as in classical logic, or proof, as in intuitionistic logic, linear logic
emphasizes the role of formulae as resources. This logic does not allow the usual structural rules of contraction
an weakening to apply to all formulae but only those formulae marked with certain modalities. Linear logic
contains a fully involutive negation while maintaining a strong constructive interpretation. Linear logic can be
considered as a bold attempt to reconcile the beauty and symmetry of the systems for classical logic with the
quest for constructive proofs that had led to intuitionistic logic (Di Cosmo R. and Miller D. 2016). It was shown
how linear intuitionistic logic can be explained as a logic of resources (Lafont Y. 1993). And hence, this logic
becomes an attractive in computer science, because of its logical way of coping with resources and resource
control (Bratiner T. 1996).

The linear logic is weaker than the classical one, i.e. some formulae provable in classical logic may not be
provable in linear logic..On the other hand, the linear logic is useful precisely. The classical logic is ‘logic about
truth’ (if some formula is true, then it is always true). The linear logic is a ‘logic about resources’ (resources are finite
and consumable: if we use a resource, then we cannot use it again). In linear logic assumptions (a.k.a. hypotheses)
correspond to consumable resources. Assumptions cannot be arbitrarily duplicated, nor can they be discarded
without being used, see: hitps://www.cs.ucsb.edu/~benh/162_S16/handouts/handout8-LFOL.pdf.

The following Gentzen’s style structural rules are mainly used for obtaining substructural logics (e.g. such as:
affine, linear, ordered, relevance and other ones:).

AT A (exchange), TA_B (contraction) an F.A_B (weakening)

The first two rules follow directly from the commutative and idempotent axioms for conjunction and SR. The last
rule follows directly from T 1.12 (exportation of implication: Subsection 1.3). The corresponding formal proofs are
left to the reader (see Subsection 1.8 and also Relevance logic, considered in this Subsection 2.4)".

The language of linear classical logic can be defined recursively as follows: ¢ =¢ p/~¢0/ @@ W/ @ y/
o&y/o®8y/1/0/T/L/!'e/?oe. The logical connectives ® ,%®,1 and L are said to be multiplicatives,
similarly & , ® , T and 0 are called additives. The last two connectives: ! and ? are called modals or
exponentials (used to give controlled access to weakening and contraction), T and L1 are pronounced as: ‘fop’ and
‘bottom’, respectively. The following terminology is used here (The Free Encyclopaedia, The Wikimedia
Foundation, Inc.).

Logical connective Name / Is pronounced

® multiplicative conjunction
(times , tensor), ¢ ® y: "both
@ and v or '@ tensor v

@ additive disjunction  (plus),
¢ @© y: ‘(at least one of) @
or v

& additive conjunction (with),

¢ & y: ‘choose from ¢ and
v’ or ‘o with v

¥ multiplicative disjunction
(par)

! escape (of course, bang), o:
‘of course @ or ‘bang ¢’

* Jean-Yves Girard , born 1947.

" In fact, the above Gentzen’s formulae (related to the antecedents of the main sequent connectives) can be also represented as follows:
AABT -0 IAJALA— 0O and A —0®
ABAT -0  T,AA- © [LAA — ©

, corresponding to exchange, contraction and weakening, respectively.
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l ? | why not [

The following ‘polarity’ classification is also used: ® ,®,1,0,! are called positive and theirduals ®, &, L
, T,? arecalled negative.

The linear implication is denoted by "— “, where '@ —o ' is pronounced as: "consuming ¢ yields ' or
"¢ lollipop w'. We have: ¢ — y =4 ~¢ B y. The intuitionistic implication ¢ = W can be defined
as: !¢ — wy. In particular, the following equivalences are also satisfied: !(¢ & y) - !¢ ® Iy (known as:
‘exponential isomorphism’) and ?(¢ ® y) - ?¢ ® ?y. Moreover, !T - 1 and ?0 - L. The linear logic
equivalence ¢ -y means that the formula (¢ — ) & (y — @) is derivable in this logic. It can be
observed that any formula ¢ has a dual ~¢@,e.g. ~(@®y) = ~0 B~y and ~ (@B YY) =~ ® ~\y or
~(E®VY) = ~0 &~y and ~ (0 &VY) = ~@ ® ~y, etc. In particular, T 1.3 of Subsection 1.3: ~~¢ = ¢
is also satisfied, i.e. "~ " is involutive (Di Cosmo R. and Miller D. 2016)".

In addition to the above De Morgan’s dualities, the following formulae are also satisfied (Cockett J.R.B. and
Seely R.A.G. 1997: see also the above exponential isomorphism): ¢ ® (Y @ %) = (¢ ® W) ® (¢ ® x): " ® " is
distributive wrt " ® (0 ® (W Ey) — (0®W)=Ey): E € {®,d, &,8 }. The last linear implications,
called linear distributions, are fundamental in the proof theory of linear logic. In particular, we have: if ¢ — ,
¢ x then @, — y®y.

A good introduction to linear classical and linear intuitionistic logics is given in (Braiiner T. 1996). An
illustration of the difference between intuitionistic logic and linear intuitionistic logic is also presented. The
correspondence between the linear intuitionistic logic and the linear A-calculus is also considered (by using the
original Curry-Howard isomorphism®, see: Howard W.A. 1980) as well the Girard translation (which embeds
intuitionistic logic into linear intuitionistic one). And finally, a brief introduction to some example models of
linear intuitionistic logic are given. This technical report is a fundamental study on proof-theory and
computational interpretation of proofs, in particular: the interpretation of proofs as programs and reduction (cut-
elimination) as evaluation (corresponds to the fundamental idea of the proofs-as-programs paradigm). A more formal
treatment is omitted here, see also: (Lafont Y. 1999/2017).

Traditionally, the linear logic proof techniques are related to the classical sequent calculus (see Subsection
1.8) in which uses of the structural rules contraction and weakening are carefully controlled. Example inference
rules used in this logic are given below: see: https://www.cs.ucsb.edu/~benh/162_S16/handouts/handout8-LFOL.pdft.

r-A A B I'-A®B AA B - C
+®: -®:
A~ A®B LA - C

* We shall assume that ® and % bind more strongly than the symbol of equivalence. See also: The Free Encyclopaedia, The Wikimedia
Foundation, Inc. Obviously, '~ ¢” is understood as an abbreviation for ‘¢ — L’. Sometimes, the 0-ary ~ L” is denoted by ‘$" and known as
“intuitionistic absurd”.

¥ The original Curry-Howard isomorphism relates the natural deduction formulation of intuitionistic logic to the A-calculus: formulae
correspond to types, proofs to terms, and reduction of proofs to reduction of terms: Haskell Brooks Curry (1900 — 1982) and William Alvin
Howard (born 1926).

¥ The corresponding introduction and reduction (called also elimination) rules are here denoted by "+ and "—’, respectively. Moreover,
the above presentation is characterized by the presence of two different forms of rules for some connectives. Then, the used indexes 'L’
and 'R’ are related to the left hand side and to the right hand side of the considered connective. A more complete systems of introduction
rules related to the linear classical, linear intuitionistic logics and the linear A-calculus are given in (Braiiner T. 1996). Another interesting
case seems to be the linear p-calculus, e.g. (Bradfield J.C. and Stirling C. 2001).
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- A
L
I'-A®B
+: -
- B
R
'-A®B
I'-A TI'—B
& —&:
' A&B
I'—-A I
+ 1 -
r—!'A
A — B
+ —o: —— — —0
I' - A—-B

r-A®B AA _-_C AB _-C

IA - C

I'-A&B

L

- A
I'-A&B

R

I'- B

r—'!'A TAAA B

I'A - B
I'- A—-B A — A

A~ B

In particular, a special case seems to be the rule '—3" , if the predicate A is more than one argument. Then,
some Skolemian functions should be introduced”. A more formal treatment is omitted here (see: Classical first-order
and higher order predicate logics: Chapter II, Subsection 3.3). A modified version of '—3" and corresponding proof are
given below.

- A I'— VA
+v: — —V: .
- YA I'— AR/E)/T — AKX)
I — AX/€) ' 3A A 3JA - B
+3: -3:
r— ;IA I'A — B

For example, in accordance with "—3", the following formula should be proved (see Subsection 1.8).

P = JA)A@ATAK) = 1) = (pArg =)

Proof:

() p = 3JA®X
2 an ;IA(X) =T

3) p {a}

(COR|

6 3A® (-C: 1,3}

© an3IA® {(+K:4,5}
I.o {-C: 2,6}

Intuitionistic computability logic

* Thoralf Albert Skolem (1887 — 1963).
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Computability logic introduced by Japaridze G*. (2003) is a formal theory of computability in the sense as
classical logic is a formal theory of truth. It understands formulae as interactive computational problems (defined
as games played by a machine against the environment:), and their ‘truth’ as algorithmic solvability (meaning existence
of a machine that always wins the game)..This logic is a systematic formal theory of computational tasks and
resources, which, in a sense, can be seen as a semantics-based alternative to (the syntactically introduced) linear
logic.

In accordance with the above work, a relatively modest fragment of computability logic, called intuitionistic
computability logic, was considered and it was conjectured that the (set of all valid formulae of the) resulting
fragment is described by Heyting’s intuitionistic calculus INT. A verification of the soundness part of that
conjecture was given in (Japaridze G. 2007). A fragment of this work is presented bellow.

The above two players, i.e. machine and environment, are denoted below by T and L, respectively. Here, T
is a mechanical device with a a fully determined algorithmic behaviour, but there are no restrictions on the
behaviour of L. A problem / game is considered (algorithmically) solvable | winnable iff there is a machine that
wins the game no matter how the environment acts.

Logical operators (i.e. functors) are understood as operations on games / problems. An important group of such
operations, called choice operations, includes: m, u, [T and II corresponding to the intuitionistic operators of
conjunction and disjunction, and the wuniversal and existential quantifiers, respectively (it is used Peirce’s’
interpretation of the last two quantifiers: M and L are associative and hence can be generalised as finite argument, see
Chapter II).

As an example, consider the following formula / problem (Japaridze G. 2007): @1 1 @2 m ... 1 @u'. This
formula is interpreted as a game, where the first legal move (i.e. ”choice”), which should be one of the elements
of {I, 2, ..., n}, is by the environment. After such a move / choice 'i" is made, the play continues and the
winner is determined according to the rules of ¢;: L loses if a choice is never made.

Another basic operations having no official intuitionistic counterparts were also proposed (Japaridze G.
2007): comprises negation '~"and the so called parallel operations: 'A, v, =", e.g. applying '~" to a formula /
game ¢ interchanges the rules of the two players: T’s moves and wins become L’s moves and wins, and vice
versa, etc. A more formal treatment is omitted here.

Paraconsistent logic

The paraconsistent logic is a logical system that attempts to deal with contradictions in a discriminating way.
As the forerunner of this logic is reckoned N.A. Vasiliev' about 1910 (there was proposed a modified Aristotelian
syllogistic including statements of the form:  is both ¢ and ~ ¢)™, see: (Arruda A.I. 1984, Bazhanov V.A. 1994).
The first axiomatisation of a paraconsistent logic (concerning the relevant logic) was given by L.E. Orlov'’. A more
formal approach was given by S. Jaskowski (1948: Stanistaw Jaskowski 1906 — 1965, who was a student of
Lukasiewicz), There was introduced a system, originally called discussive logic (known also as: discursive one),
where the law of Duns Scotus (see T 1.22 of Subsection 1.3) was not satisfied. There was presented a

" Giorgi Japaridze, born 1961.
T Charles Sanders Peirce (1839 — 1914).
¥ Provided there is no ambiguity, instead of A;, formulae are here denoted by ¢i.i € {1,2, ...,n}.

§ Nikolai Alexandrovich Vasiliev (1880 — 1940): with “imaginary non-Aristotelian logics”, also reckoned as one of the forerunners of
multi-valued logics.

" In accordance with T 1.22 (the rule DS: see Subsection 1.3), using the law of importation, i.e. T 1.12b, we can obtain: pA~p = g, or
in general: @ A ~ @ = vy (latin: ex false quodlibet). And hence, in accordance with Subsection 1.5 we have: y € Cn({p,~ ¢}) or
equivalently ¢@,~ ¢ F wy. So, a contradictory proposition has any proposition as its consequence (i.e. everything follows from a
contradiction: involving “twofold standards” and hence any formula becomes a thesis).

7 Ivan Efimovich Orlov (1886 — 1936).
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formalisation of discussive logic by means of modelling a discourse in modal logic using S5 (see Subsection 2.3).
A brief history concerning systems of paraconsistent logic is given in (Priest G. et al. 2013)": left to the reader.

Alternatively paraconsistent logic can be considered as a subfield of logic concerned with studying and
developing paraconsistent (or “inconsistency-tolerant”) systems of logic. Inconsistency-tolerant logics have been
discussed since at least 1910 (and arguably much earlier, e.g. in the writings of Aristoteles), however the term
paraconsistent (“beside the consistent”) was not coined until 1976, by F.M. Quesada’ (Priest G. et al. 2013).
Dialectical logic is the system of laws of thought, developed within the Hegelian and Marxist traditions*, which
seeks to supplement or replace the laws of formal logic. The main consensus among dialecticians is that dialectics
do not violate thelaw of contradiction of formal logic, although attempts have been made to create
a paraconsistent logic (The Free Encyclopaedia, The Wikimedia Foundation, Inc.). An integrated discussion of
all major topics in the area of paraconsistent logic (philosophical and historical aspects, major developments and real-
world applications) was also presented at the second world congress on paraconsistency (Paraconsistency: the
logical way to the inconsistent. 2002).

It was observed classical logic, and most standard non-classical logics, e.g. such as intuitionistic logic, are
explosive. Inconsistency, according to received wisdom, cannot be coherently reasoned about. Paraconsistent
logic challenges this orthodoxy. And hence, the above (logical consequence) relation =" is said to be
paraconsistent if it is not explosive. Paraconsistent logic accommodates inconsistency in a sensible manner that
treats inconsistent information as informative. Sometimes paraconsistent logic is erroneously interpreted as
dialetheism (the view that there are true contradictions).The view that a (logical) consequence relation should be
paraconsistent does not entail the view that there are true contradictions. Paraconsistency is a property of an
inference relation whereas dialetheism is a view about truth (Priest G. et al. 2013).

Let "=’ be a relation of logical consequence. We shall say = is explosive if it validates ¢,~ ¢ = v, for any

¢ and v, i.e. from contradiction follows anything (latin: ex contradictione sequitur quodlibet, abbreviated below
as: ECSQ): known as the principle of explosion. It is easily to describe this principle as direct proof from
assumptions. This is shown below (see: Subsection 1.3).

M er~eo Ha;

2 o .

3 ~o {(-K:1}

4) oV vy A2}
V.o {(—A:3.4)

And hence, an abandoning of the principle of explosion should require the rejection at least one of the above
two rules: '+ A" or — A"

By rejecting '+ A’ ,assuming ‘— A’ and transitivity, the most of the natural deduction rules hold, e.g. such
as: double negation and also associativity, commutativity, distributivity, De Morgan’s laws, idempotence (for

conjunction and disjunction), etc. But, e.g. the Aristotelian law of the excluded middle, i.e. ¢ v ~ @, does not
hold.

Let now '— A’ be rejected. Hence, having ~ ¢, there will not be possible to infer y from ¢ Vv W (this case
may be interesting from the perspective of dialetheism).

* “In the metaphysics, Aristotle called it fefaiotérn maodvgpxij, “The firmest of all principles” - firmissimum omnium principiorum, the
medieval theologians said. They referred to the principle that was to be known as the law of non-contradiction (LNC). They called it
Sfirmissimum, for in the western philosophical tradition the LNC was regarded as the most fundamental principle of knowledge and science.
According to Thomas Reid (1710 — 1796) the law, in the form: “No proposition is both true and false”, was also a cornerstone of common
sense, together with other basic truths that shape our experience (“Every complete sentence must have a verb”, for instance, or “Those things
really happened which I distinctly remember”). Nevertheless, today the LNC has found itself under logical attack by so-called strong
paraconsistency, also called dialetheism. Paraconsistency is the doctrine according to which there are theories, that is, sets of sentences closed
under logical consequence, that are inconsistent but non-trivial. The logical consequence at issue, then, must be such that {¢, ~ @} ¥ y - the
inference from inconsistent premises to an arbitrary conclusion (often called ex falso quodlibet) is invalid. A logic invalidating ex falso is
called paraconsistent in its turn’ (Berto F. 2012).

T Francisco Mir6 Quesada Cantuarias, born 1918.

 Georg Wilhelm Friedrich Hegel (1770 — 1831), Karl Marx (1818 — 1883)
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The last case, rejecting both: '+ A" and '— A’, will involve use of two separate disjunctive connectives
(corresponding to '+ A" and '— A"), e.g. as in linear logic as well as in relevant logic.

In general, there were proposed many paraconsistent logics. A natural way of generating a paraconsistent
logic (perhaps the simplest one) is the use of many-valued logic. Such a system was first proposed in 1954 by
Asenjo F.G. in his PhD dissertation, see also LP: logic of paradox (Asenjo F.G. 1966, 1999). Here, the set of the
following logical constants was considered: {F. B, T}, where "B’ denotes ‘both’ (i.e. false and true). In
accordance with the requirements of this logic, there was used Kleene’s ternary logic system (it was used ‘B,
instead of the original Kleene’s symbol ‘U’: unknown)®, e.g. the logical value of ~B =4 B, in a similar way ~ F =
T, F v B =¢ max{F.B} =4 B, F A B =¢¢ min{F.B} = F, B A T =¢ min{B,T} = B, B v T =¢
maX{B,T} =T, T=B=%BB=F-=¢B,F=B=4#T, B= B =4 B,etc.

Paraconsistent logic has a significant part in common with many-valued logic, however not all paraconsistent
logics are many-valued (and vice versa). On the other hand, intuitionistic logic allows (the Aristotelian law of the
excluded middle) ¢ v ~ @ not to be satisfied, i.e. not to be equivalent to true, while paraconsistent logic allows
¢ A ~ ¢ not be equivalent to false. And hence, it seems natural to regard paraconsistent logic as the “dual” of
the intuitionistic one.

Paraconsistent logic becomes an important part in applications concerning such areas as: computer science
and engineering, quantum theory, in particular the problem of entanglement (see Subsection 2.4: quantum
dynamic-epistemic logic), etc. On the other hand, to invalidate ECSQ, there were introduced various systems of
paraconsistent logic (accepting the validity of classical inferences in consistent contexts). As an example such
system, the relevance logic is briefly presented below.

Relevance logic

Relevance (or equivalently: relevant) logict systems were developed as attempts to avoid some paradoxes
related to material and strict implications. Such logic systems were first initiated in (Anderson A.R. and Belnap
N.D. 1975 ) as a study of relevance of the conclusion wrt the premises: see also (Anderson A.R. et al. 1992) as
well as (Dunn J.M. and Restall G., Relevance logic. http://consequently.org/papers/rle.pdf) and (Mirek R. 2011). The
considered here conception of logical implication (or more general: inference) was of fundamental importance. A
similar suggestion was early given by Ackermann W.F.%. (1956).

Assume now that = ¢ = . Consider the implicative proposition "¢ = ', where  follows from (is a

logical consequence of / is deducible by) ¢. Such term as " follows from’ can be interpreted as a binary relation
between ¢y and . The opposite relation associated with this one is denoted by “entail’. And hence, we shall say
that @ entail \y <4 y follows from ¢ (Moore G.E. 1920)™. In general, with this conception of implication
are associated the following two approaches.

The first one, was based on Diodorus Cronus’ ideas of “strict” or “strong” implication (died ¢.284 b.c.) and
continued by Lewis (Clarence Irving Lewis 1883 — 1964): modal notions and strict implication systems (see
Subsection 2.3). This way, there were eliminated some paradoxes only concerning the material implication. And
hence, it was observed a necessity of considering the term ‘implication’ as a primary one (instead of using Lewis’
modal logics).

The second approach was based on Kant’s observations concerning the notion of “analyticity”: some
implicative proposition is said to be an analytical proposition if the significance (the meaning or sense) of the

" Kleene’s ternary logic (1952: Stephen Cole Kleene 1904 — 1994): Kleene’s ternary implication differs in its definition in that ‘U
implies U’ is ‘U‘ (instead of ‘T‘, as in the case of Lukasiewicz’s one). The corresponding definitions for negation, conjunction and
disjunction connectives are the same as in Lukasiewicz’s system (1918: Jan Lukasiewicz 1878 — 1956), concerning the weak conjunction and
disjunction connectives, see Subsection 2.1 (instead of W3 =4 {0, 1/2, 1}, there was used the set {F, U, T}, where 0, 1/2 and 1 correspond
to F, Uand T, respectively).

T The Free Encyclopaedia, The Wikimedia Foundation, Inc.
I Called “relevance logics” in North America and “relevant logics” in Britain and Australasia.

§ Wilhelm Friedrich Ackermann (1896 — 1962).
™ George Edward Moore (1873 — 1958).
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consequent is included in the significance of the antecedent of this proposition (Immanuel Kant 1724 — 1804). In
accordance with the above observations, there was proposed an analytical implication system (Parry W.T. 1932,
1933)", where the set of propositional variables of the consequent (let be here denoted by: "C’) is a subset of the set
of the propositional variables associated with the antecedent (say: ‘A"): i.e. C < A (for each implicative thesis ¢
= of this system).” Here, the minimal condition of existence a semantical consistency between ¢ and y was
interpreted as impossibility of realisation the so called ‘error of inconsistency’: related tothecase C N A = @
(for any thesis ¢ => ). So, this minimal (relevance) condition was used in systems known as ‘entailment’*. In
accordance with the last condition, the obtained logics of the systems of type entailment can be considered as
subsystems of the basic systems of strict implication S3, S4 and S5 (obviously considering only the implicative
fragments of such systems).

It can be observed that the above notion of entailment is usable in (at least) three meanings: implication
connective (having some properties), the name of the logical system characterising this connective as well as the
area in which this system is defined.

Among the most important systems of type entailment are the following: E (the basic system entailment), T
(ticket entailment), EM (entailment-mingle), R (relevance), in particular R, (pure implicative fragment), etc. The last
implicative fragment is considered by the relevance logicians as the most important. As an example, in the
implicative system E (pure calculus of entailment), in its natural deduction version, are used the following rules.

(1)  Hyp The antecedents of the main implication, i.e. the primary assumptions (see Subsection 1.2: direct
proof from assumptions) are introduced successively, in the next proof steps, in such a way that
to each assumption is assigned one element set {k}, where the natural number k’, called
index, denotes the actual proof’s step.

(2) Rep Any formula can be repeated in a corresponding proof’s step without changing its index.

(3) Reit Any implicative formula can be relocated to a next proof’s step without changing its index.
(4) —>E By ¢. and (¢ = ), we can obtain , U b (a, b denote index sets).

(5)  —>1 From the proof’s step y, and the assumption @ we can obtain (¢ = ). - 1, if k € a.

The system T can be obtained from E by using the following restriction for the above rule (4):

#r —>E By ¢a. and (¢ = y), we can obtain y, up, if max(b) < max(a).

The implicative system EM is an extension of E wrt the following additional rule.

(6) Mgl By (¢ = y) and (¢ = ), we canobtain (¢ = W) u .

Example 2.23

Consider the following rule of reduction: (p = (p = q)) = (p = q). As an illustration, there are shown
below two kinds of proofs: the classical one (a direct proof from assumptions) and the proof using the basic system
E.

Proof (classical version):

" William Tuthill Parry (1908 — 1988).

" In general, "=’ corresponds to the main implication of the generalised form of an expression. In fact, this generalised form can be
transformed in a form similar to the right side of Theorem 1.23: using (n — 2) times T 1.12 (since logical equivalence is transitive).

Let now {@} be the set of propositional variables associated with ¢. Assume that y is a logical consequence wrt @1,92, ... , ¢,. Then:

E Qo A@A...AQ, = Wy (see Theorem 1.23 of Subsection 1.5). And hence, the following condition should be satisfied: {y} <

U ce == 0= 0 vr=avnad s o,

¥ Formal logic. Encyclopedical outline with applications to informatics and linguistics (1987): 338 — 359.
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(D p=>0®=9 {12/a}

2 p
3) P =q {-C: 1,2}

p.o {-C: 3,2}
Proof (E version)™:
M p=0=9dn Hyo:
2 e P>
3) p=0(O=9m 1,Reit;
4 P = qu.2 2,3,>E;
%) qq1.2] 2.4, - E;
(6) P = qu 2959_)13
D e=2e=>0=>0F=>9 1,6, > 1o

Consider now the relevance logic system R. A formalisation of R can be realised (as in classical logic systems)
into two versions: axiomatic and assumptional (natural deduction methods).

The axiomatic system of R can be obtained by completion the axioms of the Moh Shaw-Kwei and Church’s
implicative system (Moh Shaw-Kwei 1950, Church A. 1951):

(A) p=p

) P=>9=>@=1=(@(E=>r1)
@) pp=>pP=>9) =@ =09

a4 (Pp=>@=r1)=>@Q@=>@@E=>1)

with the following formulae characterising conjunction, disjunction and negation?:

A5) pAqQ=Dp

A6) pAg=(q

an P=29PdrpP=>10=>pP=>qA10
A8) p=pVvq

A9 q9q=pvgq

a1y p=2nDAr@=>n=pPvqg=>r
Al pAa(@Qvr=>pAaAaqvVvr

12 (p = ~q9 = (q@ = ~p)

(A13) ~~p = p

The assumptional version of R is an extension of the basic system E , i.e. rules (1) — (5), by adding the
following rules.

(6) ~~E From ~~ @, we can obtain .
(7) ~~1 From @, we can obtain ~ ~ @,.
8 AE  From (¢ A y). we can obtain @,.
) From (¢ A y). we can obtain ..

" According to the used below designations: ‘Hyp” corresponds to "{a}’, 2,3, — E’ may be denoted as: {— E: 2,3}, etc.
¥ Moh Shaw-Kwei (1917 — 2011), Alonzo Church (1903 — 1995).

¥ Formal logic. Encyclopedical outline with applications to informatics and linguistics (1987): 338 — 359. In accordance with the used
priorities for logical connectives some parentheses may be omitted, e.g. p A q = p instead of: (p A q) = p, etc., see Subsection 1.1.
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(10) A1
(11) vI
12) Av
(13) ~E
14) ~1
(15) vE
Example 2.24

From @, and y, we can obtain (¢ A ).

From ¢, we can obtain (¢ Vv ).

From wy, we can obtain (¢ Vv ).

From (@ A (¥ Vv %))a we can obtain (¢ A W) V %)a.
From ~ vy, and (¢ = ), we can obtain ~ @ U p.
From (¢ = ~ ¢). we can obtain ~ @,.

From (¢ v y)a, (@ = %) and (y = y)» we can obtain Y, u b.

Since conjunction and disjunction are mutually distributive®, in particular the following implication is
satisfied: p v g A1 = (p v @ A (p Vv r). There are shown below two kinds of proofs: the classical one (a
ramified direct proof from assumptions) and the corresponding proof using the assumptional version of R.

Proof (classical version):

(I  pvagnar {a}
(L) p (ada}
12) pvgq )
(3 pour +A: LI
14 (pvaa@pvr {(+K:1.2,1.3}
21 qnar {ada}
22) ¢
(23) r {— K: 21}
24) pvag {(+A:22}
25 pwvr {+A:23}
26) v APV {(+K:2.42.5)}

Vv dAaA(@PVie {1.4,2.6}
Proof (R version):
(D pvianry Hyp;
@ pw Hyp;
3 PV qx 2, vI;
“ p Vv 112 2, vI;
3 GvadAapvy 3,4, AL
(6) p=pPVvYdAarvVvr 2,5, >1;
(7) q A I3y Hyp;
@ a3 7, AE;
9 oy 7, nE;
(10)  p v qp 8, VI;
A p vy 9, VI;
(12) pvdApvVvDy 10,11, AL;
(13) gar=@mvYgAalpPv 7,12, > 1,
14 pvaapvy 1,6,13, VE;
(15) pvgar=pPvagaAar@pvr 1,14, - 1. o

The reader is invited to give an assumptional R-version proof of the following formula: (p A q) v (p A 1)
=pAa(qvr).

* In fact, conjunction and disjunction satisfy the commutative, associative, absorptive, idempotent, and distributive axioms (see
Subsection 1.3).
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The extended system RM, in natural deduction version, uses the following additional rule.

(16) Mgl  From ¢, and @, we can obtain @, U b.

The above briefly considered relevance logic systems have also representation by using the Gentzen’s”
sequent calculus. Here, the only usable is the following axiom (known as identity): A —A . In particular, starting
with this axiom, the following four rules are sufficient in proof representation related to T, , E., , R, , the modal
logic system S4, and Heyting’s intuitionistic system H.,. The proof of the introduction rule '+ C,” was
presented in Subsection 1.8 (Example 1.14). The proof of "+ C.” is left to the reader. The last two introduction
rules are also known as: ‘arrow on the left’ and ‘arrow on the right’, respectively. The proofs of the rest two
rules (contraction and weakening) are also left to the reader.

1d A—A identity
Cont, I A AA —©® contraction
I'AA— ©®
Weak, A © weakening
I'AA—-©®

+C, Al—ANA BT -0 arrow on the left
A=BAT-A0O

+ C, AT —0,B arrow on the right’
I'-6,A=B

Example 2.25 (the logic system R_,)

Consider the following thesis: p = (@ = 1) < q = (p = 1), known as ‘commutation rule’ (Stupecki J.
and Borkowski L. 1967). The proof of the if~implication is given below. The proof of the only-if-implication is
similar: left to the reader.

Proof (R, version):

1 akFaq ad)

) r = r

3 PpPED {1d}

4 99=>rkr {+Ca 1,2}
5 pP=>@=rn.qpkr {+Ca: 3,4}
6 pP=>@=1,q9qFp=r {+Ce: 5}
(7 pP=>@=>nrq= =71 {(+Ce: 6}
® FOe=>@=n0=>@=p=>r0)- (+Ce: 7}

It can be observed that systems such as T- , E- and S4- should be require (in using) some additional
conditions, e.g. either A # A or insequence ® should be an implicative formula (Weak,: related to S4-,), etc. A
more formal treatment is omitted here.

Example 2.26

“Gerhard Karl Erich Gentzen (1909 — 1945).

AT —B

, where © is interpreted as an empty formula (or sequence of
I' —A=B

TA more simplified version of this rule is the following one:

formulae), i.e. A. The proof of the last sequent follows directly from Thesis 1.12 (exportation of implication: see Subsection 1.3).

 For example, this line is obtained from lines 1,2 by assumingin+C,; A=A =q, B=0 =1 and A =T = A,
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Consider the following modified version of "+ C,":

AN A T.B.O 1T 1, 5ccordance with Subsection

AT, A=B,A,0 11

1.8, the following formula can be obtained.

prg==AAtAL=2W) 2>PASAT=AqAUL =W

Proof:

I parg=>r
2 SAtAULD W

3 p

4 s {(1-7/a}

%) r=-t

6 q

7N u

® ~w {aip}

) P AQ {+K:3,6}

10) r {-C:1,9}

(1)t {-C:5,10}

(12) s AtaAu {+K:4,7,11}

(13) w {(—C:2,12}
contr. o {8,13}

Letnow '+ C,™ be the condition: ‘either A # A or A isimplicative” and "+ C,"" be the condition: 'A #
A". So, "+ C,™ is an additional condition for S4-, . In a similar way, "+ C,;™" and "+ C," are requirements for E-

and T, respectively”. o

And finally, to complete the above considerations, there are given below the remaining Gentzen’s
introduction rules: + N,, + N¢, + K, + K¢, + Aa, +Ac as well as some structural rules (Glushkov V.M. 1964).
The corresponding proofs are left to the reader (the proof of the last rule is given below).

CTL_0A
+N,: —~A,F )
AT, ©® BT, ©
Kt P BT @
AT, ©® BT ©
A TAUBT L @

Cont, (as above)

Weak, (as above)

AAB,A — T

Perm, : —A,B,A,A T

Cut rule:

A — AA AT — 0O

AT — AO

AT ©
+N,: T O<A T O~A
CI'—60,A T — 06,B
K oA AB
T_©®A T OB
A T T OAVE
Cont,: L=©.AAA
I' — 6,AA

Weak, . LA ©

"T,A—B,A
Porm - L= AABA
T — ABAA

* Formal logic. Encyclopedical outline with applications to informatics and linguistics (1987).
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In accordance with the last rule, any formula A appearing at the same time in the consequent of the first
sequent and also in the antecedent of the second can be omitted. It was shown (Gentzen G.K.E. 1934, 1935) that
any proof making use of this rule can be transformed to a normal form proof, i.e. without using this rule ( the ‘cuz-
elimination theorem’: known as one of the most important results in proof theory). The proof of this rule is related to the
proof of the following formula.

Pp=qviDAlAas=>2t)=>pPAs =>qVi

Proof (Cut rule):

1) p=>qvr
2) ras =t

3) p {1-4/a}

(R

) ~@vy {aip}

S; ~d {67/ NA : 5}

®) qvr {—-C:1,3}

) r {—A:68}

(10) r A s {+K:4,9}

(11 t {-C:2,10}
contr. o {7,11}

Provided there is no ambiguity and for convenience, it is used the same interpretation of commas (in the
antecedent or the consequent of a given sequent) as in Subsection 1.8 (for a more formal treatment see: Dunn
J.M. and Restall G., Relevance logic. http://consequently.org/papers/rle.pdf). And hence, e.g. the following additional
rules may be introduced.

[LAB — AA
TLAAB — AA

I''A — ABA

Comma, : TA | AvBA

Comma, :

Example 2.27

The proof of the if~implication of De Morgan's law of negating a disjunction is given below (see: Thesis 1.7
of Subsection 1.3). The proof of the only-if-implication is similar: left to the reader.

(1) pEP ad)

2 49+-a

3) pFEDPq {Weak. : 1}

4 9" Dpq {Weak,, Perm, : 2}
5) pFEPVQ {Comma,: 3}

(6) qQF-pvgq {Comma. : 4}

7N ~Pvar-~p {+ N,, +Ne : 5}
® ~PVvakr-~q {+N,, +N, : 6}
© ~PVvadkrE~pna~q (+Kc:7,8}

100 =~ vad=>~pA~qo {+Ce: 9}
Non-monotonic logic

The classical logic is a monotonic system, i.e. the following implication is satisfied.
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v € Cn({o1,02, ..., o)} = v € Cn({Q1,¢2, ..., n,y)} (for any @1, @2, ... ,¢n, ¥, and n € N)

The non-monotonic reasoning deals with the problem of deriving plausible conclusions, but not infallible,
from a knowledge base (denoted below by KB: a set of formulae). Since the conclusions are not certain, it must be
possible to retract some of them if new information shows that they are wrong (Olivetti N. 2010 / 11).
Historically, the first more important research concerning non-monotonic logics was given in (McCarthy J.
1980)", (McDermott D." and Doyle J. 1980), (Reiter R. 1980)f and (Moore R.C. 1984). Some notions given in
(Olivetti N. 2010 / 11) are briefly presented below: see also the proof-theoretic reconstruction (known as: ‘analytic
sequent calculi) given in (Bonatti P.A. and Olivetti N. 2002) as well as (Horty J.F. 2001).

Consider the statement ‘typically A’. This statement can be interpreted as follows: ‘in the absence of
information to the contrary, assume A’. A more precise meaning of the last text could be the following one:
‘there is nothing in KB that is inconsistent with assumption A’. Obviously, other interpretations are also
possible: they will give rise to different non-monotonic logics. The inadequacy of classical logic for description
of such cases is illustrated in the next example given in (Olivetti N. 2010 / 11)%.

Example 2.28

Consider the following rule ‘typically birds fly’. More formally, this rule can be represented as follows.

V/( bird(x) n ~ exception(x) = fly(x)), where 7/ is the universe of birds.
X e

The one argument predicate "exception(x) " is defined as:
v ( exception(X) <4 penguin(x) v ostrich(x) v ...)".
Xexr

Unfortunately, all exceptions are not known in advance and cannot be pre-approved. In accordance with the
laws CE (transposition or contraposition of equivalence), NA and SR, given in Subsection 1.3, we can obtain:

YV (~ exception(X) <4 ~ penguin(x) A ~ ostrich(x) A ...).
xe

Assume that ‘Tweety is a bird’ belongs to KB =4 {Typically birds fly, Penguins do not fly, Tweety is a
bird}. To conclude that ‘Tweety’ fly, we should prove that ‘Tweety’ is not an exception, i.e. ~ penguin(tweety),
~ ostrich(tweety), etc.

On the contrary, we would like to prove that ‘Tweety’ flies because we cannot conclude that it is an exception,
not because can prove that it is not an exception. o

A basic understanding of database” logic is that only positive information is represented explicitly. If a
positive fact is not presented in this database (in short: DB) then it is assumed that its negation holds (this is the
so called ‘closed word assumption’, in short: CWA). Formally (Olivetti N. 2010/ 11):

* John McCarthy (1927 —2011).
T Drew McDermod, born 1949.
# Raymond Reiter (1939 —2002).

§ In general, the following problems are associated with classical logic (Ginis A. 2008): the size of theory necessary to describe real
situations is overwhelmingly large, this logic is very weak in the face of incomplete knowledge and also this logic is oo rigid to deal with
new (conflicting) knowledge.

™ Conjunction and disjunction are two finite argument logical operations.
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DB F o = Fcwa~0.

Obviously, the last inference is not valid in classical logic. In accordance with the above work, it was next
discussed the problem of dynamical world representation: in particular, representation of objects that are not
affected by state change (using frame axioms’). Below is considered only the fragment related to default
reasoning (first introduced by Reiter R. 1980).

Default logic is an extension of classical logic by non-standard inference rules (these rules allows one to express
default properties)*.

Example 2.29 (default rules)

Consider the following inference rule: bird(x) : fy(X)  This rule is interpreted as follows: ‘if x is a bird

Sy (x)
and we can consistently assume that x flies then we can infer that X flies’. A generalised form of the last rule
can be represented as follows: % and this rule can be interpreted as: ‘i’ A(x) holds and B(x) can be
X

consistently assumed then we can conclude C(x)’. Here: A(x) is said to be the prerequisite, B(x) - the
Jjustification and C(x) - the consequent’. o (Olivetti N. 2010/ 11).

A default theory (or more exactly: theory of default reasoning, considered as a deductively closed set of logical
formulae)™ is a pair (D,W), where D is a (non-empty) set of default rules’ and W is a (non-empty) set of first-
order predicate logic formulae. The set W represents the stable (but incomplete) knowledge of the world and D
represents rules for extending the knowledge W by plausible (but defeasible) conclusions. The theory obtained
by extending W wrt rules in D is said to be an extension of (D,W). It was shown that this theory may have
zero, one or many extensions (Olivetti N. 2010 / 11). In particular, the following definitions were given.

Definition 2.33 (default theory extension: propositional case)

A set of formulae E is an extension of A =4 (D,W) if E is deductively closed, i.e. E = Th(E) and all
applicable default rules wrt E have been applied, i.e. for each w e D: Ax) € EA ~Bx) ¢ E
X

= C(x) € E.

Definition 2.34 (default theory extension: semi-inductive definition’")

" An important difference between knowledge bases and databases is that the former require a semantic theory for the interpretation of
their contents, while the latter require a computational theory for their efficient implementation on physical machines (Brodie M.L. and
Mylopoulos J. eds. 1986).

" In general: the firame problem: using first-order predicate logic for expressing facts about (behaviour of) a robot in the world and hence
the problem of finding adequate frame axioms.

¥ Default logic can express facts like “by default, something is true”; by contrast, standard (i.e. classical) logic can only express that
something is true or that something is false. This is a problem because reasoning often involves facts that are true in the majority of cases but
not always. A classical example is: “birds typically fly”. This rule can be expressed in standard logic either by “all birds fly”, which is
inconsistent with the fact that penguins do not fly, or by “all birds that are not penguins and not ostriches and ... fly”, which requires all
exceptions to the rule to be specified. Default logic aims at formalizing inference rules like this one without explicitly mentioning all their
exceptions (The Free Encyclopaedia, The Wikimedia Foundation, Inc).

§ Provided there is no ambiguity and for convenience, instead of the originally used a(x), P(x) and y(x), these one argument predicates
are here denoted by A(x), B(x) and C(x), respectively: as in (Stupecki J. and Borkowski L. 1967).

" In general, any (formal) theory is a set of sentences (i.e. formulae ¢) in a formal language L. Let A =4 (D,W). Then A can be
considered as a deductively closed set of logical formulae, more formally: A = Th(A), where Th(A) =4 {¢ € L/A & ¢}. This notion is
very similar to Tarski’s third axiom: Cn(Cn(A)) = Cn(A), introduced in classical logic systems (see: Subsection 1.5).

" In short: defaults.

# There exists a reference to the whole E in step(2).
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A set of formulae E is an extension of A =4 (D,W) if it can be obtained as below.
(1) So=a W,
S .1 =4 Th(S: A®x) : B(x) .
) i+1=ar Th(S)) v {C(x)/ —Co e D,AX) € Si,~B(x) ¢ E} and
(3) E =df Usi .

In particular, the following example was given in (Olivetti N. 2010 / 11): provided there is no ambiguity, instead
of b, p and f below are used the propositional variables p, q and r, respectively..

Example 2.30 (semi-inductive extension)
Let A =4 ({p,q = ~1}, {% }). There exists an unique extension E = Th({p,q = ~r,r}) such that: So

=it {p,q = ~r1} and S; = Sop U {r},since So=p and ~r ¢ E.o

Let d be a default rule. We shall say that d € D is normal if has the form: %

X

and that A isa

normal default theory if all d € D are normal. The following property is satisfied (Olivetti N. 2010/ 11).

Theorem 2.1

Let A be a normal default theory. Then A has always an extension. o

At the conclusion of the above considerations,, it can be observed that the Achilles’ heel of any such logic
seems to be the notion of justification (B(x): can be consistently assumed): the process of justification and hence the
obtained sufficiency of this justification may be subjective or not sufficient.

In particular, some moral aspects are related to deontic logic (Horty J.F. 1994)". In general, the importance of
this logic depends on the area of application and the boundary conditions in each particular case. A more formal
treatment and/or study is omitted here: left to the reader.

Fractal logic

Nature observations and inferences are basically changing, turning to multimode, temporality and complexity.
Fractals (lat: “fractus”, meaning “broken” or “fractured”), first introduced by Mandelbrot in 19757 (Benoit B.
Mandelbrot: 1924 — 2010), are abstract objects used to describe and simulate naturally occurring objects. In
general, fractals can be grouped in the following three categories (depending on how they are defined and generated):
iterative, recursive and random ones. Moreover, in accordance with their self-similarity property, fractals can be
classified as having: exact, quasi and stochastic self-similarity. It can be observed that there does not exist an
object of type ‘exact fractal’ in nature. On the other hand, many such objects have properties very similar to these
concerning fractals (however, in a bounded version). Artificially created fractals commonly exhibit similar
patterns at increasingly small scales. Fractals are not readily definable. But the following definition (related to
general measure theory) covers many classes of fractals (Bjorvand A.T. 1995).

" This paper is to establish some formal connections between deontic and nonmonotonic logics, and to suggest some ways in which the
techniques developed in the study of nonmonotonic reasoning and the issues confronted there might help to illuminate deontic ideas. These
two subjects have evolved within different disciplines. The field of deontic logic was developed by philosophers and legal theorists as a high
level framework for describing valid patterns of normative reasoning. The study of nonmonotonic logic was initiated, much more recently, by
researchers in artificial intelligence who felt that ordinary logical techniques could not be applied properly to a number of practical problems
arising within that area---most notably, problems involving planning and action, such as the frame problem. By linking the subject of deontic
logic to this research, it may be possible also to relate the idealized study of moral reasoning typical of the field to a more robust treatment
of practical deliberation.

 Objects, in nowadays called “fractals” were known as far back as 1872: the Weierstrass function (Karl Theodor Wilhelm Weierstrass:
1815 — 1897). Like fractals, this function exhibits self-similarity and has the property of being continuous everywhere but differentiable
nowhere.
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Definition 2.35 (Mandelbrot B.B. 1983)

A fractal is a set for which the Hausdorff - Besicovith dimension” strictly exceeds the topological dimension’.

Besides the fractal computer graphics, e.g. (Pickover C.A. ed. 1998), fractal modelling is suggested e.g. in
quantum physics and cosmology (El-Naschie M.S. 2016), in classical parallel computing (Craus M. et al. 2016),
in intelligent systems theory (Bjorvand A.T. 1995), nonlinear dynamics, chaos theory and complex systems
modelling, data compression and modelling, use of recursion to determine logical operations and circuits
(http://www.mathpages.com/home/kmath140/kmath140.htm), and so on. In particular, the following main areas of
investigation were considered in (Bjorvand A.T. 1995): the modelling of the processes of the human brain, using
rough set theory for decision support based on fractal models and also using the genetic algorithms for the
evolution or learning within these models (left to the reader).

Universal logic is the field of logic that studies the common features of all logical systems, aiming to be to
logic what universal algebra is to algebra. A number of approaches to universal logic have been proposed since
the twentieth century, using model theoretic, and categorical approaches. As a precursor of this logic it is
reckoned Alfred Tarski (1901 — 1983). A more formal approach was given in the 1990s by Jean-Yves Béziau,
e.g. see: (Béziau J-Y. 2007). The term ‘universal logic’ was also separately used by Richard Sylvan (1935 —
1996) and Ross Brady, see (Brady R.T. 2006: to refer a new type of weak relevance logic)*.

In accordance with the contemporary requirements in computer science, information technology and artificial
intelligence, universal logic was born which stress on the relational flexibility of different objects (tasks,
propositions, connectives). This logic is considered as a common architecture of logical theory system, which is
self-contained (puts up the common characteristics of all kinds of logic and also gives an application oriented logic builder)
and exoteric (the possibility of joining a new logical system into its frame). And this logic puts forward the following
essential features of all kinds of logics: propositional connectives, relational quantifier, set of common rules and
appropriate inferential model. An exploration of fractal and chaos logics based on universal logic is briefly
presented below (Chen Z-H. et al. 2010). In this paper there are considered the basic characteristics of fractal
phenomenon and the correlation of fractal, chaos and universal logic. Next, there are fully discussed the
necessary and probability of setting up fractal logic and chaos logic. And finally, there is given a compendium of
fractal logic and the way of the implementing of chaos logic.

In accordance with the last work, the characteristics of classical logic systems, some non-standard logics, e.g.
many-valued logic or any other ‘rigid’ application of formal logic in mathematics can be summarised as follows:
an integer truth-value of any proposition, correlation-independent propositions (i.e. every proposition is independent
from others: otherwise, the inferential march becomes difficult) and the uniqueness of the operating model of logical
connectives (the operating rules of connectives are strictly defined and cannot be changed in the process of reasoning).

The basic features and relationship of chaos and fractal can be summarised as follows (Chen Z-H. et al.
2010):
Chaos: internal randomicity, fractional dimension, orderliness in disorder,
Fractal: self-similar, infinite complex and subtle, fractional dimension and

Relationship:  from chaos to order, from order to similitude, from similitude to fractal.

According to the last work, the following four factors of the fractal logic can be considered as important:

Research field: all things that have fractal features, logical inferential system based on
fractal mathematics,

Proposition introduction of basic proposition connectives and their operation

connectives: models,

* Felix Hausdorff (1868 — 1942), Abram Samoilovitch Besicovith (1891 — 1970): for a more information see: The Free Encyclopaedia,
The Wikimedia Foundation, Inc.

T Known also as: Lebesgue covering dimension (Henri Lebesgue: 1875 — 1941).
¥ The Free Encyclopaedia, The Wikimedia Foundation, Inc.
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Relational quantifier:”  the generalised quantifiers are useful in fractal logic and

Rules and inference to construct a set of common rules and appropriate reasoning model.
model:

The notion of fractal dimension is of fundamental sense. This notion is used in definitions of the propositional
connectives of fractal logic. The concept of fractal dimension involves unconventional views of scaling and
dimension. Usually, these two terms are illustrated by using traditional notions of geometry. This is briefly
presented below.

Let n,s and d be the number of sticks, the scaling factor and the dimension of a fractal, respectively. It can
be observed that assuming d = 1, 2, 3 (a geometric line, quadrate and cube) and e.g. s = 1/3 = const, the number
of sticks n increases along with increasing the number d: n = 3,9,27. Infact: n o s¢ ("o " denotes: “is
proportional to”)'. And hence, the value of d can be found by rearranging this proportionality as follows: lgy(n) =

—d So,d = - llg((n; ,e.g.for n = 4 and s = 1/3 we can obtain:
g(s

_ g4
d = Tg(173)

1.386294
1.098612

1.26186. o

4

4

In general, the concept of fractal dimension is more complicated, based on such notions as e.g.
approximation, estimation, regression, etc. A more formal treatment is omitted here. Different types of fractal
dimension are the following (The Free Encyclopaedia, The Wikimedia Foundation, Inc.): box counting (or
capacitive) dimension’ (Hermann Minkowski: 1864 — 1909), information dimension (Alfréd Rényi: 1921 —
1970), correlation dimension, generalised or Rényi dimensions, Higuchi dimension, multifractal dimensions,
uncertainty exponent, Hausdorff dimension’ (Felix Hausdorff: 1868 — 1942), packing dimension (in some sense
dual to Hausdorff), Assouad dimension, local connected dimension, etc.: left to the reader.

" Known also as polyadic quantifiers: having several argument-places. As a precursor of generalised quantifiers it is reckoned Andrzej S.
Mostowski (1957: 1913 — 1975): it was suggested that we might generalise the standard (predicative) notion of logical quantifier along two
dimensions, syntactic and semantic (Sher G. 2015). A more formal treatment is given in the next chapter of this work: see Subsection 3.8.

T For convenience, instead of the original N, € and D, there are used n, s and d, respectively

fLet A be a compact set in the metric space (M, p) and N.(A) be the minimal number of sets having diameter < &, required for
covering A. The upper and the lower capacitive dimensions of A are defined as follows:

- In N, (4) _
—‘gl If d.(4) =d (4) = d.(A) then 4 (1) is said to be capacitive

. InN_(A)

d.(4) = lim sup and  d (4) = lim inf —=—
&0 h— -0 Inh—
£ &

dimensions of A (Bronstein .N.. et al. 2001). A similar result was obtained by Georges Louis Bouligand (1889 — 1979).

§ Hausdorff dimension is based on measure theory and defined on the ground of Lebesgue measure (Henri Lebesgue: 1875 — 1941). Let

A ¢ R’ Itisrequired a cover of A by a finite number of spheres B"i with radius 1; < € such that us, 2 A. So, roughly, the volume of
i

A is defined as: Zimf . Let now {zimff /1 < €} be the set of all such finite covers of A and mM.(A) =4 inf{ Ziﬂrf /1t < g},
T3 T3 T3

The external Lebesgue measure MA) = lim M:(A). If A is measurable then AMA) = vol(A). Let now M be R" or in general: a
&0

separable metric space (contains a countable and dense subset, e.g. the set of rational numbers Q is both countable and dense in R: in general, in a metric
space (X,p),Y & X isadenseset if v Vv 3 (p(xy) < ¢). Assume that A & M. For any parameter d > 0 and & > 0, we can define
xeX € 0 yeY

Na:(A) =g inf{ Z(diam B,—)d /4 ¢ UB, » diam B; < ¢}, where B; & M are arbitrary having diam B; =4 Sup p(x, y). The external
i i X, yeB;
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The true-value field of proposition is considered as a multi-dimension and super order space, based on [0,r]¢
(the radix or base space, r € R, d - fractal dimension). Moreover, it is also used some (proposition or predication)
accessorial characteristics "< o. >". Some operation models of the proposition connectives were also presented,
such as: negation, conjunction, disjunction, implication, equivalence and also three new connectives, i.e. the
average, combinatorial and series ones: see below (Chen Z-H. et al. 2010).

Connective Denotation Operation model
negation: Not ~k N(x,k) =ar D(r — D™ 1(x))
conjunction: And Ah A(x,y:h) =a T(D(D ()™ + D~ '(y)™ - 1)m))
disjunction: Or Vh O(x,y;h) = T'(D(r = ((r = D7'(X)™ + (r = D~} (y)™ - n)m))
implication: [ = I(x,y,h) =ar T(D((r — D~'(x)™ + D~ (y)™) l/m))
equivalence: E S E(x,y,h) =ar ite{D((r + |D '(x)* — D~ (y)")!™) /m < 0 ;
D((r - D '(x)™ - D~ '(y)m)m)}
average: V ®y V(x,y,h) = Dr = (((r = D'x)™ + (r — D~ (y)™)/2)Vm)
combinatorial: C ©! Ce(x,y,h) =ar ite{T(D((D™'(x)™ + D~ (y)» — em!m)) / D (x) + D~ (y)
< 2e 5 D@ - (D - DU £ (- DI - (- o)) )
D '(x) + D" !(y) > 2e}
series: R ®n R(x,y,h) =¢r D(r = (((r = D7'(x))™ + (r — D~ '(y)™) Vmn)

According to the above table: D(x) calculates the dimension of fractal object 'x’, D™ !(x) constructs the
fractal object with dimension 'x” (D(x) and D~ !(x) denote two reverse operating processes, but not the converse
mathematical operators). By h and k are denoted the general correlative and self-correlative coefficients (Huacan

H.2001), m =g 4131T4hh) and n denotes the dispersion of series. It is assumed that any argument x of I"(x) is
restricted in [0,r] (i.e. if x > r then x =4 r / if x < 0 then x =4 0). The used abbreviation “ite” denotes: if ... then
..else,e.g. s = ite{b/a ;c} denotes: ‘if o is true, then s = b, else s = c".

The above introductory notions are only an illustration of this excellent work. However, in general, the
introduction of inference rules and proof methods (axiomatic system proof | assumptional system style) seems to be
more difficult and at the same time the most important task in this logic (e.g. if De Morgan’s law "~(x An y) <
~X Vh ~ky ~ is satisfied: left to the reader). And so, much remains to be done.

In this chapter were considered classical and also various non-standard logic systems. However, all these
systems are not sufficient for describing all theoretical as well as practical computer science oriented research. In
particular, it is required a "knowledge base’ concerning also such notions as: predicates, sets, algebraic systems,
morphisms, graphs, and so on. Predicates are presented in the next chapter.

Hausdorff dimension wrt A and (the dimension) d is defined as: Mg(A) =¢r fim Nd,c(A) = sup ng:(A) . And hence, Hausdorff dimension
-0 £,0

du(A) is an univocal critical value of Hausdorff measure defined as follows: du(A) =4 if dv (ma(A) # 0) then "+ oo “else inf{d > 0
>0

/mMa(A) = 0} (Bronstein LN.. et al. 2001).

" For convenience, proposition letters are here denoted by X, y, ..., as in other logic systems, e.g. modal u-calculus.
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Il. Predicates

Use of predicates in mathematics (mathematical analysis or discrete mathematics) and theoretical computer
science is of fundamental sense. In particular, we have a possibility of an exact / strict description as well as study
of various definitions, processes, models, etc. Example notions involving predicates may be the following: /imit
of a sequence (Cauchy’s g-definition), continuous function (Weierstrass’ definition), continuous t-norm, metrical
spaces, magic graphs, bounded, live and reversible Petri nets, Petri net k-distinguishability and D-partition,
algebraic systems and direct products of such systems, test generation for logic circuits, D-algebra and so on.

The first-order predicate calculus is initially presented below (Stupecki J. and Borkowski L. 1967). Some
well-known basic notions related to the classical predicate logic are first introduced. As an illustration, by using
such formulae, some example mathematical and/or computer science definitions are also described and a set of
primitive rules is then presented. Next, a carefully selected subset of theses is proved. The corresponding formal
proofs are based on assumptions. The notion of the existential uniqueness quantifier is next presented and some
properties are also given. The Gentzen’s sequent calculus is also illustrated. As in the previous chapter, the
corresponding rules are proved. Some new proofs and/or theses, mainly concerning bounded (or equivalently:
restricted) quantifiers, are also given. In the next considerations the skolemisation, resolution and interpretation
techniques are discussed (Chang C.-L. and Lee R.C.-T. 1973). The resolution technique is considered as a
construction of ramified indirect proofs with joined additional assumptions and natural numbers are used in the
formula interpretation rules. Next, the higher order predicate logic is briefly considered. Basic notions related to
the genralised quantifier theory are also presented, mainly under (Pogonowski J. and Smigerska J. 2008). Some
non-classical systems, such as fuzzy, modal and temporal predicate calculus are considered in the second section
of this chapter.

3. Classical first-order and higher order predicate logics

Predicate calculus known also as predicate logic, quantifier calculus or quantifier logic is an extension of
propositional calculus. Expressions of predicate calculus may include additional symbols as well as additional
primitive rules, theses and derived rules.

Modern quantifiers were first introduced by Frege G. (1879)". The quantifiers "4/l’ and 'Some” were already
recognised as logical operators by Frege’s predecessors, going all the way back to Aristoteles (384 b.c. — 322
b.c.), e.g. Aristoteles’ syllogisms, operators like ‘and” and ‘or’: the ancient Stoic philosophers, in the middle
ages (much effort to the semantics statements, essentially restricted to syllogistic form): William of Ocham (1285 — 1349:
Summa Logicae 1320), Albert of Saxony (1320 — 1390: Perutilis Logica Magistri Alberti de Saxonia Logic,
Venice 1522 and Hildesheim 1974, reproduction). Quantifiers in beginning predicate logic were studied mainly
by Peirce, Peano and Russell, see: (Sher G. 2015, Peters S. and Westerstéhl D. 2002).

1 r 1

—_A ~A _Eé B= A RY~F(x) VE®) ¥ F(x) 3F(x)
2 &g ~V ~F(x)

Figure 3.1 Frege’s designations

* Friedrich Ludwig Gottlob Frege (1848 — 1925).
T Charles Sanders Peirce (1839 — 1914), Giuseppe Peano (1858 — 1932), Bertrand Arthur William Russell (1872 — 1970).
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A more simplified form of the above Frege’s designations, used for quantifiers (universal and existential), was
first given by Peirce (about 1885): [TF(x) and ¥ F(x), respectively. Some other designations were also proposed.

The most usable are these ones, given by Hilbert and also by Kuratowski®. The quantifier symbols, given by
Hilbert, are shown in Figure 2.6 (on the right hands of the corresponding pictures: related to German words "Ales”
and 'Eine’, respectively). The following designations were proposed by Kuratowski: A F(x) and V F(x): are

based on Peirce interpretation / analogy concerning quantifiers, i.e. VF(x) -~ F(xi A F(x2) A ... and 3JF(x) -

F(x1) v F(x2) v .. ;in fact, the universe can be finite or not, but ‘A" and ’v' are finite argument logical
connectives (equivalence is obtained only if universe is finite). There was also proposed the use of "A//" and ’"Exist’,
and so on (see p.9: The used designations). However, the most commonly-used seems to be Hilbert’s designations.
And so, these designations are used in this book.

3.1. Symbols and formulae

Any expression of predicate logic, in addition to propositional logic symbols, may also include:

(1) individual (known also: quantified) variables: X, y, z, X1, V1, Zi, ..., replaceable by names of
individuals,

(2) variables representing (proposition generating) functors and having names as arguments, i.e.
expressions generating propositions wrt some names. Any such functor is said to be (one-
or-more, but finite argument) predicate. By A, B, C, Ai, By, Ci, ... we shall denote variables
representing one argument predicates. The letters P, Q, R, S, Py, Qi, Ry, Sy, ... are
reserved for more than one argument predicates and

(3) two constants: V ,3, ie. the universal and existential quantifiers. These two most
common quantifiers mean: “for all” and “there exists”, respectively.

As an example, a one argument predicate is the phrase “is even number” in the following proposition: “6 is
even number”. Similarly, a two argument predicate is the phrase “is greater than” in: “ 6 is greater than 5” (i.e. 6
> 5). In general, any one argument predicate express a property. A more than one argument predicate express
some relation (Carnap R. 1954).

The above presented symbols (1 — 3) together with the symbols of the propositional calculus exhaust all
symbols considered in classical first-order predicate logict. The following inductive definition is generalisation of
Definition 1.1, given in Subsection 1.1 (Stupecki J. and Borkowski L. 1967).

Definition 2.36 (expression of predicate logic)

(la) propositional variables are propositional expressions of predicate logic ,

(1b) expressions obtained by variable representing n argument predicates and the successive
sequence of n individual variables (n > 1), included in parentheses ,

(2a) If @ and wy are some expressions of predicate logic, then such expressions are also:
~ (@), (@AW, (@) v (¥), () = (y),and (¢) < (v),

* David Hilbert (1862 — 1943), Kazimierz Kuratowski (1896 — 1943).
fRudolf Carnap (1891 — 1970).

¥ Provided there is no ambiguity, instead of ‘classical first-order predicate logic’, for simplicity, there is used phrase ‘predicate logic’.
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(2b) If ¢ is an expression of predicate logic, while a is an individual variable, then V()

and J(p) are also such expressions and

(3)  Every expression of predicate logic either is a propositional variable or molecular
expression, i.e. an expression formed from rule (1b), or also formed from these basic
expressions by a single or multiple application of rules (2a) and (2b).

Example 2.31 (molecular expression)

Some example molecular (called also atomic) expressions are the following: A(x), B(y), C(x1), Q(x1, X2, ... ,
xn), R(X,y), etc. In the last case, R(x,y) is sometimes written as: xRy. In accordance with Carnap’s
interpretation, e.g. the molecular expression A(X) denotes that: A is a property of x. Similarly xRy denotes
that: R is a binary relation between x and y. For convenience, instead xRy, it is also used the notion: xpy (x
and y arein p). o

According to Definition 2.36(2b), if ¢ is a molecular expression the parentheses are omitted, e.g. instead of
V(A(x)), we have: VA(x).Similarly, we have: V3xRy , instead of: V(3xRy), etc. However, in a more

complicated expressions some additional parentheses may be useful.

The scope of a quantifier is the portion of the formula that is controlled or governed by the quantifier. As an
example, the scope of "3” in VV(xRy = 3(xRzAzRy)) is expression "xRz AzRy ', the scope of "V “wrt y is
X y z

"xRy = 3I(xRzAzRy) " and the scope of 'V ‘wrt x is " V(xRy = J(xRz A zRy)) .
z y z

A variable occurring in a quantifier and in a propositional function within the scope of the quantifier is said to
be a bound variable. Some variable of ¢ not occurring under the quantifier is a free variable iff it is not bound.
Here, a propositional (or sentential) function is an expression including free variables and from which we can
obtain propositions after substituting all variables by constants. The notion of propositional function was
introduced by Russell B. (in 1903, see: Russell B. 1938).

Example 2.32 (bound and free variables, propositional function)

(1)  The variable x is free in the expression: 3JxRy . Consider the following expression:

V A(x) = A(x) . Now, the variable x occurring on the left side of implication is bound,
but x on the right side of this implication is free.

(2)  Some example propositional functions having one, two or three free variables may be
the following: “x is even number”, “x is greater than y” and “x is the greatest
common divisor of two integers y and z”, e.g. “6 is even number” (the proposition’s
logical value is true), “5 is even number” (the proposition’s logical value is false), etc.
The mathematical equations are well-known examples of propositional functions. The

term “condition” is often used as a such function.

(3)  Consider the following expression: V3IxRy . By substituting “xRy” for the propositional

function “x =y + 1” we can obtain the proposition: VI(x =y + 1).0
Xy

It can be observed that propositional functions correspond to some expressions, but mathematical functions
correspond to some relations.

In addition to the above presented two kinds of quantifiers, there exist also bounded quantifiers. These
quantifiers are often used as an abbreviated description of various definitions and mathematical theorems. As an
example, ¥V |x|= x and 3 a-x = a are abbreviations of the following two expressions: V (x > 0 =

X #0
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x| = x) and J(x # 0 A a-x = a). In general, the following two bounded quantifiers can be

introduced (Stupecki J. and Borkowski L. 1967): (v) y(x) <o V(px) = wy(x)) and (EI) y(x) <
o(x X @(x

3 (e(x) A y(x). The use of these two quantifiers is illustrated in the next example.

Example 2.33 (some mathematical / computer science definitions)

limit  of a
sequence

continuous
function

fault
detecting test

bounded, live
and
reversible
P/T net

ima,=g<g V I Vla — gl<e

n—»0 £50 M n,m

f(x) is continuous <« v V'V 3 (Ix-yl<d = [fx)- fy)l <¢)

X y &850

V V (xdetects a <4 I (fix) = f(x)))

xeUaeF

The Petrinet N is bounded iff 3 v Vv (M(p) < n)
)

n pePMelM,

The Petrinet N is live iff v Vv 3 (t e TM"))

teT Me[M,) M'e[M)

The Petrinet N is reversible iff vV (Mo € [M))
Me [M,)

In particular, boundedness, liveness and reversibility are the three most important and required properties in
modelling of discrete event systems. These properties are independent of each other and generalised also for
High-level Petri” nets (see: High-level Petri Nets 2000, 2005). o

3.2. Primitive rules

The set of primitive rules in predicate logic consists of:

(1) All primitive rules, i.e. — C, £ K, + A, and * E, of the classical propositional calculus,
generalised for use in predicate logic. Now the symbols ¢ and w, engaged in the
above rule schemes, represent expressions of predicate logic. Similarly are interpreted
¢1, d2, ..., On occurring in the generalised form of an expression (given in Subsection 1.2).
The process of joining new lines (by using some primitive or derived rules and/or other theses
in accordance with the used assumptions) is extended to predicate logic.

(2)  Rules of joining and omitting the universal and existential quantifiers: +V,+3.

In accordance with +v,+3, it is used a special symbol @(x/§) denoting an expression formed from ¢ by

substituting the individual variable x for the expression &: in all places where x is free. Moreover, if x is in
the scope of a quantifier Q € {V,3} and y is a variable occurring in Q then & should not depend on y.
The quantifier rules are given below: we shall require in (2) that x is not free in the corresponding proof

assumptions’.

(1)  Rule of omitting an universal quantifier
(denoted below by —V"):

* Carl Adam Petri (1926 —2010).

 Consider the following thesis: x > 0 = x + y > y (x,y € R). Assume that: x > 0.Byusing '+ A’ we can obtain: "x > 0 v x

= 0". However, this is a contradiction with our assumption about x. And hence, the obtained expression: V (x > 0 v x = 0) should be
X

not correct (Stupecki J. and Borkowski L. 1967).
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Vo)
P/ &)

(2) Rule of joining an universal quantifier
(denoted below by "+V')":

-V

p(x)
\;/w(X)

(3) Rule of joining an existential quantifier

(denoted below by +3"):

. e(x/$)
+3: f"/’ )

(4) Rule of omitting an existential quantifier
(denoted below by '—3"):

2p()
o(x/ 45 .5

Example 2.34 (the rule "-3")

Consider the expression 3P(x,y,z): “for any two different points x and z, there exists a point y that lies
y

on the line defined by x and z”. By omitting this quantifier, we can obtain the expression: P(x,ax,,z). And
hence, the point ay, is associated with x and z (Stupecki J. and Borkowski L. 1967). In fact, the use of
Skolemian type functions' is also possible (see Subsection 3.5).

Let now X,y and z be three points that are not collinear (i.e. they do not all lie on a single line). Give an

example use of the rule "~3": left to the reader. o

The bounded quantifier rules are presented below.

(5) Rule of omitting a bounded universal

quantifier (denoted below by —V*):
Y y(x)

_v* . (x)
P(x/ &) = Y(x/E)

(6) Rule of joining a bounded universal
quantifier (denoted below by "+V*"):

. X)) =y ((x)
+V7*: —,X)"’(X)

(7) Rule of joining a bounded existential
quantifier (denoted below by "+3*"):

(/&)
13 v
mﬂx)\v(X)

* Known also as rule of generalisation: x should not be free in the corresponding proof assumptions.

" Thoralf Skolem (1887 — 1963).



(8) Rule of omitting a bounded existential
quantifier (denoted below by "—3*"):

3.3. Theses and derived rules

. Jy(x)
-3 o(x)

g, )
VOIS, 4 )

Thesis 2.132

VAX) = A(y)

Proof:

M VA® )

A(y). o {(-V:1}

Thesis 2.133

Aly) = FAX)

Proof:

1 Ay {a}

JAK) .o (4301}

Corollary 2.10

(2)
(b)

AKX) = 3JA®X)

~AKX) = I~AKX).o {T2.133}

Thesis 2.134

VAK) = 3JAK).s {(+K TC,-C: T2.132,T2.133}

An illustration of De Morgan’s laws are the next two theses.

Thesis 2.135
~ VAX) & 3 ~A®KX)

ProofT2.135a:

)

(@)
3

~ VAR {a}
~3~A(x) {aip}

A(x) {Toll: Coroll. 2.10b, 2}

219
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4) YV A(X) {+V:3}
contr. o {1,4}

ProofT2.135b:
M I~Am @

@ VA®  {aip}

) ~A) {-3: 1

@ Aa) {-=V:2}
contr. o {3,4}

Thesis 2.136
~JARX) © V ~A®X)

ProofT2.136a:
1) ~3A) fa}
2) A(x) = JAX) {Coroll. 2.10a}

3 ~A®X {Toll: 2,1}
YV~ A(X). o (+V : 3}

Another possible (but indirect) proof of the last if-implication may be the following.

1) ~3A0) {a}

@ ~V~AX {aip}

() 3AE) {T 2.135, SR,- N}
contr. (1,3}

ProofT2.136b:

1) V~AE fa}
@ 3AE taip}
3) A -3:2
@ ~AX {=v: 13
contr. o {3,4}

According to T 2.135 and T 2.136, the following rules of negating an universal quantifier (NV) and
negating an existential quantifier (N3) are obtained:
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~Y¢(X) 4 NG ~3p(x)
an : x .
3~ p(x) v~ (x)

De Morgan’s laws for bounded quantifiers are introduced as follows.

VYR e~V (e(x) = y(x) {df. V*}
< 3K A ~vX) {NV, NC, SR}
= I ~y(x) .o {df. 3*}

()

In a similar way we can obtain.

~ v e ~3(e() A vx) {af. 37}
S V(ex) v ~yK) {N3, NK, SR}
< Vo) = ~yx) {CR, SR}
© Y k). {df. V°}

The following rules of negating a bounded universal quantifier (NV*) and negating a bounded existential
quantifier (N3) are obtained:

~ VY y(x) ~ 3y
Nv*: —2®  gnd N3I°% e |
3 ~y(x) v~ w(x)

An illustration of the last two rules is the proof of the next thesis. We shall first present the direct version of
this proof, given in (Stupecki J. and Borkowski L. 1967).

Thesis 2.137
3 Vv R(x,y) = v 3 R(x,y)
B(y) A(x)

Ax) B(y)

Proof:

M 3V Rkxy) {a}

2 A

3 ¥ Ray a1

4 B(y) = R(@y) {-Vv*: 3}
(1.1) B(y) {ada}

(1.2)  R(ay) (-C:4,1.1}
(1.3) 3 R(x,y) {(+3%:2,1.2}

5) B(y) = A(E)R(x,y) {(+C: 1.1 = 1.3}
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ProofT2.137(indirect version):

)
2
3

“
(&)

(6)
)

®)
(€))
(10)
an

v 3 R(xy).o

B(y) 460

3 V R(x,y)

Ax) B(y)

~V 3 Rxy)
B(y) A(x)

3V ~R(xy)

B(y) A(x)

A(a)

Vv R(a,

A (ay)

B(b)

Vv ~R(x,b)
A(x)

B(b) = R(a,b)
A(a) = ~R(a,b)
R(a,b)

~R(a,b)

contr. o

{+V": 5}

{aj
{aip}

{NV*, N3 2}

{31}

{—3": 3}

{=Vv": 5}
{=v*" 7}
{-C:6,8}
{-C:49}
(10,11}

A particular case of the last T 2.137 is the following thesis (the proof is left to the reader).

iv R(Xay) = V3 R(X5Y) o
xy y X

Several theses (mainly for unbounded quantifiers) are cited below (Shupecki J. and Borkowski L. 1967). The
corresponding proofs are left to the reader (here: Q € {V, 3}, Q" is a “complement” of Q, e.g.if Q =4 V then
Q =43, and e € {A,Vv}: Q and e are interpreted in the same manner in a given predicate formula)”.

* In particular, the following formulae: V (Ax) A Bx)) & V Ax) A VBx), VAx) v VBx = V (AR v Bx),

I(AX) v B) © JAx) v IB®x) and IF(A(X) A Bx) = 3 A(x) A 3 B(x) are satisfied using bounded quantifiers, e.g. the

proof of the following thesis: AX) B(x) v AX) C(x) = A?;) (B(x) v C(x)), is given below.

(M
@
3)

)
©®)
(©)
(1.1)

(1.2)
(1.3)

V Bx) v YV Cx)

A(x) A(x)

~ V (B v Cx)

A(x)

3 (~B® A ~C(x)

A(x)
Aa)

~B(a)

~C(a)

W, B
A(a) = B(a)
B(a)

contr.

{a}
{aip}

{NV",NA, SR : 2}

(-3, -K:3}

{ada}

-V 11}
(—C:4,12}
(5,13}
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Y (A() A Bx) & YA®) A VB
I(ARX) v B() < JARK) v IB(X)
VAR v VBx) = V(AR v BX)
I(A() A B(x) = JA(X) A IB(x)
V(AK) = B(x) = (9 A(x) = ?B(X))
Q = AKX) < p = (XQA(X)

Q (Ax) = p) < (?'A(X) =p

?A(X) . (?B(X) < Q (yz (A(x) « B(y))

FAKX) A VB(X) = 3 (AKX) A B(x))
Q (e AX) & pe+ QAKX

v (A = p) & 3AK = p
B(x B(x)

I A AX) © p A TAKX)
5 5

The following theses are also satisfied. The proof of the first one is given below (the rest proofs are left to the
reader).

JA(X) A VB(x) & 3V (A(X) A B(y))
VB(x) AJA®X) < V3 (BX A A®Y)
VAR viIBX) & V3 (AX) v BE)

IBRx) v YA®X < 3V (Bx) v Ay)

The proof of the first thesis (if-implication):

1) 3ARX)

@  VBE) @
(3)  ~3V(ARX) A B(y)) {aip}
2.1 A(VX) C(x) {ada}

(22) A = C(a) -V 2.1}
23)  CQ {(-C:4,22}

contr. {6,2.3}
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4 Y 3 (~A(x) v ~ B(y)) {N3, NV, NK, SR : 3}
(5) A {(—3:1}
(6) 3 (~Aa) v ~ B(y)) {-V 4}
(7)  ~A(a) v ~ B(b) {-3:6}
(8) ~ B(b) {(—~A:57}
9  B(b) {-Vv:2}
contr. o {8,9}

The proof of the first thesis (only-if-implication):

(M 3V (AKX A BY) {a}
2 ~ CGAR) AV Bx) {aip}
) V~ARK) vI~BE) {N3,NK, NV, SR : 2}
@ v (A@ A BY) {(-3:1}
(L) YV ~ARX) {ada}
(1.2) Aa) {g(pOA(x))Qp- gA(x),—KI4}
(1.3) ~A(a) {=v:11}
contr.
@1 3~BE {ada}
(22) ~B() (-3:2.1}
(2.3) B(b) (-V,-K:4}
contr. o 2.2,2.3}

3.4. The existential uniqueness quantifier

In addition to the propositional logic constants and quantifiers, it can be also introduced the symbol "=’
known as identity or equality (used in most mathematical expressions). Moreover, only there is added the following
axiom.

Al: x =X

It is also used the primitive rule EI (extensionality for identity), given as follows".

" El is very similar to the derived rule of extensionality ER , given in Subsection 1.3.
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x=y
(%)

EI:
(y 11x)

According to Al, (interpreted as a binary relation) identity is reflexive. It can be shown that identity is also
symmetric and transitive (Stupecki J. and Borkowski L. 1967). The addition of Al and EI to predicate logic as
well as the generalization of the corresponding rules wrt propositional expressions including identity is an
extension of predicate logic called (classical first-order) predicate logic with identity. This logic allows to
introduce the following definition (here "3!¢(x)” denotes: “there exists exactly one x such that ¢(x)”).

Definition 2.37 (existential uniqueness quantifier)

El!(p(x) c>df§(p(x) AY VYV (x=Yy)

P(x) @)

Thesis 2.138
v V R(xy) & Y (p(x) = v (o(y) = R(x,y)). o

?(x) o(»)

Thesis 2.139

V(o) =V (9(y) = Rxy) <V v (@x) A oy) = Rxy).

Thesis 2.140

Y y (ex) A o(y) = R(xy) < (/X} (p(vv) R(x,y). o

In accordance with the above three theses, the corresponding three formulae are logically equivalent: the
proofs are left to the reader (it is sufficient to prove cyclic only 3 of the whole 6 implications). Obviously, the
considered properties can be generalised for any two or more (but finite argument) predicate. It can be observed
that T 2.139 is very similar to the laws of exportation and importation (see: T 1.12, Subsection 1.3). And so, the
above Definition 2.37 can be presented as follows.

Definition 2.38 (existential uniqueness quantifier)

o) < 3 9(x) A Y M (0x) A o(y) = x =y).

Predicate logic with identity allows use of descriptors”. Any such descriptor can be considered as an
individual expression of the form: :¢(x) , where "t is descriptor’s operator, x is a free individual variable and

¢(x) - a propositional function, i.e. the scope of "1 " in this expression. For example, "1 A(x) * denotes: “one and
only one x such that A(x)”.

The following rule of joining a descriptor’s operator (or omitting an existential uniqueness quantifier, denoted by:
‘—3!") can be introduced.

Fp(x)
o(x/ 19(x))

We shall use Definition 2.38, the above presented descriptor and rule "— 3!” in the proof of the next thesis.

* Similar notion is used in computer data processing: use of descriptors from thesaurus.
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Thesis 2.140 (Stupecki J. and Borkowski L. 1967).
le(x) & 3 VvV (x=Yy)

?(x) o(»)

ProofT2.140a:

(1) 3 o(x) {a}
2 ~ 3 v(x=y) {aip}
@(x) o(»)
(3) Y 3(x=y) {N3",NV*, SR : 2}"
4) P(x/ 19(x)) (=31}
() P/ 1p(x) = 2, (o) #y) {=v":3}
(6) 2 (190 #y) {—C:45}
7 o(a)
{-3":6}

®) 1p(x) # a

contr. o {7,8}

ProofT2.140b:

M 3 v(x=Y) 1a;
@ ~3leX {aip}
3) ~(§I o(x) A Y’ ‘v;’ (o(x) A oy) = X =1Y)) {Df.2.38, SR : 2}
(GO
5 v(a=y =3 h
(6) V~o(x) v 33 (9(x) A o(y) A X # y) {N3, NK, NV, NC, SR : 3}
(1.1) ¥V ~o(x) {ada}
(12)  ~o(a) {-Vv: 11}
contr. {4,1.2}
@D 33K A 9F) A X £ ) fada}
(2.2)  o(b)
23) o) {-3:2.1}
24 b=#c

XEYy Sa~Ex=Y).
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(25) o@b) =>a=b {-Vv":5}

(26) o) > a=c {-V*:5}

27) a= {-C:22,2.5}

(28 a=c {-C:2.3,2.6}

29 b=c {prop. of '=":2.7,2.8}
contr. o {2.4,2.9}

In general, there exist three kinds of existential quantifiers: 3 (“there exists at least one”, corresponding to:
3s1 ), 3! (“there exists exactly one”, corresponding to: 3-1 ) and 3« (“there exists at most one”). The last
quantifier is denoted below by: "3.” and defined as follows (Megill N.D. 2005).

Definition 2.39 (existential uniqueness quantifier)
1. 0(x) <ar 3 0(x) = 3! 0(x)

In particular, several other definitions were also presented (Megill N.D. 2005)., e.g. 3. ¢(X) < 3 V (¢(X)

= x = y). Itis shown below that these two definitions are logically equivalent.

Thesis 2.141

3000 = 3 g(x) © IV (9(x) = x = y)

ProofT2.141a:

1) ek = e {a}

@  ~3V(e® =x=y) {aip}

3 vIeE Ax=Yy) (N3, NV, NC, SR : 2}

@ ~3ex) vilek) {CR: 1}

(L) ~3eX) {ada}

(1.2)  3e(x) A x # a) {-V:3}

(1.3)  o(b) {(-3,-K:1.2}

(14)  V~o() (N3 : 1.1}

(1.5) ~o(b) {(-V:1.4}
contr. {1.3,1.5}

2.1 e {ada}

22) 30X AV V(oK) A @y) = X=Yy) (Df238:2.1}
23) 39k

(24 Y V;’ (ex) A o(y) = x =) {—K:22}
(230 (-3:23
26 o) o

27) d=#c
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(2.8)  ¢(c) A o(d) (+K:2.52.6}

(29) o) A o(d) = c=d (-V :2.4}

(2.10) ¢ =d (-C:2.8,2.9!

(2.11) d =¢ {prop. of '=": 2.10}
contr. o {2.7,2.11}

ProofT2.141b:
M 3 V(o0 = x=y)

@ 3ox o

3)  ~3oX {aip}

@ ~Gox) AV YV (0() A 0y) = x =) {Df.2.38, SR : 3}

4) V ~o(x) v 33 (e(x) A @(y) A x #y) {N3, NK, NV, NC, SR : 4}

(1.1) YV ~o(x) {ada}

(1.2)  o(a) {—3:2}

(1.3) ~o(a) {-Vv:1.1}
contr. {1.2,1.3}

@1 33 (9(x) A 0() A X #Y) {ada}

(2.2)  o(b)

23) o) {—3:2.1}

(24) b #c

(2.5 V(px) = x = d) {-3:1}

(26) @b) = b=4d (-V:2.5}

27 o) =>c=d {-V:2.5}

28 b=d {-=C:2.22.6}

(29 c=d (-C:232.7}

(2.10) b =c¢ {prop. of '=": 2.8,2.9}
contr. o {2.4,2.10}

3.5. Sequent calculus

The sequent calculus and (first order) predicate logic can be considered as two equivalent approaches in proof
theory. In fact, any formula ¢ is deducible in the predicate logic iff + ¢ is deducible in the sequent calculus.
The fundamental theorem of Gentzen (or the normalisation theorem) is fundamental in the proof of this assertion.
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The following theorem was given: If T' = A,® and ©,I' ~ A are deducible in the sequent calculus, then so is
I + A. The obtained derivation rule, called cut rule (or cut-elimination rule, in short: ‘CER’) is presented as
follows:

CER - I'—A©0 O,I \—A.

I''—A
The proof of this rule is given below.

Proof:

(1) Ir=>AveO

2 OAT=A ta}

3 T

@ ~A {aip}

(5) ~@ v ~T {Toll : 2,4}

(6) ~0 {-A:35}

7 Av O {-C: 1,3}

®) ) {(—A:4,7}
contr. o {6,8}

The normalisation theorem asserts that the cut rule is admissible in the sequent calculus, i.e. does not change
the collection of deducible sequents. In view of this, Gentzen’s theorem is also called the cut-elimination
theorem (Encyclopedia of Mathematics 2002).

The following four derivation rules (concerning quantifiers) are used: here, the variable 'b” occurring in "+V.’
and ‘+3," rules is called the eigenvariable®. This variable should not occur as free in the lower sequents of the
respective rules. In fact, 'b” may be arbitrary, if A(x) do not contain x. And then, A(b) is equivalent to A(x)
(Glushkov V.M. 1964).

AR, I +-06
+V,:

VAX), -0

ADb), T'+-06
+3,:

JAX), ' 0O

I' = 6, A(b)
+ Ve

I' =0, VA®X)

I' =06, A(t)
+3c:

I'+=0,3A®Xx)

As an example, the proof of "+3," rule is given below. The remaining proofs are left to the reader.

Proof " +3-":

" The usual formalisation of first-order logic needs to distinguish between letters that stand for things that can be substituted by any term
and letters that are taken to be particular terms.
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I  Ab)AT =0

@ 3AX {a}
3 T
@4 ~0 {aip}
(5) ~A() v ~T {Toll, NK, SR : 1,4}
6) ~A(b) {(—-A:3,5)
(7 Aa) (-3:2}
®) v ~A(x) {+V : 6/ A®b) = AK) }
®  ~A;) -V :8}
contr. o {7,9}

The use of the above four derivation rules is shown in the next two examples.

Example 2.35(V A(x) = 3 A(x))

(1) AR® F AR (1d}
(2) A(X) = ? A(X) {+E|c: 1}
3) YA® FIAR.o (a2}

Example 2.36(3V R(xy) =Y I R(x)y)
Xy Yy X

(1) Rxy) = Rxy) {Id}

2)  VRxy) FRxy) (+V,: 1}
(3) v R(xy) F3IRxy) {(+3.:2}
(4) gy R(xy) =3 R(xy) {+3.: 3}

(5) IVREY) FYIRGY) .0 (v, 4)

In particular, according to the last example, it can be observed that any transition between two adjacent lines
is a thesis, e.g. &= (3) = (4): the proof is given below.

@) Vv R(x,y) =3 R(x,y)

@  3vR&y) o
() ~3IRExy) {aip}
@~ v R(x,y) {Toll : 1,3}

" The Free Encyclopaedia, The Wikimedia Foundation, Inc: 3V R(x,y) = ¥V 3 R(x,y) coincides with this one, considered in this
Xy y X

Encyclopaedia, if we assume that: p(x,y) <4 ~ R(X,y) , after using rule "CC": left to the reader.
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%) 3 ~R(x,y) {NV : 4}
(6) ~R(x,a) {-3:5}
@) Vv ~ R(x,a) {+V : 6}
®)  VR®by) -3:2)
(9  ~R(ba) {-v:7}
(10)  R(b,a) {(-V:8}
contr. o {9,10}

Gentzen’s system was used by Hao Wang (1921 — 1995) in automated theorem proving. Using generalised
procedures, there were proved (on an IBM-704) 350 theorems, within 8.5 minutes, concerning the first nine
chapters of Principia mathematica (Whitehead A. N.” and Russell B. 1913). Since predicate logic is undecidable
in general (Kurt Godel 1906 — 1978) , it is clear that a procedure for decidability for an arbitrary (well-defined)
predicate logic formula does not exist.

3.6. Skolemisation, resolution and interpretation

Let ¢ be a formula of (first-order) predicate logic. We shall say that ¢ is represented in a prenex normal
form if it is written as a string of quantifiers and bound variables, called prefix, followed by a quantifier-free part,
called the matrix. Assume that the matrix of ¢ is represented by . More formally, the following prenex normal

form can be obtained: ¢ <4 Q2 Quy(xy, X2, ... , Xn), Where Qi € {V, 3} (for I =1, 2, ... n). The

X X X,

quantifier rank of this form ¢, denoted by qr(¢) = n'.
The next two examples are an illustration of this form.
Example 2.37(? ‘v;’ Rixy) = ‘?’ ? R(x,y): prenex normal form)
IV R(y) = VIREY) o ~3V Ry vVIRkY)  (CR)
= ‘Y’ '3 ~R(xy) v Y %l R(x,y) {N3, NV, SR}
P g 3 ~R(xy) v Y ? R(t,z)  {the right side of disjunction: y =y z, x =g t}

= Y V33 (~R(xy) v R(t,z)) {quantifier theses: Subsection 3.3}

z y

oV V3IIREy) = R(tz).o {CR}

x z yt

The considered formula is a thesis. And hence, the obtained prenex normal form is also a thesis. The proof of
this form is given as follows.

" Alfred North Whitehead (1861 — 1947): Russell was a former student of Whitehead.

T The term “prenex** comes from the Latin “praenexus* (tied or bound up in front). The quantifier rank of a formula is the depth of
nesting of its quantifiers. This rank, denoted by qr(o), is defined as follows: (1) qr(@) = 0, if @ is atomic, (2) qr(piA @2) = qr(Qr VvV ¢2)

= max{qr(en), ar(2)}, (3) ar(~e) = qr(g) and (4) qr(3 @) = qr(g) + 1. For example: qr(A(x) v R(x.y)) = 0, qr(Ax) AV R(xW)

= 1, qr(e) for the initial form of ¢ of Example 2.37 equals to 2, but in the obtained prenex form this rank is 4, etc., see: The Free
Encyclopaedia, The Wikimedia Foundation, Inc.
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() ~V V31 Rey) = Rt2) {aip}
2) % 3 Y ‘vj(R(X,y) A~ R(t,2)) {NV,N3,NC, SR : 1}
() VvV (Ray) A~ R(Lb) 312}
4  RG@b)
) ~R(a.b) {-V,-K:3}
contr. (4,5

Example 2.38(¥ (A(x) v B(x)) = Y A(x) v ¥V B(x): prenex normal form)
V(Ax) v Bx)) = VAX) vVBXx & ~V(A®X) v Bx) v VA®X) v VB([Xx) {CR}
< I(~AX) A ~B®X) vV V (AX) v B(y))
X x oy
< 3V V(~ARX) A ~Bx) v A(y) v B(2)).o
Yy z
In accordance with the last example, the considered formula and also the obtained prenex form are not

theses. However, a thesis is the following logical equivalence. The corresponding proofs of if- and only-if-
implications are illustrated below.

V(A(x) v B(x)) = VAKX v VBX << 3V V(~AKX A ~B(X v Ay) v B(2)

Proof (if-implication):

() V(A® v BE) = YAX v ¥ BE) fa}

(@) ~3V Y(~AM A ~BX) v AY) v B@)  faip}

3) Y ? ?((A(x) v B(x)) A ~A(y) A ~B(2)) {N3, NV, NA, - N, SR :2}

“) vV (AK) v B(x)) A ~A(f(x)) A ~B(g(x)) {-3,SR: 31
%) vV (AX) v B(x)) A V~A(f(x)) A V ~B(g(x)) {V-thesis: 4}
(6) vV ((A(x) v B(x))

(7 v~ A(f(x)) {-K:5}
®) YV ~Blew)

9 VAR vV Bk (—C:1,6}
(L) VA® {ada}
(12)  ~A(f(a)) -V :7}

" quantifier theses: Subsection 3.3

T The rule of omitting an existential quantifier, given (Stupecki J. and Borkowski L. 1967) can be represented in a more convenient way
by using Skolem functions (Albert Thoralf Skolem 1887 — 1963). As an example, consider a line L defined by two different points x and y.
For any such x and vy, there exists a point z in L such that z is between x and y, in short: L(x,y,z). So, by omitting the existential

quantifier in the expression 3L(x,y,z) we can obtain: L(x,y,ay), where ay is determined by x and y (Stupecki J. and Borkowski L. 1967).

Here, the indexes x and y in a, correspond to B; and B,. Since x and y may be arbitrary, then a = a(x,y) or more formally a = f(x,y),
i.e. ay, can be interpreted as some Skolem function f(x,y). Hence, by omitting this quantifier we can obtain: L(x,y,f(X,y)).
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(1.3)  A(f(a)) (-v:1.1}
contr. {1.2,1.3}
1)  VBE) {ada}
(2.2)  ~B(gb)) {-v:8}
(2.3)  B(g(b)) (-V:2.1}
contr. o {2.2,2.3}

Proof (only-if-implication):

() 3V V (~AKX A ~BX) v A(y) v B(2)) {a}

2) ~(V (Ax) v Bx)) = VA®X) v V B®x)) {aip}

() V(AK v BEX)

@ 3 ~ARX {NC,NV, NA, - K, SR : 2}

(5) 3 ~B®

(6) v V (~A(a) A ~B(a) v A(y) v B(2) {—3:1}

7 ~A(@) A ~B(@) v V V (A(y) v B(2) {V-thesis: 6}

® ~(A(@ v BQ) v VvV V (A®y) v B@®) {NA, SR : 7}

(9  A(a) v B(a) {-v:3}

(10) v V (A(y) v B(2) {-A:89}

a1 ~A()

(12)  ~BO {—3:4)5}

(13)  A(b) v B(c) {-=V:10}

(14) BI {(—A:11,13}
contr. o {12,14}

Let consider the following formula: Y AX) v % B(x). The obtained prenex normal form is as follows:
‘Y’ '3 (A(x) v B(y)). Since disjunction is commutative; we have: ‘Y’ Ax) v ? B(x) < ? B(x) v ‘z’ A(x) . The
féllbwing prenex form of the right side of this equivalence can be> obtained: % vy (B(x) v A(y)). And so, the
last two prenex normal forms are also logically equivalent, i.e: & Y’ ? (AX) v B(y)) = % Y BXx) v A(y)).
The proof is given below. - o
Proof (if-implication):
) V3AE v By) fa}
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@ ~3 VB v AY) faip}

() V3B A ~AW) (N3, NV, NA, SR : 2}
@ Y AX v BE) (301

)V (~B® A ~A@Ex) 3:3)

6) V ~B(x)
* {V-thesis, — K : 5}
MY ~ARK)

(®)  A(g(a)) v B(f(g(a) {=V, x=ug(a) : 4}

©  ~Ag) {=v:7}

(10)  B(f(g(a))) {-A:89}

(11)  ~B(f(g(a))) {=V, x = flg(a)) : 6}
contr. {10,11}

Proof (only-if-implication):

(1) 3V B VA fa}

@~ V1A v BY) faip}

3 v (~A®) A ~B®)) (NV, N3, NA, SR : 2}

@ Y B@ v AY) 31

5) B v v A®) (V-thesis: 4}

6) Y (~A®) A ~B(y) (3:3)

) N Ab) AV ~B(y) {V-thesis: 6}

®  ~Ab)

®  v~BW) R

10)  ~B@ (v :9)

(11) YA(y) {-A:5,10}

(12)  A(b) =V : 11}
contr. o (8,12}

In a similar way, we have: V A(X) A 3 Bx) & V3 (AX) A B(y)) and 3 BxX) A VAKX <
3 VvV (B(x) A A(y)). Since conjunction is commutative, we can obtain: EV 3 (A(x) A B(y)) < 3 Vv (Bx) A
oy Xy Xy

A(y)). The proof is left to the reader.

In general, every formula of classical logic is logically equivalent to some formula represented in prenex
normal form. Any formula ¢ of (first-order) predicate logic represented in prenex normal form having only
universal quantifiers is said to be a Skolem normal form: not changing the satisfiability of ¢. Any such process is
called 232ulfilment232232n". The last process (of removing existential quantifiers, often performed as a first step) plays

* Albert Thoralf Skolem (1887 — 1963).
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a fundamental role in automated deduction methods. As an example, a brief presentation of the Robinson’s
resolution method is given below (Robinson J.A. 1963, 1965)".

Example 2.39(Robinson’s resolution method)
Consider the following prenex normal form: ¢ <4 V 3 V V 3 (R(v,w) v R(v,x) = R(uy)). Hence, in

accordance with general concept of the ramified indirect proof from assumptions (see Subsection 1.3) , as input
data to this method isused ~@,i.e: 3 V 3 3 V (R(v,w) v R(v,x)) A ~R(wy)).
u v wox v

The followimg Skolem normal form (known also as a standard form) is obtained: V V ((R(v,f(v)) v

R(v,g(v))) A ~R(a,y)). And hence, for any v and y, we have: (R(v,f(v)) v R(v,g(v))) A ~R(a)y). Since
conjunction and disjunction are mutually distributive, in particular we can obtain: R(v,f(v)) A ~ R(ay) v
R(v,g(v)) A ~R(a,y). Now, we have two additional assumptions.

By assuming R(v,f(v)) and ~ R(a,y) we can obtain a contradiction for v =¢r a and y =¢ f(a). Ina
similar way, assuming R(v,g(v)) and ~ R(a,y) we have a contradiction for v =¢r a and y =4r g(a). o

Consider the expression: (R(v,f(v)) v R(v,g(v))) A ~R(a,y), obtained in the last example. The notion of a
disjunct is introduced as a disjunction of /iterals. So, in accordance with this conjnctive normal form, we have
two disjucts: 2-literal and 1-literal ones. The obtained set of all disjuncts S =4 {(R(V,f(v)) v R(v,g(v))), ~
R(a,y)}. In this earlier work, given by Davis M. and Putnam H'. (1960), the study of unsatisfiability was based
on a special domain H, known as Herbrand’s universum?: a sufficient condition of any such study (Chang C.-L.
and Lee R.C.-T. 1973). In this example we have: Ho = {a}, H; = {a, f(a), g(a)}, H> = {a, f(a), g(a), f(f(a)),

f(g(2)), g(f(2)), g(g(@)}, ... , H =ar Ho = {a, f(a), g(a), f(f(a)), f(2(a)), g(f(2)), g(g()), ...}.

Some attempts of search for general proof procedures were first given by Leibniz (Gottfried Wilhelm
Leibniz: 1646 — 1716). Similar attempts are some works given by Peano (Giuseppe Peano: 1858 — 1932) and also
in Hilbert’s School (David Hilbert: 1862 — 1943). But finally, it was shown independently by Church A. (1936)
and Turing A.M. (1936)" the lack of any such procedures or algorithms for this logic.

The work given by Herbrand J. (1930) was a very important approach in proof theory and automated
deduction methods. Let ¢ be a first-order predicate logic formula such that ¢ is not a thesis (see: Definition
1.5, Subsection 1.4). It was proposed an algorithm that selects such an interpretation for which ¢ is not satisfied.
However, the main problem here was the obtained computational complexity of this algorithm. And hence, the
Robinson’s resolution method can be considered as an improving of the last approach, by omitting some basic
disjuncts (Chang C.-L. and Lee R.C.-T. 1973). In accordance with the used standard (conjnctive normal) form, one
of the basic rules used in this method is the following one, called resolvent rule (denoted here by 'RES”). This
rule can be considered as a generalisation of the rule '— A" (for y =ar A: empty formula).

A
RES: ~# VX
vV

The proof of 'RES’ corresponds to the proof of the following law: = (p v q) A (~p v 1) = q Vv r:left

to the reader. The use of thi rule is illustrated in Example 2.40, shown below (the construction of the used prenex
normal form is first presented).

* John Alan Robinson (1930 —2016).

 Hilary Whitehall Putnam (1926 —2016).

i Jacques Herbrand (1908 — 1931).

§ Alonzo Church (1903 — 1995), Alan Mathison Turing (1912 — 1954).
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Consider the formula: Y (A(x) = B(x)) A ? (Ax) A C(x) = ? (B(x) A C(x)). This formula is a thesis
(the proof is left to the reader5 and it is logically eduivalent to the follovﬁng one (by using CR): ~ (Y (AX) =
Bx)) A ? (AX) A Cx)) Vv ? (B(x) A C(x)). In a similar way , next we have: % (AxX) A ~B®Xx)) v
Y (~ A(x)’ v ~C(x)) v % (B(%) A C(x)). In accordance with quantifier theses we éan obtain: % (Ax) A
~B(x) v Bx) A C(x)) Vv | Y (~ A(x) v ~C(x)). The last formula is logically equivalent to the follﬁwing one
(the prenex normal form): % Y (AX) A~B(x) v Bx) A C(x) v~A(y) v ~C(y)).

The original formula V (A(x) = B(x)) A 3 (A(x) A C(x)) = 3 (B(x) A C(x)) and the obtained prenex

form are logically equivalent.

Proof (if-implication):

() V(AK = BE) A 3(AK A Cx) = 3 (B A C() ()

@) ~3 V(AR A~BE) v BK) A C) v~AG) v ~CO) {aip}

() VI(AK v BE) A (~BE) v ~CX) A AY) A CF) (N3, NV, NK, NA, - N, SR : 2}

“4) Y ((~A(x) v B(x)) A (+~Bx) v ~C(x)) A A(f(x)) A C(f(x))) {-3:3}
(5) ¥ (~AK) v B

6 V(B®X v ~C(x)
* {V-thesis,— K : 4}
7 VAfX)

® VX))
) Af(a)

-V :7,8)
(10)  C(f(a))
(11)  A(fa)) A C(f(a)) (+K:9,10}
(1) 3 (A A C) (43, x @) : 11}
(13 V(A® = B) (CR: 5}
(14) V(A = B) A 3 (ARK) A C(X) (+K:12.13)
(15 3 (Bx) A C(X) | (—C:1,14}
(16) I;(b)

{-E: 15}
(17)  C(b)
(18)  ~B(b) v ~C(b) (—V: 6}
(19)  ~C(b) {(-A:16,18}

contr. o {17,19}

Proof (only-if-implication):
() 2 7AW A~BE v B A CK) v~ AR v ~C(y) fa}

@ ~(Y(A® = BX) A 3(AX A CK) = 3BX) A Cx)  {aip}
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() V(AK = BkX)

@ 3(A® A CK) {NC,-K:2}

G ~3 B A CX)

(6) v (A(@) A~B(a) v Ba) A Ca) v~A(y) v ~C(y) {-3:1}

(7)) Y(~BE v ~Cx) {N3, NK, SR : 5}

®  Ab) (-3,-K:4)

9  Cb)

(10)  A(b) = B(b) {-v:3}

(11)  B(b) {-C:8,10}

(12)  ~B(b) v ~C(b) (-V : 7}

(13)  ~C(b) {(—A:11,12}
contr. o {9,13}

Example 2.40(Robinson’s resolution method: use of "'RES")
Let ¢ <¢r 3 V(AX) A~BX) v Bx) A CX) v~A(y) v ~C(y)). Then: ~¢ <4 V 3 ((~ AX) Vv
Xy Xy

Bx)) A (~B(x) v ~C(x)) A A(y) A C(y)). By omitting the existential quantifier, the following standard form
is obtained: V ((~A(X) v Bx)) A (~B(x) v ~C(x)) A A(f(x)) A C(f(x))). Here, we have two 2-literal

disjuncts and two 1-literal ones, associated in a conjunctive normal form. In accordance with the corresponding
quantifier thesis and "— K’, the above standard form can be decomposed as follows.

¥ (~AX) v B(),

Y (~BX) v ~C(),

%’ A(f(x)) and

‘é’ C(f(x)).

According to the last decomposition, it can be observed that all literals of the above standard form can be
treted independently wrt the selected values for x. And so, by assuming x =¢r a for 1-literal disjuncts and x =4¢
f(a) for 2-literal disjuncts we can obtain.

() ~A(f(a)) v B(f(a))
() ~B(f(a)) v ~C(f(a))
()  Alf(a)
@ Cf@)
4) ~A(f(a)) v ~C(f(a) {RES,"v" is commutative: 1,2}
©)  ~C(f(a)) {=A:35}
contr. - {4,6}

As distinct from propositional logic (see Subsection 1.4), an interpretation of a given formula ¢ in first-

order predicate logic should require: a finite domain of interpretation and also corresponding value definition

related to all constants, functional and predicate symbols involved in @. The following interpretation is used
below (Chang C.-L. and Lee R.C.-T. 1973).
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Domain D =a {1,2}" interpretation’
universal quantifier Y o(x) x‘ev’D ¢ (x) <dar o(1) A 0(2)
existential quantifier % o(x) erID ¢ (x) <da (1) v ¢(2)

predicate P(x1, X2, ..., Xn) P: D" - {T,F}

Skolem function f(x1, X2, ... , Xm) f: D" - D

constants a,b, ... a,b,...e D

The next two examples are an illustration of this method.

Example 2.41(formula interpretation)
Let ¢ <o V (AX) v B(x)) = VA®X) v V B(x). We have the following prenex normal form for o:

3V V(~A®xX) A ~B(x) v A(y) v B(2)). And hence, by omitting the existential quantifier we ca obtain:
y oz

X

(~A(a) A ~B(a) v A(y) v B(z)). Provided there is no ambiguity and for simplicity, assume that

ye{l2y ze{l2}
y(y,z) <dar ~A(a) A ~B(a) v A(y) v B(2). Then, the last restricted standard form will be logically equivalent
to the following conjunction: y(1,1) A y(1,2) A y(2,1) A y(2,2).

Let now the constant a =4 1 € D. The one argument predicates A(y), B(z) and w(y,z) are interpreted as
follows:

A |AQ) | |BD)|BQ) | [wly2) | 1 2
T | F F | T 1 T T
2 F T

Since y(2,1) = 'F’, the original formula ¢ is not a tesis. o
Example 2.42(formula interpretation)

Consider the following prenex normal form: % Y 3 (AX) = (Rxy) = S(y,z))). By omitting the first
existential quantifier we can obtain: ‘z’ 3 (A(a) = (R(a,y) = S(y,2))). And hence, we have the following
restricted standard form: yj‘z} (A(a) ':> (R(a,y) = S(y, f(y)))). For convenience, let o(y) <4 A(l) =

(R(1,y) = S(y,f(y))). Then, this form is logically equivalent to the conjunction: @(1) A ¢(2).

Asume that a =4 1 € D. The following interpretation is used.

A [ AQ) | | D) | f2) R |1 |2 S | 1 2
T | F 2 1 1 | F [T 1| T
2 | T | F 2 [ F [T

Since @(2) = 'F’, the original formula is not a tesis. -

" In general, the set D ¢ N (the set of natural numbers). Usually it is used the subset {1,2}.

T Based on Peirce interpretation for quantifiers (Charles Sanders Peirce 1839 — 1914).
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3.7. The higher order predicate logic

In addition to propositional variables (p, q, ...), in first-order predicate logic we have also only individual
variables (X, y, ...) and variables representing predicates (A, B, ..., P, Q, ...). In fact, it is possible to introduce a
more general form of the notion of a molecular expression (see: Example 2.31).

For convenience, consider the following example definitions given in (Stupecki J. and Borkowski L. 1967).

Example 2.43( e, o, o: symbol definition)
(DL1) a(A) < I A®X),

(Df2) ApB <qr ~X % (A(x) < B(x)) and
(Df.3) xcA <y A((x) A ol(A).

In accordance with Carnap’s interpretation, by Df.1 it follows that A is a property associated with exactly
one individual variable (i.e. object). From Df.2 it follows that these two properties A and B are not associated
simultaneously with any one object. According to Df.3, it follows that x is the only one such object having A. -

The above predicate variables are also known as first-order functors. And hence, the corresponding
molecular expressions are said to be first-order molecular expressions.

The second-order functors are defined in a similar way. They have as arguments individual variables or first-
order functors (at least one such functor). The obtained molecular expressions are said to be second-order
molecular expressions. As an example, such expressions are: o(A), ApB and xocA, introduced in the last

example. The second-order functors are denoted below by bold letters, e.g. A, B, C, ... are one argument
functors and P, Q, R, ... denote more than one (but finite argument) functors. And so, another srcond-order
molecular expressions are, ¢.g. B(A), R(x,A) or equivalently: xRA, P(A,x,y), etc.

In accordance with this calculus, the quantifiers bound only first-order entities, i.e. individual variables or
first-order functors. As an illustration, some example theses are given below (Stupecki J. and Borkowski L.
1967). The corresponding rules related to quantifiers are quite similar to these ones used in first-order predicate
logic. And so, the proofs of the next theses are omitted. T 2.147 is a modified version of the original one: by
using rules 'MC” and "SR’ (see T 1.5 of Subsection 1.3: left to the reader).

Thesis 2.142

Y AA) = 3 AA).-

Thesis 2.143"
¥ (A(A) A B(A) = Y A(A) A Y B(A) ..

Thesis 2.144
3 ‘E’R(A,B) = ‘lv;’ E R(A,B). s

Thesis 2.145
v % A(x). -

Thesis 2.146
RH (R(X7Y) ~ R(Y7X)) o

" The if-implication of the corresponding thesis given in Subsection 3.3.
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Thesis 2.147
% ‘]v;’ vV (A(x) = Bx) A ~B(x)).=

Frequently, in the proofs of this calculus, some definitions may be introduced. As an example, the proof of
T 2.145 is based on the following definition.

Definition 2.40 (property definition)

Let "#*<x>" be one argument predicate depending on x. Then: *<x>(y) <4 X = Y.

According to the last definition, it is assumed that the above expression indicate a property associated with y
iff y = x (i.e. a property distinctive for x).

By Definition 2.40 and the axiom Al of Subsection 3.4 it follows that: *<x>(x). This property is used,
e.g. in the proof of T 2.145 as follows.

@) *<x>(x) {a}
2) % A(X) {(H3:1}
v % A(X). {(+V:2}

The proof of T 2.146 is based on the following property: x = y < y = x (left to the reader). The
following important thesis is satisfied (StupeckiJ. and Borkowski L. 1967).

Thesis 2.148
X =y & Y(A(X) < A(y)

Proof(if-implication):

H x=y {a}

2 AKX < A®X) {Fpepl

3) Ax) < A(y) {EI:1,2}"
‘Z (AX) © A®Y)). - {(+V : 3}

Prooffonly-if-implication):

M VAKX < AY) {a}

() #<x>(x) & *<x>(y) -V : 1}

(B) x<x>(y) {DE : 2, *<x>(x)}}
X =y.: {DE : Df. 2.40,3}

According to T 2.148, identical objects have the same properties. And hence, this thesis can be considered as
a definition of the notion of identity. Similar considerations, from intuitive point of view, were first presented by
Aristoteles (384 b.c. — 322 b.c.) and next by: Tommaso d’Aquino (1225 — 1274) and Gottfried Wilhelm Leibniz
(1646 — 1716). A more formal definition was given by Peirce in 1885 (Charles Sanders Peirce: 1839 — 1914) and
published by Whitehead A.N. and Russell B (1913).

The third-order predicate logic can be introduced in a similar way, where the third-order functors have as
arguments individual variables and first- and second-order functors (at least one such functor). The corresponding

* See: Subsection 3.4.

T See: T 1.16 of Subsection 1.3.
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third-order molecular expressions are introduced in a similar way (left to the reader). In this logic we have a
possibility of an extension of the above identity relation to some properties, e.g. A = B, by using the axiom
Al: A = A.

3.8. Generalised quantifiers

The ordinary quantifiers “for same” and “for all” are not sufficient for expressing some basic mathematical
concepts. Generalised quantifiers, such as: “for infinitely many” and “for uncountably many” (as a part of
mathematical logic) were first introduced by Mostowski A.S. (1957)". Such and other similar quantifiers were
intensively studied by logicians™. Researches in descriptive complexity theory’ (a branch of computational
complexity and finite model theories) and natural language semantics were looking at ways of formalise
expressions such as: “for at least half” or “for an even number” (Védnéanen J. 1997).

The above introduced quantifiers were used implicit in Montague Grammar (Montague R. 1974) and also
used in its force in (Barwise K. J. and Cooper R. 1981) and (Keenan E.L. and Stavi J. 1986). Generalised
quantifier theory can be considered as a logical semantic theory which studies the interpretation of noun phrases
and determiners, i.e. terms for any kind at (mostly) non-lexical element preceding a noun in a noun phrase (see:
Glottopedia, the free encyclopedia of linguistics).

It was suggested a generalisation of this notion in two dimensions: syntactic and semantic. Syntactically, a
logical quantifier is a variable binding operator that generates new formulae from old formulae. Semantically, a
logical quantifier over a universe /# is a cardinality function from subsets of 7/ to a truth value, satisfying a
certain invariance condition. Let 3 , and V, be the quantifiers 3 and V over # Assume that 7/~ < 7. Then

3,(7) = T iff the cardinality | 7| > 0 and V, (#) = T iff | 7| = 0, where the complement 7~ =4
7 — 7. In general, a quantifier Q on / is invariant under all permutations of 7 The following criterion for
logical quantifiers was given by Mostowski: Q is logical iff for any »~ # @, Q, 1is invariant under all
permutations of 7. In particular, a generalisation of the last criterion to first-order predicates and quantifiers of
all types, proposed by Lindstrom?, was also presented (Sher G. 2015).

The following characterisation of standard first order logic was given (Lindstrém’s theorem): standard first-
order logic is the strongest logic that has both completeness (see Subsection 1.6) and the Léwenheim-Skolem
properties™”. Next, it was shown that completeness is not limited only to this logic (Keisler H.J. 1970).

Generalised quantifiers can be introduced by using such notions as: signature (denoted by o : a finite
sequence of relation symbols and constant symbols) and a finite ordered structure over . It is assumed (without
loss of generality) that the universe of every structure is always an initial set of natural numbers. Let Struct(c) be
the set of all finite ordered structures over . It can be shown that every class of structures S Struct(c) over a

signature o defines the first-order Lindstrom quantifier (Vollmer H. 1999).

Some introductory notions concerning the notion of a generalised quantifier are briefly presented below
(Pogonowski J. and Smigerska J. 2008) ",

" Andrzej S. Mostowski (1913 — 1975).

 Quantifiers are words which show how many things or how much of something we are talking about, e.g. much, many, (a) little, (a) few,
a lot (of), some, any, no, none, both, all, either, neither, each, every, (the) other(s), another, etc.
(file:///C:/Users/user/Documents/QUANTIFIERS%20JEZY KOWO.pdf)

 The goal of descriptive complexity theory is to classify problems, not according to how much resources they need when solved by a
Turing machine, but according to how powerful logical languages are necessary for describing the problems (Véananen J. 1997).

$ Per Lindstrém (1936 — 2009: see Lindstrém P. 1966).

** Any noncontradictory theory in a countable language (i.e. a language with a countable number of formulae) has a finite or countable
model (Leopold Lowenheim: 1878 — 1957, Thoralf Skolem: 1887 — 1963). See: Formal logic. Encyclopedical outline with applications to
informatics and linguistics (1987).

' In fact, a lot of important research was done, eg. see: (Henkin L. 1961, Benthem J. van 1986, Viininen J. 1997, Vollmer H. 1999,
D’Alfonso D. 2011, Westerstahl D. 2001, 2011), etc.: left to the reader.
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The quantifiers introduced by Mostowski are quantitative. The local quantifier defined on 7/ is considered
as a set of subsets of /. The global quantifier is considered as a functor Q assigning to each non-empty ~ the
quantifier Q, defined on 7". Some examples of such quantifiers are given below (indexsed, the first letter of
hebranian alphabet X, denotes aleph-o. for arbitrary ordinal number o). The last two quantifiers are known as
Rescher’s and Chang’s quantifiers, respectively’.

v// =df {//},
1, =« (X< 7/ Xz 2,

Fsn), “u X< 7/ X[ >n}, Let f: #~ — # ' be a bijection. Since the
(Qa), = (X c 7/ 1X] >}, elements of 7 are not distinguished, the following
(Qr) —y X< 7 x| > 7- X} condition is satisfied (assumed in the next works

, concerning generalised quantifiers).
Qo), =y X< 7IIXI=171}, et

ISOM X eQ, & fX) e Q,.

The introduced by Mostowski quantifiers do not involved such quantifiers, e.g. as the binary quantifier
“most” in propositions of the form: “Most ¢ are y”, corresponding to a binary relation between subsets of 7.
And so, we have:

(Qmost)// =df {(X,Y) e 21X P Y},
where: XpY <4 | X n Y| > |X - Y| (forany XY € 2).

Lindstrom’s quantifiers are classified according to the number structure of their parameters. So, with any
such quantifier a corresponding natural number sequence, said to be a fype, is associated: (ni,no, ... ,nk).

In accordance with the last considered examples, the first six quantifiers are of type (1) and (Qmost) , - of

type (1,1). The Lindstrom’s notions of a local and global quantifiers are presented as follows (Pogonowski J. and
Smigerska J. 2008).

Definition 2.41 (generalised local and global quantifiers)

The generalised local quantifier defined on 7~/ of type {ni,n, ... ,ny) is introduced as an arbitrary k-ary
relation between the subsets ~ ™, ..., 2/ ™. The generalised global quantifier defined on 7/ of type (ni,ny, ...
,ng) is considered as a functor Q assigning to each non-empty ~ a local quantifier Q, of type (ni,no, ...
).

Generalised quantifiers, in accordance with their type’, can be either monadic (if any such quantifier is of type
(1,1, ... ,1)) or polyadic. For convenience, the monadic quantifiers of type (1), (1,1), (1,1,1), etc. are also known
as unary, binary, ternary, etc. quantifiers. In general, the following lexicographic (quantifier type) order was
presented (Hella L. 1989): (1) < (L) < ... < 2) < 2D <21, < ... <22)<..<(3 <

" Provided there is no ambiguity and for convenience, instead of the originally used "M ’, the space is here denoted by 7/ ".
 Nicholas Rescher, born 1928 and Chen Chung Chang, born 1927.

t A quantifier Q oftype (nj,ny, ... ,ny) can be considered as a function associating with each # a quantifier Q, on ~ of that type, i.e. a
k-ary relation between relations over # . For (any relation ) X; S ™ Q, X, ... ,Xx means that relation Q, holds for the arguments X,

... » Xk (Westerstahl D. 2001). Provided there is no ambiguity and for convenience, instead of Rj, here the symbols X; are used (without
parentheses).

S Type theory is a branch of computational logic that studies types (informally object attributes). See: The Free Encyclopaedia, The
Wikimedia Foundation, Inc. The above used notions are set-theoretic.Linguists often prefer lambda notation, from the simply typed lambda
calculus (i.e. Alonzo Church’s typed A - calculus: Alonzo Church: 1903 — 1995). This is a functional framework, where everything except
primitive objects like individuals (type e) and truth values (type t) is a function. Binary relations are of type (e, (e,t)), type (1) quantifiers
now get the type ((e.t), t), type (1,1) quantifiers are of type ((e,t), ((e,t),t)), etc. (Westerstahl D. 2001).
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Let f: 7/ — 7’ be abijection. In the case of Lindstrom’s quantifiers, the ISOM condition is presented as
follows™.

ISOM  (p1,p2, ....p) € Q, < (f(p1).f(p2), ... ,.f(px) € Q.

Some example Lindstrom’s quantifiers are given below (Pogonowski J. and Smigerska J. 2008), see also
(Westerstahl D. 2001). In accordance with the last work, e.g. (Qan) , is equivalently defined in the following

simplified form (for all 77 and all XY < 7). all, (X,Y) ¢ X < Y (another examples are also
considered: left to the reader).

Qa), =a¢ {(XY) € 2/ X< Y},

(Qsome), =ar {(X,Y) € 2/ X nY # @},

(Quore), =t {(X,Y) € 22 /1X] >1vl},

Q), = {(XY) e 22/ /11Xl =Y}, (Hirtigh quantifier)

A generalisation of Rescher’s, Chang’s and Hirtig’s quantifiers is Henkin’s quantifier (Henkin L*. 1961).
The last quantifier, denoted be Qwu , can be considered as a special case of a generalised quantifier (Badia A.
2009). A simplest form of this quantifier is given below.

V3
((QH)//xa}IaZ:t) (p(xayazat) df ( v )(p(X,y,Z,t).
Vv 3

Let f and g be two functions defined on . The above Henkin’s quantifier, of type (4), can be also
equivalently represented as follows.

QH =df {P S //4/5) ;-J v V(Xaf(x):yag(}’)) Ep}

Several properties of generalised quantifiers are given below (Pogonowski J. and Smigerska J. 2008,
Westerstahl D. 2011).

CONSERV Conservativity (preference for the first argument): for all 7 and all X, ...
XY © 70 QX ... . XK,Y < QX ... Xu(Xivu...uXy) nY.

EXT Extension (universum independence): Xi, ... , Xk € 7 < 7 = (Q.Xi, ...
Xk < Q/ Xy, ... . Xy).

UNIV (CONSERV and EXT): Q.Xi, ... . Xk,Y < Qxiv._.uxk Xi, ... Xi(XiU ...
uXi) NY.
QUANT (Quantifier independence wrt object features): for all //, ~/’, all bijections f:

7 = 7 and all Xj, ..., Xk © 7: Q. Xy, ... . Xk & Q,f(Xy), ... .f(Xk).

The above conditions CONSERV, EXT and QUANT of the most simple quantifiers, of type (1,1),, i.e.
binary quantifiers — considered as relations, are presented as follows.

CONSERV Forall ZX andY: QX)Y & QXX nY.

" Instead of R, the letter p is used here to denote a relation.
T Klaus Hirtig, born 1941.
¥ Leon Albert Henkin (1921 —2006).
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EXT XYcrve v = QXY < Q/XY.
QUANT Forall ~/, #/’, all bijections f: 77 — ~ and all X,Y: Q.X,Y < Q,f(X),
f(Y).

A quantifier satisfying, at the same time, the CONSERV, EXT and QUANT conditions is said to be a
logical one. The following property is satisfied.

Theorem 2.2

A binary quantifier is logical iff forall #7and 7', X,)Y € 7 and X,Y < 7" IX —Y|l= X =Y
and [ X nY|l=[XnYl = QXY <& QX,Y).

Proofif-implication):

By using QUANT we can obtain: Q ,X,X n'Y = Q, X', X"~ Y’. And next, by UNIV we have:
Q. XY & Q,X.Y.«

Proof (only-if-implication):

In accordance with this implication, the above condition QUANT is satisfied. Consider /. Let X,)Y < 7.
Assume that 77'= X" = X. Then Q,X,Y & QxX,X n Y. And hence, UNIV is satisfied. o

It was shown that the class of logical quantifiers is closed under the operations conjunction, disjunction and
negation, i.e. if Q; and Q. are logical quantifiers, such ones are also: Qi A Qz, Q1 v Q. and ~ Q;. With any
binary (k + 1) argument quantifier Q, the following operations are also associated (Pogonowski J. and
Smigerska J. 2008).

Internal conjunction (two kinds)": Qr) X1, o XY <o QXN ... nXE,Y and (Qr). Xy, ... . XK, Y
<>df Q//X1,Y VASEVAN Q//Xk,Y.

Internal negation: (Q) . X1, ... . Xk,Y < Q. Xy, ... . Xk, 7 —Y.

The dual quantifier Q% of Q is defined as follows: ~ (Q ~) = (~ Q) ~ . The external negation (the set of
sets that are not in Q) and the internal negation (the set of complements of the sets in Q) correspond to the notions of
a proposition negation and a predicative phrase negation, respectively’. De Morgan's laws are associated only
with the external negation, e.g. ~(Q A Q) < ~Q v ~Q’ (in a similar way for disjunction,i.e. the rule NA). As
an example, by using the internal negation we can obtain: (Q A Q) ~ < Q~ A Q" ~. In the case of dual
quantifiers we have: (Q A Q)¢ < Q% v Q'Y (similarly for disjunction), see: (Westerstahl D. 2001).

The class of logical quantifiers is closed under (the two kinds of) internal conjunction and internal disjunction,
internal negation, and quantifier 242ulfilment242.

An n-argument quantifier Q, is said to be #rivial if it is either an empty or a complete relation on P(7).
The following condition is introduced.

NONTRIV There exist universums ~ in which Q, is nontrivial.

* The two kinds of an internal disjunction can be introduced in a similar way: left to the reader.

T The internal and external negations are also known as: inner negation (or post-complement) and outer negation (or pre-complement),
respectively. Moreover, these two negations and dual are idempotent,ie. Q = ~~Q = Q~~ = Q% (see: Westerstahl D. 2001).
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The class of nontrivial quantifiers is not closed under Boolean operations. A more hard version of
NONTRIV is ACT: Q, is nontrivial (for any 7/ ). However, a harder than the previous one is the following
version (Benthem J.van®. 1986: generalised for (k + 1)-argument quantifiers by Westerstdhl D. 2001, 2011).

VAR? Forany # and all X, ... Xk © # with X; n...n Xk # @, there
exist Y1,Y> such that: Q X, ... , X, Y1 and ~Q Xy, ... . Xk, Y2.

In fact, VAR implicates ACT, which implicates NONTRIV. The opposite implications are not satisfied
(Pogonowski J. and Smigerska J. 2008). In the case of binary quantifiers, the last condition is presented as
follows.

VAR Forany 7 and @ # X < 7/, there exist Yi,Y> such that: Q,X,Y; and
~Q.X, Y.

The most important type in natural language contexts is (1,1), i.e. binary quantifiers (Westerstahl D. 2011).
Some monotonicity properties related to these quantifiers are given below (Pogonowski J. and Smigerska J.
2008).

Definition 2.42 (monotonicity properties)

Let Q be a binary quantifier. Then Q is:
MONT <4 QXY AY € Y = QXY
MON! g QXY AY < Y = QXY
TMON < QXY A X € X' = QXY,
IMON ¢ QXY A X' € X = QXY.

We shall say that Q is right monotone (RMON) iff it is either MON T or MON { . Similarly, Q is left

monotone (LMON) iff it is either T MON or { MON. Q is TMON 7 iff itis TMON and MON T.Ina
similar way are introduced: ¥ MON {,TMON{ and { MON T .

According to the last definition, the above four double monotonicities correspond to the four vertices (i.e.

some, no, not all and all, respectively) of a logical square (known also as: square of opposition or logical
quadrat)®, see Figure 3.2 below.

All (SaP) no (SeP)

not all (SiP) some (SoP)

* Johan van Benthem, born 1949.
T Dag Westerstahl, born 1946.
tOr: VARIETY.

$ The difference between the terms ‘contradiction’ and ‘contrariety’ (or ‘opposition’) was first studied by Aristoteles (384 — 322 b.c.).
But, as a diagram, the first logical square was done after the works of Apuleius L.M. (c.e.124 — 170) and Boethius A.M.S. (c.e. 477/80 — 524):
see: The Free Encyclopaedia, The Wikimedia Foundation, Inc.
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More formally: SaP <4 V (S is P), SeP < ~? (S is P), SiP <4 ? (S is
s
+P), and SoP <4 ? (S is not P). In accordance with De Morgan's laws (see:
Subsection 3.3, Thesis 2.135): ~V (S is P) <4 ? (S is not P). And hence we
s
have the following two contradictions: SaP — SoP and also SeP — SiP. Also, the
following two implications are satisfied: SaP = SiP  and SeP = SoP.
Moreover, the last two implications are equivalent (according to rules CC, SR and

NY).

Figure 3.2 Logical ssquare”
The following property is satisfied (Pogonowski J. and Smigerska J. 2008).

Theorem 2.3

Let CONSERV and VAR be satisfied. Then the above four quantifiers, related to the logical square, are
the unique ones of double monotonicities.

Proof:

Assume that Q is ¥ MON |, % is an universum and X,Y < 7. We should show that Q is ‘no’, i.e.
QXY < XnY =0

Proof(only-if-implication)’:

Assume that X n'Y = @. Let X' # @ and X < X'. According to VAR, there existsaset Z < ~

such that Q,X’,Z. Since Q is ¥ MON then Q,X,Z. Next, by using MON { , we can obtain: Q,X,@ (in
accordance with Definition 2.42: Q,X,Z A & < Z = Q,X,@).Since X n Y = @, then we have: Q,X,@

< Q. X, X m Y. And hence, by CONSERYV we can obtain: Q,X,Y. o

Prooffif-implication):

Assume that the relation Q ,X,Y is satisfied. Hence, by ¥ MON { we can obtain: Q,X n Y, X n Y
(since X N Y € X,Y). Accordingto MON |, forany Z < % wehave: Q. X n Y, X n YN Z (since X N
YN Z < X n Y). Then, by using CONSERV we have: Q, X n Y,Z (let A = X N Y, then: Q. A,A N Z

< Q,A,Z).Using VAR we have: X n'Y = @ (more formally, the proof of implication: QX N Y,Z = X N
Y = @ is given below, the proofs of the rest three cases are similar: left to the reader). o

It is used in the next proof a more formal definition of the condition VAR related to binary quantifiers, presented in the
original work (Benthem J. van. 1986): Y A+92 = ; Q.A,B A g ~Q,A,C), forany 7 and A,B,C < 7.

QXNnY,Z == XnNnY=0

Proof:
(1) VA#2 = JQAB A 3~QAC) {VAR}
2) A#+2 = 3IQAB A 3I~QA,C {-V:1}
B C A
3  VY~QABVVYQAC= A=0 {CC,NK, N3, - N, SR : 2}

* A similar (set-theoretic) interpretation of this square can be obtained if we consider S and P as two sets. Then SaP, SeP, SiP and SoP
(i.e.all S are P,no S is P,some S are P,and some S are not P, respectively) should correspondto: S € P, SN P =9, S NP

# @, and S & P, respectively (in accordance with the Venn diagrams: John Venn 1834 — 1923): see: The Free Encyclopaedia, The
Wikimedia Foundation, Inc.

1t is convenient to show first the only-if-implication.
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4) ¥’~Q//XmY,B v YQ,/XK\Y,Z = XNnY =0. {A=¢XNY, C=4¢Z:3}
) Y QX nNnY,Z {+¥ : Theorem 2.3: if-implication }
(6) Z~Q//XmY,B v YQ//XmY,Z {(+A:5}

XNY=08.0 {—C:4,6}

In the next considerations it is assumed that all quantifiers are logical (i.e. they satisfy the conditions
CONSERYV, EXT and QUANT) and satisfy NONTRIV. In the case of natural languages, it is convenient to be
assumed the following additional condition (Pogonowski J. and Smigerska J. 2008).

FIN  Only finite universums are considered, i.e. | | € N , forany 7.

However, some determiners, e.g. such as ‘infinitely many’ or the dual: ‘all but finitely many’, etc. should
require the use of non-finite models. According to the last work, with any binary quantifier Q (which is logical)
are associated some properties. In particular, Q , may be: symmetric, antisymmetric, asymmetric, reflexive,
quasi-reflexive, weak-reflexive, antireflexive, linear, transitive, cyclic, Euclidean or non-Euclidean, e.g. Q 1is
symmetric iff Q, XY = Q,Y,X, antisymmetric iff Q, XY A Q,Y,X = X =Y (eg. some and all,
respectively, etc.: left to the reader). In particular, there was shown lack (in natural languages) of quantifiers which are
asymmetric, cyclic or Euclidean.

Any binary logical quantifier Q, can be identified by a binary relation pq. defined over a set of cardinal
numbers as follows: X pq.y <dr )3{ ;l (X =Yl=xA(XAnYI|=y) A QX)Y). On the other hand,

for any a priori given binary relation pq. over a set of cardinal numbers, we can obtain (corresponding to pq.) a
binary logical quantifier Q, definedas: Q,X,Y) < | X - Ylpo. | X n Y [.

The above correspondence help us to consider quantifiers as some ordered pairs associated with the vertices
of a binary tree having as a root (0,0) and the set of out-incident vertices™ {(x + 1, y), (X, y + 1)}, associated

with any vertex (X,y). And hence, there exists a possibility of studying various properties related to these
quantifiers (Pogonowski J. and Smigerska J. 2008).

In the next parts of the last work are briefly considered: some methodological aspects, there are presented
such quantifiers as:

Qox A(X) ‘there exist infinitely many X such that A(x)’,

Qix A(X) ‘there exist uncountably many x such that A(x)’,

Qcx A(X) ‘there exist as much objects X as in the whole 7/‘ (Chang’s quantifier),
Is nore X than Y,

Henkin'’s quantifier and

Vilenkin — Shreider quantifier .”

The last quantifier (originally denoted by Qmx A(x)) is presented as follows (Vilenkin N. Ya. and Shreider
Yu. A. 1977).

Quvsx A(X)  ‘such objects x that A(X) form majority in 7/°,

Let X # @ beasetand #(X) be a Boolean algebra (involving not necessary all subsets) such that
X e . Z(X). The family M(X) of elements in .#(X) is said to be a majority system in X if the following three
conditions are satisfied (it is assumed below that €, < and ¢ bind more strongly than the symbol of conjunction).

1) MX) = @,
2) Ae MX) AA<c B = B e MX) and

* See (Berge C. 1973), Claude Jacques Berge (1926 — 2002).
T Naum Yakovlevich Vilenkin (1920 — 1991), Yulii Anatol’evich Shreider (1927 — 1998).
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3) A € M(X) = (the set complement) A" ¢ M(X).

The majority space is defined as follows: (X, M(X)). If A € M(X) then A is said to be a majority in X.
Obviously @ ¢ X, X € M(X). Moreover, if A € M(X) and B € M(X) then A n B # @.

The following semantics of Qv is presented (Pogonowski J. and Smigerska J. 2008): 7 E Quvsx A(X)
<dr {a € dom(%) /7 = A(a)} is a majority in dom(7) , for some (majority) system M(dom(7)).

In accordance with the last work, the following two topics are also considered: expressive power of logic
frameworks and infinitary logics. Important results concerning this expressive power are related to Lindstrom’s
limitation theorems.

Infinitary logics are logics in which: the considered language allows formulae with non-finite length and/or
infinitely long proofs or non-finitary (proof) rules. It was shown (Barwise” K.J. 1975) that the existence of some
countable sets (a generalisation of heritable finite sets), known as admissible sets, on whom (interpreted as sets of
formulae codes) becomes the possibility of studying recursion theory and proof theory. There are very many
applications of Barwise’s theorem, e.g. there exists a possibility to show that any countable transitive model for
ZFC' has a proper finite extension. Barwise’s work can be considered as an unification in the studies of model
theory, recursion theory and set theory. Especially useful in this work was the axiomatic approach given by
(Kripke S. 1964) and (Platek R.A. 1966), known as: Kripke — Platek set theory (see the next Chapter,
Subsection 5.6). A more formal treatment is omitted here.

4. Non-classical calculus

There are briefly considered some other non-classical systems such as: fuzzy predicate calculus, modal and
temporal predicate calculi and also the intuitionistic and paraconsistent predicate logic systems.

4.1. Fuzzy predicate calculus

The main results considered below are under (Cintula P., Fermuller C.G., and Noguera C. 2017), see also
(Hajek P. 2005) and (Metcalfe G. et al. 2009). And so, consider a fuzzy propositional logic L. There exists an
uniform way of introducing its first-order predicate logic (denoted here by) LV in a predicate language .7/
(defined in a similar way as in the classical case, see Subsection 3.1). Here, there are assumed only t-norm based such
logics. The considered semantics is presented by structures and predicate symbols are interpreted as functions
(similarly as in the classical case, see Subsection 3.6). More formally, a structure M =4 (M, fm, Pm) consist of a
domain M # @, afunction fm: M® — M and afunction Pm: M" — [0,1] (n € N;fm,Pm € 7).

* Kenneth Jon Barwise (1942 — 2000).

¥ Zermelo-Fraenkel axiomatics (ZF or ZFC: 'C’ stands for ‘Choice’ (the axiom of Choice): Ernst Friedrich Ferdinand Zermelo (1871 —
1953), Adolf Abraham Halevi Fraenkel (1891 — 1965). According to this system, the letters of the sets may appear on both sides of "€, but
those for elements may only appear on the left side (as in KPU axiomatic system: see Subsection 5.6). The following axioms were used in ZF:
axiom of extensionality, axiom of regularity (or foundation), axiom schema of specification (or separation or of restricted comprehension),
axiom of pairing, axiom of union, axiom schema of replacement, axiom of infinity and axiom of power set. Here, the used two axiom
schemes can be considered as a standard way of introducing axioms having the same syntactic structure, e.g. the axiom Al (the first law of the
hypothetical syllogism: law of Duns Scotus, see Subsection 1.7) , of Lukasiewicz’s implication-negation axiomatic system: p = (~p = q) canbe
generalised for any two formulae ¢ and v, as follows: ¢ = (~¢ = y). A more formal treatment is left to the reader.
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Any evaluation v of object variables in M defines values of ferms and truth values of atomic formulae (for
fu and Pwm , respectively)’. The quantifier terms are defined as follows.

H(v)(PHV =df lnf{H(P Hv[x:a] /a e M} and H(H)(PH\ =df SUP{H(P Hv[x:a] /a e M}s

where v[x : a] is the evaluation sending x to a (keeping the values of other variables unchanged). Any other
formula is computed in accordance with the truth values of the corresponding propositional connectives in L.

The following axioms are accepted for LV (Cintula P., Fermiller C.G., and Noguera C. 2017).

P) The (first-order) instances of the axioms of LT e
(V1) Vo) = o)

@) e = oW

(V2) V=9 =G =Ve)

(32) Ve =0=00 =y

(V3) Vv e=Vive

The deduction rules of LV are the same as in L plus the rule of generalisation, i.e. ‘+V’ (see Subsection
3.2).

The sequent calculus becomes elusive for some non-classical logics. A significant challenge was the
introduction of analytic proof systems, i.e. a natural generalisation of Gentzen — style sequent systems suitable for
such logics. Hypersequent systems, first presented in (Pottinger G. 1983) and (Avron A. 1987), and surveyed in
(Avron A. 1996) and (Baaz M. et al. 2003) are one such generalisation. ‘Hypersequent calculus do not alter the
definition of a sequent at all, but just add an additional level of context of ordinary sequents. Just as in classical
sequent calculus, hypersequent calculus consist in initial hypersequents (i.e., axioms) as well as logical and
structural rules. The axioms and logical rules are essentially the same as in sequent calculust. The only difference
is the presence of side hypersequents, denoted by H and H’, representing (possibly empty) hypersequents’
(Baaz M. et al. 2003).

Hypersequents are sequences’ of ordinary sequents (called components), e.g. = A,
[T2 = Ay ... |Tn = Ay, where the hypersequent bar * |~ (known also as pipe operator) is a meta — level
disjunction™. It is here assumed that the consequent A consists at most one formula (I =1, ... ,n). If for all I,

A1 consists of a single formula, the hypersequent is called single — conclusioned (Avron A. 1996).

The generic interpretation of a sequent I' = B, denoted by /nt (I' = B), is defined by ( A T'= B#*)

where ‘A T' " stands for the conjunction of the formulacin " or T "if I' isempty and "B#* "is B or " L~

if B is empty. The generic interpretation of a hypersequent Int (T'1 = A|T2 = Ao ... |In = An) =ar

I Em ) e =a e dltll o [Tt ]), similarly for Py,

 The axioms of the following three basic fuzzy propositional logics: Lukasiewicz’s BL, Gddel’s BL, and product (logic) BL (Hajek P.
2002, 2005). As an illustration, Lukasiewicz’s BL axiomatic system is given in Subsection 2.2 (the main problem here is the computational
effectiveness: using only '—C” and 'RR").

i See Subsection 1.8.
$ Provided there is no ambiguity and for convenience, instead of ‘multiset’, the term ‘sequence’ is used here.

** The standard interpretation of the pipe operator is usually disjunction. Intuitively, a hypersequent is true in a certain state iff one of its
components is true in that (relative to some semantics which makes the last statement meaningful), see: (Avron A. 1996).
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v Int (i =Ay1), where "V’ is a meta — level disjunction and "T" and "L’ correspond to the logical
i=1

constants ‘true” and ’false’, respectively. The structural rules are here divided into internal and external ones.
The internal rules deal with formulae withim components and are the same as in ordinary sequent calculus
(e.g. see Subsection 2.4, linear logic: contraction and weakening). The external structural rules, i.e. the external
contraction and external weakening, manipulate whole components of a hypersequent (Baaz M. et al. 2003).

A rule such as external contraction can be used to eliminate duplicate components, for instance. Shuffling
rules are a class of external structural rules which combine or exchange information from multiple components,
such as the following crucial communication rulel given in Avron’s calculus® HG for Godel-Dummet't logic
(Avron A. 1996), where " ?; " are finite sequences of formulae, " G; “and " H; " are variables for (possible empty)
hypersequents, I =1,2.

Gl‘?1|—A1‘H1 G2|?2 |—A2‘H2

Com :
G |G |71 -A 72 A Hi|H

In most hypersequent calculi, the only axioms are of the form A ~ A (oreven p F p, p is atomic),
exactly as in the standard sequent calculus (Avron A. 1996).

In particular, the following simplified version of this rule was presented by Rothenberg R.}

G|, I A G| I, IR = A
Com :

Gl‘ G |F1,F2' I—Az‘rz,rf = A

Let G, i, T, A1,Gy, I, , T>" and A, correspondto p, q,1,s,t,u, v and w, respectively. The
proof of the last rule is then reduced to the proof of the following formula.

pv@ar=sHrtvuuav=w)=>pvtv(@@av =>w)vUar = s)

Proof:

(1) V(AT =S

(2) E)v (E?/\ vV = v)v) 12/}

3  ~p

4) ~t

5) a

6) v {aip / NA,NC,-K}

7 ~w

(3) u

©9) r

(10)  ~s

(11) qAar=>s {-A:13}

12) uAav=w (—A:24)

(13) ~q v ~r {Toll, NK : 10,11}

(14)  ~r {—A:513)
contr. o {9,14}"

" See: (Avron A. 1991).
T Kurt Gédel (1906 — 1978), Michael Anthony Eardley Dummet (1925 —2011).

f Rothenberg R., An hypersequent calculus for Lukasiewicz logic without the merge rule. Scotland’s University of St. Andrews 2pp:
file:///C:/Users/user/Documents/HY PERSEQUENT%20CALCULUS%20%202.pdf.
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In general, hypersequents were used in some systems e.g. such as: HG (in Gentzen’s sequential calculus), HIL
(in intuitionistic logic), HIF (in intuitionistic fuzzy logic), HLC (HIL + Com), GL (in infinite-valued Lukasiewicz’s
logic), etc.

‘I proof search with shuffling rules must deal with an exponential number of cases, which is impractical for
hypersequents with many components or large components. The complexity of implementing root-first proof
search on these rules for hypersequent calculi can outweigh advantages these calculi may provide over their
sequent counterparts’ Rothenberg R.7 In particular, in the last work was presented a new simplified version of
the hypersequent system GL, introduced in (Ciabattoni A. and Metcalfe G. 2003), called GL2. The two
weakening rules given in GL are absorbed into the axioms of GL2. Moreover, the merge rule (a simplified
shuffling rule, making proof search expensive) is omitted. The obtained system GL2" is shown below.

(Axiom) G|T’, L....l,A + Ap,...,AnA" (0 = 0)

n

G|T,B FAA|T A

+C, :
G|T,A=B KA
G|T,A +-BA G|TFA
+C. :
G|THA=B,A
GITHFA|T FA
EC :
G|T+A
G| T,In = AL A
S

GIIi=A | To = A

And so, in accordance with this work, it was shown that GE2 is sound and complete* for infinite — valued
Lukasiewicz’s logic. Moreover all rules in this system, except ‘S, are invertible.

The quantifier rules of hypersequent calculus for first-order logic are similar to these ones used in the
classical sequent calculus (see Subsection 3.5). As an example, the rule "+ V, " of the classical calculus is now
presented as follows (the rest three rules can be represented in a similar way: left to the reader).

G|AWt), '-B
+ Yan :

G|VA®X), T B

" Another contradiction can be obtained starting with lines (2) and (4): left to the reader.

T Rothenberg R., An hypersequent calculus for Lukasiewicz logic without the merge rule. Scotland’s University of St. Andrews 2pp:
file:///C:/Users/user/Documents/HY PERSEQUENT%20CALCULUS%20%202.pdf

A logical system is sound (i.e. has the soundness property) iff every formula that can be proved in this system is logically valid wrt the
semantics of this system. More formally: Ay,..., A, = B = A,,...,A, E B (ie if B isderivedby Ai ...,As then B isa

tautological entailment wrt Ay, ..., A ). A logical system is complete wrt some property iff every formula having this property can be derived
by this system (for a more information see: The Free Encyclopaedia, The Wikimedia Foundation, Inc).
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Let G, T" and B correspond to p, q and r, respectively. The proof of the last rule is then reduced to the
proof of the following formula.

PvAh) Aq=r1) = pVv ((VAX)) A q=1)

Proof(+ Vam):

M pv@ADAqg=T) {a}

@ ~p

3) ~((Y AX)) A q=1) {aip / NA, -K}

@ VA

4) q {NC,-K:3}

6 ~r

7 AW Aq=>T {-A:12}

®  AQ -V 4

©  AM Aq (+K:8,5)

(10) r (-C:7,9}
contr. o {6,10}

The proofs of the rest formulae, i.e. "+ 3", '+ Ven” and "+ 3en’, are left to the reader. The considered here
rules are a part of the hypersequent calculus HIF for first-order Godel’s logic given in (Baaz M. and Zach R.
2000). A more formal treatment is omitted here.

Fuzzy quantifiers and generalised fuzzy quantifiers

In classical predicate logic, the universal and existential quantifiers are introduced as two constants (see
Subsections 3.1 and 4.1). Below is briefly presented the notion of a fuzzy quantifier, mainly under (Losada D.E.
et al. 2006). Some information concerning the notion of a generalised fuzzy quantifier is also given.

Fuzzy quantifiers are very useful and important in areas such as: information retrieval, fuzzy queries, fuzzy
constraints, fuzzy data mining applications, fuzzy dependencies, fuzzy intelligence systems, etc. More generally,
fuzzy quantification is an important topic in fuzzy theory and its applications. ‘Fuzzy or linguistic quantifiers
allow us to express fuzzy quantities or proportions in order to provide an approximate idea of the number of
elements of a subset fulfilling a certain condition or the proportion of this number in relation to the total number
of possible elements’ (Galindo J. et al. 2008). The considered in this work (two kinds of) fuzzy quantifiers may be
useful in any fuzzy database. The following definition was given.

Definition 2.43 (absolute and relative quantifiers)

A fuzzy quantifier named Q is is represented as a function Q whose domain depends on whether it is
absolute or relative:

Qus: R — [0,1] and
Qe : [0,1] = [0,1].

In fact, in comparison with the original Zadeh’s fuzzy quantifiers (Zadeh L.A. 1983)", the set of all
nonnegative real numbers R is now extended to R. According to this definition, dom(Qre) =4r [0,1] because

the division % € [0,1], where "a” is the number of elements fulfilling some condition and b is the total

number of elements. Let 'yt be the value of quantification defined as follows: if Q =4 Qubs then Yy =4 a else

* Lotfi Aliasker Zadeh (1921 —2017).

T Provided there is noambiguity, this symbol is used instead the original one: "¢".
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Y =dt % . And so, the 251ulfilment degree is defined as Q(y). If the function of the quantifier (absolute or

relative) Q(y) = 1 the Q is completely satisfied. The value ‘0" indicates that Q is not fulfilled at all. Any
intermediate value indicates an intermediate 25 lulfilment degree for Q,

However, ‘given a certain linguistic expression, it is often difficult to achieve consensus on a) the most
appropriate mathematical definition for a given quantifier and b) the adequacy of a particular numerical value as
the evaluation result for a fuzzy quantified sentence. This is especially problematic when linguistic expressions
involve several fuzzy properties. To overcome this problem, some authors have proposed indirect definitions of
fuzzy quantifiers through semi-fuzzy quantifiers (Glockner 1. 1999), (Glockner I. and Knoll A. 2001), (Glockner
I. 2004). A fuzzy quantifier can be defined from a semi-fuzzy quantifier through a so-called quantifier
fuzzification mechanism (QFM). The motivation of this class of indirect definitions is that semi-fuzzy quantifiers
(SFQ) are closer to the well-known crisp quantifiers and can be defined in a more natural and intuitive way’
(Losada D.E. et al. 20006).

Fuzzy set theory allows definition of sets having not well defined boundaries. Initially, in accordance with
the last work, some basic concepts of fuzzy set theory are briefly presented below.”

Let / be auniverse and A be a fizzy set. This set can be characterised by a membership function with the
form: pa: 7 — [0,1], where pa(u) represents its grade (or degree) of membership to the fuzzy set A with 0

(1) corresponding to no (to full) membership in A. The fuzzy set operations can be introduced in several ways,
e.g. the complement of a fuzzy set A and the intersection and the union of the fuzzy sets A and B are

typically defined as follows: pa(u) =¢r 1 — pa(u), pa~s (W) =a min{pa(u), p(u)} and paovs (W) =ar
max {ua(u), pe(u)}, where ‘min” and 'max’ are the well-known Zadeh's t-norm and t-conorm, respectively (see
Subsection 2.2). Next, by P(#) and P(~) we shall denote the crisp and the fuzzy power sets of 7/ (P(»)is the
set of all fuzzy sets that can be defined on 7). In particular, if 7/ is finite, e.g. #/ =4 {ui, ..., Un}, a discrete fuzzy
set A on 7/ isusually denoted as: A =4 {pa(ui) /ui, ..., pa(un) /un}. The notions of unary fuzzy and unary
semi-fuzzy quantifiers” are given in the next two definitions (Losada D.E. et al. 2006).

Definition 2.44 (unary fuzzy quantifier)

A unary fuzzy quantifier Q onabaseset 7/ # @ isamapping Q : P(#) — [0,1].

Definition 2.45 (unary semi-fuzzy quantifier)

A unary semi-fuzzy quantifier Q onabase set # # @& isamapping Q : P(») — [0,1].

The following example was given in (Losada D.E. et al. 2006).

Example 2.44(relative semi-fuzzy quantifier)

Let (Qubout hatf), : P(#) — [0,1] be defined as follows. It is assumed that /is finite and d =g | A[/| 7],
where A < 7.

‘0 ,d <03

\2(%)2 ,03<d<04
(Qaboutﬁhalf)//(A) =df ‘ 1- 2(&)2 ,04 <d <06
0.2
d—0.7\2
\2(—0_2 ) ,0.6 <d <07
0 , otherwise.

* See also: Section 7 of Chapter III of this book. Provided there is no ambiguity and for convenience, instead of X and in accordance
with Subsection 3.8, the universum is here denoted by 7.

' Or equivalently: monadic fuzzy and monadic semi-fuzzy quantifiers of type (1), see Subsection 3.8.
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Let 7/ =4r {ui, ..., ui0} be a set of individuals. Assume that A = {ui, us, us, ujo} is a subset containing

these individuals which are taller than 1.70 m. Hence, the evaluation of the expression ‘about half of people are
taller than 1.70m*, (Qubou natt) (A) = 1-222232 = 0.5,

0.2

The (general concept of the) quantifier fuzzification mechanism is introduced in the next definition (here it is
used the unary version of this mechanism).

Definition 2.46 (quantifier fuzzification mechanism)’

A QFM can be considered as a mapping, say Yorv , With domain in the universe of semi-fuzzy quantifier and
codomain (or equivalently: range) in the universe of fuzzy quantifier, where dom(yom) S P(7) and cod(yom) S

P(7). If dom(yoem) = P(#) then yom: P(7) —» P(7).

There exist different vertions for QFM (Glockner 1. 1999, 2004). As an example, the notion of a-cut was
used in (Losada D.E. et al. 2006). Here, e.g. the following QFM was used for (a unary semi-fuzzy quantifier) Q:

) 01 Q(A>o) doo or (if 7~ is finite) as a corresponding finite sum, equivalent to this one given by the OWA
method’ (Delgado M. et al. 2000).

The introduction of QFM’s to generalised quantifier theory can be considered as an important step in the
development of the linguistics and computer science. A more formal treatment is here omitted, see also (Glockner
L. 2006, 2009). A survey in this area is given in (Dvorak A. and Holcapek M. 2018): left to the reader.

4.2. Modal, deontic and temporal calculus

The logical rules used in modal, deontic and temporal predicate logics are an extension of these ones applied
in propositional logic with corresponding rules concerning quantifiers, see Subsection 2.3. Unfortunately, the
corresponding deontic version of Gédel’s axiom G1,1i.e. | ¢ = ¢’ is not satisfied.® Without loss of generality
and for simplicity, the considerations in this subsection are restricted only to the two basic types of quantifiers
used in the classical first-order predicate calculus.

Modal predicate calculus
With each of the two basic (universal and existential) quantifiers can be associated a modal functor of

necessity or also a modal functor of possibility. Moreover, any of the last two basic quantifiers may be bounded
or not. And so, we can obtain a total of eight rules of omitting an universal and an existential quantifiers.

" Provided there is no ambiguity, Definition 2.46 is a modification of this one given in (Losada D.E. et al. 2006) wrt to the following
expression: ‘F: (Q : P(») ~ [0,1]) —» @ : P(») ~ [0,1]).

" Given a fuzzy set A € P(») and o e [0,1], the cut of level a of A ,in short: c-cut of A, is the crisp set As, =¢ {u € 7 /
pa(u) > a}, see Section 7 of this book.

 The Ordered Weighted Averaging method (Yager R.R. 1991, 1992).

§ Consider the following formula: !p = p. We have:

M {a)
@  ~p {aip}
) DGp=H) UL
@ ~p= ok (Gl

(%) * {(-C:24}?
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Let first consider the following formula: "0 3 A(x) ". Assume that this formula is satisfied. So, there exists

some ‘a’ such that 'O A(a) “ (i.e. some ‘a’” having necessarily this property "A’). And hence, the following
implication is satisfied: O 3 A(x) = O A(a)" (in a similar way, considering the universal quantifier or the modal

functor of possibility). As an example, the rule of omitting a bounded existential quantifier, given in Subsection
3.2 and denoted below by "— 0O 3%), is now represented as follows.

0 3 y(x)

@(x)
- o3

O (P(X / &ﬁ!sﬁla LR ] B")
O WX/ EBiyBay - 5 Ba)

Proof(- o 3%):
] wﬂ) y(x) St D? (e(x) A y(x))

= O (Q(X / EBispoy wee s Ba) A WX/ EPiyBay on  Bu))
= O QX / EBiyBay oee s B) A O WX/ EBiypry v, B)- o {T 2.23 of Subsection 2.3, SR, — K}

Some example theses are given below.

Thesis 2.149
03V RExy = ¢V IREXY)

Proof:

(1) D3V REy) )

@ ~°V3IRxy {aip}

() 03 Y~RExy) {No,NV,N3,SR : 2}

“) IV R&Y) (- o: 1}

(5) 3 vV ~R(xy) {-0:3}

©  VR@y) (—3:4)

(7 V~Rxb) (-3:5}

(8)  R(ab) {-V:6}

(9 ~R(ab) {=Vv:7}
contr. o {8,9}

Thesis 2.150
OV ARX) v ©VBX) = ¢V (AX) v BXx))

Proof:
@) OV A(X) v ¢V B(x) {a}

* Concerns a set of “individuals’ that all belong to the same universum.

T Corresponds to GI.
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2 ~oVY(AX v BX) {aip}
(3)  DI(-A® A ~BX) {No,NV,NA,SR : 2}
4 0(-A@ A ~B@) - o3:3)
©)  o-A® { T 2.23 of Subsection 2.3, SR, — K}
(6)  O~B(a)
(7N ~o Aa) No : 5.6)
(8)  ~¢B(a)
(1.1) oV A®x) {ada}
(12) ¢ Aa) (—oV: 1.1}
contr. {7,1.2}
(2.1) ©VB(x) {ada}
(2.2) © B(a) {—oV: 2.1}
contr. o {8922}

Thesis 2.151(prenex form)
OVARX) v OVBX) < oV oV (AX) v B(y)

Proof{if-implication):
@) OV A(X) v ¢V B(x) {a}
2) 03 03 (~AX) A ~B(y) {aip/No NV,NA,SR}
3 o0~A()
{- 03, T 2.23 of Subsection 2.3, SR, — K : 2}
4  o~B()
3 ~< A
{3.4}
6) ~<B(b)
(1.1) ©oVA®KX) {ada}
(1.2) < Aa) {—oV 1.1}
contr. {5’1 2}
2.1) ©VB(®X) {ada}
(2.2} © B(b) {(~oVv:2.1}
contr. o {6,22}
Proof(only-if-implication).:
() oYoY (A® v B) )

) ~O Y A(x)
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3) ~0 Y B(x)

4) o 3 ~ A(x) {No,NV,SR : 2}

®) D%l ~B(x) {No,NV,SR : 3}

6) O ~A(a) {- 03 :4}

(7)  o~B() {-03:5}

®) O~A(a) A O~B(b) {(+K:6,7}

) O (~A(a) A ~B(b)) {T 2.23 of Subsection 2.3 : 8}

(10) o~(A(a) v B(b) {NA,SR : 9}

(1) ~o(A(a) v B(b)) {No : 10}

(12)  ©o(A(a) v B(b)) {(—oV: 1}
contr. o {11,12}

The following thesis is a modal version of T 2.137, given in Subsection 3.3.

Thesis 2.152

O3V Rxy = ¢V IRXY)

A0 B(y) B(y) 4(0)

Proof:
I o 3V Rxy) {a}
@) ~o¥ 3Rk taip}
3) o 2 v ~R(xy) {No,NV*N3",SR : 2}
4 OA(

(o3 :1}
() 0¥ Ray
(6)  oB(b)

{—-o03:3}
7 O AX) ~R(x,b)
® o v (B(y) = R(@y) {SR: 5}
9) 0O (B(b) = R(a,b)) {—-oVv: 8
(100 OV (A(x) = ~R(xb)) {SR :7}
(11) o(A(a) = ~R(ab)) {—-oVv:10}
(12) oB() = OR(ab) {G2,-C:9}"
(13) OA(a) = O~R(ab) (G2,-C: 11}
(14) oOR(ab) {-C:6,12}

* It is used Godel’s axiom G2: see Subsection 2.3.
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(15) O ~R(ab) {-C:4,13}

(16)  R(a,b) {- 0:14}

(17)  ~R(ab) (- o:15}
contr. (16,17}

Deontic predicate calculus

Some example theses related to deontic predicate logic are given below. Traditionally, as in the previous
considerations, it is used assumptional proof style. In accordance with the correspondence between modal an
deontic functors (i.e. ‘00, ¢° and !, &, respectively), e.g. the following rule, related to '— O 3" 7, can be
introduced (here, instead of the modal T 2.23, it is used the deontic thesis T 2.50).

'3 y(x)
@(x)
e =

PO/ Epipsy oo s Bu)
DX/ EBiyay ve s Bn)

Thesis 2.153
IVAXK) = !TARX)

Proof:

1 IYAR) {a}

2  ~13IARX {aip}

3) S~ 3 A(x) {N!, seeT2.48:2}
@ 8v ~A®X) {NF,SR : 3}

(5)  8~A) (-8V: 4}

6  ~!Aa) {N!: 5}

(7 'TAa) (-1v:1}

contr. o {6,7}

Thesis 2.154
SV AKX = d3IA®X)

Proof:

() 3YAK) {a}

@ ~83AM {aip}

G v ~ A {N3,see T 2.49,N3,SR : 2}
@ SA(a) (-8V:1}

(5)  !~A@ {(-1Vv:3}

6) ~3A(a) {N&:5}

contr. o {5,6}

Thesis 2.155



IVAX) = §3AKX)

Proof:

(1) ! Y A(x)
2) ~8 3 A®x)
3) ! Y :A(x)

4 lA@
(65)  !~A®@
6)  S5Aa)
(7 ~3A@
contr. o

{a}

{aip}

{N3,see T 2.49,N3,SR : 2}
-1V 1}

(—1V:3}

{T 2.54 of Subsection 2.3 : 4}
{N&:5}

{6,7}

The following formula is a deontic version of T 2.152.

Thesis 2.156

'3V Rxy = & (v) 3 R(x,y)
B(y) A(x)

Ax) B(y)

Proof:

(1) 13 Y REy)
@ ~8Y IREY)
() 13V ~Rky)
@ A@

(5) ! ¥ R@y)
6)  !B()

(M 1V ~Reb)

(3) '(B(b) = R(ab))
©) '(A(a) = ~R(ab))
(10) !B(b) = !R(ab)

(11) 'A(a) = !~R(ab)

(12)  IR(ab)
(13)  1~R(ab)
(14)  §R(ab)

(15)  ~38R(ab)

contr. o

{a}
{aip}
{N&,NV*,N3*,SR : 2}

(~13: 1}

(—13":3)

(-1Vv:5}

-1v:7}

{T 2.55 of Subsection 2.3, — C : 8}
{T 2.55 of Subsection 2.3, — C : 9}
{-C:6,10}

{(-C:4,11}

{T 2.54 of Subsection 2.3, — C : 12}
{T 2,49 of Subsection 2.3 : 13}

114,15}
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Temporal predicate calculus

The axioms and rules presented in Subsection 2.3 (see Manna and Pnueli’s temporal logic) deal only with the
propositional fragment of this logic. The considered deductive system based on these axioms and rules is
complete for proving the validity of any propositional temporal formula (Manna Z. and Pnueli A. 1992)". In
accordance with the last work, there was also presented an extension of this system by additional axioms and
rules, to deal with the first-order elements such as: variables, equality and quantification (and hence, handling a
large number of cases). Unfortunately, this extension do not lead to a complete system.

The notion of state x-variant is generalised at the level of a model. Assume that &: so, si, s2, ... and 6": so’,
si’, 82, ... are two models over V < 7 (the vocabulary). We shall say that ¢” is a x-variant of ¢ if s;" isax-
variant of s; (i.e. differs from s; by at most the interpretation given to x: see Subsection 2.3). The following two
definitions were used for an existentially and a universally quantified formulae, respectively (Manna Z. and
Pnueli A. 1992).

(0)) E3 ¢ <u (6')) E ¢ forsome ¢’, ax-variant of &

(0)) E Vo < (o)) = o forevery ¢’, ax-variant of o

According to the last work, the introduction of variables into formulae should require the consideration of
schemes containing sentence symbols with parameters. In the case that the considered formula ¢ contains
quantifications, it is required that the process of any such instantiation does not capture the occurrences of
variables that are free in the replacing formula. In general, any such replacement o : p(Xi, ... , Xn) <« Y( X1, ...,
xn) should be amissible for ¢ (n > 0). If o is a replacement admissible for ¢ then ¢[a] is referred as an
admissible instantiation of ©.

Below it is assumed that V is partitioned into two subsets of variables: rigid and flexible ones. A rigid
variable must have the same value in all states of a computation, while a flexible variable may assume different
values in different states of computation. And hence, it is assumed that all occurrences of parametrised sentence
symbols in ¢ must be rigid (Manna Z. and Pnueli A. 1992). In particular, the following example was given in
this work.

Example 2.45(admissible instantiation)

Let v € V berigid. Consider the following state-valid scheme.

¢: V(E2v)=>pWv) = V(E=2v+l) = pv+l)

Applying rule GEN followed by the instantiation: o : p(u) <« <(x =u), we can obtain the following valid
entailment O ¢[a.].

V(E=2v)= ox=v) =2>V((x=2v+l) = ox=v+1)o
In accordance with the above considerations, for instantiations of schemes that may contain quantifiers, the

applied replacements must be admissible. And hence, the following stipulation to rule INST is introduced
(Manna Z. and Pnueli A. 1992): in the use of INST for deriving ¢[a] from ¢, the replacement o must be

* Provided there is no ambiguity and for convenience, in the next considerations, we shall use basic notions related to this subsection.

TSince ‘=" and ‘< denote the logical connectives of implication and equivalence, it is used here the same form of the corresponding
abbreviations (Manna Z. and Pnueli A. 1992), as these used in Subsection 2.3: ¢ => y <S¢ O(@=>Vy) and @ <S>y S O(Q S V),
respectively.
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admissible for ¢. Some additional notions and/or axioms concerning variables, equality and quantifiers, related
to this work, are also illustrated below.

The introduction of variables should require replacements of the form: 'x <« e’, which replace a variable x
with an expression e. Any such expression e is said to be rigid if it does not refer to any flexible variable. This
replacement is called compatible if either both x and e are rigid or x is flexible. Assume that p(x) has one or
more occurrences of x and that there is no quantification over x. We shall say that x « e is admissible for p(x)
if it is compatible and none of the variables appearing in e is quantified in p(x). According to the last
considerations, we shall also say that e is admissible for p(x) and we shall write p(e) for the instantiated
formula p(x)[x <« e]. The following axioms concerning equality were introduced.

(REFL-E) d(e = e) {the axiom of reflexivity for equality}
(REPL-E) (e1 = e2) => (p(e1) < pler) {the axiom of replacement of equals by equals }
(SUBS-E) O(er = e2) = (p(e1) <> p(e2)  {the axiom of substitutivity of equality}
(FRAME) p =>0p {the FRAME axiom}

It is assumed in the last axiom that the state formula p is rigid. In particular, in accordance with this axiom,
there were derived some theses (Manna Z. and Pnueli A. 1992). As an example, the proof of the opposite
implication (wrt FRAME), i.e. "'Op => p’ is illustrated below. We shall first present the proof of the following

rule (R1, described as a sequent): p <&> q F p => q.

Proof(R1):

1 p<e>g {a}

2 op <=9 {df <> 0 1}

3 ol =an@=Dp) {df ‘<, SR:2}

@ op=9 {T2.94,-K:3}
p => Q.o {df '=>": 4}

Proof(op => p):

(1) ~p =>> O~p {FRAME}

(2>  B(~p=o0~p) {df '=>" 1}
3) o(~o~p=p {CC, SR :2}
4 ~o~p=>p {af '=>"3}
4) O~p => ~O0p {FA2,R1}

(6) o(o~p = ~op) {df '=>": 5}
(7) o(p=~0~p) {CC, SR : 6}
®) op => ~0~p {df '=>": 7}

op => p.o {E-TRANS : 8,4}

In the next considerations, there are first presented two axioms characterising properties of the next and
previous values of variables, denoted below by x* and x, respectively. Then there are also given several
axioms and rules concerning quantifiers (Manna Z. and Pnueli A. 1992).
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Let u be a rigid variable and x be either rigid or flexible one. By ¢(u,x) it is denoted a state formula in
which the only free variables are u or x or both. The following two axioms are introduced.

(NXTV) o(u,x") <<=> 0p(u,x)
(PRVV) o(u,x)) <> (first” A o(u,x)) v o@(u,Xx)
The above two axioms can be generalised for state formulae of the form ¢(uy, ... ,um, X1, ... ,Xa), Where uy,

., Uy are rigid. Moreover, in accordance with these two axioms, the following two properties can be shown:
O(u = u’) and O(u = u). By Thesis 2.94 and FAI it follows that: u = u* = u".

The following axioms for quantifiers were introduced. The two formulae, presented in Q-DUAL (quantifier
duality) are similar to theses T 2.135 and T 2.136 (see Subsection 3.3).

(Q-DUAL) ~3p(x) <> V ~p(x)
~V p(x) <> 3 ~px)

The next two axioms (quantifier instantiation and universal commutation’) are given as follows (u, x denote
variables and p(u), p(x) are formulae, € is an admissible expression for p(u)).

(V-INS) ¥ p(u) => p(e)
(Vo-com) V op(x) <> oV p(x)

According to the last axiom, similar formulae related to Vo-coM, 30-COM and J©-COM are also derived.

Moreover, similar properties are satisfied for the weak version "6 “ (left to the reader).

There is only one basic inference rule concerning quantifiers. Let u be a variable, p and q(u) — two
formulae. Assume that u has no free occurrences in p. This rule, called universal generalisation and denoted by
"V-GEN', is represented as follows (Manna Z. and Pnueli A. 1992).

p => q(u)
V-GEN —
( ) p => Vq(u)
Proof(V-GEN):

Let p => q(u) "be valid and ¢ be an arbitrary model. Assume that p holds at position j of cf. We
should show that "V q(u) “ also holds at that position. Consider any o', an u-variant of . Since p does not

depend on u, p holds at (c',j). Then ‘q(u) " also holds at (c’,j). Thus, ‘q(u) " holds at j of all u-variants of
c. And hence, "V q(u) " holds at (o,)). o

" '~ ©T (or equivalently: & F )": “This formula states that there is no previous position that satisfies * T ". Since all positions that are in the

model satisfy " T ’, this is equivalent to the following: ‘there is no previous position’. Note that this formula always holds at the initial
position of every model, and nowhere else’ (Manna Z. and Pnueli A. 1992).

f Known as one of Barcam’s axioms (Ruth Barcan Marcus: 1921 —2012).
¥ 1In short: ‘p holds at (o)’

$ The proofis given below.

1 p => qW {a}
(@) Op = q) {df '=>": 1}
3) p {p does not depend on u}

“) p = q@ {FAL}
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In accordance with the above axioms and the last rule, many derived rules can be obtained, e.g. E-INST
(expression instantiation), 3-INTR (I-introduction), QQ-INTR, where 'Q” is either universal or existential quantifier,
defined as "VV—INTR" and "I3—-INTR’, ( four rules) respectively, etc. (Manna Z. and Pnueli A. 1992):

(E-INST) p(u) + p(e) (if e’ is admissible for p(u))
(3-INTR) p(u) => q F 3 (p(u) => q) (if "u” has no free occurrences in 'q")
(QQ-INTR) p(x) => q(x) = O p(x) => 0q(x)

p(x) <> q(x) F Opx) <> 0qX)
Here, as an illustration, is the proof of one of the rules "VV—INTR’, presented in this work.

Proofip(x) => q(x) ~ ¥V p(x) => V q(x))

1 px) => qkx) {a}

@ Vpkx) => pK) {V-INS, e =x}

3) Yp(x) => q(x) {E-TRANS: 2,1}
Y px) => Y q(x). o {V-GEN : 3}

The above introductory notions are only an illustration of this excellent work. Manna and Pnueli’s temporal
logic was interpreted over general models. On the other hand, the considered system was also used for such
specific models, corresponding to computations and program validity (left to the reader).

As stated earlier, the temporal predicate calculus cannot be axiomatised completely, but this system is
sufficient to deduce a lot of useful theorems®. The presented here first-order linear temporal predicate logic

includes four future functors, i.e. ‘0, O, ¢, U” and five axioms: modus ponens, necessitation (similarly to GR in

modal logic: E @ = & O ¢ ), generalisation (see: "V-GEN'), reflexivity (axiom for equality) and substitutivity
(corresponds to 'E-INST’). In the next considerations, there are presented concepts needed for specification and
verification of concurrent systems, in particular related to the mutual exclusion problem: as an example,
Peterson’s algorithm is considered (Peterson G.L. 1981). Some other works are cited below.

A temporal predicate calculus based on Lukasiewicz’s ternary logic system t3; with W3 =4 {0, 1/2, 1}T
was presented in (Chirita C. 2008). The proposed system alphabet consists of the following primitive symbols: a
countable set V of variables (X, y, ...), an arbitrary set of constant symbols, an arbitrary set of predicate symbols:
with each such symbol is associated a natural number n ( > 0, the arity of P), the propositional connectives
'~ ‘and ‘=, Prior’s tense logic functors ‘G’ and 'H’ (see Subsection 2.3), the universal quantifier 'V’ ,
parentheses '(,) " and square brackets [, ] . In addition to the axioms of three-valued Lukasiewicz’s logic,
there are used five axioms concerning 'G’,’"H" and 'P’. Here, by F(¢) it is denoted ‘the set of free variables of .
Next, there are given four axioms concerning the universal quantifier. The proposed system uses the following
four inference rules: modus ponens, generalisation and two kinds temporal generalisation (wrt 'G" and "'H"). It
is shown that this system is complete. From a formal point of wiev, this system should be defined as a tense
predicate calculus.

q(u). o {-C:43}

" Yakar R., Temporal logic. Theory and Applications. Tel - Aviv University 58pp:
file:///F:/Temporal%20predicate%?20calculus/paper%202.pdf

T See: Subsection 2.1.
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In the next work (Venkata S.R.P. 2015), there are studied some (dynamic) problems in artificial intelligence
involving time constraints (e.g. such as: "before time’, "after time’, “in time’, etc.). And hence, the considered
problems may contain an incomplete information, i.e. knowledge representation. Any proposition containing an
incomplete information can be considered as a fuzzy one. Moreover, any such proposition may contain some time
constrains. So, it is proposed a fuzzy temporal logic system dealing with an incomplete information.

‘Temporal specifications are often used when phenomena are modelled and dynamics play a main role. If
simulation is one of the aims of modelling, usually a restricted, executable modelling language format is used,
based on some form of past to future implications. In this paper a detailed transformation procedure is described
that takes any temporal predicate logic specification and generates a specification in a past implies future normal
format. The procedure works for temporal specifications in which the atoms either express time ordering relation
or are state-related, i.e. include only one time variable’Treur J.* The considered approach applies to more than
one specific logic. In particular, it is introduced the notion of state - time partitioned formula and it is assumed
that any formula is state - time partitioned".

‘The affinity of special and temporal phenomena has been recognised for a long time in the literature. This
paper investigates temporal changes of topological relationships and thereby integrates two important research
areas: first, two-dimensional topological relationships that have been investigated quite intensively, and second,
the change of special information over time that has recently been identified as an important research topic’?. In
this work, there are investigated spatio - temporal predicates for describing developments of special topological
relationships. In accordance with this work, the last predicates can be obtained by temporal aggregation of
elementary spatial predicates and sequential composition. For this purpose, it is presented a new spatio - temporal
data model (an extension of spatial data model to temporal concepts: a more integrated view of space and time, allowing the
treatment of continuous special changes). The concept of spatio - temporal data types’ is next introduced. A temporal
version of an object of type o is then given by a function from time to o (motivated by the observation that
anything that changes over time can be expressed as a function over time), see: (Erwig M. et al. 1998). And hence,
spatio-temporal objects are considered as special instances of temporal objects where o is a spatial data type
(like point or region). The universal and existential quantifiers are overloaded considering these two quantifiers
as (temporal) universal and existential aggregations, respectively. Let p be a spatial predicate and S;and S, be
two spatio - temporal objects. The semantics of existential quantification is presented as follows: 3 p (Si, Sz) is
true iff p is true for the values of S; and S, at some time, where I p =4 A (S1, S2). 3 t: p (Si(t), S2(t))™ and
't” ranges over time. Let now t; and t, be the respective domains of S;and S,. As it was shown in this work,
the semantics of universal quantification ¥p (Si, Sz) should depend in general, on whether quantification ranges
over: time, ti U t, t, t, ti N t. The most restrictive is the first case, i.e. "time’. Let y € {U,n, m, T2},
where mi(Xi, ... ,Xi, ... ,Xn) =dr Xi. The obtained quantifiers are defined as follows: Vyp =4 A (Si, S2). Vt
€ y(dom(S1), dom(S2): p (Si(t), S2(t)). In the next considerations are introduced basic spatio-temporal predicates,
defined by temporal lifting and aggregation (left to the reader).

‘Computer systems continue to grow in complexity and the distinctions between hardware and software keep
on blurring. Out of this has come an increasing awareness of the need for behavioral models suited for specifying
and reasoning about both digital devices and programs. Contemporary hardware description languages are not

" Treur J., Past-future separation and normal forms in temporal predicate logic specifications. Vrije Universiteit Amsterdam: 27pp:
file:///F:/Temporal%?20predicate%20calculus/paper?%205.pdf.

T An atom that involves only one time variable or constant is called state - related atom. A formula is called state - time partitioned if
every atom that occurs in it either is a state — related atom or time - ordering atom (e.g. 't; < t;°).

fErwig M. and Schneider M., Spatio-temporal predicates. FernUniversitiit Hagen. 38pp:
file:///F:/Temporal%20predicate%20calculus/paper%204.pdf.

§ “Abstract data types whose values can be interpreted as complex entities into databases and whose definition and integration into
databases is independent of a particular DBMS model’, i.e. a particular data base model and structure.

** The used the lambda notation, in general: "A(x, ... , X,).¢" denotes a function that takes arguments xi, ..., X, and returns a value
determined by the expression e.
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sufficient because of various conceptual limitations’ (Moszkowski B. 1982). This report describes ‘a logical
notation for reasoning about digital circuits. The formalism provides a rigorous and natural basis for device
specification as well as for proving properties such as correctness of implementation. Conceptual levels of circuit
operation ranging from detailed quantitative timing and signal propagation up to functional behavior are
integrated in a unified way. A temporal predicate calculus serves as the forward core of the notation, resulting in
a versatile tool that has more descriptive power than any conventional hardware specification language’. This
notation is based on discrete time intervals and combines aspects of standard temporal logics with features of
dynamic logic (Moszkowski B. 1982).

4.3. Other systems

Some considerations concerning the intuitionistic and paraconsistent predicate logic systems are briefly
presented below.

Intuitionistic predicate logic

Intuitionistic predicate logic can be introduced as an extension of the classical intuitionistic propositional
calculus by adding some axioms and rules related to the classical predicate logic. The used below notations are in
accordance with (Hilbert D. and Bernays P. 1934, 1939)", where syntactic variables are used not only to denote
rules, but also to denote theses related to the subject language (7%e little encyclopaedia of logic 1988).

Let ¢ be a thesis in intuitionistic propositional logic. Then ¢ is accepted as an axiom in intuitionistic
predicate logic. As axioms, are also accepted formulae related to the following two schemes (denoted in the
metalanguage).

VvV B(x) = B(a)
B(a) = 3 B(x)

The following two deduction rules are introduced: rules of joining an universal and an existential quantifiers
(denoted in the same way, i.e. by ‘+V"and "+3’, respectively).

If B = A(X) then B = V A(x)
If A(x) = B then 3 A(X) = B
In accordance with the last two rules, it is assumed that A(x) is an arbitrary formula having x as a free

variable, whereas B is a formula in which x is not free (The little encyclopaedia of logic 1988). Here, the
following example was given.

Example 2.46(a requirement for B)

Let B = A(x) be the following formula: (x < 2) = (x < 3). Assume that x is free. According to +V’,
by assuming in the antecedent of the above implication that x =4¢ 1, we can obtain: (1 < 2) = V (x < 3). Let

now A(x) = B be the above formula. By assuming in the consequent of the last implication that x =4 4, we
canobtain: 3 (x < 2) = (4 < 3).¢

The above two rules '+V" and '+3" can be accepted as primitive ones (since they were accepted without
using any proofs at all). In accordance with these rules there exists, inter alia, a possibility for obtaining some
derived rules. As an example, consider the following rule of generalisation (denoted below by '/RGEN’).

" David Hilbert (1862 — 1943), Paul Bernays (1888 — 1977)
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A(x)

RGEN : ———
v A®x)

The proof of this rule is given below (7he little encyclopaedia of logic 1988).

Proof(RGEN):
1 AX {a}
2 Ax) = ((p v ~p) = AKX)) {law of simplification }
G @Vv~p=AK =C:2,15
@ (v~p = VAR {4913}
v A(X). o {— C : 4, law of excluded middle}

The obtained in this way a set of theses should be de facto a proper subset of the classical predicate calculus.
As an example, there are no intuitionistic theses the following ones of the classical predicate logic (e.g. wrt the use
of the law: ~~p = p):

~VA® = 3~AR)
- 3x~ AX) = v A(X)

- 1 AK) = §~~A(x)

Y (AK) v ~AX)

Vv AK) = (v Y AR)

The proof of the last thesis is given below (the rest proofs are omitted: left to the reader).

Proof(the last formula):

(1 Vip v AKX) {a}

@~V VAX) {aip}

3 ~

©) P {NA,-K:2}

@ ~VA®X

(5) % ~A(x) {NV : 4}

6  ~A {—3:5}

7 pv A -V 1

®) p {-A:6,7}
contr. o {3,8}

It was shown that the intuitionistic propositional calculus is decidable (as in the classical case (see Theorem
1.30 of Subsection 1.6). However, the intuitionistic predicate calculus is not decidable, even assuming that this
calculus is one-argument: which is decidable in the classical case (Kripke S. 1965)". On the other hand, the
formulae of intuitionistic predicate calculus can be interpreted as open sets of a topological space. The validation

V(-) of the calculus formulae into the open sets of a topological space is realised as follows: (¢1, ..., on-1 E ¢n)

* Semantical analysis of intuitionistic logic: Saul Aaron Kripke, born 1940.
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= V(1) N ... V(da-1) S V(¢n). This way, it was presented a completeness theorem of this calculus, see:

Valentini S." Here, in particular, it was used Rasiowa - Sikorski’ - like theorem for the countable Heyting
algebras, see: (Rasiowa H. and Sikorski R. 1963).

There were given various approaches concerning the (first-order) intuitionistic predicate logic, e.g. (Schiitte
K. 1977), where the intuitionistic predicate calculus is introduced ‘syntactically by means of axioms and basic
inferences which are motivated in a natural way by logical inferences’.

Let ¢ be derivable in the intuitionistic predicate calculus, in short: Fpc @. Assume that ¢ is valid, i.e.
thesis, in short: = ¢. We can interpreted logical implications as oriented edges of a digraph, e.g. the implication
‘0 = y’ can be represented represented by the oriented edge: (¢,y). Next, by “@ - IT” we shall denote the fact
that "o is intuitively true’.And hence, in accordance with the last considerations, the following ‘oriented cycle’
can be obtained (Swart H.C.M. de. 1977): (Fwc @, @ - IT), (¢ - IT, = @), (= @, Fic ©). There were proposed
various interpretations and/or suggestions related to this digraph. The models validity in the last work is defined
by ‘validity in the nodes of some partially ordered set’.

It is sometimes convenient to consider some (proper) superset of theses of Heyting’s system of intuitionistic
logic (see Subsection 2.4). Any such superset, closed wrt the primitive rules 'RR'* and '— C', is said to be an
intermediate logic. The last term was first introduced in (Umezawa T. 1959, 1960) and hence, there was initiated
a systematic research in this area. In fact, such logic systems were introduced in an early time, i.e. during the
search for semantics of intuitionistic logic (Heyting A. 1930). However, the considered here matrix model was
not an adequate such semantical model. But, in fact, this model can be considered as the first intermediate logic
(i.e. superintuitionistic logic). The axiomatics of the last system was presented in (Lukasiewicz J. 1938). Here, to
Heyting’s axiomatic system (of the intuitionistic propositional logic, see Subsection 2.4) there was added the following
formula: (~p = q) = (@ = p) = q) = q). And hence, the last logic is also known as Heyting’s —
Lukasiewicz’s one.’® In a similar way (adding new formulae to the axioms of intuitionistic logic) there were introduced
such logics as: weak excluded middle logic (Ghilardi S. 1999), Dummett’s logic, Kreisel™ - Putnam’s logic,
Scott’s logic, Jankov'"’s logic (Jankov V.A. 1973): see ‘Jankov formulas and intermediate logics’ (Bezhanishvili
N. and Jongh D. de. 2006), see also (Rybakov V.V. 1992), and so on.

Paraconsistent predicate logic

A formal system (deductive system, deductive theory, . . .) is said to be inconsistent if there is a formula ¢ of
the system such that ¢ and its negation, ~ @, are both theorems of this system. In the opposite case, the system is
called consistent (Da Costa N.C.A. 1974). The propositional logics introduced in (Da Costa N.C.A. and Wolf
R.G. 1980) were extended to first-order predicate calculi (Da Costa N.C.A. and Wolf R.G. 1985). The aim of the
last work was a formalisation of certain aspects of dialectics* in accordance wich the interpretation given in
(McGill V.J. and Parry W.T. 1948)%. Some results concerning the above introduced first-order predicate calculi
are given below.

Let DL (i.e. dialectical logic) be the propositional logic system given in (Da Costa N.C.A. and Wolf R.G.
1980). The obtained new predicate logic system, denoted by DL®, has the following primitive symbols (Da Costa
N.C.A. and Wolf R.G. 1985):

" Valentini S., A simple proof of the completeness theorem of the intuitionistic predicate calculus with respect to the topo logical
semantics. Italy’s University of Padova 10pp: file:///C:/Users/user/Documents/INT%20PRED%20Clc%?20italia.pdf.

T Helena Rasiowa (1917 — 1994), Roman Sikorski (1920 — 1983)

¥ Rule of definitional replacement of one formula by another, see Subsection 1.7.

$ See: (Formal logic. Encyclopedical outline with applications to informatics and linguistics 1987).
" Georg Kreisel (1923 —2015)

T Vadim Anatol’evich Jankov, born 1935.

 In general, the dialectical principle of the unity of opposites (related to the system-constructivist theory) contributes to the understanding
of the relationship between some external (e.g. social, ...) and internal (e.g. individual, ...) perspectives (Surikova S. 2007) .

%% Vivian Jerauld McGill (1897 — 1977), William Tuthil Parry (1908 — 1988)
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(1)  The connectives: A, v ,= and °, where the last symbol (known as ‘stability operator’) is defined as
follows: ¢0° <4 ~(® A ~ ),

(2)  The universal and existential quantifiers,i.e. V and 3 (respectively),
(3) Individual variables (an infinitely denumerable set),
(4) Three disjoint sets of individual constants: A,B and C suchthat A U B U C # &,

(5) Three disjoint non-empty sets A", B and C’, containing constant predicate symbols of any rank n
e N,

(6) Forany n e N, containing an infinite denumerable set of predicate variables of rank n, and
(7)  Parentheses (left: “(° and right °)’).

The following syntactical notions are used below (Da Costa N.C.A. and Wolf R.G. 1985). The letters A, B
and C, with or without subscripts, are employed as metalinguistic variables for formulae.” By x,y and z, with
or without subscripts, there are denoted individual variables. The letters a, b and c are used as syntactical
variables for individual constants and t - denotes arbitrary term. The above extension of DL to DL? was
realised by using the following additional axioms.

(A1) C = AX)/C = VAKX

(A2) VAR = AD

(A3) A = 3 A®)

(A4) AG) = C/ AR = C

(AS) V(AX) = (YARX))®

(A6) V(AX)® = (G AX)°

(©AT) If A and B are congruent formulae, i.e. A = B T or one is obtained from

the other by suppression of vacuous quantifiers, then ‘A < B’ is an axiom.

In accordance with the last work, some properties concerning DL® were also shown, e.g. it was shown that
all schemata and rules of classical positive predicate logict are valid in DL?. Moreover DL is undecidable, also
it is a conservative extension of DL (i.e. schemata not valid in DL are not valid in DL® either). The presented system
DLQ is consistent and nontrivial, etc. In addition to some formulaec in DL (e.g. A A ~A = B, (A = B) = (~B =
~A), ~~A & A, etc.). In particular, the following two formulae are not satisfied in DL? (Theorem 8 of the above
work). A more formal treatment is left to the reader.

JARX) < ~ V ~ A(x)
VAX) © ~3~A®K)

‘Paraconsistency is, roughly speaking, a property of negations (a negation-like operators, and is known to be
useful for representing inconsistency-tolerant reasoning more appropriately. Examples of paraconsistent
negations are De Morgan’s type negations such as strong negation (Nelson D. 1949), negations based on four-
valued logic (Belnap N.D. 1977) and negations based on bilattice logics (Arieli O. and Avron A. 1996)’, see:
(Kamide N. and Wansing H. 2010). The notion of a co-implication (first introduced in intuitionistic logic)

" In accordance with (Hilbert D. and Bernays P. 1934, 1939), as in the previous considerations concerning intuitionistic predicate logic.

T Two formulae are said to be congruent (Kleene S.C. 1952) in the case that one can be transformed into the other only in accordance with
the commutative axiom. And hence, congruent formulae may differ only in the order of enumeration of their terms and in the order of the
literals associated with any term.

t A formula ¢ is a well-formed positive predicate formula iff it is formed in accordance with the usual rules of formation and neither '~
nor the existensial quantifier "3 " occurin ¢ (Asenjo F.G. 1996).
X
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combined with paraconsistent negations was first presented in (Wansing H. 2008). And hence, two new ‘first-
order paraconsistent logics with De Morgan type negations and co-implication”, called symmetric paraconsistent
logic (SPL) and dual paraconsistent logic (DPL)’ were introduced by Kamide N. and Wansing H. (2010). Here, a
Gentzen’s type sequent calculi was used. ‘The logic SPL is symmetric in the sense that the rule of contraposition
is admissible in cut-free SPL. By using this symmetry property, a simpler cut-free sequent calculus for SPL is
obtained. The logic DPL is not symmetric, but it has the duality principle. Simple semantics for SPL and DPL are
introduced, and the completeness theorems with respect to these semantics are proved. The cut-elimination
theorems for SPL and DPL are proved in two ways: One is a syntactical way which is based on the embedding
theorems of SPL and DPL into Gentzen’s LK (Gentzen G.K.E. 1934, 1935), and the other is a semantical way
which is based on the completeness theorems’. The main difference between the above two logics is related to the
use of the corresponding four inference rules of adding a paraconsistent negation of an implication / co-
implication to the antecedent / consequent of a sequent. The presented inference rules for quantifiers, related to
SPL and DPL are the same. They are illustrated below. Here, the paraconsistent negation is denoted by "— ".

—o[zx], T - O

+V,:

—o[tx], T O
+—da

I' =0, - o[t/x]
+ Ve

r |—®,—|V(P

I' =0, —oe[z/Xx]
+—|E|c:

r-0,-3¢

In accordance with the last formulae, 't" and ‘z" are used as a term and an eigenvariable, i.e. an individual
variable with the eigenvariable condition, respectively. Moreover, o[t/x] denotes a formula obtained from
¢ Dby replacing all free occurrences of the individual variable x in ¢ by the term t, but avoiding a clash of
variables (Kamide N. and Wansing H. 2010). Let = "~ and '~ " be the paraconsistent and the classical
negations, respectively. As an example, some properties given in the last work are illustrated below.

RN {SPL}
A~ QS ~— O {SPL}
- (@ =y © -y < -9 {SPL}
(@ <y & (—y = -9 {SPL}
-0 =y < (9 < V) {DPL}
(0= vy < (9 =W {DPL}

" De Morgan’s type negations have the common characteristic axioms of De Morgan’s laws. There are used in the last work two types of
negation connective: classical (here denoted by '— ") and paraconsistent one, i.e. De Morgan’s type negation, denoted by " ~ ). Provided
there is no ambiguity and for convenience, we shall use here the reverse version of these designations. Moreover, instead of o, B, ... , we
shall denote formulae by o. v, ..., etc. The co-implication connective '<’, known also as subtraction (or difference) operator, is defined as
follows: p < q <4 p A ~q (Kamide N. and Wansing H. 2010). Obviously, in classical logic: p « q < ~(p = q).

"It is used Gentzen’s type sequent calculi by extending LK.
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De Morgan’s laws wrt the paraconsistent negation are satisfied in the same manner as in the classical
predicate logic, e.g. — 3 ¢ < V — ¢. In particular, it was shown that the propositional fragment of SPL is

decidable, DPL is paraconsistent wrt '— ', etc.

In general, the notion of a paraconsistent negation involves some fundamental questions, mainly from
philosophical point of view,in particular ‘the question of the existence of paraconsistent logic is still an open
problem’, see: Béziau J -Y" (left to the reader).

In this chapter were considered classical and also various non-standard predicate logic systems. In particular,
first-order predicate logic is a commonly accepted standard for the formalisation of mny important notions used
in mathematics, in particular in discrete mathematical structures (e.g. sets, relations, algebraic systems, etc). Sets
are presented in the next chapter.

" “To know if paraconsistent negations are negations is a fundamental issue: if they are not, paraconsistent logic does not properly exist. In a
first part we present a philosophical discussion about the existence of paraconsistent logic and the surrounding confusion about the emergence
of possible paraconsistent negations. In a second part we have a critical look at the main paraconsistent negations as they appear in the
literature.” Béziau J -Y., Are paraconsistent negations negations? (Dedicated to Prof. Newton C.A. da Costa for his 70th birthday), Stanford
University, Centre for the Study of Language and Information, SNSF, 22pp:
file:///F:/Intuitionistic%20and%20paraco%20predic%20logics%20%20and%20paracons%20set%20theory/PARACONSISTENT%20NEGA
TION%20ARTYKULY /paraconsistent%20negations%20is%20negation.pdf.
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lll. Sets

Set theory is a basic tool in discrete mathematics and also in mathematical analysis (concerning infinite sets).
Initially, there is given a historical outline related to the development of this theory (The little encyclopaedia of
logic 1988). And next, starting with the axiomatic foundations, some well-known (set-algebraic) classical basic
notions and definitions are introduced (Stupecki J. and Borkowski L. 1967). The most of considered proofs are
from assumptions. Several applications are also given. In the next considerations Kripke- Platek set theory is
briefly presented. Some comments concerning commonsense sets are also given. Next some elements of non-
classical set theories are given, such as: multisets (or bags) and multirelations, fuzzy sets and fuzzy relations,
rough sets or also non-standard approaches: fuzzy rough sets, interval type-2 fuzzy sets, near sets, forcing and
non-wellfounded sets, and paraconsistent sets. Bunch theory is also briefly presented. It is shown that the
generalised Lukasiewicz’s fuzzy t-norm (introduced in Chapter I) may be considered as an adequate t-norm in the
case of obtaining a distance function of the Minkowski class. Some other properties and examples are also given.
In particular, a possibility of a generalisation and improving of the notions of lower and upper approximations
used in fuzzy rough sets is also presented.

5. Classical set theory

Set theory was originated by G. Cantor, in accordance with his works for the time period 1871 — 1883: e.g.
(Cantor G. 1878)". And hence, were given basic properties concerning sets, other related notions and numerous
theorems (being of fundamental importance until now). However, some parts of this theory, in particular set algebra,
were formed in earlier time periods: as a beginning, in Leibniz’s works and next developed by J. H. Lambert and
L. Euler™ (Euler’s geometrical relationships between sets). A first attempt of formal introduction of the notion of
relation was also given: W.S. Hamilton and A. De Morgan. There was also presented a formalised calculus of
sets, now known as Boolean algebra: G. Boole.* Relation calculus in combination with set algebra were
developed in works given by Ch.S. Peirce and E. Schréder. Advanced studies of non-finite sets were presented
in some works concerning mathematical analysis, e.g. R. Dedekind or P. du Bois-Reymond.® However, all
these earlier developments were rather fragmentary than general, in comparison with the precision of Cantor’s
work. On the other hand, the notion of set, used in the last work, was considered rather intuitive. In consequence,
on ground of Cantor’s theory of sets there were upraised several antinomies, e.g. to the most known belong the
following two ones: Russel’s and Burali - Forti’s antinomies.” Preventing antinomies to appear becomes
possible by restricting the scope of the notion ‘ser’. The first axiomatic system, satisfying this restriction, was
introduced by E. Zermelo in 1904, see: (Zermelo E. 1908). Another such prevention (by distinguishing logical types)
was proposed by B. Russell (Whitehead A.N. and Russell B. 1913). Zermelo’s system was extended in
succession by A. Fraenkl™ and T. Skolem. An axiomatic system was also proposed by J. von. Neumann,

* Georg Ferdinand Ludwig Philipp Cantor (1845 — 1918)
 Gottfried Wilhelm Leibniz (1646 — 1716), Johann Heinrich Lambert (1728 — 1777), Leonhard Paul Euler (1707 — 1783)
f William Stirling Hamilton (1788 — 1856), Augustus De Morgan (1806 — 1871), George Boole (1815 — 1864)

§ Charles Sanders Peirce (1839 — 1914), Friedrich Wilhelm Karl Ernst Schréder (1841 — 1902), Julius Wilhelm Richard Dedekind (1831 —
1916), Paul David Gustav du Bois-Reymond (1831 — 1889)

** Bertrand Russell (1872 — 1970), Cesare Burali-Forti (1861 — 1931)
T Adolf Abraham Halevi Fraenkel (1891 — 1965)
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extended by K. Goédel and P. Bernays, Quine’s set theory (a version on the basis of Zermelo’s axiomatic system and
Russell’s type theory)”, etc.

5.1. The axiomatic approach

The human intuition is not sufficient for deciding about various general notions used in set theory. The main
idea presented in Zermelo’s system is a precise characterisation of the following two fundamental notions: "€’
(e.g. 'x € X', similarly: 'x e y’,if "y isaset) and the notion of a set (e.g. * X ’, in a symbolic way denoted
below as Z(X), or Z(y), if 'y’ is a set (Grzegorczyk A. 1969).T In accordance with the last work, the axiomatic
system given by E. Zermelo (1908) is presented as follows.

Al (axiom of extensionality)  Z(X) N ZY) AV(xX e X @& x e Y)=>X=Y

A2 (existence of a two- v Vv ; (ZW) AV (z e W (z=X)V (z=y)

element set)

A3 (existence of union of  Z(X) A ¥V Z(X) = I(ZY)A V(X €Y & 3(z eX A X €2)
sets belonging to a family) vex ! * :

A4 (powerset of a set) Z(X) = ?(Z(Y) AVE eY & ZKx) A x € X))

A5 (specification axiom) 7ZX) = ;I(Z(Y) AVE eY & x eX A D))

A6 (infinity axiom) JZK) AIE eX)A VY ZH) AY 3 (x £V
x xeX xeX yekX

The above system is usually extended by the following axiom (first introduced by E. Zermelo in 1904 and known
as axiom of choice: AC): for any disjoint union (i.e. union of pairwise disjoint, non-empty sets) there exists a subset of
this union containing exactly one member from each of the above sets. Next, the above presented axiomatics was
extended by A. A. H. Fraenkel, introducing the following two additional axioms: axiom of regularity (or
foundation) and axiom of replacement (left to the reader: see also Subsection 9.6: non-well-founded set theories). And
hence, the obtained in this way system of axioms (known as ZFC, 'C" from ’choice”) was accepted as the most

widely used one.

5.2. Basic notions and definitions

Some well-known (set-algebraic) classical basic notions and definitions are first introduced (Stupecki J.
and Borkowski L. 1967). The most of considered proofs are from assumptions. Several applications are also
given. The following designations are used below.

X,V,Z, ..., 8, b,C, ... set’s elements (individuals),

“Ernst Friedrich Ferdinand Zermelo (1871 — 1953), Adolf Abraham Halevi Fraenkel (1891 — 1965), Thoralf Skolem (1887 — 1963), John
von Neumann (1903 — 1957), Kurt Godel (1906 — 1978), Paul Bernays (1888 — 1977), Willard Van Orman Quine (1908 —2000)

 Andrzej Grzegorezyk (1922 —2014)
fx < X S V(zex =z e X)
z

§- ®(x) ~ denotes a mathematical expression, describing some property associated with x. Sometimes AS is also known as an axiom of
separation or also restricted comprehension. In accordance with A5, any definable subclass of a set is a set.

*k
X Gy < X EYAXFEY
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XY, Z, ..,.A,B,C, ... sets of individuals, and
XY, Z ...ABC,... families of sets (i.e. sets which elements are also sets).
Let Z be the universum. There are considered below only individuals belonging to 7. The following
axiom is accepted.

(AS.1) x e ¥

Definition 5.1 (range equality)
X=Y ©xVxeX & xeY)

Definition 5.2 (subset)

XY @ VxeX = xeY)

In accordance with the last definition, we shall say that X is a subset of Y (or equivalently that Y is a
superset of X. Some set-algebraic properties are illustrated below.

Thesis 5.1
X<c7
Proof:
) Xxev > xeX =>xe) {0 = @Gq@=p)}
2) xeX =>xe? {-C: LA}
3) VxeX =>xe?) {+v : 2}
X <o {Df.5.2:3}

The following designation is alsoused: X ¢ Y <o ~ (X < Y). Inaccordance with Definition 5.2,
we can obtain.

~X <Y © ~VExeX = xeY) {Df. 5.2}
S IxeXAxegY).o { NV, NC, SR}

An indirect version of the proof of T 5.1 is given below.

(1) X & {aip}

2) %(x e X AX g 7). {df. "¢": 1}

3) a¢g v {—3,-K:2}

4 aers {(-V:AS5.1}
contr. o {34}

The range equality is reflexive, symmetric and transitive, i.e. the following thesis is satisfied (Stupecki J. and
Borkowski L. 1967)

Thesis 5.2
@ X=1Y,
b X=Y = Y =X and

) X

YANY =Z7Z = X =Z7Z.o
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As an example, the following proof of T 5.2(c) was presented.

1 =
B vez {a}
B vExeX o xeY) {Df.5.1:1}
@ vkxeY o xe2 {Df. 5.1:2}
) xeX o xeY -V :3}
6) xeY o xeZ {-V 4}
(7 xeX © xeZ {TE: 5,6}
(8) VixeX & xeZ) +v: 7}

X =7Z.o {Df:5.1:8}

In accordance with the last work, the following theses and lemmas were also presented (the corresponding
proofs are left to the reader).

Thesis 5.3

(@ X=Y = X cY and
b) X< YAY<SX = X=Y.o

Thesis 5.4 (reflexivity and transitivity of set inclusion)

(a X ¢ X and
b)) X< YAYCSZ = XcZ.o

Lemma 5.1

x=y:¥(xeX<:>yeX).u

Definition 5.3

(@ xefyle x=y
B xe{yLyn....¥n} © X=y1V X=¥V2V ...V X =1y,

Lemma 5.2

‘z(xeX S yeX) = x=y.0
In accordance with the last two lemmas, we have:
Thesis 5.5

x=y:¥(xeX<:>yeX).u

Let X =Y. Accordingto T 5.2(a) and EI (the rule of extensionality for identity), the next thesis is obtained.

Thesis 5.6
X=Y = X =Y.u
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The following axiom (extensionality for sets) was introduced.
(A52) X =Y = X=Y

Thesis 5.7
X=Y < X=Y.o {A52,T5.6}

In accordance with the above considerations, the set equality is introduced as follows. Some other definitions
are also given below.

Definition 5.4 (set equality)
X=Y ©rVxeX < xeY) {Df. 5.1, T 5.7}

Corollary 5.1
The set equality is reflexive, symmetric and transitive. o {T5.2,T5.7}
Let x ¢ X <4 ~(x e X). The following definitions are also introduced.

Definition 5.5 (set union)

XxeXuUuyY ©rxeX vxeY

Definition 5.6 (set intersection)

XeXNY i xeX AXxeY

Definition 5.7 (set difference)

XeX-Y ©rxeX AXxegyY

Definition 5.8 (set complement)
x € X’ df X € X

In accordance with the last two definitionsand A 5.1: X' =¢ % - X.

Definition 5.9 (empty set)

X € @< X € Y
Definition 5.10 (proper subset)
XY @ XY A X=zY

As an example, in accordance with the last definition, we have: N ¢ Z ¢ Q & R & C (the sets of

natural numbers, integer numbers, rational numbers, real numbers and complex numbers, respectively)”.
Definition 5.11 (symmetric set difference)

XY ©a X-Y)u (Y - X)

Next we shall say that two sets X and Y are disjoint iff X n' Y = @. And for simplicity, e.g. instead
of x e XAy e X weshalluse: 'xy ¢ X"

"More formally: (N & Z)A(Z € QA(Q € R)A(R < Q).
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There exists a graphical method of representing relationships between (a finite number of) sets. This method,
introduced in 1880 by John Venn®, is known as Venn diagrams and any such diagram shows all possible relations
between a finite collection of different sets’. Some generalisation of the last diagrams was proposed in
(Luszczewska - Rohmanowa S*. 1953). Here, instead of circles, ellipses were used.

A

B

Figure 5.1 An example Venn diagram for A n (B + C)

Set intersection is left distributive over symmetric set difference, i.e. the following equality is satisfied:

AnB+C) = (A nB) + (A n C) Andhence, the left and the right side of this equality correspond to

the same Venn diagram (see the above Figure 5.1: left to the reader). A more formal proof of the last set equality
is given below (the left side is first considered).

Xxe AnB=+0 & xeA Axe B0 {Df. 5.6}
& xeA Axe B-C u(C- B) {Df. 5.11, SR}
& xe A A xeBaxeCvxeCAaxegB (DfS55Df57SR}
= X e AAxeBAxgCvVv xeAArxeC A X ¢g B (Aisdistributive
overv)§.
xe(AnB)+~ (AnCO & xe AnB)aAxgAnNnC vxe(AnC Ax ¢ (An B)
& xeAnB)A~xeAnC veAnC A~xeA

N B)

& xe AnB)A~xeAArxel) vxeAnO A~K
e A AX e B)

& xeAnB)Ar xeAvxeC veAnC AEXegA
v x ¢ B)”

= X e AN XeBAxgAvxeAAr xeBaxegCvVvx
ceAAXxeCArxegAvxeA nrxeCharxegB

& XeAAXxeBaAaxegCv xeA ArAxeCAaxegB.o

Right distributivity is also satisfied (since ‘n " is commutative: left to the reader). Moreover, it can be shown that
set union and intersection are two associative and mutually distributive set operations, De Morgan's laws are
also satisfied (left to the reader), etc. In general, there exists some correspondence between the propositional
calculus and set algebra (Stupecki J. and Borkowski L. 1967). And hence, the following properties hold (the
corresponding proofs are left to the reader).

AuBulC =AuB)uUC

" John Venn (1834 —1923)

T Unlike Venn diagrams, Euler diagrams (introduced in 1768: Leonhard Paul Euler 1707 — 1783) show only relevant relationships.
i Seweryna Luszczewska - Rohmanowa (1904 —

$ In fact, conjunction and disjunction are commutative and mutually distributive logical operations.

" In accordance with NK (see T 1.8 of Subsection 1.3) and SR.
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AnBnC =AnB nNnC

An@BuO (AnB)yu (AnO
AuBnC = AUBNAUO

(AuB)y = A'n B’

(AnB)Y=A"U B
5.3. Generalised unions and intersections
Let Xi, Xa, ... be a set sequence. The notions of a generalised union and intersection are defined as
follows".

Definition 5.12 (generalised union)

X € Ux, < I(x e Xi)

Definition 5.13 (generalised intersection)

X € Ny, ©a V (x € X)

As an illustration, some properties are presented below.

Thesis 5.8
vVXcX)=Xc<S nNx,

i
i

Proof:

O v XesX) {a}

@ X<nx, {aip}

3) é(x el X AX ¢ ﬂXf) {df. "¢": 2}
4 aeX

ES; a¢ Nx, e
©6) ~(a e QXf) {df. "g": 5}
7N~V (aeX) {Df.5.13, SR : 6}
® 3@ X) NV : 7}
©) a ¢ Xi (-3:8}
(10) aeXnraceX {+K:4,9}

" A more general approach was presented in (Stupecki J. and Borkowski L. 1967). It was considered a function ¢(X) , defined for any set
X of this sequence and having as values sets.
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I1)  Ix e X Ax egXi) {(+3:10}

(12) X ¢ Xi {df. ¢ " 11}

(13) X < X (-V:1}
contr. o {12,13}

The following theses are also satisfied (some proofs are left to the reader).

Thesis 5.9

In
o

.0

v (X< X) = Ux,

Thesis 5.10

vV XicYi) > Ux, € Uy, -°

Thesis 5.11

vVXicYi) = Nx, <Ny .o
Thesis 5.12

XN Ux, = Ux nxp-o
Thesis 5.13

XV Nx, = nvxye

The corresponding proofs of T 5.12 and T 5.13 should require the use of the following thesis (see
Subsection 3.3): EQ(p ¢ Ax)) & p ¢ QA(x), where Q € {V,3}, e € {A,Vv} (Q and e are interpreted

in the same manner in a given predicate formula).

De Morgan’s laws are illustrated by the next two theses.

Thesis 5.14

(Ux) = Nx;

Proof:

xe(Ux,) < ~&euyx,) {Df. 5.8}
< ~3kx e Xi) {Df. 5.12, SR}
= v x ¢ Xi) (NI}
& Ve X) {Df. 5.8, SR}
S xey .o {Df. 5.13}

Thesis 5.15
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(nx,) = Uxi.s

Thesis 5.16

Ux, ~ UY; s U(X,-_Yi)

i i

Proof:

X € L'_JXi - liJYi < X € L'_JXi NX €& UY {Df. 5.7}
© I(xeX)a~I(xeY) (Df512,dfe SR}
& ?(xeXi)/\Y(xeYi) { N3, SR}
= 3 xeXi A xegYi) {=Cwrt & 3 A(X) A Y B(x) = 3 (A(X) A Bx)}
o ik eXi- Y (Df. 5.7, sR} V
& X € U, - Yi) .o {Df. 5.12}

5.4. Cartesian products and relations

Let (x,y) be an ordered pair® having as a first element x and as a second element y. Any such ordered
pair is presented with a family of two sets: (x,y) =d4r {{x}, {X,y}} (Kuratowski K. 1921). It is used the following
axiom.

(AS3) (xy) =(zt) © x=z2 A y=t

Definition 5.14
. x ely} ©a X =Y

2. X € {YL,Y2 ..., Y0} df X =YI VX =Y2 V..V X=Y,

The proof of A5.3 is given below (Stupecki J. and Borkowski L. 1967)T.

Proof' A5.3b:

@) X =2z

2 y=t {a}

3 &xp =iz

@ {xy} = {2t {DE5.14(D);

(5)  (xy) = HxhLixyl = Hzhizt) = (2.0 {df. " (xy) ", " (z) 7}
Proof A5.3a:

1 &y =@y {a}

(L) x=y {ada}

(1.2) &} = {z} , e
(1.3)  {xy} = {zt {df. " (xy) ", " (z0) '}
(14) x=z A y=t (12,13}

" Ordered pairs were introduced independently in 1914 by Norbert Wiener (1894 — 1964) and Felix Hausdorff (1868 — 1942). But the
most simple and useful definition was this one given in 1921 by Kazimierz Kuratowski (1896 — 1980).

T Provided there is no ambiguity, the proof of A5.3b is first presented.
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21 x=y

22 (xy) = {{x}}

(2.3) (zp = {{x}}

24 x=y=z=1t

25 x=z A y=t
X=zZ AN y=t.o

Definition 5.15 (Cartesian product)’

For X, Y c7: X xY=¢{(xy)/xeX AyeY}

Example 5.1 (right distributivity)

@ XnY)xZ=XxZ)n (Y x2)
b)) X-Y)xZ=XxZ)—-(Y xZ)

{ada}

{df. " (xy) '}
{13
{2.2,2.3}
{2.4}
{1.4,2.5}

Prooffa):
xy) e XnY)xZ <

0

0

Proof(b):
xy) e X xZ)-( x Z)

xe XNnYAyeZ
xe XAxeYAyelZ
xe XAyeZ)nxeYAyel?

xy) e XxZ A xXy) e Y xZ
xy) e XxZ)n (Y x Z).o

S xy) e X xZARXYy) ¢YxZ

S xy) e X xZA~(Xy) €Y x Z)

S Xy)eXxZAa~xxeYAyel

&S xeXAyeZarxeYvVvyel

&S xeX Ay eZAXxegY VvV X e
yeZAnyeglZ

& xeXAyeZaxeyY

& xeXaAaxeY)Ayel

& x eX-YAyelZ

S xy) e X-Y)x Z.o

(Df5.15}
{df. '~ ", SR}

{prp o pprge
a A p, SR}

{Df5.15, SR}
(df. A

(df. ="}

{df. "e’, SR}

{Df.5.15, SR}

{D£.5.15, NK, SR}
X A {distributivity of A’

wrt v’}

{yezZnrnyez

{associativity wrt 'A"}

{df. ="}

(Df.5.15}

It can be observed that, e.g. (A U B) x (C uD) =LA xC)u(A xD)u B xC)u(@BxD).In
general, the following property is satisfied.

Thesis 5.17

(Ux,) x (Ur) = Uixy)
i i i,]

Proof:

* Derived from Descartes’ analytic geometry (René Descartes 1596 - 1650, also known by his Latin name Renatus Cartesius). Provided there is
no ambiguity and for simplicity, the parentheses related to the used here conjunction will be omitted.

T Given in (Stupecki J. and Borkowski L. 1967)

f Idempotence, commutativity and associativity of conjunction (i.e. (p AqQ) AT < pA(qQA T)).
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(xy) e (Ll_JX,-) x (gy,-) X eEUx, A Y E Uy {Df. 5.15}
& 3(xeX)AdlyeYi) (Df5I12SR}
e JikeXinayeX)) {F 340 A 3B < 33 (AM A BO))
< (Y e Xix Y, ) {Df. 5.15, SR}
& (xy) e in(Xixyp.u {Df. 5.12}

Sometimes it is useful to consider sets satisfying some conditions. And so, let @®(x) be an arbitrary
condition associated with the free variable x. By ®(a) it is denoted an expression obtained from @(x)
substituting x by a. The following definition is introduced.

Definition 5.16 (sets with conditions)'
x e {a/ D)} < DX)

Some properties are illustrated below (Shupecki J. and Borkowski L. 1967). The proofs of T 5.19 and
T 5.21 are left to the reader.

Thesis 5.18
{a/ d@@)v ¥Ya} = {a/ D@} u {a/¥Ya)}

Proof:
x € {a/ D) v ¥Ya} < DO(x) v Y(x)
{Df. 5.16, SR}
= xe {a/ D@} v xe {a/ Y}

& xe {a/®@)} u {a/Y@a}.o {df. ‘v '}

Thesis 5.19
{a/ d@) A Y@} = {a/ D@} n {a/ ¥Y@)}.o

Thesis 5.20
V(Px) & YX)) < {a/ @@} = {a/ ¥@);

Proof(a):

(1) V(O < ¥(x)) {aj

2 ~{a/®d@} = {a/ Y@} {aip}

B ~Vxefa/da}e xefal Ya?l {df. =", SR}
4) I~((x e {a/ @@} = xefa/ Y@} A (xe{al ¥} {NV, —E, SR}

= xe{a/Dd()})

* 3 =4 373 isan abbreviation.
ij 17

T The set of all a satisfying condition @(a) , another designation: E®d(a) (‘E’ from French word ‘ensemble’). E ®(a,b) can be introduced
a a,b

in a similar way.
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I xe{a/ P} A xg{a/ Y@} vxefal/ Y@} A

xoe {a/ D@} Axoege{a/P@} vxee{a/ Y@} A a ¢ {a/

{NK, NC, SR}

=33

{ada}

{df. "¢ "}

(Df. 5.16}
(Df.5.16: 1.1}
(-V,—E: 1}
(-C:15,1.6}

(1.4,1.7}

{ada}

{Df. 5.16: 2.1}
{df. "¢ ",Df.5.16}
{-V,-E: 1}
{-=C:2.3,2.5}

(2.4,2.6}

A simplified proof can be obtained by using the notion of an exclusive disjunction. This is illustrated below.

©)

X ¢ {a/D(@)})
(6)

D (a)}
(I.1) xoe {a/ ®a)}
(1.2) x0 ¢ {a/ ¥(a)}
(13) ~(xoe {a/ ¥(a)}
(1.4)  ~W¥(xo)
(1.5)  d(xo)
(1.6)  d(x0) = ¥(x0)
(1.7)  ¥(xo)

contr.
2.1) xi e {a/ ¥}
(22) x ¢ {a/ D)}
(23) ¥(x)
(24) ~d(x)
(25) Y(x) = d(xi)
(2.6)  d(xi)

contr. o
Proof(b):
I  {a/®d@} = {a/ ¥@)}
@) ~V(Orx) & YE)
3) () Y()
@) D(xo) @ Y(xo)
(5) D(x0) A ~¥(x0) v ~ D(x0) A F¥(x0)
(1.1)  d(xo)
(12)  ~W¥(xo)
(13) xoe {a/ ®(a)}
(14) ~ (xoe {a/ ¥(@)))
(1.5) xoe{a/ Y@}
(1.6) xoefa/ ¥(a)})

{a}

{aip}

NV : 2}
{-3:3}
(df. e ": 4}
{ada}

{Df. 5.16}
{Df5.16, SR}
{df. "¢ "1 1.4}
{1}
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contr. {1.5, 1.6}
(2.1)  ~d(x0)
(22)  ¥(xo) {ada}
(23) xoefa/ ®@)}) (df. " 2.1}
(24) xoela/ ¥@)}) (Df. 5.16: 2.2}
(25 xoef{a/ da)}) {1}

contr. o {2.3,2.5}
Thesis 5.21

V(DX = Px)) o {a/d@} c {a/ ¥@a)}l «

Relations are one of the most important topics in mathematical logic. Below are only considered relations
which are binary (commonly used e.g. in abstract algebraic systems).

Definition 5.17 (binary relation)

An arbitrary subset p < X x Y of Cartesian product of two sets X and Y.

According to the last definition, p is a set of ordered pairs (x,y) such that x € X and y e Y. For
simplicity, instead of (x,y) € p weshalluse: x py (elements x and y are in p). Similarly, x p’y iff
(x,y) ¢ p (elements x and y are notin p). We shall say that p = X x Y is complete. Similarly, p = @
is said to be empty.

Definition 5.18 (p is function)”

A binary relation p is function ifft V v V(Xpy A Xpz = y = 2)

Let p € X x Y. The domain and codomain (called also: range or image) of p are defined as follows:
dom(p) =ar (xeX / 3 (xpy)} and cod(p) =4 {yeY/ 3 (xpy) = dom(p™"), where by 'p~!"itis
yvey xeX
denoted the opposite (or inverse) relation to p,ie. p' <€ Y x X suchthat: yp'x <u xpy.

Definition 5.19 (composition of two binary relations)

Let p € X xY and o € Y x Z be two binary relations. The composition (called also superposition or
relative product) poc =g {(Xz) e X x Z/ 3 (xpy Ayocz)} € X x Z.
yeY

Example 5.2 (composition)

* Definition 5.18, given in (Stupecki J. and Borkowski L. 1967), seems to be the most simple one. In general, it is required the use of the
quantifier 3¢, (“there exists at most one”), see Subsection 3.4. And hence, a particular case is the following expression: ¥V 1 (xpy).
xeX » e

We shall say that p = X x Y isamappingon X into Y iff ¥ 3 (xpy) A V (xpy A xpy = y = y). Anysuch
xeX yeY xeX

mapping is function if X,Y < R, or transformation: in the case of sets of points (Kerntopf P. 1967). It can be observed that the last

expression is logically equivalent to the following more simpler form (left to the reader): V (3 xpy) A(xpy A xpy =
xeX yeY

y = y’)). A more information concerning mappings will be presented in Part II.
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Figure 5.2 An example composition of two binary relations

Consider the following two binary relations: p =4 {(X1,¥1), (X2,¥2), (X3,¥1), (X4,y2)} and & =g {(y1,21),
(y1,22), (y2,23)}. Hence, p o 6 = {(x1,21), (X1,22), (X2,23), (X3,21),(X3,22), (X4,23)}. It can be observed that pu ¢ =
{xX1y1), (X2,¥2), (X3,1), (X4,y2), (Y1,21), (Y1,22), (¥2,23)} < {(X1,y1), (X1,y2), (X1,21), (X1,22), (X1,23), (X2,y1), (X2,¥2),
(x2,21), (X2,22), (x2,23), (X3,y1), (X3,Y2), (X3,21), (X3,22), (X3,23), (X4,¥1), (X4,¥2), (X4,21), (X4,22), (X4,23), (Y1,¥1), (Y1,y2),
(y1,21), (Y1,22), (¥1,23), (Y2,1)s (Y2.¥2), (y2,21), (¥2,22), (y2,23)} = (X U Y) x (Y U Z). 5

Some properties, concerning the notions of domain and codomain are illustrated below.

Thesis 5.22

dom(p v o) = dom(p) U dom(c)

Proof:
Forany x € X:

x e dom(p v o) & 3 x(pu o)y
yeYy

3 (xpy v xoy)
yeY

0

0

3(yeY A (xpy Vv xoy)
= 3((erAxpy)v(er/\xcy))

= 3IyeY Axpy)VIFeEY AXxoy)

S 3 (xpy) v 3(xoy)

yeY yeY
e X € dom(p) v x € dom(c)
= x € dom(p) U dom(c). o

{df. " dom "}

(df. "U ", SR}

{df. " 3y '}
()
{distributivity of "A "}

{logical equivalency of the last
two lines}”

{df. " I y(x) ", SR}
o)

{df. " dom "}

{df. "u "}

Some other properties are presented below (the corresponding proofs of T 5.23 - T 5.26 are left to the

reader).

Thesis 5.23

* This logical equivalence is similar as in the case of classical one, i.e. 3(A(x) v B(x)) < JA(x) v IB(x). However, the use of the

above two variables should require more complicated proof. In fact, the corresponding proofs (a and b) are ramified indirect ones. They are

left to the reader: see Subsection 3.3.
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cod(p v o) = cod(p) U cod(c). o
Thesis 5.24

dom(p N o) < dom(p) N dom(G). o
Thesis 5.25

cod(p N o) < cod(p) N cod(o). o
Thesis 5.26

dom(p — o) < dom(p) — dom(c). o

Thesis 5.27
cod(p — o) < cod(p) — cod(c)

Proof:
Forany ye Y:

y € cod(p - o) & E|X x(p - o)y {df. " cod "}

< 3 (xpy A x07y) {df. "—"}
xeX

= El)( xpy) A ElX (xo’y) {this implication is satisfied}"
= y € cod(p) Ay e cod(c’) {df. " cod "}
= y € cod(p) Ay ¢ cod(c) {Df. 5.8, SR}
= y € cod(p) — cod(c). {Df. 5.7, SR, Df. 5.2}

Thesis 5.28

dom(p)' < dom(p")

Proof:

Forany x € X:

@) x € dom(p)' {a}

2 x ¢ dom(p") {aip}

3)  x ¢ dom(p) (Df. 5.8:1}

@ ~(x e dom(p) {df. "¢ 3}

(5) ~ 3 (xpy) {df. "dom ", SR : 4}

yvey
(6) v (xp"y) {N3": 5}
veYy
(7 ~(x e dom(p) {df. "¢": 2}

* The last implication is satisfied, as in the classical case: 3(A(x) A B(x)) = JA(x) A IB(x). The corresponding ramified indirect

proof of implication 3 (xpy A xcoy) = J (xXpy) A J (xc'y) isleft to the reader: see Subsection 3.3 .

xeX xeX xe
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(8) ~ 3 (xp'y) {df. "dom ", SR : 7}
yvey
) v (xpy) {N3*: 8}
veYy
10) v xp'y) A v xpY) {+K:6,9}
vey vey
(11 v (xXp'y A xpy) {logical equivalency of the last
yey two lines}
contr. {11}

The proof of the next thesis is very similar to the proof of the previous one (left to the reader).

Thesis 5.29
cod(p) < cod(p").

Definition 5.20 (p defined in X)
Let p & X x X. Then we shall say that p is a binary relation defined in X (or equivalently: a binary
relation on X).

A particular case are the following two binary relations: 0Ox =¢r {(x,x) /x € X} and Ix =¢ X x X
(Kerntopf P. 1967).

Let p be a binary relation on X. We shall say that:

p is reflexive = xYx x px)

p is antireflexive” St v (xp'x)

p is symmetric Sdr v Xpy & ypx)
xyeX

p is antisymmetric’ S v Xpy = yp'x)
xyeX

p is weak antisymmetric g v (Kpy) A(ypx) = x=Y))
xyeX

p is transitive = v (xpy) A(ypz) = (xp2z)
xyzeX

p is connected S v (x#y) = (xpy) v(ypx))
wve

It can be observed that a relation p which is not reflexive, not necessarily should be antireflexive (and vice
versa). The following implication is also satisfied: p is antisymmetric = p is weak antisymmetric (the proof

of this implication is given below). The only one symmetric and weak antisymmetric relation is Ox (Kerntopf P.
1967).

Thesis 5.30

v Kpy=yp'x) = v (Kpy) A lypx) = (x=y)

x,yeX X,y €

" Called also: irreflexive.

T Known also as: strong antisymmetric or asymmetric. The above notions are here considered as central. In general, some other notions
were also introduced, e.g. binary relations which are: quasi-reflexive, or Euclidean (right or left ones), or wheely, or serial, or trichotomous
(for any x,y € X: exactly one of xpy, ypx, or x =y holds: The Free Encyclopaedia, The Wikimedia Foundation, Inc), etc.: left to the reader.



Proof:
)] _yX(Xpy: yp'Xx)
2 ~ yX((Xpy)A(YDX)ﬂ(X:y))
(3) gx((Xpy)A(pr)A(Xiy))
4) abeX
(5) apb
6) bpa
(7) a#b
®) abeX = (apb = bp'a)
9 apb= bp'a
(10) bp'a
contr.

Example 5.3 (binary relation)

are denoted by the (first four even) natural numbers, i.e. X =
remainder of the Euclidean division” of x by y isequalto 0,ie. x mody =
reflexive and weak antisymmetric. The corresponding analysis related to p° and p~!

{a}
{aip}

{NV*,NC, SR : 2}

(—3,-K:3}

=V 1}
{—=C:4,8}
{-C:59}
(6,10}
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Figure 5.3(a,b) below is an example of binary relation p represented by (directed) graph or also as a Boolean
(vertex — vertex incidence) matrix, respectively. Provided there is no ambiguity and for convenience, graph vertices

N

(a)

The graph G, of p

{2,4,6,8}. Forany x,y € X:

X py <qr the
0. It can be observed that p is
is left to the reader.

1000

1100

1010

1101

(b) The matrix M, of p

Figure 5.3 An example binary relation p

Let y,p,0 € X x X. Wehave: y o (p U o) = (y o p)

distributive over set union. And so, the following thesis is satisfied.

Thesis 5.31

vV X(ye(puo))y < x(yeop) vy o o)y

x,yeX

Proof(a):

* Known also as: division with remainder (Euclides 430 —¢.360 b.c.).

U (y ° o), i.e. composition is is left
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(1) ~XZX(X(*/°(puc))y:>X((v°p)U(v°0))y)
(2) XEX(X(“/ °o(puo))y A x((yop) vlyeo)y

B abeX

4  a(ye(puo))bd

5) a((yep vu(yeo)bd
(6) 3 (ayz A z(p v o)b)
M akoprb

®) a(yeo)b

9) ~ 3 (@yu Aupb)

(10) ~ 3 (ayw A wob)
eX

w

(11) v (@yuvup'b)
uelX

(12) v @y w v wa'b)
weX

13) ceX

(14) ayc

(15) c¢(puo)b

(16) u =4 ¢

(7)) ¢ e X = aycvecep'b
(18) w =4 ¢

19) ¢ceX = aycvedhb
(20) c¢pbveceob

21) ay'cvecp'b

(22) ay'cwveca'b

23) c¢p'b
24) co'b
25) cob
contr. o
Proof(b):

)~ ¥ (x(@ep UGy =x(re(pUoy)

{a}

{NV",NC, SR : 1}

(-3,-K:2}

(df. 0" 4}

(df. * ' 7, df. "V, NA,
SR,-K: 5}

(df. 7,01 7}
(df. "7, 01 8}
(N3, NK, SR : 9}

{N3*,NK, SR : 10}

(-3,-K:6}

(-v* 11}

{=V 12}

(df. " U1 15}
(-C:13,17}
{~C:13,19}
(—A:14,21}
(—A:14,22)

{— A:20,23}

{aj
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(2) xyEiX(X((Y°P)U(“/°G))Y/\ x(ye(puwo))y) {(NV*,NC, SR : 1}
(3) abeX

@ a(@ep ulyeo)d (—3,-K:2}
(5) a(ye(puo))bd

6) a(yepb v aeo)b {df. "o 14}
M~ 3 @yzazpoo)b) {df."", 0" 5}

() v @Yz vz v o)b) {N3*,NK, SR : 7}
zeX

©) l’gx(ayu/\upb) Vo3 (ayw A wob) {df. "o "SR : 6}

(1.1) 3, (ayu A upb) {ada}

(12) ceX

(1.3) ayc {-3°,-K: 1.1}

(14) cpb

(15) ce X = aycvcec(puo)b (—V° 8}

(16) aycvec( uo)b {(-C:1.2,1.5}

1.7) c(puo)b {—A:13,1.6}

(1.8) cp'b {(-K:1.7}"
contr. {1.4,1.8}

2.1 3 (ayw A wob) {ada}

22 deX

(2.3) ayd {(-3",-K:2.1}

(24) dob

25) deX = aydvd({p uo)b (— V"8

(26) aydvd(uo)b (-C:22,25}

27) d(p v o)b {—A:23,2.6}

(2.8) do'b (-K:2.7}
contr. o (2.4,2.8}

Right distributivity or use of set intersection in T 5.31 (instead of set union) are left to the reader. The notions
of power set and partition of a set are presented below.

Definition 5.21 (power set)
The power set (or the powerser) of aset X, P(X) =4 {Y/Y S X }".

c(puUo)b e ~(ch) e (pu o)
< ~ (((c,p) € p) v ((c,b) € 0))

< ((e,b) ¢p) A ((c,b) ¢ 0) (see Subsection 1.2: Rule of omitting a conjunction).
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Let X be a finite n - element set. The number of all different non-empty subsets of X containing i

elements from n (i=1,2, ...,n) is Z(’Zj Since @ € P(X), we have: Z(’Zj +1= Z(’Zj + (g) = Z(’;)
in

i=1 i=1 i=0
=20t

Example 5.4 (power set)

Consider the set X =4 {X1, X2, X3, X4}, n = 4. According to Definition 5.21, the obtained power set P(X)

will contain the following 2* = 16 subsets. As an illustration, we observe that non-empty subsets are related
to the vertices, undirected (i.e. non-oriented) edges or graph cycles, as it is shown below (see Figure 5.4).

X X2

X3 X4

Figure 5.4 A nonoriented graph

(D=4 a0

(3) =6: {X1,Xa}, {X1,X3}, {X1,X4}, {X2,X3}, {X2,Xa}, {X3,X4}
(g) =4: 1X1,X2,X3}, {X1,X2,X4}, {X1,X3,X4}, {X2,X3,X4}
() =1 xxx) (= X)

l+4+6+4+1=16=2"

Definition 5.22 (partition)

Partition of a set X is a family (or equivalently: collection) TI(X) =4 { Xi/ X; S X, 1 € I} satisfying the
following three conditions.

(1 v (Xi % 92),

iel

* Obviously, the sets @, X e P(X). We observe that the number of elements of X do not depend on their ordering and also subsets of X
are not multisets (see Subsection 6.1). The powerset P(X) is also equivalently denoted by 2%.

; | - —i
" The combination of i clements from n: (Tll) = i'(nn;i)':n(n 1)..;.'(n i+1) i assumed that: (Z) _ (8) i
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@  Ux = X and

iel

3) v (i2] =2 XinXj= 92).

i,jel
Let X be a finite n - element set. Hence, the number of all possible partitions is solely determined by n. We

shall denote this number by d," . The following proposition was shown (Grinshpan A., The number of partitions
of a set. Drexel University, Philadelphia, 1pp., http://www.math.drexel.edu/~tolya/partitions.pdf).

Proposition 5.1

n
i

For any integer n > 0, dn+1 = Zd,( ),where do =ar 1.
i=0

Example 5.5 (partition)

3
Let X be the set from the previous example. We have: ds = Zd,{j) =1+3+ 6+ 5 =15 The
i=0

obtained values for d; (i=0,1,2,3) correspond to the first four Bell’s numbers 1, 1,2 and 5, respectively, e.g.

ds =g do(g) + dl(i) +d2(§) = Ix14+1x2+2x1=35. And hence, d3(§) =5.

The following partitions are obtained.

{x1}, {x2}, {x3}, {xa} {x2, x3}, {x1}, {xa}
{x1, X2}, {x3}, {Xa} {x2, Xa}, {x1}, {x3}
{x1, x5}, {x2}, {xq} {x3, x4}, {x1}, {X2}
{x1, xa}, {x2}, {x3} {x2, X3}, {X1, X4}
{x1, X2, X3}, {x4} {X2, X4}, {X1, X3}
{x1, X2, X4}, {x3} {x1, X2}, {X3, X4}
{x1, X3, X4}, {x2} {x1, X3}, {X2, x4}

{X1, X2, X3, X4}.

A given partition TI(X) can be represented by dots in Ferrers diagrams or also by boxes (or squares) in
Young diagrams. The last diagram (often also called Ferrers diagram) is useful in the study of symmetric functions
and group representation theory.

Example 5.6 (Ferrers diagram)

According to the previous example, the number d4 = 1 + 3 + 6 + 5 =15 (= 6 +5 +3 + 1) is
represented as follows.

O O O O O O
0O O O O O

* The n-th Bell’s number, i.e. the number of non-empty disjoint subsets a set of size n, e.g. the first ones are 1, 1, 2, 5, 15, 52, 203, 877,
4140, etc. (Eric Temple Bell 1883 — 1960). An expression for dn may be given also in terms of Stirling’s numbers (James Stirling 1692 —
1770): S{n,k) / k! is the number of partitions of an n-element set into k non-empty disjoint subsets, where Sn.k) is the number of surjective
(or onto) functions from an n — element set onto a k — element set (see the above cited work).

¥ Norman Macleod Ferrers (1829 — 1903), Alfred Young (1873 — 1940): some function is said to be symmetric iff the function value is
independent of the argument ordering, e.g. f(x,y) is symmetric iff f(x,y) = f(y,x) for all pairs (x,y) € dom(f), see: The Free Encyclopaedia,
The Wikimedia Foundation, Inc.
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o O O
@)

By turning this diagram (around the main diagonal: circles in blue color) we can obtain another partition of 15,
ie. 4+ 3+ 3+ 2+ 2+ 1,said to be conjugate”.

The next considerations (in particular: Definitions 5.23 - 5.28 and Theorem 5.1) are under (Kerntopf P. 1967).

Definition 5.23 (equivalence relation)

A binary relation p on X is equivalence iff it is at the same time reflexive, symmetric and transitive on X.

Example 5.7 (equivalence relation)
Let p be a binary relation on Z (the set of integer numbers) defined as follows: x py iff x —y iseven. For
any X,y,z € Z we have:
@) XpXx,since: x —x =0
2) Xpy < ypx, since: x—y iseven iff y—x =¢ —(x—y) iseven and

3) xpy) A(ypz) = xpz, since: x—z = (x—-y) + (y—2).

As an example, according to Definition 5.23, the following binary relation is also an equivalence.

v ~ . -
NpNgeBIPN(Nl b~ No <ar SM(Ni) =~ SM(N2))

Here, BIPN denotes the class of Boolean interpreted Petri nets, SM(N;) is the finite-state sequential machine
corresponding to N; (i = 1,2). The above behavioral equivalence and state machine equivalence relations are

denoted by ' b=" and ‘=", respectively (Tabakow I.G. 1989).

Definition 5.24 (equivalence class’ and quotient set)
Let p be an equvalence on X. The equivalence class for x € X, denoted by [x]p =¢¢ {y € X/ypx}
c X. The quotient set for p ,denoted by X/p =4 {[x]p/x € X}.

In particular, according to Example 5.5 we can obtain: X /0x = {{xi, X2, X3, x4}} and X/l1x = {{xi},
{X2}, {x3}, {x4}}. We observe that the number of subsets in X / Ox is minimal (equal to 1) and this number is
maximal in X/ 1x (equal to the number of elements in X). The last property is always satisfied if X is finite.

The following properties hold (the corresponding proofs are left to the reader)

Corollary 5.2
Forany x,y,z € X:
1 xe[xlp
2 Gekxl)Aa@zelxl) = ypz
3 ypx = [yl = [xlp
(4) xpy = [Xlp nlylp = @0

Theorem 5.1

* A partition having itself as conjugate is said to be self-conjugate, e.g. the partition of 9: 3 +3 +3

T Not be confused with the corresponding music term.
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Any equivalence p on X generates some partition IIp(X) and vice versa, i.e. any partition I1(X)
generates an equivalence relation py on X.

Proof(a):

Consider the family X/ p. In accordance with Coroll. 5.2 (1), any x € X belongs to some subset of X,
more exactly to [x],. Assume the existence of an element u € X suchthat u € [y], and u € [z],. We
can obtain: (upy) A (upz). Since p is symmetric: upy < ypu Byusing SR we can obtain:
(ypu) A (upz). From transitivity of p it follows that y p z. According to Coroll. 5.2 (3) and —=C" we
have: [ylp = [z]p. Andso, TT)(X) =ar X/p.

Proof(b):
Let TI(X) be given. The following relation py on X is defined: VvV (xpny <ar 3((x € X)) A (y €
X

xX,ye iel

Xj))). This relation is reflexive, symmetric and transitive and hence an equivalence on X (left to the reader). o

Example 5.8 (generated partition)

In accordance with the previous example, the following partition is generated: TI(X) = X/p = {E, O},
where 'E”and "O” denote the subsets of event and odd integer numbers. o

Definition 5.25 (partial order)

A binary relation p on X is partial order iff it is at the same time reflexive, weak antisymmetric and
transitive on X. If p is a partial order on X then X is said to be a partially ordered set (or: poset).

Any finite partially ordered set can be graphically represented by using Hasse’s diagrams”.

Example 5.9 (Hasse’s diagram)

P
Any natural number n € N can be represented as follows: n = [[p% , where any p; is a prime
i=l

number’ and the number of divisors of n, denoted by t(n) =¢ [[(a,+1) (Euclides 430 —¢.360 b.c.), e.g. for n
i=1

= 12, we can obtain: 12 = 2? x 3!, In a similar way, e.g. 28 = 22 x 7' and 45 = 3% x 5! In this particular
case we have: t(12) = 1(28) = t(45) = 6. We have the following set of divisors for n = 12: {1, 2, 3,4, 6,
12}. The remaining two sets are presented as follows: {1, 2,4, 7, 14, 28} and {1, 3, 5, 9, 15, 45}. Since the
obtained diagrams (considered as nonoriented graphs) are of the same structure, Hasse’s diagram associated with n
= 12 is only presented (see Figure 5.5 given below: the remaining two diagrams are left to the reader). o

* Helmut Hasse (1898 — 1979)

A natural number having as divisors only 1 and p;, itself: e.g. 2, 3, 5, 7, etc. Nonprime natural numbers (# 1) are said to be composite.
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Figure 5.5 An example Hasse’s diagram”

It can be observed that the opposite of a partial order relation, i.e. p~' is also a partial order (left to the
reader). The partial order relation, the opposite partial order relation and their strong versions are denoted

below as follows: "»", ', ">", and "<’ , respectively. For example: (x > y) <a X > y) A
x #y).
Definition 5.26 (linear order)

Let p be a partial order on X. If p is also connected then X is said to be an ordered set (or linearly
ordered set).

As an example, any subset of R is a linearly ordered set wrt ">". The following two definitions are also
introduced (KerntopfP. 1967).

Definition 5.27 (minimal and maximal elements)

Let X be a partially ordered set. Assume that there exists an element A € X suchthat: V (A < x).
xeX

We shall say that "A" is the minimal element in X. Similarly, assume now that there exists an element

V e X such that: VX( V > x). Weshall say that "V * is the maximal element in X.

Definition 5.28 (infimum and supremum?”)

Let X be a partially ordered set. We shall say that x € X isalower boundfor Y ¢ X if V (x <vy).
yeY

The lower bound x is said to be greatest lower bound for Y (i.e. infimum for Y) if for any other lower bound

x" for Y we have: x” < x. Inasimilar way, x € X is an upper bound for Y < X if V (x »>y). The
yeY

upper bound x is said to be least upper bound for Y (i.e. supremum forY) if for any other upper bound x’ for
Y we have: X" > x.

It can be observed that infimum and supremum (if they exist) are the only one for any partially ordered set
(some other considerations are omitted below)j'.

According to Definition 5.23, any binary relation p on X is equivalence iff it is reflexive, symmetric and
transitive. Assume now that p is reflexive and symmetric but not transitive. In classical set theory any such
relation can be made transitive, and hence equivalence. The corresponding process is known as transitive closure
of p. In nonclassical set theory (e.g. fuzzy set theory) a similar process becomes more complex.

Let p be abinary relationon X, p! =¢¢ popo..op (itimes,i € I) and p* =4 Upi.Provided there is

no ambiguity and for convenience, p® =4r {(x,x)/x e X}. The following two theses are satisfied®

Thesis 5.32

A binary relation p on X is transitive iff p?> < p.

" In particular, such diagrams are used in lattice theory (will be presented in Part IT of this book).

 from the Latin “infimus’ and “supremus’: lowest and greatest. The last two notions are related to any partially ordered set, but mainly
used in the case of numerical sets.

i As an example, any lattice is associated with some partial order relation, and vice versa. Lattice theory will be presented in Part II of this
work.

§ Friedrich Wilhelm Karl Ernst Schroder (1841 — 1902)
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Thesis 5.33

A binary relation p on X is transitive iff p* = p.

More formally, T 5.32 corresponds to the following expression.

VVVEPYAYPzZ = Xpz) & VV(I((xXpz A zpy) = XpYy)
X y z Xy :

Proof(T 5.32a):

(1 \_j\zy(Xpy/\ypz = xpz) {a}

@~V V(3 (xpzAzpy = xpy) {aip}

(3) 13 G xpz A zpy) AXpTy) {NV, NC, SR : 2}

4 3 (@pzA zpb)

) apb (-3,-K:3}
(6) apc A cpb {—3: 4}
@) apc A cpb = apb {-V:1}
(8) aphb (—C:6,7}
contr. {5,8}
Proof(T 5.32b):
() VY v(3i@xpzAzpy = xpy) {a}
@ ~YVVEpyAypz = xp2) {aip}
G) 333 &py Aypz AXp? {NV,NC, SR : 2}
(4) apb
5 bpe {(-3,-K:3}
(6) ap’c
7 §(apz/\zpc) = apc {-V:1}
() ~§ (apz AN zpc) {Toll : 6,7}
9  v@pzvzpo {N3, NK, SR : 8}
(10) apbvbpec (—V:9)
(1.1) apb {ada}
contr. {4, 1.1}
2.1) bp'c {ada}
contr. o {5,2.1}

Assume now that p* = p. Then p?> < p. In accordance with T 5.32 p is transitive (using rule TC). And
hence, the opposite implication, i.e. T 5.33b is satisfied.
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Proof(T 5.33a):
) p is transitive {a}
2 p=p {aip}
B ~(p'sp A psp) {df. ‘= : 2}
4) pPrEP VPEP (NK, SR : 3}
5 pcop (df. p '}
© P {—A:45)
(7) NYY(XPW = Xpy) (df. "¢ " : 6}
®) 33 (xp'y A xpYy) NV, NC, SR : 7}
) ap'b
(10) ap'b {-3,-K:8}
11 b : s
(1 (a,)eLl_Jp {df. 'p* "}
(1) 3(ap'b) SV
(13) aphb {(—3:12}
(14) a(p®'op)b (df. "pi:13}
(15) 3@p°'x A x pb) {Df.5.19 : 14}
(16) aph ¢
4D pb (—3,-K:15)
(18) a(p®?op)c (df. "pi-17:16}
(19) 3 PP 72X A X pcr) {Df. 5.19: 18}
(20) ap®~?c

(—3,-K: 19}

2D capa
Finally, the following two lines can be obtained (after 4(io — 1) additional steps):
ap -G -De y (=apci-1)and Co-1pCi-2.

And hence, using '+ K’, we can obtain: apci-1 A Ci-1pCi-2 A ... A capca A capci A cipb’.

By Definition 5.19 and the associativity property of conjunction, finally we ca obtain: a p b. But this is a
contradiction wrt line (10) of the above proof.

It is assumed in the last thesis that the composition operation is an associative one. The proof of this property
is given below.

Thesis 5.34 (associativity of composition)

" The iy leaves of the corresponding binary tree with a root node: a p “b.
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Let p,y and o be defined on X. The following property is satisfied (for any x,y € X): (xyy) €
po(yeo) < (Xy) € (p o y) o o.And hence, the following formula is satisfied.

I (xpz Ad(zyu Auocy) < 3 (3 xpu Auyz) A zoy)

Proof(T 5.34a):
) i (xpz Ad(zyu A uocy))
@) ~3( (xpuAuys) A zoy)

3) V(V(xpuV uyz) VvV zaoly)

“) xpa
%) i(ayu A uoy)
6) ayb
(1) boy

(3) V(xpu V uyb) V boy
(L) v (xpu V uyb)

(1.2) xpavVv ayb
(1.3) ay’d

contr.
21) bo'y

contr.
Proof(T 5.34b):
() 3G (xpuAuyz A zoy)
@) ~3(xpz Ad(zyu Auocy)
() Y(xpz V ¥(zyu V ucy)
“) ?(xpu Auyc) A coy

(5) 3 xpu Auyc)

(6) coy
@) xpd
() dyc

©) xp'd VV(dyu V ugy)
(1.1) v (dyu VvV ucy)

(1.2) dyc Vv coy

{a}
{aip}

(N3, NK, SR : 2}

{-3,-K:1}

{-3:5}
{=V:3}
{ada}
(—V: L1}

(—A:12,4)
{6, 1.3}
(7,2.1}

{a}
{aip}
{N3, NK, SR : 2}

{-3:1}

{-K:4}

{—-3:5}

(—V:3}

{ada}

(—V:1.1}
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(13) co'y (—A:8,12)
contr. (6,13}
2.1) xpd {ada}
contr. 7, 2.1)
The notion of reflexive and transitive closure p* =4 p~ U p°. Since X is finite, we have: (p*)* = p™.
Thesis 5.35

p*Uc < (p U
The following proposition is used in the proof of T 5.35.

Proposition 5.2

Let p and ¢ bedefinedon X and n € N: (xy) € p" = (xy) € (p U o)" (forany (xy) € X)".
Assume that the last implication is satisfied for n =4 k. The proof for n =4 k + 1 is given below.

Proof:

(1 (xy) € p! {a}

2 xy) £ (puo)! {aip}

B (xy) epop {SR: 1}

@ 3xpzAzpy) {df. 70" : 3}

(%) x p¥b

© bpy Aok

(M &y ¢ (puo)e( uo) {df. 0", SR : 2}

® ~3&x@eEv o)z A z(p v o)y) {df. ", SR : 7}

©)  Y&(p o)z Vp o)y {NE, NK, SR : 8!

(1) x((p v 0))b v b(p U 0)y {-V:9}

(1.1)  x((p U 6))'b {ada}

(12) x(p v )b AR i
contr. (1.1,1.2}

(2.1) blp v o)y {ada}

(22) ~(bpy Vv boy) {(df. ‘v 2.1}

" This proof is inductive wrt k, e.g. for k = 2 is left to the reader. The proof of implication: (x,y) € ¢" = (xy) € (p U o)" (for any
(x,y) € X) is similar as the case of the antecedent: (x,y) € p" (see Proposition 5.2: left to the reader).
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According to T 5.35, the following implication should be satisfied.

(xy) € p'UG" = (xy) € (p U o) (foranyxy e X)

Proof(T 5.35):

) xy epud

@  ~(xy) € (pvo)

B ~(xy)epPuou (puo))
@) ~((xy)ePuo Vv (xy epPuo))
5 xy) ¢ (puo)

© &y e (puo)

(7 ~(xy) € (puo))

®) ~(xy) e (pvo))

©  ~(xy) e Upuo))

10)  ~(xy) € {xx)/(xx)eX x X}
1D (xy) ¢p’

(12)  (xy) ¢0°

(13 ~3(xy) € (pvo))

49 v(xy ¢ (p v o))

(15) xy) € p" VvV (xy) € ¢

1D (xy) € p*

(12 xy)ep' v p’

(13) &y €p" Vv (xy) € p

(14) xy) € p'

(15) (xy) € Up'

(1.6) 3 ((xy) € p)

1.7 (xy) € p°

(1.8)  (xy) ¢ (p v o)

(1.9 (xy) € (p v o)

bpy

contr.

(NA, - K :22}

(6,2.3}

{a}

{aip}

(df."(p U o) ", SR: 2}
(df. "0, SR : 3}

{NA, -K:4}

{df. "¢" : 5,6}
{df. "(p U 6)", SR : 7}

{df. "(p U o) ": 8}

{10}
{df ’U(p U o) - 9}

{N3, SR : 13}
{df. 'v "1}
{ada}

{df. 'p*": 1.1}
{df. ‘v " : 1.2}
{—A:11,1.3}
{df. 'p" " : 1.4}
{df. "yp' 1 1.5}
{=3:1.6}
{—V:14}

{—=C:Prop.52,1.7, n=4i"

299
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contr. (18, 1.9)
2.1) xy) € o {ada}
22) xy) € otu o {df. '¢*":2.1}
23) (xy) € 6"V (xy) € o {df. ' :2.2}
(24) (xy) o (—A:12,2.3}
2.5 xy) e Ua’ {df. 'c* " :2.4}
26) 3 ((xy) € o) {df. Ui 2 2.5}
27 (xy) € o® {-3:2.6}
28 xy) ¢ (p v o) {(-V:14}

i0
29 (xy) € (p v o) {— C:Prop. 5.2, 2.7, n=4is}

contr. {2.8,2.9}

In accordance with T 5.32, the following transitive closure algorithm (in short: TC algorithm) is used.

TC algorithm

M p=apup

?2) if p = p then p is transitive : end ;
3  p =ap:goto (1)

Example 5.10 (TC algorithm)

X1

X2 8———P0 X3
p

X1

Xp0——P0 X3

()

Figure 5.6 Two binary relations on X =gr {X1, X2, X3}

Consider p and o of Figure 5.6. We have: p = {(x1,x2), (x2,X3), (x1,x3)} and p? = {(x1,x3)}. And
hence, p is transitive {TC algorithm, step (2)}. Let now consider 6. We have: 6 = {(x1,X2), (X2,X3), (X3,X1)}, G2
= {(x1,X3), (x2,X1), (X3,X2)}, 6% = {(x1,X1), (X2,X2), (x3,X3)}, 6* = 5, 6° = &%, 6® = &°, etc. And finally, " =
c uctucdu..=0c uUc?uc={(x,x), (X2,X3), (X3,X1), (X1,X3), (X2,X1), (X3,X2), (X1,X1), (X2,X2), (X3,X3)}
(see Figure 5.7 given below). Here, any o' is related to some directed path of lengthi(i=1.2, ... ). We observe
that the obtained closure is also reflexive, i.e. 6~ = o".

" Assuming the antecedent " (x,y) € "’ ie. (Xy) € 6" = (Xy) € (p U 6)" / n =4 io.
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X2¢ X
2@, 3
Figure 5.7 The transitive closure for o

The above method becomes inefficient for a large graph size. Some simplification can be obtained by using
multiplication over graph incidence matrices. This is illustrated in the next example.

Example 5.11 (TC algorithm)

Let o be the binary relation of the previous example. The graph incidence matrix is represented by the

010 00 1
following square matrix of order 3: Ms = [0 0 1|. And hence, Me* = Mo x Mo = |1 0 0|". The
1 00 010

following steps are realised.

01 1
(1) Ms = Mo U Mgz = |1 0 1 {TC algorithm: step (1)}

110
2) Ms # Mo {TC algorithm: step (2)}
(3) Mo =« Ms {TC algorithm: step (3)}

0 1 1] 011 011
@ Ms=MsuU M= 101/ U([l01]x ]|l 01 {TC algorithm: step (1)}

R 0] 110 110

11 1]

=111

11 1]
) Ms # Mo {TC algorithm: step (2)}
(6) Mo =ar M5 {TC algorithm: step (3)}

111
@) Ms = Mo U Moz = |1 1 1 {TC algorithm: step (1)}

111
®) Ms = Mo : o is transitive : end. {TC algorithm: step (2)}

The concept of an occurrence (Petri) net, i.e. a directed acyclic graph that represents causality’ and
concurrency information about a single execution of a system, was introduced in (Best, E. and Devillers R. 1987).

n
" The matrix multiplication operation is similar to the classical one, i.e. ¢;j = Zaik-b/q' (i,j = 1,2, ....,n), for any A,B,C (square matrices
k=1 )

of order n, where C = A x B). But now, instead of sum and multiplication, the operations maximum and minimum are used, respectively.

 And hence, occurrence nets are known also as causal ones, e.g. (Kummer O. and Stehr M - O. 1997).
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Some research concerning: structural properties, e.g. (Haar S. 1999), orthomodular lattices related to these nets
(Bernardinello L. et al. 2009) or timed structured occurrence nets (Bhattacharyya A. et al. 2016), was also
presented. In accordance with the last works, some information, concerning the two fundamental binary relations
Ili and co is given below. The following definition is firs presented (P and T denote the sets of places and transitions,
F is said to be a flow relation).

Definition 5.29 (finite net)"
A finite net is a triple N =4 (P, T, F) where:

1) PnT= g,
(i1) PuT= o,
(iii) F < (PxT) u (T xP) and

(iv) dom(F) U cod(F) = P u T.

Let x € P U T. The pre-set and post-set associated with x are defined as follows: °*x =¢ {y € P U
T/ (yx) € F} and x* =¢¢ {y € P U T/ (x,y) € F}, respectively. Obviously: y € *x < x €y".

Let P and T be countable. The following definition was used in (Bernardinello L. et al. 2009) .

Definition 5.30 (occurrence net)

Anet N = (P, T, F) is an occurrence net iff

(1) v (I*pl <D A(pl<1)f and
peP

(i) v ((xy) € F' = (vx) ¢ F)).
x,ye PuT

According to the last definition, any occurrence net N is conflict-free (1) and acyclic (ii). The obtained
structure (X, =) derived from N as follows: X =¢ P U T and = =4 F* isa partially ordered set.

Let <" be a partial order relation on a set A. The following two relations can be derived (for any a,b € A):
alibogr (a<b) vb<a) vi(a=Db) and acob <4 ali'b. The last two relations are symmetric and not
transitive. Moreover, [i is reflexive, while co is antireflexive. Let now p be defined on A and p,s be p
restricted to B < A. The notion of region is introduced as follows: B isa region iff (i) p/s= B x B and

(i) v 3 (ap’b). A frequently used example for /i and co is the following one.
ac A-B beB

Example 5.12 (li- and co-graphs,regions)

a

b
”& d
L »o

e f g

" If places and transitions are interpreted as conditions and events (respectively), we can obtain a Petri net, consisting of conditions and
events, having tokens in some conditions (the initial case). In a similar way, there are obtained a more complex models e.g. such as: place-
transition nets or individual-token sets (Reisig W. 1985, 1992) . Some time it is assumed (in a more general context) that P and T are
countable (see the next subsection), €.g. assuming occurrence nets, see: (Bernardinello L. et al. 2009). In the last case, instead of “finite net’, it is
used the term ‘net’.

T Here | p | and | p* | denote the cardinalities of *p and p°, respectively: see the next subsection.
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Figure 5.8 An example partially ordered set
In accordance with Figure 5.8, the obtained graphs for relations /i and co are shown below.

d

Figure 5.9 The [i-and co - graphs

b d £
(b) /

ao——————9d%e——e6————og

The regions of /i and co , denoted by L’s and C’s, are called /ines and cuts, respectively. According to
Figure 5.9 (a) we have the following three lines: L; = {a,b,d, f, g}, Lo = {a,b,c} and L; = {f,g,e}.Ina
similar way, by Figure 5.9 (b) we can obtain the following five cuts: C; = {c,d, e}, Co = {a, e}, C3 =
{b,e}, C4 = {c,f} and Cs = {c, g}.

Let | Al be the cardinality of A (the number of elements if the set A is finite: see the next subsection). The
following notion was introduced.

Definition 5.31 (k-dense set)
The poset X is k-dense iff IL ~Cl=1 (for any L and C).

Example 5.13

In accordance with the last definition, the poset A of Figure 5.8 is a k-dense set. However, the poset shown
in Figure 5.10 below is not k-dense. We have: L; = {a,b}, L, = {c,b},Ls = {c,d} and C; = {ac}, C; =
{b,d}, Cs = {a,d}.And hence, L, n C; = @. This poset becomes k-dense by using the additional edge (a,d):
left to the reader.

Figure 5.10

Proposition 5.3
IL ~nCl <1 (forany L and C)

Proof:
Let a,b € L n C. Assume that a #b. We have: a/ib and a cob. And hence: a = b (a contr).

The study of such relations as /i and co derived from the partially ordered set (X, =) was presented in
(Bernardinello L. et al. 2009). A more formal treatment is omitted: left to the reader.

5.5. Equinumerosity and countability



304

The following definition is first introduced.

Definition 5.32 (function)
Let p € X x Y. Weshall say that p is afunction iff Vv 3 (xpy).
xeX

yveyYy

Non-finite sets are usually interpreted as non-empty sets having cardinality different from any natural
number. In the next definition, the notion of a natural number is eliminated.”

Definition 5.33 (non-finite set)

X is a non-finite set in Dedekind’s sense < 3 (Y# X A Y ~ X).  {see Df. 534, below}
Yo X

In the next considerations we shal assume that X and Y are two numerical sets. Moreover, instead of
relational notation 'x p'y * sometimes, for convenience, we shall use the functional notation "y = f(x) '*. The
notions of injection, surjection and bijection are introduced as follows®.

Let f: X — Y (arrow notation). We shall say that { is injection (into function or one-to-one function, in
short: fe 1-1) iff x; # xo = f(x1) # f(x2), for any x1, x2 € X. This function is surjection (onto function)
iff cod(f) = Y. And finally, f is bijection iff it is injection and surjection (or equivalently: p and p~' are
functions). The equinumerosity of two sets is presented as follows (Stupecki J. and Borkowski L. 1967).

Definition 5.34 (set equinumerosity)

Let p € X x Y. Weshall say that p establishes the equinumerosity of X and Y, inshort: X ~, Y iff

pel-1 A X = dom(p) ~ Y = cod(p). The last two sets are equinumerous, in short: X ~ Y iff
3 (X ~p Y).
Vol

According to the last definition, the equinumerosity relation "~ is reflexive, symmetric and transitive, i.e a

relation of type equivalence (the corresponding proofs are omitted: see the last cited work)®. The cardinality of a set X
is below denoted by | X|. We shall assume that: |@| = 0 and |X| e N (the set of natural numbers), if X is

a non-empty finite set.
As4) [Xl =Yl & X~Y

Example 5.14

Let N, Ne and No be the set of natural numbers, i.e. N =g {1,2, ...} and the subsets of even and odd

natural numbers, respectively. We have: N ~ Ng and N ~ No (see below).

N : 1 2 3 4 5 ..
n — 2n"";: 2 4 6 8 10 ...
n+~ 2n-—1: 1 3 5 7 9 ...

" Julius Wilhelm Richard Dedekind (1831 — 1916)

T There exist various notations related to this notion, e.g. arrow notation, index notation, dot notation, etc. Here, it is used Euler’s
functional notation (Leonhard Euler 1707 — 1783).

f Terms used by the French mathematicians group Bourbaki.
S X X, XmpY 2 Y ~ 0 X, XY A Yoo Z = X ~eo Z

" Known by Galileo Galilei (1564 — 1642)
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Definition 5.35 (cardinal number)
m is a cardinal number ( or cardinal) g )3( ZX) ~ m =¢ |X]).
In particular, in accordance with Definition 5.35, it follows that zero and natural numbers are cardinal

numbers. Next, we shall consider infinite sets (i.e. sets that are not finite). The notion of set countability is
introduced as follows.

Definition 5.36 (countable set)

Let X be an infinite set. We shall say that X is a countable set iff X ~ N.

The countability property (for numerical sets) is discussed below. It is first considered the set Z of integer
numbers.
Proposition 5.4

Z =4 {0,£1,£2,...} isa countable set.

Proof:

Forany n € Z, let f: Z — N suchthat: f(n) =4 if n > 0 then 2n + 1 else —2n. We have:
f0)=1, f(-1) =2, f(1) =3, f(-2) =4, f2) =5, f(-3) =6, f(3) = 7, etc.
Thesis 5.36

Let X and Y be two countable sets. Then X u Y is a countable set.

Proof:

Assume that X and Y are countable. And hence, their elements can be represented by the following two
sequences.

X: X| X2 X3 ...
Y: yiy2ys ...

For any n € N,let f: N — X U Y suchthat: f(n) =4 if n is odd then Xnu+1y2 else ynn (see
below).

N : 1 2 3 4 5
X uUY: X] Yi X2 Y2 X3 ...
Thesis 5.37

Let X and Y be two countable sets. Then X x Y is a countable set.

Proof:

Assume that X and Y are countable. Let X x Y =¢ {(X,y) /x € X Ay € Y}. Forany two different
pairs pairs (Xi,yj), (Xm,yn) € X x Y, the binary relation p = (X x Y) x (X x Y) can be defined as follows:
XY;) P Xmoyn) <dr (it] < m+n) v (i+)] = m + n) A (I < m)): see below.
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ya
y3
y2
yi

Corollary 5.3

The set of rational numbers Q =4 {% / (myn) € Z x N} isacountable set. - {Prop. 5.4, T 5.37}

Obviously, every subset of a countable set is also a countable one. In particular, the above thesis T 5.36 can
be extended for any finite union of countable sets.

In general, there exist infinite sets that are not countable. In particular, it was shown that the set of real
numbers R is uncountable (Cantor G. 1874). ‘Cantor's discovery of uncountable sets in 1874 was one of the

most unexpected events in the history of mathematics. Before 1874, infinity was not even considered a legitimate
mathematical subject by most people, so the need to distinguish between countable and uncountable infinities
could not have been imagined’ (Stillwell J. 2010). The uncountability of R is presented in the next thesis
(Kuratowski K. 1966). The following function fangens was used: y =qr tg(m(x — 1/2)) (in fact: y = tg(-n/?2),
for x = 0 and y = tg(n/2), for x = 1, =n/2 are two breakpoints)”. The last map is a bijection. And so, (0,1) ~ R.

Thesis 5.38

The set of real numbers R is uncountable.

Proof:

Assume that R is a countable set. And hence, the elements of R can be represented as a sequence: (rn).

Let 11,12, ... o, ... be the corresponding elements belonging to pq =qr [0,1]. The first element of this sequence
can be eliminated from pq by dividing this interval into three parts of length equal to 1/3. If r; belongs to one
of these three parts, then, as a next subinterval is selected one of the remaining two parts. If r; belongs to the
borderline of two parts, then as a next subinterval is selected the remaining one. And hence, the next selected
subinterval, denoted by piq: of length 1/3 is such one that 1, ¢ piqi. In a similar way, after selecting p»q> of

length 1/3% from piqi we can eliminate 1a,1.e.12 € p2q2, ... , from puqn of length 1/3" we can eliminate 1y,
etc. And finaly, we have: Np,q, = ic},suchthat ¢ ¢ () and ¢ = jm p, = 1im q,-
n n—»0 n—»o

The next example is under (Ross K.A. and Wright C.R.B. 1999).

Example 5.15

The set F =4 {f/f: N — {0,1}} is uncountable. In fact, assume that F is a countable set. And so, the

elements of F can be represented as a sequence: (f,). Letnow f *(n) =4r if fa(n) = 1 then 0 else 1. And
hence, f* € F and f* ¢ (fy).

" The tangens y = tg(x) has a period of m and asymptotes x = (k + 1/2) &, k e Z. This function is monotonic increasing for x e
[-7m/2,+ /2] and having values from —co to + co. The function’s behaviour is repeated with period 7.
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Consider now the following non-empty set X, named alphabet. The elements of this set are named /letters. A
word is a finite sequence of letters belonging to X . The set of all finite words in this alphabet is denoted by X .

The empty word is denoted by A . Assume now that ¥ =g {0,1} and X* =4 T U {A}. The last set is

countable as it is shown in the next example.
Example 5.16
Consider the set ~*. By 'nb’” we shall denote the ‘number of bits” of a non-empty word x € Z*, e.g. nb(011)

n .
= 3,for x = 011. The decimal value of any binary word (or string) is defined as follows: 1x =4 X a;2""7/,
j=

where n =g nb, e.g. L(0101) = 0x24" 1+ 1x2%"2+ 0x2*"3+ 1x24% = 5" Theabove set T* is
countable. The elements of this set can be ordered as follows (see below).

For any x,y € X

@3 < x,
(2) x <y iff nb(X) < nb(y) v nb(x) = nb(y) A 1x < ly.

Since X" = G ¥, where 30 = {1}, ! = {0,1} = %, 22 = {00, 01, 10, 11}, etc., we can obtain:
i=0
DI A 0 1 00 01 10 11 000 001 010 ...
N : 1 2 3 4 5 6 7 8 9 10 ...

Let T be the set of transcendental (or irrational) numbers (Liouville J. 1851)7, i.e. the set of real or complex

numbers that are not algebraic ones (not be solutions of polynomial equations with integer coeficients: e.g. 7 , e, 2T,
e — 1, etc.). It was shown by Cantor that T is an uncountable set’. A more formal treatment is left to the reader.

In accordance with (A5.4) and Definition 5.35, the cardinality of X, i.e. | X | can be considered as an
object associated with any Y such that Y ~ X. However, we have no any rule related to the map: X — [ X|
and at the same time satisfying (A5.4)%. And so, the last problem can be eliminated by assuming the following
Zermelo’s axiom, given in 1904 and known as the axiom of choice (another possibility is the use of Zermelo-
Fraenkel’s axiom of regularity or foundation). In general, the introduction of cardinal numbers will not be possible
without using one of the last two axioms. In fact, some other approaches were also given, e.g. use of relation type
axiom (a weakly version) instead of the regularity one: (Kuratowski K. and Mostowski A. 1966). Let Z denotes a
family of sets. Zermelo’s axiom of choice can be presented as as follows.

(AS.5) Z #+ O A vXelZ == X 2 2 Ay PQeZ A~ P£Q == PNnQ =92 =
X PO

vX eZ = 1x € XNnY))
Y X x

n .
* The above considered formula can be generalised for a radix m as follows: 2 @ j'mn / , where n and m correspond to the position
Jj=1

number and used radix, respectively. For example, assuming n = 3 and m = 4, we can obtain: 1(232) = 2x 4> ! + 3x43"2+ 2 x
4373 = 46.

T Joseph Liouville (1809 — 1882). The existence of irrational numbers was well-known even in Ancient Greece, e.g. Pithagoras (¢.570 —
c.495b.c.).

¥ Cantor’s 'diagonal’ proof concerning the existence of irrational numbers (1873): http://www.mathpages.com/home/kmath371.htm.

S Formal logic. Encyclopedical outline with applications to informatics and linguistics (1987).
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Let YX beaset of maps from X to Y,ie. YX =4 {f/f:X — Y}. The following two definitions are
introduced (Stupecki J. and Borkowski L. 1967: for convenience, instead of the original XY, the set YX is used in the
second definition).

Definition 5.37 (set of maps)
Let p € X x Y. Weshall say that p € YX (the function p is a map from X to ¥) iff dom(p) = X and
p(X) < Y.

Definition 5.38 (cardinality of a set of maps)
[y [ X = [yX].

In the next considerations, the cardinalities of N and R ,ie. |N| and |R /|, we shall denote by the

following two cardinal numbers: X, and c, known as alef-zero™ and continuum, respectively. Some properties
of these two numbers are presented below (Stupecki J. and Borkowski L. 1967).

Definition 5.39 (sequence stock)

The set X is in stock for the sequence {x,} < V(x € X < 3( €N A x = xj)).
The following proposition was shown.

Proposition 5.5

X =% < 3 (v(#] = xi#Xx) A X isinstock for {Xu}).

{xn} ij

Definition 5.40
Xl < Y] & 5 (X~2).

ZcY

According to the last definition and reflexivity of equinumerosity, the following corollary was given.

Corollary 5.4
Xcy = [xI <yl

Definition 5.41

IX| < 1Yl & IX] <Yl A IX] 2 |Y].

Thesis 5.39
X < c. {Coroll. 5.4, Df. 5.41}

It was shown that the right side of Definition 5.33 is logicaly equivalent to the following expression

(see the next thesis): 3 (| Pl = x ).
Pc X

" The used by Cantor symbol ‘X" denotes the first letter of Hebraic alphaet.

 The following two implications are satisfied (Stupecki J. and Borkowski L. 1967). The proof of these two implications is left to the
reader.

() PcXalPl=% = 5 (¥Y2XAX-~Y).
Yo X
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Thesis 5.40

X is a non-finite set in Dedekind’s sense < 3 (| Pl =x, ).
Pc X

According to the last thesis, the existence of a non-finite set in Dedekind’s sense is logically equivalent to the
existence of a countable subset of this set.

Definition 5.42 (transfinite cardinality)

The cardinality of a non-finite set in Dedekind’s sense is said to be transfinite one.

Corollary 5.5
A cardinal number m is transfinite iff &, < m. {T 5.40, Df.5.42, Coroll. 5.4}

Corollary 5.6
The cardinal numbers X, and c¢ are transfinite. {T 5.40, Df.5.42, Coroll. 5.4}

The following thesis is satisfied (Stupecki J. and Borkowski L. 1967).

Thesis 5.41

No # C

Proof:

Assume that &, = ¢ {aip}. Let X =4 [R. And hence, in accordance with Proposition 5.5, there exists a
sequence {xn} such that R is in stock for {x,}. On the other hand, it is known that for any x € R, there

exists exactly one proper representation of x as non-finite decimal® (obviously, starting from a given position, all
next digits may be equal to zero). We can obtain the following proper representations (any ¢i denotes the integer part of
the real number xi and any yij — the j™ digit of x;):

X1 = C1, Yuuynyis ... Yin ...
X2 = C2, Y21¥22Y23 ... ¥Yon ...

Consider now the sequence {z,} such that: z, =¢ if ymm # 1 then 1 else 2. We have a proper
representation of some real number z = 0, z1zz3 ... and z ¢ {Xa}.o {contr.)

Corollary 5.7
Xo < C. {T 5.39, T 5.41, Df. 5.41}

In particular, the following two theses were also shown (the corresponding proofs are omitted).

Thesis 5.42

2 3 Y2XAX~Y) = 3 (Pl=x).
Yo X Pc X

* See also: (Knuth D.E. 1997: Donald Ervin Knuth, born 1938).
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XcR A lXl =% = IR-X| =<
According to the last thesis, the cardinality of R is invariant under removing a countable subset of elements.

Thesis 5.43

nt = ¢, forany n € N — {I}.

Example 5.17

Let F be the set considered in Example 5.15. Since F =¢ {0,1}N then |F| =] {0,138 | = |{0,1} I\
= 2% = ¢ (Df. 5.38, T 5.43}

The above introductory notions related to classical set theory are an illustration of this fundamental work. A
more formal treatment is omitted: left to the reader. In the next considerations Kripke - Platek and other set
theories are cited. A brief presentation of Kripke - Platek axiomatic set theory is only given.

5.6. Kripke - Platek and other set theories

Zermelo’s axiomatic set theory was extended by adding new axioms, e.g. the axioms of replacement” and
regularity (or foundation) introduced in Zermelo-Fraenkel set theory.” On the other hand, there were also
presented some alternative approaches, e.g. such as (Holmes M.R. 2017): typed theories of sets (Whitehead A.N.
and Russell B. 1913), Ackermann’s set theory (theory of classes in which some classes are sets), Quine’s new
foundations (as a simplification of the theory of types), positive set theories (with topological motivation), constructive
(i.e. intuitionistic) set theories, set theory for nonstandard analysis, etc.* The classical Kripke - Platek set theory is
an axiomatic system weaker than Zermelo - Fraenkel set theory. Kripke - Platek set theory with urelements (i.e.
with basic elements: allowing large or high-complexity objects) is an axiomatic system based on the classical Kripke-
Platek set theory.’ The introduction of urelements was of interest for technical reasons in model theory (Barwise
K. J. 1975). The technical advantage of this theory is that all of its constructions are ‘absolute’ in a suitable sense.
This makes the theory suitable for the development of an extension of recursion theory to sets (Holmes M.R.
2017). A brief presentation of the last system (denoted in short by KPU) is given below.™

It is used in KPU a two-sorted first-order predicate logic language with a single binary relation symbol "€,
denoted by L* and defined as follows. Letters of the sort: p, q, r, ... denote urelements (if they are used) and
letters of the sort: a, b, c, ... denote sets (instead of the traditional capital letters: A, B, C, ...). The letters: x, y, z, ...
may denote urelements or sets, e.2. X =¢f p or X =q¢r a. The letters of the sets may appear on both sides of
"€’ (e.g. a € b), but those for urelements may only appear on the left (e.g. p € b). The presented below axioms
(in particular: Ao-separation and Ao-collection) will require reference to a certain collection of formulae called Ay
formulae, consisting only formulae built by the constants: "€”, '~", 'A”, v’ and bounded quantification. The
following KPU axiomatic system was presented (e.g. in accordance with ZFC, since a and b may be arbitrary,
Al / zrcsyle can be represented as follows:

" Published independently by Fraenkel A. A. H. and Skolem A. T. (in 1922)

T This axiomatic system was proposed in order to formulate a theory of sets free of paradoxes such as Russell’s paradox: 1901 (Bertrand
Russell 1872 — 1970). The same paradox was discovered in 1899 by Zermelo E. F. F. (but not published). Let Y =4 {X/X ¢ X}. The
following antinomy can be obtained: Y € Y < Y ¢ Y. Another paradoxes were also observed, e.g. such as: Burali-Forti’s paradox
(1897), concerning ordinal numbers (a generalisation of natural numbers: Cesare Burali-Forti 1861 — 1931) or Cantor’s paradox (1895 - 9)
concerning natural numbers (7he Free Encyclopaedia, The Wikimedia Foundation, Inc.).

t As an example: small set theory or also double extension set theory.
§ Saul Aaron Kripke, born 1940 ; Richard Alan Platek, born 1940

** The Free Encyclopaedia, The Wikimedia Foundation, Inc.
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A1 (axiom of extensionality) Y xeaeoxeb) > a=b
A2 (axiom of foundation) For every formula ¢(x): E(p(a) = 3 (p(a) A v ~ 0(x)
A3 (axiom of pairing) I (x € a) A (y € ) |
A4 (axiom of union) ; v v (y € a)f
¢ ceb yec
AS (axiom of Ay-separation) 3 ‘Z (x) €a < x €b A @X)) (forevery Ao-formula ¢(x))
A6 (axiom of Ar-collection) v 3 o(xy) = g v 3b(p(x,y)
AT (axiom of set existence) 3 (a - a) }

a

For example, in accordance with ZFC, since a and b may be arbitrary, Al / zrcsyle can be also represented
as follows:

A1 (axiom of extensionality) V v(V(xeasxeb = a=b)
a b X
The following two additional assumptions were used (describing the partition of objects into sets and urelements).

Assuumption 1 v(p # a)

a

Assuumption 2 V(X & p)

NG VR

It can be observed that the used KPU axioms are universal quantifier closures’ of the corresponding
formulae. In particular, the above axioms A2, A5 and A6 are axiom schemes.* This axiomatic system can be used
in model theory of infinitary languages (assuming infinitary long statements or proofs). The transitive such models
(inside a maximal universe) are called admissible sets. A more formal treatment is omitted: left to the reader.

5.7. Set theory: some aplications

Set theory (because of its general nature) has very many applications not only in classical mathematics (e.g. in
differential and integral calculus) but also in theoretical computer science (in general, e.g. recursion theory) and
discrete mathematics (in particular, e.g. the algebraic treatment of set operations). Set theory provides the basis of
general topology (e.g Polish spaces), etc. Kolmogorov’s axioms® (1933) are the foundations of probability theory
(Kolmogorov A.N. 1956). ‘These axioms remain central and have direct contributions to mathematics, the
physical sciences, and real-world probability cases’(Aldous D.J.""). This system is presented below. Some
introductory notions are first presented (Fisz M. 1969).

" Orequivalently: 3  (cca)

@ ceb

T The universal quantifier closure of a formula @ is the formula whith no free variables obtained by adding a universal quantifier for every
free variable in @, e.g. V'V (R(x) v 3 S(y,z)) is an universal quantifier closure of the formula @ =4 R(x) v 3 S(y,2).
x oz y ¥

¥ Any axiom scheme can be considered as a standard way of introducing axioms having the same syntactic structure, e.g. the axiom Al (the
first law of the hypothetical syllogism: law of Duns Scotus, see Subsection 1.7) , of Zukasiewicz’s implication-negation axiomatic system:
p = (~p = q) can be generalised for any two formulae ¢ and w, as follows: ¢ = (~¢ = v).

$ Andrey Nikolaevich Kolmogorov (1903 — 1987)

" What is the significance of the Kolmogorov axioms? Retrieved November 19, 2019 (The Free Encyclopaedia, The Wikimedia
Foundation, Inc.), https://www.stat.berkeley.edu/~aldous/Real World/kolmogorov.html: David John Aldous, born 1952
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Let E be the set of elementary events (called also ‘atomic’) . Any event which is not elementary can be
considered as a subset of elementary events, e.g. A < E. The set of all such subsets of elementary events is

denoted by Z. According to Definition 5.21, for |[El = n € N* we have: | Z| = 2.

An event including all elements of E is said to be a sure event. An event which no includes any element of
E is said to be impossible one. Set inclusion and set equality are introduced in the same manner as in classical set
theory, assuming now that set elements are elementary events. In accordance with the last properties Z is
defined as a Borel’s field set of events.”

Kolmogorov’s axiomatic system is presented as follows.

Al (axiom of non-negativity) The probability p(A) € R ofanevent A € Z is anon-negative number, i.e
p(A) > 0

A2 (axiom of unit measure) p(E) =1

A3 (axiom of c-additivity) pPUA) = Z PA,) . for any countable sequence of disjoint sets {Ai}

The event complement is defined as follows: A" =4t E — A (in a similar way as set complement: see Definition
5.8). Some consequences of the last axioms are illustrated below (Fisz M. 1969).

Proposition 5.6
PA) = 1 — p(A)

Proof:

Since A and A’ are disjoint sets of elementary events, we have: p(A U A") = p(A) + p(A’) = 1. And
hence: p(A’) =1 — p(A). {A2, A3}
Corollary 5.8

Since p(A’) > 0 then I — p(A) > 0. Hence p(A) < 1. Wehave: 0 < p(A) < 1. {Al,Prop. 5.6}

Proposition 5.7
p@) =0

Proof:

Forany A: A U E = E. Let A =¢t @.Then A and E are disjoint and hence p(A U E) = p(A) +
p(E) = p(E) = 1. Hence p(A) = 0. {A2,A3,Coroll. 5.8}
Proposition 5.8

A cB = pA) < pB)

Proof:

Assume that A < B. Then B = A u (B — A). And hence: p(B) = p(A) + p(B — A). Since
p(B — A) > 0 then p(B) = P(A). {A1,A3}

Proposition 5.9

" In general, the set E may also be of cardinality Xo or c.

T The probability p(A) satisfying Kolmogorov’s axiomatic system can be considered as a normalised nonnegative and countably
additive measure in Borel’s field set of events Z (Félix Edouard Justin Emile Borel: 1871 — 1956).
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Let A,B € Z be two not necessarily disjoint sets of elementary events. Then: p(A v B) = p(A) +
p(B) — p(A n B)

Proof:

Since AuB=A-B)uB and A=(A - B)u (A nB) then: p(A U B) = p(A - B) +
p(B) and p(A) = p(A — B) + p(A n B).

From the last equation we have: p(A — B) = p(A) — p(A n B). And hence: p(A U B) = (p(A) —
p(A n B)) + p(B) = p(A) + p(B) — p(A n B).. {A3}

Since "~ " and " U " are two commutative, associative and mutually distributive binary operations,
accordance with the last proposition, for any three events A, B, C € Z we can obtain:

—

n

PAUBUC) = p((AuUB)UOQ) {assoc.}
= p(A U B) + p(C) - p((A U B)  O) {Prop. 5.9}
= (G(A) * p(B) = PA A B) + p(C) = p(A N O U B AC)  (Prop. 59,

distrib}

= p(A) + p(B) + p(C) - p(A N B) — (p(A n C) + p(B n C) — {Prop.5.9}
p((A n C) n (B nC))

= p(A) + pB) + p(C) — p(A nB) — p(A n C) — pB n C) + {comm,CnC
p(A n B n Q). = C}

Let now the above sets A, B and C be denoted by Ai, A> and As, respectively. The following expression
can be obtained (the used here abbreviation " 1t  denotes "less than’, i.e. '<”).

3 3 3
p(UA)) = ,ZIP(AQ = X pA A+ DT p(AL N A N Ay

o1 i= iy =170 It i,

In general, for Aj, Az, ... , An € Z (n > 3) the following expression can be obtained (known as
Poincaré’s formula.”

n n n n
p(UA)) = glp(Ai) - Y pA N A+ 2 P(A; N A A Ai3) +

o1 iniy=1/i 1t i, iy iy =1/ 1t 5 7y

+ D" ep(A AL A AY)

Let A be an event. Consider the sequence: By, By, ... ,Bn of mutually exclusive events forming a complete
system. Assume now that A can be satisfied iff there exists B; such that B; is satisfied (i € {1, n}). And
n

hence, the event A can be decomposed into the subcases A "Bi,AnB,, ..., AnB,, i.e. A = 'Ul (AN B,)
T

. And so, we can obtain: p(A) = p( .L_Jl (AnB,)) = _ip(AmBi). Since p(A N Bi) = p(Bi) - p(A/Bi) we

have (the complete probability formula™): p(A) = i p(B,)-p(A/ B)).

* Jules Henri Poincaré (1854 —1912)

T Known also as: ‘total probability theorem’.
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p(B,)-p(A/ B,)
p(A) '

On the other hand: p(A) - p(Bi/ A) = p(Bi) - p(A/B;). Hence: p(Bi/ A) = And

p(B,)-p(A/ B,)
2p(B;)-p(A/ B;)
mid-eighteenth century by Thomas Bayes (1701 —1761)."

finally we have: p(Bi/A) = . The last formula is known as Bayes’ theorem, given in the

‘Discrete event systems (known also as: event-driven systems) are systems whose dynamic behaviour is driven
by asynchronous occurrences of discrete events’. Petri nets’ are fundamental models of such systems (Reisig W.
1985, 1992). Set theory provides a foundation for Petri net theory and its applications. As an illustration (at the
end of this subsection), the notions of D-partition and net k-distinguishability are introduced below (Tabakow L.T.
2008)*. At first, some basic notions are given.

In general any place-transition net N =4 (T, P, A, K, Mo, W), where (T, P, A) is a finite net containing
sets of transitions , places, and arcs called also edges, K: P — (INo — {0}) and W: A — N are the
corresponding place capacity and edge multiplicity (called also weight) functions, respectively. In particular, N
is ordinary iff W(a) = 1 (forany a € A). The initial marking vector My : P — INw», where N denotes the

set of all natural numbers, IN =4 N U {0}, INw =¢r IN U {®}, and ® isan infinite number such

thatt ® + k = ® and k < o (forany k € IN) (Murata T. 1989, Reisig W. 1985, 1992). The forward
marking class of N,ie. [Mo> =¢¢ {Me INo" /31 € T*(Mo[t>M) }.

In the next considerations we shall assume N is a live and bounded net. In the case of manufacturing
systems the net reversibility property is also required. Moreover, for simplicity it is assumed below that N is pure
(i.e. it has no self-loops) and simple (there are no different vertices in N having the same pre- and post-sets). The

net P-invariants (T-invariants) are computed using N-i = 0 (NT-X = 0), where N is the PN-connectivity
matrix of N (having |T| rows and |P| columns). We have: N = N' — N, where N" and N~ are the
corresponding output and input matrices for N. The support of any P-invariant i wrt N is defined as follows:
supp(i) =ar {p € P/i(p) # 0} < P.Let I be the set of all (positive) P-invariants of N and J <1 isa
subset. The P-invariant matrix of N wrt J is introduced as follows: J :J x P — IN, where J (i,p) =a i(p)
e IN.

For convenience only, we shall assume below that the P-cover J of N is a set of all positive and minimal
P-invariants. Any such set is assumed to be a set of linearly independent P-invariants. And in fact, any P-
invariant matrix J can be considered as an information system. Hence, we shall assume that the set of P-
invariants J (i.e. ‘attributes’ of this information system) is a reduced set (Murata T. 1989). Also we shall use the
notion of the revised P-invariant matrix of N, definedas:p: J x P — {0.1}, where p(i,p) =¢r | iff i(p) = O
(Immanuel B. and Rangarajan K. 2001). Let x € T U P . The pre-set (post-set) associated with x is defined
as follows: "x =¢¢ {y e TUP/ (yx) € A} (x"=a {y € TuUP/(xy) €A} ). Foranynonempty

=1

XcTuP: *X =¢ Ux and X* =4 UX" . Any ordinary net is a marked graph iff I'p| =1 p

xeX xeX
(for any p € P). For simplicity, it is assumed below N have a P-cover. Otherwise, this method is also
applicable. In the last case some additional test points is necessary to be introduced. Moreover, it can be observed
that a selection of a minimal (or in general: optimal) P-cover may not guarantee a better net fault
distinguishability. The net’s places are interpreted below as representing resource states or operations and the

" (Bradistilov G. 1961): Georgi Bradistilov (1904 — 1977), (ROberts F.S. 1976): Fred Stefen Roberts, born: 1943.
T Carl Adam Petri (1926 —2010)

t A fragment of this paper is here presented. The paper describes a method of diagnosis-time assessment in discrete event systems. Any
such system is modelled by a /ive, bounded, and reversible place-transition Petri net N. Also there are assumed some deterministically given
delays associated with the transitions of N and hence N is assumed to be deterministic timed. For this purpose two different type of (single)
fault models are used, i.e. place fault and transition fault models and the corresponding diagnosis process is assumed to be sequential.
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transitions as representing start or completion of the corresponding discrete event (Zhou M.C. and DiCesare F.
1993).

Let [Mo>e =¢r [Mo> U { Ma}, where Myis the initial marking and Moa be a marking of N such
that Mo ¢ [Mo>. We shall say Mq is a faulty marking. Since M -1 = My i, for any M € [Mgy> and i €
J (Reisig W. 1985), then AM -i = 0, where AM =4 M — M. The last property is satisfied for any P-
invariant i € J . Hence we can obtain J - AMT = 0 . Therefore for M € [M¢>o the above equation may be
violated. Thus we have: J - AMT = a e {0,1}/! | (forany M e [Mg>q, obviously a = 0 iff M e [Mg>).
Without losing any generality, below (a); # 0 are interpreted as (a)s = 1 (s € {1,...,| Jl }). And hence,
in accordance with (Murata T. 1983), any (a)s = 1 will correspond to some subset of places supp(is) < P
having a (potentially) faulty behaviour. Let Q(a) =ar N supp(iy) » N supp(iy)” & P, where supp(is)” =ar

(a)s=1 (a)s=0
P —supp(is) is the corresponding set complement operation (provided there is no ambiguity we shall use below
the same designation “ " “ as an index, e.g. to denote M’, i.e. the marking M for N’, where N’ is the net
simulator corresponding to N, in a similar manner Q’ is used for Q of N’). The notions of D-partition and net
k-distinguishability are given below (Tabakow I.G. 2000, 2005, 2006 / faut distinguishability ..., 2007).

Definition 5.41

By a D-partition of the set of places P of a given place-transition net N wrt the P-cover J] of N, denoted
by Q(N,JJ),or Q if N and J are understood , we shall mean the (multi) family Q =4 {Q(a)/a e

{O,l}lJ |}_

Proposition 5.10

(a QO =d,
(b) Vab#0(a=b = Q@ n Qb) =) and
© U O)=P.-

acto
Definition 5.43
The Petrinet N is a k-distinguishable net under Q iff

(@ 3Q®a) €Q (1Q@] =k) and
(b) VQ €Q (@l < k).

IA

5.8. Commonsense sets: some comments

‘Set theory has long been known for its phenomenal success in providing a basis for virtually all of
mathematics, both in the philosophical sense of a precise foundation, and in the more prosaic sense of naturalness
for defining other mathematical concepts with minimum pain. Here we explore the idea that also in commonsense
reasoning there is a natural role for sets, although perhaps not as a basis for all such reasoning. Despite the wide
variety of knowledge representation schemes that have been proposed, set theory seems not to have been
explored as a vehicle for representing commonsense knowledge’.” In accordance with this work, ‘it is argued that
set theory provides a powerful addition to commonsense reasoning, facilitating expression of meta-knowledge,
names, and self-reference. Difficulties in establishing a suitable language to include sets for such purposes are
discussed, as well as what appear to be promising solutions. Ackermann’s set theory as well as a more recent
theory involving universal sets are discussed in terms of their relevance to commonsense’."

* Perlis D., Commonsense Set Theory. University of Maryland Department of Computer Science College Park, Maryland 20742:
file:///C:/Users/user/Documents/ COMMONSENSE%20SETS%20Maryland%20t0%20samo.pdf, 10pp. See also: (Geldenhuys A.E. et al.
1999).

T (Ackermann W.F. / 7y axiomatic - - -, 1956): Wilhelm Friedrich Ackermann (1896 — 1962)
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“The philosophical logician’s evaluation of a theory should be regulated by meta-theoretical norms which are
neither rigid laws written on our genes not cultural artifacts embedded in ordinary discourse, but rather
reflectively constructed expressions of our desire to be rational’(Poliard S. 2015). Some considerations, given in
the last work, are cited below.

‘As I have already indicated, we shall find that a mere grasp of commonsense notions of set will not supply
us with an even remotely adequate appreciation for mathematical sets. In fact, I doubt whether any
‘commonsensical” clarification of mathematical set theories is either possible or needed. My point is simply that
we can be sure of this only after an investigation of ordinary language. And such an investigation is warranted
even if its results are wholly negative’.

Some considerations related to Black’s The Elusiveness of Sets’™ were also given (Poliard S. 2015): ‘Black
argues that commonsense sets (constructed in a certain way) are objects of the same type as mathematical sets.
As a convenient shorthand we might say that Black "identifies mathematical and commonsense sets” or "claims
that mathematical sets are commonsense objects”. ‘I gather that Black is actually making the much less dubious
claim that one can plausibly assert both that sets are commonsense objects and they are apparently
uncommonsensical “abstract entities” can be connected up with ordinary language. If this connection cannot be
made, then sets may indeed be "abstract entities’, but they are not commonsense objects’.

6. Multiset theory

‘A multiset is a collection of objects (called elements) in which elements may occur more than once. The
number of times an element occurs in a multiset is called its multiplicity. The cardinality of a multiset is the sum
of the multiplicities of its elements. Multisets are of interest in certain areas of mathematics, computer science,
physics, and philosophy’(Blizard W.D. 1989). Many aspects related to multiset theory can be found in
mathematical literature, e.g. works given by: Leibniz, Weierstrass, Dedekind, Cantor, Frege, Peano’, etc., see
(Blizard W.D. 1989). Since multisets (called also bags or msets) are generalisation of sets, in accordance with the
last work, it is developed ‘a first-order two-sorted theory for multisets that ‘contains” classical set theory. The
intended interpretation of the atomic formula x €" y is 'x is anelement of y with multiplicity n”.” Next, it
is presented a model of multiset theory using ZFC (i.e. Zermelo-Fraenkel axiomatics with the axiom of choice)?. Here,
the above atomic formula 'x €" y’ is interpreted as y(x) = n (multisets are modelled by positive integer - valued
functions). As an example, the axiom of extensionality in this theory is presented as follows.

VV(V v(ze" x & ze"y) = x=Y)
Xy z n

Example 5.18 (multiset)

For any natural number n > 1, there exists exactly one such representation (called canonical}: see Example
5.9 of Subsection 5.4). Assume, e.g. n = 12 (22 x 3"). Hence n is related to the following multiset: {2,2,3}. In
a similar way: n = 2700 = 22 x 3% x5% corresponds to {2,2,3,3,3,5,5}, etc.

6.1. Basic notions and definitions

" (Black M. 1971: Max Black 1909 — 1988)

T Gottfried Wilhelm Leibniz (1646 — 1716), Karl Theodor Wilhelm Weierstrass (1815 — 1897), Julius Wilhelm Richard Dedekind (1831 —
1916), Georg Ferdinand Ludwig Philipp Cantor (1845 — 1918), Friedrich Ludwig Gottlob Frege (1848 — 1925), Giuseppe Peano (1858 —
1932)

¥ According to this system, the letters of the sets may appear on both sides of "€, but those for elements may only appear on the left side
(as in KPU axiomatic system: see Subsection 5.6).



317

Let fs: X »> N U {0}, where |X| e N and fs = #(xi,B) be the number (or the multiplicity) of
xi’s in B.” The following set is said to be a basis: {fi/x e X}." And hence, fz = (fsi, ..., fax) = T #(x,B)-
xeX
fx. Here, fs is known as Parikh’s vector (Parikh R.J. 1966).*

Example 5.19 (Parikh’s vector)

Let X =4 {X1, X2, X3, X4} and fs =ar (3,1,2,0). Since fu = (1,0,0,0), f = (0, 1,0,0), fu = (0,0, 1, 0)
and fu = (0,0,0,1),then fz =3 -fu + 1-fo+ 2-fu + 0-fu = (3,0,0,0) + (0,1,0,0) + (0,0,2,0) +
(0,0,0,0).

Let A and B be two multisets on X. The distance function d(A,B) =¢ ¥ |fa(x) — fa(x)|. In fact, the
xeX

following properties are satisfied (forany A, B and C on X)..
d(A,A) =0,

d(A,B) = d(B,A) and

d(A,B) + d(B,C) > d(A,C)®

Let a,B € R be two arbitrary real numbers. The following property is satisfied: || + [B| = |a +
B |. In particular, for o =¢¢a — ¢ and P =¢ ¢ — b wecanobtain: |[a — c| + |c —b|] > |a — b|. And
hence the last inequality is also satisfied (in accordance with the above notion of a distance function: a more formal
treatment is left to the reader).

The support of a multiset B is defined as follows: supp(B) =ar {x € X/ #xB) > 0} < X. The
cardinality of B,ie. |B| =g Y#xB). Let n € N U {0} and B, =4 {x € X/ #x,B) > n}. We
x € supp(B)
have: By = supp(B) and B, < supp(B).

6.2. Multiset operations

Some definitions concerning multisets are given below (Peterson J.L. 1981). The multiset inclusion relation
and multiset equation (denoted by '<,” and '=,”) are first introduced.

A B Sa VY (HxA) < #xB))

A = B <y v (#(x,A) #(x,B))
According to the last bag equation, we can obtain:

XEVX(#(X,A) = #(x,B)) < ‘v’X ((#(x,A) < #(x,B)) A (#(x,B) < #(x,A)))

SV (HXA) < HXB)) A Y (HGB) < H(GA))  {Subsection 3.3}

* Because of the one-to-one correspondence between fg and B and hence, for convenience, some times fg is said to be multiset.
 Provided there is no ambiguity and for simplicity, fq is used instead of fi (for any x; € X).
£ Rohit Jivanlal Parikh, born 1936.

$ Corresponds to the triangle inequality in a metric space.
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o (Ao B)ABo A).

The following multiset operations are also considered.

AU B: #x, A v B) =¢ max {#(x,A), #(x,B) }

A N B: #x,A n B) =4 min {#(x,A), #(x,B) }

A - B: #x,A - B) =4 #(x,A) — #x, A n B)

A+ B: #x,A + B) =¢ max {#(x,A — B),#x,B — A)}
A+ B: #x A+ B) =¢ #Xx,A) + #(x,B)

Example 5.20 (set union)

As in the previous example, let X =4 {xi, X2, X3, x4} and A, B be two multisets on X, e.g. fa =ar
(1,3,0,2) and fB =df {4,1,2,0), ie. A = {X], X2, X2, X2, X4, X4} and B = {X], X1, X1, X1, X2, X3, X3}. We have:

faus = ¥ #x,A UB)-f, = ¥ max{#(x A),#x,B)} i = 4-fu +3-fot+2-fis +2-fu= (4,
xeX xeX

0,0,0) + (0,3,0,0) + (0,0,2,0) + (0,0,0,2) = (4,3,2,2) = max{fa, fs} . Andhence: A U B = {xi,

X1, X1, X1, X2, X2, X2, X3, X3, X4, X4}.

It can be shown that multiset union and multiset intersection are two mutually distributive binary operations,
i.e. the following proposition is satisfied.

Proposition 5.11
For any multisets A, B and C:

AnBulC = (AnB) uAnO
and
AuBnOC = (AuB) n (AuQ).

Proof:
In accordance with the first equality and the above definitions, we have:
(L =) min{ fa(x), max{ fa(x), fe(x) }} = max { min { fa(x), fa(x) }, min { fa(x), fc(x) }} (=R)

The proof of the first equality will require the consideration of the following 32 = 9 cases (for any fa(x),
fa(x), fo(x) and x € X) and also two times subcases: fa(x) > fc(x) and fa(x) < fc(x), as it is shown
below.

(1) fa(x) > fp(x) > fc(x)
2) fa(x) > fp(x) = fc(x)
3) fa(x) > fa(x) < fc(x) (plus subcases: fa(x) > fc(x) and fa(x) < fo(x))
“) fa(x) = f(x) > fc(x)
) a0 = f(x) = fe(x)
(6) fa(x) = f(x) < fc(x)
7 fa(x) < fa(x) > fc(x) (plus subcases: fa(x) > fc(x) and fa(x) < fo(x))
®) fa(x) < fp(x) = fc(x)
Q) fa(x) < fp(x) < fe(x)

As an illustration, by assuming case (7) we can obtain:

L = min{ fa(x), max{ fa(x), fc(x) }}
min{ fa(x), fs(x)}
fa(x)
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R = max { min { fa(x), fz(x) }, min { fa(x), fc(x) }}
max { fa(x), min { fa(x), fe(x) }}
fa(x)  { min { fa(x), fe(x) }} = if fa(x) < fc(x) then fa(x) else fc(x) }

The remaining cases are considered in a similar way. The proof of the second equality is also left to the
reader.

Example 5.21

The multiset intersection is not distributive over symmetric multiset difference, e.g. A n (B + C) #,
(A n B) = (A n C). The left and the right sides of the last inequality are given below.

L = min{ fa(x), max{ fas(x) — min { fa(x) , fe(x) }, fe(x) — min { fa(x), fc(x) }}}  and
R = max{ min { fa(x) , fa(x) } — min { fa(x), fs(x) , fc(x) }, min { fa(x) , fe(x) } —min { fa(x) , fs(x) , fc(x) }}

Assuming 3,4 and 5, for fa(x), fa(x) and fc(x) respectively, we can obtain: L=1 # 0 = R.

In general, multiset complement is not a definable operation. However, in some particular cases this
operation may be used. Let A,B and C be multisets. Assume that A, B <, C. The last multiset can be
considered as a multiset space wrt A and B. Hence, the C — multiset complement wrt A and B is introduced
as follows: A" =¢ C — A and B =4 C — B. {Df. 5.8}

Proposition 5.12

Let A,B < C and A", B” betwo C— multiset complements. The following restricted De Morgan’s laws
are satisfied: (A U B)" = A" n B and (A nB)" = A" U B

Proof:

Let x € X be arbitrary. The proof of the first equality is given below (the proof of the second equality is
similar: left to the reader).

L =favp (X) =a fo(x) — max{fa(x), fa(x)}
R = fA' N B’ (X) =df mln{ fc(X) - fA(X), fc(x) — fB(X) }

Let fa(x) > fg(x) then: L = fc(x) — fa(x) = R. Assume now that fa(x) < fg(x) we have: L =
fc(X) - fB(X) = R.

6.3. Multirelations

We shall consider below binary multirelations. Any such relation p can be represented as a subset of
ordered pairs belonging to X x X and having some multiplicity, e.g. #((xi,Xj), Mp), where M, is the matrix
associated with p*. Unfortunately, in the case of computer science theory and applications (e.g. logical and
algebraic methods in programming or theory and application of relational structures) another approach is used, first
presented in (Parikh R.J. 1983) and (Rewitzky I. 2003). Some basic notions and properties used below are
under (Berghammer R. and Guttmann W. 2015). The notion of multirelation is first presented. In accordance
with the last work, the Z notation is used below (Spivey J.M. 1998), e.g. 'R < A x B’ is denoted as:
‘R: A < B’ (with source A and target B). Similarly, it is used matrix notation 'Ry," instead of " (x,y) € R’

" This approach is useful in Petri net theory wrt the fundamental notion of unfolding (see the next subsection).

T See also the following extended version: Berghammer R. and Guttmann W., An algebraic approach to multirelations and their
properties. 24pp: file:///C:/Users/user/Documents/ ALGEBRAIC%20PROPERTIES%20TO%20MULTIRELATIONS.pdf.
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or 'xRy’, etc.” The following three special relations are introduced: O, T and I (the empty, universal and
identity relations, i.e. O =@ < X x X, T =7 = X x X and 1 =4 {(x,x)/x € X}, respectively).

A binary multirelation can be considered as a relation in the usual sense, i.e. R : A <> B (see Definition
5.17), assuming that (the targed) B is a powerset (see Definition 5.21)

Definition 5.44 (multirelation)

Let A, B be two sets and R be a binary relation under Definition 5.17 (here A and B correspond to X and
Y, respectively) with the additional property that the targed (B) is a powerset (28). Then we shall say that R is a
multirelation.

According to the last definition, R : A <> 2B is a multirelation, B is a superset.” In particular, the empty, the
universal and the membership multirelations are denoted by: O : A <> 2B T:A < 2B and E: A « 24
where O = @, T=A x 28 and Eyy <o x € Y (forany x € A and Y e 2%).

Let Q: A x 2B and R: B x 2¢ be two multirelations. The composition of Q and R, denotedas Q ;R :
A x 2€ is defined as follows.
(Q:Rxz <ar 3 Quy A v Ryz,forany x € A and Z e 2C.

Ye2B yey

The transposition of a multirelation R is not multirelation (the transposed relation, i.e. converse, is denoted by
RS, obviously: (R®)° = R). Instead, the dual operation is used (Berghammer R. and Guttmann W. 2015). The dual
of R, denoted by R¢: A <> 2B is defined as below (here Y denotes the complement of Y, i.e. Y* wrt the superset
B).

R¢y ©ar ~ Ryy .forany x € A and Y e 2°

The following operation precedence was introduced: the highest precedence have the unary operations
complement and dual, then multirelation composition and next the multirelation operations of union and
intersection (the definitions of the last two multirelation operations and multirelation complement are the same as in general
relations, so they are omitted).

Let R: A <> 28 The following property is satisfied (forany x € A and Y,Z < 2B).
RX,Y A Y c /7 = Rx,z.

In accordance with the last property, if x € A isrelatedtoaset Y € 2B then x also has to be related to
all supersets of Y.

The notions of a contact multirelations and topological contact multirelations, concerning multirelations of
type R: A <« 2%and first introduced in (Aumann G. 1970), are given below: Aumann’s axiomatic system is
first presented (Berghammer R. and Guttmann W. 2015)

Al A ~Rx,®
XxeA

A2 A4 Rx,{x}
XeA

A3 v Y Ruy A YcZ = Rz
xeA Y,Z€ 2

Ad VR, R = Ry
avzear YN (yevy vz) v

A5 \4 v ARX,YUZ f— RX,Y A\ RX,Z
xeA Y,Z€ 2

* According to the used here Z notation and for convenience with the next considerations, the above binary relation will be denoted in
this subsection by 'R’ instead of "p".

T Equivalently: p ¢ A x P(B).
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Multirelations satisfying Al - A3 are said to be contact ones. Any contact multirelation is called a
topological contact if , in addition, A4 and A5 are also satisfied. According to A3, R is up-closed
multirelation from A to 2%." Some properties (given in the extended vesion of this work: Section 3) are illustrated
below.

In accordance with the last work, being relations, the multirelations of type A <> 2B form a bounded
distributive lattice under the operations of union and intersection (which are mutually distributive).” There were
studied various aspects summarised in twenty-one theorems. As an example, the following two theorems were
presented.

Thesis 5.44

Let P,Q and R be arbitrary multirelations of the same type "A <> 2B’. We have:

(), O:R =0
2) E;R =R
3 T:R =T

“4) R < R;E {holds if R is up-closed}
5 @®PuQiR =P;R UQ;R

(6) PnQ;R c P;R n Q;R {holds if P, Q are up-closed}
7 (P;Q;:;R < P;(Q:;R) {holds if Q is up-closed}

(8) P;Q UP;R ¢ P;(Q UR)
©® P;Q nR)y ¢ P;QnnP;R.

Thesis 5.45

Let Q and R be arbitrary multirelations of the same type "A <> 2B’ We have:

() o0i=T
2 E'=E
3 T=0

@  @®RHY =R

5) @Q v R*=Q'nR!

6) (Q n R¥=QUR!