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From the Guest Editors 

The Conference on New Concepts and Materials for Molecular Electronics and 
Nanotechnology (CMME '04), which took place in Puszczykowo near Poznań (Po
land) on 11-15 September 2004, followed the series of international seminars on 
highly conducting organic materials for molecular electronics organised by the Insti
tute of Molecular Physics of the Polish Academy of Sciences: 

• Polish-French meetings (Czerniejewo, 1985, Nancy, 1987, Czerniejewo, 1989), 
• Polish-Soviet meetings (Czerniejewo, 1988, Chernogolovka, 1990, Kiekrz, 1992), 
• 4th International Seminar (Zajączkowo, 1994), 
• 5th International Seminar (Puszczykowo, 1997), 
• NATO Advanced Research Workshop (Poznań, 2001). 
The detailed scope of these conferences evolved with time, but it was always fo

cused on molecular electronics and its potential applications. 
CMME '04 was planned to be an interdisciplinary meeting of scientists, both theo

reticians and experimentalists. The main objective was to bring together scientists 
from the "old" European Union and new member countries working in the field of 
materials science, nanotechnology and processing of molecular devices. Training of 
young physicists, increasing their experience, knowledge and qualifications was an 
important aspect of the meeting. The programme focused on the following problems: 

• fundamental scientific issues for molecular technology, 
• experimental characterisation and probes of molecular structures, 
• synthesis, assembly and processing of molecular systems, 
• electron correlations in molecular conductors, 
• quantum transport through nanostructures, magnetic and molecular systems, 
• theory, modelling and simulations of molecular electronic devices, 
• search for new molecular devices: wires, memories, diodes, laser, and others. 
The conference gathered 68 registered participants from England, France, Ger

many, Greece, Italy, the Netherlands, Romania, Russia, Spain, USA and Poland. Al
together, 17 invited lectures, 12 oral contributions and 45 posters were presented. 

CMME '04 was organised by the Centre of Excellence for Magnetic and Molecu
lar Materials for Future Electronics affiliated in the Institute of Molecular Physics of 
the Polish Academy of Sciences within the European Union project. A general goal of 
the Centre is to orientate our research activity towards physics of magnetic and mo
lecular (dielectric) nanostructured materials for future applications in novel electron-



284 

ics, all the envisaged measures are foresighted to build the scientific capacity of the 
Centre as a potent research partner for leading research institutions. With the growing 
competition and globalisation, new trends in modern physics and technology issue a 
challenge to us to intensify efforts in new priority areas, which we believe are the 
most promising. 

Bogdan Bułka, Andrzej Graja and Roman Świetlik 
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Electron–electron correlations  
in (BEDT–TTF)2I3 organic superconductors 

E. BALTHES
1, A. NOTHARDT

1, 2, P. WYDER
3, D. SCHWEITZER

1* 

 1Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany 

2Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany 

3Grenoble High Magnetic Field Laboratory, 25. Avenue des Martyrs, 
B.P. 166, 38042 Grenoble, CEDEX 9, France 

The detection of the fractional Landau level filling factor ν = 1/2 and low integer filling factors in 
the two-dimensional multilayer organic metal κ-(BEDT–TTF)2I3 is presented, which shows the occur-
rence of electron localisation and electron–electron correlation in this bulk metallic two-dimensional 
system. These effects are found in the normal conducting state of the organic superconductor κ-(BEDT 
–TTF)2I3. In addition, quantum oscillation measurements are found to be a very promising tool for direct 
detection of the chemical potential and its variation with magnetic field, even under rather complex fer-
miological conditions.  

Key words: BEDT–TTF; organic metals; Shubnikov–de Haas; de Haas–van Alphen; effective mass; 
Fermi surface 

1. Introduction 

Radical salts of the electron donor BEDT–TTF (i.e. bis(ethylenedithio)-tetra-

thiafulvalene) with 3I
−  anions are of a special interest, since their syntheses reveal 

a variety of electronic systems with identical stoichiometry, i.e. (BEDT–TTF)2I3, but 
with different structures (the so-called α-, β-, κ-, θ-, … phases). The α-phase is an 
organic–metal between room temperature (RT) and 135 K, with a sharp metal 
–insulator transition at this temperature [1], whereas the β-phase has metallic proper-
ties between RT and about 1 K, at which it becomes superconducting [2]. The κ- and 
θ-phases are both organic metals down to about 4 K, at which they become supercon-
ducting as well [3, 4]. Within the I3 salts, the highest superconducting transitions at 

_________  
*Corresponding author, e-mail: d.schweitzer@physik.uni-stuttgart.de 
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Tc = 8 K and ambient pressure were observed in αt-(BEDT–TTF)2I3 [5] and  
βH-(BEDT–TTF)2I3 [6], which are obtained from the initial α- and β-phases, respec-
tively, by a special treatment of these materials. 

In principle, some electron–electron correlation exist in all these different struc-
tural phases of (BEDT–TTF)2I3, as can be seen, for example, from strongly enhanced 
susceptibilities or effective masses of the carriers. In this paper, we will concentrate 
on electron–electron correlation in κ- and θ-(BEDT–TTF)2I3. Both these phases are 
not easily obtained in typical electrochemical process [1], but their syntheses have 
been brought further since they are of a special interest, e.g. with respect to their elec-
tronic dimensionality: the former κ-phase is probably the most extreme two-
dimensional (2D) organic metal [7, 8] in the class of BEDT–TTF radical salts (the 
ratio of transfer integrals perpendicular and parallel to the conducting (b,c) planes is 
t⊥/tII < 1,5·10–4 ). The latter θ-phase is electronically quasi-two-dimensional (Q2D) 
and is the only BEDT–TTF radical salt that has a very small 3-dimensional (3D) 
closed orbit on the Fermi surface [9]. Moreover, θ-(BEDT–TTF)2I3 shows a strong 
magnetic interaction at high magnetic fields [10].  

2. Experimental 

κ- and θ-(BEDT–TTF)2I3 single crystals were synthesised by the usual electrochemical 
procedure [1]. Quantum oscillation (QO) experiments were performed as both de Haas-van 
Alphen (dHvA) and Shubnikov-de Haas (SdH) measurements in superconducting magnets 
(up to 10 T), as well as in resistive magnets up to 28 T provided by the Grenoble High 
Magnetic Field Laboratory. Different sample-contacting methods were applied in order to 
avoid subtle contact effects. Annealed gold wires with a thickness of 15–25 µm where 
applied either directly to the samples or on evaporated gold contacts. The wires were at-
tached by gold, platinum or carbon paints, respectively. Low metallic contact resistances of 
about 2–5 Ω (at room temperature) could be obtained, even if the evaporation of gold was 
refused. ac currents of frequencies between 90 Hz and 4 kHz were applied perpendicular 
and parallel to the conducting planes and were limited to 50–300 µA. Low temperatures 
down to 0.38 K were realised by pumping on both a 4He bath cryostat and its 3He insert, 
whereas temperatures down to 20 mK were realised in a 3He/4He dilution refrigerator. 
Angle-dependent QO experiments were carried out by mounting the samples on a rotatable 
sample-holder.  

3. Results and discussion 

3.1. κ-(BEDT–TTF)2I3 

 Highly conducting (b,c) planes of κ-(BEDT–TTF)2I3 are denoted as 2D planes in 
the following. It should be emphasised that a typical bulk single crystal contains about 
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105 successive conducting layers. This is a typical order of magnitude within these so-
called organic charge-transfer (CT) salts. The investigations presented here concen-
trate on the normal conducting state of this compound.  

 
Fig. 1. Magneto-resistance and Fermi surface of κ-(BEDT–TTF)2I3. The inset shows  

the low-field part. For data evaluation, the SdH signal has to be divided  
by the non-oscillatory background magneto-resistance 

Figure 1 shows typical SdH oscillations of κ-(BEDT–TTF)2I3 when the magnetic field 
is arranged perpendicular to the conducting planes (θ = 0°) [7, 8, 11–15, 18]. A high-
frequency oscillation (denoted as F3 in the following) is observed with a strongly field-
dependent amplitude (the double-peak structure of the F3 oscillations is caused by Zeeman 
spin splitting). At low magnetic fields (see inset) as well as in the envelope of the signal at 
high magnetic fields, a lower-frequency oscillation can be recognized (called F2 subse-
quently). For all κ-phase materials the Fermi surface (FS) is expected to consist of two 
extreme areas (see inset in Fig. 1). One of them is a closed lens-shaped orbit around Z, 
which encircles the extreme area A2 and corresponds to the QO frequency F2 = 570 T. 
The second one, a circular orbit covering A3, corresponds very well to F3 = 3883 T but is 
only closed as the gap (Eg < 3 meV) between V and Z is overcome by the so-called mag-
netic breakdown (MB) at sufficiently high magnetic fields (e.g., BMB á 2 T). For the carri-

ers contributing to F2 and F3, respectively, the effective masses *
2m  = 1.90me and 

*
3m  = 3.90me (me = free electron mass) were obtained from the temperature dependence 

of the oscillation amplitudes [11, 12, 14–16, 18] by using the standard Lifshitz–Kosevich 
(LK) theory for QOs in metals [17].  

During the investigations of κ-(BEDT–TTF)2I3 single crystals by QO experiments 
it turned out that regardless of the strong two-dimensionality of its electronic system, 
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the standard LK description for QOs in 3D metals [17] applies very well. Minor deviations 
from the LK behaviour can be understood by considering oscillations of the chemical po-
tential (µ) with the QO frequency F3 [14, 18]. This quite normal LK behaviour has been 
observed in the entire field, temperature and angular ranges covered by the experiments, 
except for a set of very specific experimental conditions, namely high magnetic fields  
(> 12 T), low temperatures and the special field orientation B || (b,c) (i.e., θ = 0°). There, 
strong deviations from LK behaviour are observed, which manifest themselves as 
a dramatic reduction of the SdH amplitudes. 

This strong departure from the LK behaviour is demonstrated in Fig. 2 which 
shows the temperature dependence of the SdH amplitudes of F2 and F3 at 25 T and 
θ = 0°, as obtained by the Fourier transformation. The dashed lines recall the ex-
pected standard LK behaviour, whereas the full lines are a guide to the eye to illus-
trate the damping effects. These damping effects influence (or may even prohibit) an 
estimation of the effective masses m* under these special conditions [7, 8, 11, 12,  
14–16, 18]. It should be recalled here that in contrast to the results shown in Fig. 2, 
experiments done at θ > 1° result in quite normal LK behaviour. The damping effects 
at θ = 0° were attributed [7, 8, 12]* to a localisation of electrons as possible in 2D 
electronic systems at low filling factors ν [13], where ν ≡ 1 is known as the quantum 
limit (QL). 

Since even at 52 T, which is the highest field applied in the investigations de-
scribed above, the filling factors of both F2 and F3 are far away from QL [19], we 
searched especially for low-frequency quantum oscillations, although no small orbit 
on the FS corresponding to such a frequency is known from extended Hückel band 
structure calculations [4]. The search for such low-frequency oscillations requires QO 
experiments the be extended to the lowest possible fields, since the widest possible 
field windows in [1/B] are needed for their identification. Such low-field experiments 
are enabled for κ-(BEDT–TTF)2I3 by its high crystal quality, and they were performed as 
SdH experiments, since at low B this method is by far more sensitive than the dHvA torque 
technique. Figure 3a shows a low-field SdH experiment at θ = 0° and 0.38 K, where the 
signal is plotted after division by the background resistivity. The variation in the depth of 
the oscillations suggests a main frequency, corresponding to F0 = 13.2 T, and its 
spin-split oscillations. It was shown in Refs. [7, 14, 18] that the 00 with F0 corre-
sponds to a very small pocket in k-space, whose area AF0 represents only about 0.3% of 
the FS. In view of this, it is not very surprising that this small closed orbit might be beyond 
the resolution of standard band structure calculations.  

F0 is observed at 0.4 K, above about 1.25 T. At 2 T, the SdH amplitudes of F0 
reach about 0.04% of the background resistivity. Above about 2.4 T, the amplitudes of 
F0 could not be observed directly, since the amplitudes of F2 and F3 increase strongly 

_________  
*It is widely discussed in Refs. [7, 8, 12, 19] why θ = 0° is the exclusive field orientation in a metal-

lic multilayer 2DES, where two-dimensionality (and its results) may take effect. Therefore, this discussion 
is not given here. 
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with field and dominate those of F0 (see Fig. 3a). The action of F0 onto the amplitudes 
of F2 and F3, however, can be unambiguously observed up to high fields. This is illus-
trated in Fig. 3b by means of the so-called “Dingle plots” (DPs), given by the implicit 
 

 
Fig. 2. Temperature dependence of the SdH amplitudes of F2 and F3 at 25 T  

and θ = 0° for κ-(BEDT–TTF)2I3. The dashed lines show the expected behaviour,  
according to the standard Lifshitz–Kosevich theory, whereas the full lines are guides to the eye 

values of the FFT amplitudes of F2 and F3 (see left y-axis) versus 1/B. In the standard 
LK theory, a DP should be linear and its slope is a measure for the Dingle temperature 
TD and the corresponding scattering time τ. In the present case of magnetic breakdown 
(MB), the LK theory has to be extended by the so-called “coupled network descrip-
tion” (CND), in order to account for the magnetic field dependence of the MB prob-
abilities. In this case, the Dingle plot of F2 should be sublinear, while that of the MB 
orbit F3 is expected to remain linear with a modified slope (both curves are deter-
mined by the Dingle temperatures (TD) and by the magnetic breakdown field BMB). 
Even though the low field region is least influenced by the anomalous damping ef-
fects, it can only hardly be fitted by taking an exaggerated BMB ~ 4 T and a far too 
high TD ~ 0.4 K (see the dotted curve in Fig. 3b for F2 and the dashed line for F3). 
This indicates that already at low fields the behaviour of the QO amplitudes can 
hardly be described by the LK theory and the CND. At higher fields, the discrepancy 
becomes much stronger. Above 2 T, the DP of F2 strongly deviates from the estimated 
curve (note the logarithmic scale). The DP of F3 shows strong deviations from linear-
ity above about 4 T. At high fields, both DPs show strong damping effects (grey-
shaded areas), which cannot be explained by MB. 
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Fig. 3. Low-field SdH signal of a κ-(BEDT–TTF)2I3 single crystal versus 1/B at 0.38 K and θ = 0° after 
division by the background resistivity (a). SdH oscillations of F0 in κ-(BEDT–TTF)2I3 single crystals at 0°. 

The filling factor ν of F0 is indicated on the top axis (b), right). Dingle plots of F2 and F3 at 0° 
(see text) (b), left). The estimated dashed and dotted curves represent the expected amplitudes (accounting 

for magnetic breakdown). The grey-shaded areas represent the magnitude of the damping effects 

a) 

b) 
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The most important features in the DPs of both F2 and F3 are revealed by a “fine 
structure” of the DPs. These are discontinuities in their curvature at high fields. For 
understanding them, the field positions of the minima in the SdH signal of F0 (where 
the Fermi energy EF lies just between two successive spin-splitted Landau levels) are 
marked by grid lines and continued to high fields. The discontinuities and minima in 
the DP of F2 show the same oscillatory structure as the oscillations with F0. They 
occur just at the field values where the resistance minima of the F0 oscillations are 
expected (i.e., where EF lies between two adjacent spin levels of F0, hence the corre-
sponding ν is an integer; see top axis of Fig. 3b). The same behaviour (though weaker 
in magnitude) is present in the DP of F3. Such an oscillatory structure with F0 was 
observed in SdH experiments at θ = 0° on several crystals. By this, F0 is identified to 
be directly involved in the damping of the amplitudes of F2 and F3. The filling factor 
νF0 of F0, as indicated on the top axis, turns out to be a controlling parameter for these 
effects [7]. While the amplitude of F2 is already damped at νF0 < 13, that of F3 is first 
demonstrably damped in the MB regime for νF0 < 7. The magnitude of the damping 
effects increases strongly with decreasing νF0. At the highest field applied, νF0 = 2 is 
reached with only two spin levels of the lowest Landau level of F0 being occupied 
below the FS. While F2 and F3 are still at fairly high filling factors when the damping 
effects in their amplitudes occur, F0 is at low ν already close to QL (the special situa-
tions at inverse field values B–1 ~ 0.43; 0.17 and 0.09 are discussed later). The obser-
vation illustrated with Fig. 3b – that the damping effects of the QO amplitudes of both 
F2 and F3 show an oscillatory pattern just with F0 – proves that the electrons of all the 
corresponding “subsystems” (i.e., electronic bands) are strongly correlated. This cor-
relation persists even though the involved bands are at very different filling factors ν. 
This established correlation means that the carriers contributing to F2 and F3 are 
themselves sensitive to the conditions introduced by F0. This makes it easier to under-
stand why the filling factor νF0 of F0 becomes a controlling parameter of the entire 
system and why at high fields it is able to force quantum limit conditions on the entire 
correlated electronic system.  

Two-dimensionality and the obvious presence of electron correlation (EC) bring 
forth questions about their consequences, namely electron localisation around integer 
and noninteger low filling factors νF0. A correlation involving the electrons of all or-
bits proves that the resulting localisation effects may, accordingly, involve all carriers, 
not only those on the low-νF0 orbit. Based on this, the damping effects of the QO am-
plitudes of F2 and F3 may be understood at this stage as a reduction of the number of 
mobile carriers contributing to these QOs. This reduction is caused by localisation 
effects, generated in turn by the low filling factors of F0 [7, 16]. However, before 
going into detail with the discussion of this point, further decisive results are needed. 

One of the fundamental differences between well-known semiconducting two-
dimensional electron systems (2DESs) and the 2D organic metal κ-(BEDT–TTF)2I3 is 
the fact that in the former all electrons follow one single orbit, whereas in the latter 
they move on various orbits corresponding to very different QO frequencies. This 
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condition can be excellently used to probe variations of the chemical potential µ with 
the successive QO frequencies [8]. The huge differences between the frequency val-
ues of F0, F2, and F3 allow one to use the high-frequency QOs as a ‘high-resolution’ 
sensor, which probes the actual position of µ and its low-frequency variations, if pre-
sent (see Refs. [8, 19] for details).  

In order to investigate more thoroughly the behaviour of µ in κ-(BEDT–TTF)2I3, 
the successive field positions Bn were determined, at which the actually highest occu-
pied n-th Landau cylinder (LC) of a certain frequency (here, e.g., F3) passes the Fermi 
cylinder. The corresponding Landau level indices nF3 can be obtained from Landau 
quantisation [8, 19].  

 
Fig. 4. Quantum oscillations of the chemical potential µ with F0 at 0.38 K for κ-(BEDT–TTF)2I3 .  

Curve a) was obtained from a SdH measurement at θ = 0° (see text),  
curve b) from a dHvA experiment at 9°, rescaled to 0° by the 1/cosθ law valid for 2EDSs ([8]) 

The result is plotted in Fig. 4. Curve a) is obtained from SdH measurements at 
θ = 0° and shows pronounced saw tooth oscillations of µ above c.a. 6 T, with an 
oscillatory sequence corresponding just to the low QO frequency F0 = 13 T [16]. The 
filling factor νFo and the corresponding magnetic field values are plotted on the top 
axes of Fig. 4. QOs with F0 could not yet be detected above about 2.3 T (due to their 
low amplitude compared to the other QOs and background resistivity, see Fig. 3), 
whereas the µ oscillations with F0, shown in Fig. 4, represent the detection of F0 
above 2.3 T up to high fields, where the concomitant damping effects in the SdH os-
cillations are prominent. This means that the µ oscillations with F0 prove the presence 
of both a corresponding Landau cylinder structure and a corresponding closed orbit 
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on the FS. The fact that “sensors” (such as F2 and F3 oscillations) are able to probe 
the influence of F0 confirms that the electrons on the F0, F2, and F3 orbits are corre-
lated. The very different filling factors of the “sensors” F2 and F3 and the correlated 
“object”, namely F0, proves that EC bridges the very different ν and that EC is opera-
tive even at very high values of ν of F2 and F3. 

Let us now discuss in more detail the special situations at inverse field values B–1 
~ 0.43, 0.17 and 0.09, which are shown in Fig. 3. In the left part of the figure the Din-
gle plot of F2 shows strongest damping effects at νF0 = 3, 5 and 12. Even if they seem 
to be connected with the filling factor of F0, they cannot be attributed in a conclusive 
way to this QO frequency, since they are far stronger than the damping effects at the 
neighbouring filling factors νF0. At first glance, the damping effects at νF0 = 3 and 5 
might be attributed to a strong spin polarisation and the proximity of the QL, but the 
strong amplitude reduction at the even νF0 = 12 clearly contradicts both these possi-
bilities. In Refs. [8, 19] it has been found that such effects cannot be explained by 
conventional damping mechanisms, even when going beyond those summarised in 
Ref. [17]. 

The strength of these special damping features in Fig. 3b gives rise to the question 
whether they may have a common origin beyond the existence of F0. This in turn 
raises the question whether they are generated by a further low-frequency QO present 
in κ-(BEDT–TTF)2I3, whose lowest Landau level(s) only could be observed at high 
fields. The search for a further low-frequency oscillation in this material requires the 
SdH experiments to be extended further into the low-field range. This was enabled by 
decreasing T to dilution temperatures. It should be emphasised that this field region 
covers the magnetic breakdown between the closed F2 orbit and open F3 orbit. For 
this reason the oscillations of the F3 orbit are a priori excluded in the investigations of 
the strong damping effects, since at these fields the F3 orbit is not properly quantised 
and its investigation would be therefore influenced by MB effects. 

Field sweeps were carried out on several κ-(BEDT–TTF)2I3 single crystals at 
30 mK, with a very low sweeping rate and a field orientation perpendicular to the 
conducting planes (i.e., θ = 0°±0.04°). The results of these SdH experiments are 
summarized in Fig. 5. The low-field part of the detected DPs of several crystals in 
Fig. 5b show a new oscillatory structure with a frequency of 3.8 (±0.3) T, henceforth 
called Fnew. The corresponding frequency is confirmed in the FFTs of the SdH signals 
[19]. They clearly show that the strongest damping effects are governed by the oscil-
latory structure with Fnew alone. A number of arguments have been given to show that 
neither Fnew = 3.8 T nor F0 = 13 T can be generated by an assumed warping of the 
FS [19] and that this new oscillatory structure, with Fnew = 3.8 T, has to be attributed 
to a new quantum oscillation (just as F0). The corresponding extreme area AFnew is 
very small, representing merely 10–3 of the first Brillouin zone. In view of this, it is 
not surprising that the small pocket corresponding to Fnew has not yet been found by 
band structure calculations. In order to verify the presence of a Landau level structure 
corresponding to Fnew by a thermodynamic property, the position of the chemical po-
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tential µ and its variation was probed by the same method as before for the µ oscilla-
tions with F0 [8, 19]. Due to the arguments discussed above, only the QOs with F2 
may be taken as “sensor” oscillations for probing µ. The results obtained on different 
crystals by SdH measurements at θ = 0° are depicted in Fig. 5a. The data show, with 
a very good agreement, an oscillatory structure with Fnew. This confirms that Fnew in-
deed corresponds to a thermodynamic quantity and confirms that Fnew has to be identi-
fied with a quantised orbit on the FS and a Landau level structure. 

 
Fig. 5. Identification of the Landau level filling factors νFnew of Fnew in the 2D multilayer organic 
metal κ-(BEDT–TTF)2I3 at θ = 0°: a) chemical potential oscillations detected on several single  

crystals versus νFnew, b) Dingle plots of the F2 amplitudes from several single crystals as obtained  
by SdH measurements at 0°. Note that the x-axes end up at a infinite magnetic field, namely ν ≡ 0 

The top axis of Fig. 5 shows the attribution of the Landau level filling factors νFnew 
of Fnew to corresponding chemical potential oscillations. Indeed, µ follows a saw tooth 
with its steep flank towards high fields and drops at integer values of ν, just as ex-
pected for an almost ideal 2DES. The quantum limit (QL), namely νFnew = 1, is 
reached at about 0.17 T–1, or 5.9 T. The equidistant saw tooth track of νFnew fits per-
fectly to the equidistant Landau level spacing of Fnew between νFnew = 1 and 4. 

At higher fields, i.e., at νFnew < 1, two fundamental conditions preset the interpreta-
tion of this extreme quantum limit region. First of all (as already mentioned), 
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νFnew = 1 is unambiguously identified, since no further assumed Landau level can be 
placed equidistantly at higher fields (on the left-hand side of νFnew = 1) in Fig. 5.  

Secondly, the left margin of Fig. 5 is given by 1/B = 0, i.e., an infinite field. This 
means that ν ∼ 1/Β  ≡ 0 at that point. These two definite conditions require that, within this 
extreme QL, the Landau level filling νFnew be defined in rational parts of the remaining 
field intercept between νFnew = 1 and 0, which covers ∆[1/B] = [0 T–1, 0.17 T–1].  
This reveals that the additional saw tooth oscillation at about 1/B = 0.086 T–1 (i.e., 
B = 11.6 T) represents exactly νFnew = 1/2 in the multilayer 2D system. The fact that the 
thermodynamic property µ oscillates at νFnew = 1/2 proves the existence of a thermody-
namically stable state. The presence of this state is also observed by strong damping effects 
in SdH oscillations at θ = 0° and νFnew = 1/2, as illustrated by the Dingle plots in Fig. 5b. 
Likewise, the integer νFnew = 1–4 can be identified in the Dingle plots as those field re-
gions where the damping effects of SdH oscillations at 0° are strongest (note that strong 
damping effects are observed even at νFnew = 4, which is at about 1 T). 

All in all, the most recent SdH experiments on κ-(BEDT–TTF)2I3 presented here 
reveal that low integer ν and even νFnew = 1/2 are present in this 2D multilayer or-
ganic metal. It is found that the values νFnew = 1/2; 1; 2; 3; 4 coincide with the posi-
tions of the strongest damping effects in SdH oscillations (with the anomalous minima 
in the Dingle plots) at 0° in this 2DES. On the one hand, theoretical descriptions are 
still lacking for such 2D multilayer organic metals with correlated carriers close to the 
QL. On the other hand, the experimental results were found to be in remarkable 
agreement with theoretical descriptions and experiments for semiconducting 2DESs, 
where electron correlation and localisation is considered. This agreement concerns a 
number of fundamental aspects, especially the observation of νFnew = 1/2; 1; 2; 3; 4 
and their action onto the present correlated 2DES. It is straightforward that electron 
localisation in a 2DES around low ν may reduce the number of mobile carriers, thus 
leading to a damping of SdH amplitudes – a quantity which is only given by the (re-
maining) mobile carriers.  

At a first glance, the observation of the ν = 1/2 state in κ-(BEDT–TTF)2I3 is most 
exciting, especially since the originally expected single-layer fractional states of high-
est hierarchy [13], namely νFnew = 1/3; 2/3, ... are not observed here. On closer in-
spection, however, this is not too surprising in view of the fact that κ-(BEDT–TTF)2I3 
is a multilayer 2DES. The present organic metal belongs undoubtedly to the category 
of coupled-multilayer systems with metallic*, finite interlayer tunnelling. In semicon-
ducting multilayer 2DESs, ν = 1/2 is expected under such conditions [22], and this 
filling fraction is indeed observed here in κ-(BEDT–TTF)2I3. Furthermore, for finite 
tunnelling, both odd and even integer ν are expected by theory [22] and are indeed 

_________  
*In Ref. [20] it has been shown that interlayer transport in κ-(BEDT–TTF)2I3 is metallic, later in Ref. 

[21] it was specified that it is even coherent. 
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observed in the present metallic 2DES*. These are very important aspects, in which 
the results on κ-(BEDT–TTF)2I3 agree remarkably with the behaviour expected for 
semiconducting multilayer 2DESs.  

A further view on the results of the preceding sections points out that the values 
νFnew = 1/2; 1; 2; 3; 4 in the 2D multilayer organic metal κ-(BEDT–TTF)2I3 are 
brought into the system by ‘subsystems’. These are the small pockets on the FS, 
which correspond to Fnew and F0, respectively, whereas the rest of the system, i.e., the 
orbits corresponding to F2 and F3, are still at fairly high ν. In view of this, the fact that 
low values of νFnew can be observed by their action on the electrons of the remaining 
system (i.e., those contributing to F2 and F3) proves the presence of sufficiently strong 
electron correlation to bridge over various bands with very different values of ν, thus 
involving even electrons with very high kinetic energy. Unfortunately, a theoretical 
description for such a complex situation in a correlated metallic multilayer 2DES is 
still lacking, and the electronic properties of κ-(BEDT–TTF)2I3 at high fields and low 
temperatures are still far from being understood. 

3.2. Θ-(BEDT–TTF)2I3 

Quantum oscillation experiments show two dominant oscillations with the fre-
quencies Fα = 780 T and Fβ = 4200 T [10], which correspond very well to the pro-
posed FS of Θ-(BEDT–TTF)2I3 [3–5]. This agreement is confirmed by angular mag-
netoresistance oscillations, which additionally show that the quasi-two-dimensional 
FS is warped, or corrugated [10]. In addition to Fα and Fβ, a further very-low-
frequency oscillatory structure was observed in magnetotransport with a frequency 
value between 2 T and 12 T [23], which cannot be attributed to the results of any of 
the band structure calculations quoted above. This oscillation (henceforth called Fγ) is 
observed up to 10 T, at which the filling factor νFγ = 1 is reached [10]. A careful 
angular-dependent investigation showed that this oscillation is present not only for a 
field orientation perpendicular to the quasi-2D conducting planes, but even in a field 
orientation parallel to the planes. From these results it was concluded that the oscilla-
tory structure can be attributed to a 3D pocket on the FS. Our SdH experiments 
clearly reproduce Fγ (comp. Ref. [10]). The presence of this very-low-frequency oscil-
lation for fields orientated perpendicular and especially parallel to the conducting 
planes confirmed this 3D pocket on the FS. Attributing the Fγ oscillation to a real 
quantised orbit means that this Θ-phase salt indeed reaches the quantum limit at avail-
able fields. In view of this, and taking up the question of the strength of electronic 
two-dimensionality, we concentrated on the search for deviations in the temperature 

_________  
*νFnew = 1/2 and all further νFj represent total filling factors of the bulk electronic system, not, e.g., 

the filling of a single layer. This corresponds perfectly to the case of coupled 2D (multi-) layers with 
interlayer tunnelling as described in Ref. [22]. 
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dependence of SdH amplitudes, especially at θ = 0°. This was verified, in order to 
find out whether this (quasi-)2D material might show similarly strong effects of two-
dimensionality (i.e., damping effects of the QO amplitudes) as those observed for the κ-
phase of (BEDT–TTF)2I3. With SdH measurements it was found that the temperature de-
pendence of the oscillation amplitudes of both Fα and Fβ show the same behaviour at low 

(9 T) and high fields (23 T) [10]. Consequently, the values mα
∗ (9 T) = mα

∗  (23 T) and 

mβ
∗ (9 T) = mβ

∗  (23 T) were obtained for each of these frequencies. The same behav-

iour was found for other tilt angles between the field and conducting planes, namely  
θ ≠ 0°. Hence, contrary to the properties of the 2D κ-phase salt, in which this tilt 
angle plays a decisive role, no difference in the behaviour of the SdH oscillations in 
the Θ-phase were found for θ = 0° and θ ≠ 0°. This means that despite its presuma-
bly low filling factors, the SdH amplitudes of the Θ-phase of (BEDT–TTF)2I3 do not 
show strong field dependent damping effects, as does κ-(BEDT–TTF)2I3 at θ = 0°. 
This, however, is not surprising in view of the fact that the small pocket on the FS of 
the Θ-phase salt is a 3D one. The presence of this 3D pocket on the FS certainly in-
fluences the (quasi-)2D electronic behaviour of this material. 
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Quantum oscillation experiments were performed on high quality single crystals of Θ-(BEDT–TTF)2I3. 
Their electronic properties are similar to those of crystals of Θ-(BEDT–TTF)2(I3)1–x(AuI2)x (x < 0.02). Never-
theless, in the neat crystals used here, quantum oscillations for the α-orbit (Fα = 780 T) are observed already 
at a field of 2 T, and the magnetic breakdown of the β-orbit (Fβ = 4200 T) occurs at 3 T. In the large mag-
netic field range, in which quantum oscillations are observed, the warping of the Fermi surface of the α-orbit 
and β-orbit could be determined to be ∆Fα = 6.6 T and ∆Fβ = 16.6 T, respectively. At high magnetic fields, 
the de Haas–van Alphen signal consists of pronounced inverse saw-tooth oscillations, and the Shubnikov–de 
Haas signal has a peaked structure. This behaviour is interpreted in terms of magnetic interaction. 

Key words: quantum oscillation; magnetic field; organic superconductors; Fermi surface 

1. Introduction 

The electrochemical synthesis of 3I
−  anions with radical salts of the electron donor 

BEDT–TTF (i.e., bis(ethylenedithio)tetrathiafulvalene) results in a number of elec-
tronically quasi-two dimensional (Q2D) organic metals with identical stoichiometry, 
namely (BEDT–TTF)2I3, but different structures. The usual synthesis produces mainly 
crystals of the so-called α- or β-phases, but also single crystals of the κ- or even Θ-
phase may grow. Here we present quantum oscillation experiments on neat single 
crystals of Θ-(BEDT–TTF)2I3. In earlier investigations on crystals with a similar 
stoichiometry, Θ-(BEDT–TTF)2(I3)1–x(AuI2)x (x < 0.02) [1–7] it has been shown that 

_________  
*Corresponding author, e-mail: a.nothardt@physik.uni-stuttgart.de. 
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those crystals are metallic down to low temperatures [1]. It has also been demon-
strated [1, 2] that a part of the Θ-(BEDT–TTF)2(I3)1–x(AuI2)x (x < 0.02) crystals indeed 
become superconducting at 3.6 K, while others do not show a superconducting transi-
tion. The origin for this behaviour is not clear yet. The Fermi surface was investigated 
by Shubnikov–de Haas (SdH) and de Haas–van Alphen (dHvA) measurements. In high 
magnetic fields, the dHvA oscillations became saw-toothed [3], which was ascribed to 
an oscillating chemical potential in connection with strong two-dimensional electronic 
properties (ρ⊥/ρII = 1000) [4]. Our investigations on neat Θ-(BEDT–TTF)2I3 single crys-
tals yield somewhat different results. It will be shown that the Fermi surface is warped 
and that besides “inverse saw-tooth” dHvA oscillations in high magnetic fields, peaky 
SdH oscillations are also observed. Both results are discussed in terms of the so-called 
magnetic interaction effect [8]. 

2. Experimental 

Θ-(BEDT–TTF)2I3 crystals were synthesised electrochemically, however without 

adding 2AuI −  anions during the preparation as mentioned in previous reports [1, 5]. 
Some single crystals used in the experiments showed a steep superconducting transi-
tion, while others did not (see above). Quantum oscillation experiments were made in 
a 3He cryostat (0.4 K), using a rotatable sample-holder. High magnetic fields on the 
superconducting magnets (up to 10 T) as well as on the resistive magnets (up to 28 T) 
were provided by the Grenoble High Magnetic Field Laboratory. DHvA experiments 
were carried out by the torque method [8], whereas for SdH measurements the single 
crystals were contacted by the “standard four probe method” using 25 µm gold wires 
and carbon paint. The current was applied normal to the highly conducting (a, b) 
plane*. In order to verify the reproducibility of the results, the SdH measurements 
were carried out simultaneously for several crystals  on completely separated elec-
tronic setups. 

3. Results 

The crystal structure of neat Θ-(BEDT–TTF)2I3 crystals belongs to the monoclinic 
space group with P2(1)/c symmetry. The lattice parameters are: a = 9.926 Å,  
b = 10.074 Å, c = 34.201 Å, β = 98.27°. The packing motive of the molecules and the 
structure data are very similar to those of Θ-(BEDT–TTF)2(I3)1–x(AuI2)x (x < 0.02) 
crystals [1], whereby most of the Θ-(BEDT–TTF)2(I3)1–x(AuI2)x (x < 0.02) crystals are 
twinned to form a pseudo-orthorhombic lattice with half of the length in the  
a-direction as compared to the monoclinic cell. Since most of the present neat 

_________  
*The structure data of the monoclinic cell were used. 
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Θ-(BEDT–TTF)2(I3) crystals are not twinned, the frequencies of quantum oscillations 
as well as the warping of the Fermi surface could be determined very accurately.  

 

 
Fig. 1. Fermi surface and magneto-resistance of Θ-(BEDT–TTF)2I3 (see text). The inset shows 

the low-field part after subtracting the nonoscillatory background magneto-resistance 

From the huge SdH oscillations shown in Fig. 1, the frequencies Fα = 780±10 T of 
the small α-orbit, Fβ = 4200±20 T of the larger β-orbit (see the Fermi surface in 
Fig. 1), as well as Fγ = 7.8±0.2 T of the small three-dimensional (3D) orbit [3, 6] were 
determined (the orbit corresponding to Fγ is not shown on the Fermi surface). The 
inset in Fig. 1 shows the low-field SdH signal after subtracting the nonoscillatory 
background magnetoresistance. The angular dependences of the frequencies and the 
effective carrier masses (mα = 1.8m0 and mβ = 3.5m0 at an angle of 0°; m0 is a free 
electron mass) are obtained by declining the conducting planes out of the position 
perpendicular to the magnetic field (where B ⊥ (a, b) ≡ θ = 0°). These properties 
show a 1/cosθ behaviour as expected from a Q2D electronic system.  

Figure 2a, b shows the so-called Dingle plots of the α- as well as the β-orbit ver-
sus the inverse magnetic field, as well as the SdH oscillations after filtering the ex-
perimental data by a band-pass filter (for 780 T in Fig. 2a and 4200 T in Fig. 2b). 
Figure 2c shows the field range from 4 to 10 T and compares the raw data of the SdH 
experiment after subtracting the background (bottom) with the composed curve ob-
tained from the filtered signals of Figs. 2a and b (top). The minima in the Dingle plots 
in Fig. 2a and b correspond to the minima (i.e., “beating nodes”) of the oscillation 
amplitudes. Therefore, a Dingle plot is a good way to determine these beating nodes. 
The beating nodes, however, can be observed in the oscillation curves as well, which 
were band-pass filtered. Figures 2a–c show the 1st and 2nd beating nodes of the  
α-frequency and the 2nd and 3rd nodes of the β-frequency. From the beating frequen-
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cies, ∆Fα = 6.6 T and ∆Fβ = 16.6 T, the warping (i.e., corrugation) of the Fermi sur-
face is estimated to be 0.8% for the α-orbit and 0.4% for the β-orbit. The beating 
nodes of the β-frequency are at the theoretically predicted positions for beating in 
consequence of warping [9], whereas the beating nodes of the α-frequency are shifted, 
so that they occur at the positions: Bn = ∆F/(n + 1/4). A similar shift for beating nodes in 
SdH measurements was observed in (BEDT–TTF)4 [Ni(dto)2] crystals by Schiller et al. 
[10]. As soon as the crystal is declined to the magnetic field by an angle of 15° (which 
represents the first Yamaji angle, measured by Kajita et al. [2]), the beating of the  
β-frequency disappears. This confirms that the beating is created by a warping of the 
Fermi surface, but not by the assumed twinned structure of the crystal.  

 

 

a) 

b) 
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Fig. 2. Dingle plots of Fα (a) and Fβ (b), and the detected SdH oscillations versus 1/B,  

after passing them through a band-pass filter, for 780 T (a) and 4200 T (b). Detected SdH oscillations 
versus 1/B (for 4 T ≤ B ≤ 10 T) after subtracting the background (c). For comparison (top):  

The composed signal, obtained from the filtered signals of (a) and (b) 

 
Fig. 3. Comparison of the shape of the oscillations in magnetization (a) 

and conductivity (b) at T = 0.4 K, θ = 15°, and high magnetic fields (see text for details) 

Concerning the 3D γ-orbit (Fγ = 7.8 T) [6], it can be estimated from Fig. 1 that the 
last Landau cylinder passes the γ-orbit at a field of about 10 T (to be seen as a mini-

c) 

a) 

b) 



A. NOTHARDT et al. 304 

mum in resistivity). The 3D γ-orbit has the shape of a cigar. The cross-section normal 
to the b-direction has a size of 0.018 nm-2 (1.9 T). 

At high magnetic fields, the oscillations in magnetization (i.e., dHvA) show a so-
called inverse saw-tooth shape for angles 15° ≤ Θ ≤ 60°, which means that the sheer 
flank is on its low-field side (see Fig. 3, top). Corresponding to this sharp saw-tooth 
signal, the fast Fourier transform (FFT) shows 18 harmonics of Fβ (not shown here). 
A similar behaviour is observed in the SdH signal, where the conductivity should be 
identical to the derivative of the dHvA signal. In fact the magnetic field dependence 
of conductivity at high fields shows a peaky structure (shown in the bottom of Fig. 3), 
and the FFT also shows a rich harmonic content of Fβ. Considering the above-
mentioned relation between SdH and dHvA signals, it is important that the peaks in 
the SdH signal point upwards. This fact confirms that the shape of the dHvA signal is 
indeed an ‘inverse’ saw-tooth, instead of a ‘normal’ saw-tooth, which might be shifted 
by 180o within the dHvA data detection process. The orientation of the saw-tooth is 
decisive for its interpretation (see below). 

4. Discussion 

The observed huge quantum oscillation amplitudes (see Fig. 1) indicate a high 
quality of the neat Θ-(BEDT–TTF)2I3 crystals. The observed frequencies are similar 
to those detected in Θ-(BEDT–TTF)2(I3)1–x(AuI2)x (x < 0.02). The so-called magnetic 
breakdown between the small α-orbit (Fα = 780 T) and β-orbit (Fβ = 4200 T) was 
observed at a magnetic field of only 3 T at 0.4 K (and not at 15 T, as mentioned in the 
literature for Θ-(BEDT–TTF)2(I3)1–x(AuI2)x (x < 0.02) crystals [3]). 

As pointed out above, the oscillations in magnetization (dHvA) show an inverse 
saw-tooth (see Fig. 3 top) at high magnetic fields. One origin of saw-tooth variations 
in the magnetization may be an oscillation of the chemical potential µ in a strong two-
dimensional electronic system as a function of the magnetic field. For such a situa-
tion, two cases can be distinguished. At first, the 2D closed orbit in k-space (here cor-
responding to Fβ) may be coupled to a further trajectory on the FS, to which the car-
rier tunnelling is possible. In this case, the latter trajectory would represent a reservoir 
for Fβ, and in conclusion the orientation of the saw-tooth would be “inverse” as de-
scribed above. In the second case (not given here), i.e. in the absence of such a reser-
voir, the orientation of the saw-tooth would be “normal”, i.e. with its sheer flank on 
its high-field side [7, 8]. At a first glance, the orientation of the observed saw-tooth 
should hint the realisation of the former case, with the 3D γ-orbit as a candidate for 
such a reservoir. Fγ  can probably be excluded as an electron reservoir, however, since 
Fγ is already present at low fields (1 T) and a magnetic breakdown between Fβ and Fγ 
is not observed up to 10 T. This means that the energy gap(s) between the Fγ-orbit and 
the other 2D orbits (i.e., Fα and Fβ) is (are) too large to enable carrier tunnelling. This 
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excludes Fγ from being a reservoir. Therefore, the observed “inverse” saw-tooth 
dHvA oscillations must have a different explanation.  

If the dHvA signal is so huge that the oscillatory magnetization itself modifies the 
effective internal field, the shape of oscillations may be turned to an inverse saw-tooth 
with its sheer flank on its low-field side [8]. Considering this, we assume that mag-
netic interaction is the dominant reason for the inverse saw-tooth signal at high mag-
netic fields in the dHvA-experiment for Θ-(BEDT–TTF)2I3, rather than the above-
mentioned presence of a reservoir. The observed strong temperature dependence of 
the saw-tooth supports the interpretation proposed above. In addition, a paramagnetic 
behaviour was observed in this material at temperatures below 20 K and fields above 
0.05 T by SQUID and ESR measurements [11], whereas the material showed poor 
metallic behaviour (and even diamagnetic behaviour due to superconductivity below 
3.5 K) at lower fields. This feature might be a further indication of the presence of 
magnetic interaction in Θ-(BEDT–TTF)2I3 at high fields. 
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We review the Quasi-Harmonic Lattice Dynamic (QHLD) method, which we have recently imple-
mented and adopted to carefully reproduce the crystal structure and lattice phonon dynamics of molecular 
crystals as a function of temperature and pressure. Association with mean field electronic structure calcu-
lations allows us to characterize the Peierls coupling, namely the coupling between electrons and lattice 
phonons. We apply this method to organic superconductors based on bis-ethylene-dithio-tetrathiaful- 
valene (BEDT-TTF), showing that many experimental findings related to superconducting properties are 
rationalized in terms of the Peierls coupling. Electron–intramolecular phonon coupling and electron 
–electron interactions, however, have to be taken into account for a full characterization. We also present 
results concerning another class of molecular crystals, the acenes. In this case, the focus is on the under-
standing of the temperature dependences of mobilities. First and foremost, however, we emphasize 
the possibility of accurately predicting both the crystal structure and lattice phonon spectral signatures. 
We analyse pentacene and tetracene, showing that both systems can crystallize into two different poly-
morphs. The two polymorphs have comparable stabilities, and can coexist in the same crystallite. Raman 
spectroscopy in the lattice phonon region is used as a convenient tool to identify the two phases. The 
Peierls coupling strength of pentacene is evaluated. 

Key words: electron-phonon coupling; lattice phonons; organic superconductors; acenes 

1. Introduction 

The coupling between electrons and intermolecular (lattice) phonons, or the 
Peierls coupling, is at the heart of many fundamental phenomena in low-dimensional 
molecular crystals. Yet the role of Peierls phonons in basic properties such as charge 
transport has to be clarified. We have recently implemented [1, 2] a method (Quasi 

_________  
*Corresponding author, e-mail: alberto.girlando@unipr.it. 
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Harmonic Lattice Dynamics – QHLD) able to accurately reproduce the crystal struc-
ture and lattice phonon dynamics of complex molecular crystals, also as a function of 
temperature and pressure. Association with Raman measurements and mean field 
electronic structure calculations allows one to characterize the phonon structure and 
the corresponding Peierls coupling. Here, we describe the successful application of 
the model to two rather different classes of molecular crystals, bis-ethylene-dithio 
-tetrathiafulvalene (BEDT-TTF) superconductors and acene semiconductors. 

2. The QHLD method 

In our approach, we start from the isolated molecule, using standard DFT methods 
(6-31G(d) basis, B3LYP hybrid functional) to calculate the molecular geometry, 
atomic charges, vibrational frequencies and Cartesian eigenvectors of the normal 
modes. These data are used to deal with molecular degrees of freedom when consider-
ing the molecular crystal. The intermolecular potential energy Φinter in the molecular 
crystal is expressed in terms of an atom–atom Buckingham model, combined with an 
electrostatic contribution represented by the set of DFT (ESP) atomic charges qm cal-
culated for the isolated molecule [1, 2]: 

 ( )inter 6
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mn m n
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mnmn mn
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rr
Φ

 
= − − + 
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where the sum extends over all distances rmn between pairs m, n of atoms in different 
molecules. The Ewald method is used to accelerate the convergence of the Coulomb 
interaction qmqn/rmn. Amn, Bmn, and Cmn in the Buckingam part of the potential are em-
pirical atomic parameters – there is one triad for each different pair of atoms involved. 
The Buckingam parameters should be, in principle, universal parameters, transferable 
among different crystals containing the same atoms. In practice, they are transferable 
only within the class of molecular crystals they have been tuned for. 

Given the above atom–atom potential, the effect of temperature T and pressure p 
are accounted for by computing the structure that has minimum Gibbs energy G(p,T) 
with the QHLD method. In this method, where the vibrational Gibbs energy of the 
phonons is estimated in the harmonic approximation, the Gibbs energy of the system 
is expressed as: 

 ( ) ( ),
inter ,

,

, ln 1 exp
2
q j

B q j B
j

h
G p T pV k T h k T

ν
Φ ν

    = + + + − −       
∑
q

  (2) 

where V is the molar volume, Σq,j(hνq,j/2) is the zero-point energy, and the last term is 
the entropic contribution of the lattice phonons. The sums extend over all j phonon 
branches of frequency νq,j and wave vector q. Given an initial lattice structure, one 
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computes Φinter and its derivatives with respect to the molecular coordinates. The sec-
ond derivatives form the dynamical matrix, which is diagonalised to yield the lattice 
phonon frequencies and eigenvectors. The structure as a function of T and p is then 
obtained by minimizing G(T,p) with respect to the lattice parameters, molecular posi-
tions and orientations. 

In the above expressions, the lattice phonons are considered separately from 
molecular vibrations. This is the so-called rigid molecule approximation, but in crys-
tals made up of large molecules the approximation is no longer valid, and there is 
a certain amount of coupling between lattice and low-frequency intramolecular pho-
nons. To account for such a coupling, we adopt an exciton-like approach [3], where 
the interaction between different molecular coordinates is mediated by the intermo-
lecular potential depending on atomic displacements. These correspond to the 
Cartesian eigenvectors of the isolated molecule normal modes calculated by DFT. 

3. The Peierls coupling strength 

The QHLD method provides a rather accurate description of the lattice phonon 
frequencies and eigenvectors, independent of the crystal electronic structure. In order 
to evaluate the strength of the Peierls coupling, we also need a proper description of 
the electronic degrees of freedom, which is not a trivial problem in the case of mo-
lecular crystals, as they are characterized by narrow bands and strong electronic corre-
lations. Coherently with the QHLD scheme, we adopt a semi-empirical approach, 
which is less computer demanding and gives a better insight into the type of lattice 
phonons involved in the Peierls coupling. We define the Peierls, or electron–lattice 
phonon (e–LP), coupling constants g(KL; q,j) as: 

 ( )
0

; , KL

j

t
g KL j

Q

 ∂=   ∂ q

q   (3) 

where tKL is the hopping or charge-transfer (CT) integral between neighbouring pairs 
of molecules KL and Qqj is the dimensionless normal coordinate for the jth phonon 
with the wave vector q. In this definition, the electronic part is dealt with in real 
space, being relevant to a pair of molecules: the CT integrals are indeed calculated as 
the variation of the HOMO (LUMO) energy in going from an isolated molecule to the 
KL pair. The HOMO (LUMO) energy and its Qqj modulation is computed by an ap-
propriate semi-empirical method, such as the extended Hückel (EH) [4] or the ZINDO 
methods [5]. Even then, the computational effort is considerable, given the high num-
ber of vibrational degrees of freedom. On the other hand, the coupling constants of 
optical phonons depend weakly on the phonon wave vector, so we evaluate them only 
at q = 0. The coupling constants of acoustic phonons are zero by symmetry at the zone 
centre; therefore, we calculate them at several representative zone-border points and 
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assume a linear dependence of g2(j)/νj on |q|. An appropriate tight binding scheme is 
adopted to compute the band structure starting from the value t for the nearest 
neighbours, and to evaluate the dependence of the coupling constants from the elec-
tronic wave vector k [2]. 

4. Raman measurements 

Raman spectra have been collected with a Jobin Yvon T64000 spectrometer, cou-
pled to an Olympus microscope, with a spatial resolution between 2 and 1 mµ, yield-
ing the possibility of spatially mapping the crystals under investigation. Exciting lines 
were from a Krypton ion laser. Micro-Raman measurements at low temperatures 
(down to 80 K) and high pressures (up to 6 GPa) have been performed with a liquid 
Nitrogen Linkam HFS 91 cryostat and with a LOTO diamond anvil cell, respectively. 
Both were mounted on the microscope stage. 

5. BEDT-TTF superconductors 

The nature of the pairing mechanism in superconducting BEDT-TTF salts has been 
the subject of extensive discussions [6]. The superconducting state is adjacent to mag-
netically or charge ordered states, showing evidence of important electron-electron in-
teractions. On the other hand, the crystal and phonon structures of these salts are very 
complex, so the possible role of phonons in the superconductivity mechanism is difficult 
to assess. We have applied the QHLD method to (BEDT-TTF)2I3 salts [7, 8], which 
have several non-superconducting and superconducting phases. We have verified that 
the various phases indeed correspond to minima of the Gibbs energy. The available 
experimental data (Raman, specific heat) connected to the lattice phonons of the su-
perconducting β*- and κ-phases are properly reproduced. The Peierls coupling con-
stants have been evaluated by the EH tight-binding scheme, within the framework of 
the dimer model [2]. 

By expressing the Peierls coupling constants in the reciprocal space, we evaluate 
the Eliashberg function, which turns out to be in a qualitative agreement with avail-
able β*- and κ-(BEDT-TTF)2I3 experimental data. From the Eliashberg function, we 
derive the dimensionless coupling constant λ and the logarithmic average phonon 
frequency ωln. When these quantities are substituted in the Allen-McMillan equation 
for the superconducting Tc [9], we find values well below the experimental ones. The 
values of Tc depend critically on the electronic density of states at the Fermi energy 
N(EF), which is difficult to evaluate. In any case, the Peierls coupling does not ac-
count for β*- and κ-(BEDT-TTF)2I3 values of Tc. The above scenario changes substan-
tially when we include the Holstein (electron–intramolecular) coupling when evaluat-
ing λ and ωln. Indeed, Holstein coupling contributes to λ in only about 25%, but ωln is 
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more than doubled. Then, even before trying to estimate the superconducting critical 
temperature, it is instructive to see if the new value of ωln including the Holstein (in-
tramolecular) contribution accounts for other experimental observables related to super-
conductivity. Indeed, some years ago Marsiglio and Carbotte [10] proposed empirical 
relations directly connecting ωln to the superconducting gap ∆0 and to the specific heat 
jump at Tc. Table 1 shows that there is an excellent agreement between experiment and 
the values estimated trough the Marsiglio and Carbotte relations. Finally, by assuming 
plausible values for N(EF), the Allen–McMillan equation gives the values of Tc in agree-
ment with experiment and properly scaled for the two salts [7, 8]. 

Table 1. Calculated and experimental superconducting gap, 2∆0, and specific heat jump, 
 ∆Cp /γTc , of two superconducting (BEDT–TTF)2I3 salts 

Superconducting phase 
2∆0CALC 

(cm–1) 
2∆0EXP 

(cm–1) 
(∆Cp /γTc)CALC (∆Cp /γTc)EXP 

β*(BEDT-TTF)2I3 22  25a – – 
κ-(BEDT-TTF)2I3 9 12b 1.7 1.6c 

afrom Ref. [11]. 
bFrom Ref. [12]. 
cFrom Ref. [13]. 

As a further test of our approach, we have considered the effect of pressure on Tc. 
In BEDT-TTF salts, the decrease of Tc with p is large, up to ~ 3 K/kbar [14]. This 
unusual pressure effect has been sometimes taken as the evidence of a non-
conventional pairing mechanism [15]. We have calculated the crystal and lattice pho-
non structure of β*-(BEDT-TTF)2I3 at 8 K, under 0 and 6 kbars. The pressure effect on 
the Holstein coupling is very small, and has been disregarded. Preliminary results 
show that the calculated decrease in Tc is smaller than that measured (about 1 K vs. 
almost 5 K). Even keeping in mind all the approximations of the calculations, which 
are currently being refined and checked, we underline that the Peierls variation with p 
is at least as important as the variation in N(EF). From the data presented above, we 
conclude that the phonon contribution cannot be disregarded in a proper description 
of the coupling mechanism in organic superconductors. 

6. Acene semiconductors 

Acene crystals exhibit the highest mobilities among organic semiconductors [16], 
and the Peierls coupling is thought to be important in explaining the temperature de-
pendence and anisotropy of the mobilities [17]. On the other hand, for practical appli-
cations at room temperature, it is much more important to assess the acene crystal 
structures and the corresponding lattice phonon spectral signatures. Indeed, the poly-
morphism of pentacene has been the subject of intense experimental and theoretical 
studies [18]. 
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By applying our computational method, we have first aimed to identify the genu-
inely different polymorphs among the various reported single-crystal X-ray structures. 
We have obtained two local minima of the potential energy Φinter, i.e., two different 
“inherent structures” [19]. This behaviour clearly indicates that there are at least two 
different single crystal polymorphs of pentacene. One of them (polymorph C) corre-
sponds to the structure reported in 1962 by Campbell and Robertson [20]. The other 
(polymorph H) corresponds to the structure found in all more recent measurements 
[21]. We have also obtained information on the global stability of the minima by sys-
tematically sampling the potential energy surface, and have found that the two poly-
morphs correspond to the two deepest minima [22]. The calculations also predict sig-
nificant differences between the corresponding Raman spectra that we have checked 
experimentally, confirming the existence of two polymorphs [23]. Micro-Raman 
measurements have also shown that the two polymorphs can coexist as micro-domains 
in the same crystal. Application of pressures beyond 0.6 GPa irreversibly transforms 
polymorph C into the thermodynamically more stable H phase [24]. 

 

 
Fig. 1. Temperature dependence of tetracene specific heat.  

Dots: experiment (from Ref. [26]); continuous line: QHLD calculations 

Only one complete X-ray crystal structure has been reported for tetracene [20], 
which is known to undergo a phase transition both when lowering T and increasing p 
[25]. No clear indications exist about the low T and high p structures, partly because 
the crystal is damaged upon the phase transition. Our combination of theoretical and 
spectroscopic approaches is the key in elucidating this case. First, we have explored 
the potential energy surface of tetracene, finding that, similarly to pentacene, there are 
two minima very close in energy, one of which corresponds to the room temperature 
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experimental crystal structure. The calculated thermodynamic properties of the two 
polymorphs are very similar – the experimental temperature dependence of the spe-
cific heat [26], which is calculated very well by our model (Fig. 1), indeed does not 
show evidence of phase transitions. On the other hand, the QHLD method predicts 
that Raman lattice mode frequencies should be different for the two polymorphs. Ra-
man spectra as a function of T gave evidence for a phase transition from one poly-
morph to the other below 135 K. We have shown that the same low-temperature 
polymorph can also be obtained by applying pressure [25]. 

 
Fig. 2. Raman spectra of tetracene in the lattice phonon frequency region at ambient conditions. 

Bottom spectra: as grown crystals. Top spectra: after undergoing  
the T-induced (left) and the p-induced (right) phase transitions 

As shown in Fig. 2, transitions induced by both T and p show large hysteresis or 
even irreversibility, so that the initial phase is not recovered when the sample is brought 
back to ambient conditions. The ambient tetracene polymorph has a crystal structure 
very similar to the C phase of pentacene, whereas the low T, high p phase is similar to 
the denser phase H. As in the case of pentacene, micro-Raman spectroscopy reveals 
phase inhomogeneities that might affect tetracene mobilities. The lattice phonon Raman 
spectroscopy therefore represents a convenient and reliable tool for checking crystal 
quality, providing a way to improve the performance of acene-based devices. 

In the case of pentacene, we have also started to evaluate the strength of the 
Peierls coupling. The Peierls coupling constants for q = 0 optical phonons of penta-
cene have been computed as described above. Since pentacene has a simpler molecu-
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lar structure than BEDT-TTF, we preferred the ZINDO to the EH method to evaluate 
the hopping integrals in this case. Table 2 reports the Valence (VB) and Conduction 
Band (CB) lattice relaxation energy, ELR(j), for the low-frequency lattice optical pho-
nons of the pentacene H phase at 0 K. The lattice relaxation energy directly expresses 
the strength of the Peierls coupling and is defined as ELR(j) = G2

j/2πνj,  where Gj is the 
total Peierls coupling constant of mode j, a sum of the modulations of the four main 
hopping integrals in the ab crystal plane. By symmetry, only totally symmetric (Ag) 
phonons can be coupled to electrons. Table 2 shows that several phonons are appre-
ciably coupled to the charge carriers, and that some difference exists between 
coupling in the VB and CB. Phonons above 203 cm–1 are not appreciably coupled, and 
the largest contribution (~ 70%) to the total lattice relaxation energy comes from the 
two lowest frequency modes, which are described as librations around the two short 
molecular axes approximately parallel to the conducting ab crystal plane. Given the 
low frequency of these librations, they are likely to affect the mobilities even at low 
temperatures. A more detailed analysis of pentacene and tetracene mobilities and their 
temperature dependences is in progress. 

Table 2. Low-frequency Ag phonons and lattice 
relaxation energy ELR of pentacene (H phase) at 0 K 

ν (cm–1) Valence band 
ELR (meV) 

Conduction band 
ELR (meV) 

27 20.1 15.5 
61 6.7 3.2 
70 ~0 1.1 
96 1.2 2.5 

132 ~ 0 ~ 0 
148 2.6 ~ 0 
156 0.8 1.8 
162 ~ 0 ~ 0 
203 2.1 1.2 

6. Conclusions 

We have shown that the QHLD method can be employed to characterize the struc-
ture and lattice phonon dynamics of complex molecular crystals. The method is very 
simple, and its semi-empirical nature requires careful tuning over the class of molecu-
lar crystals of interest. In this way, a proper choice of parameters may compensate for 
the inherent approximations and shortcomings. The QHLD approach allows one to 
exploit the molecular nature of the crystals, dealing separately with the inter- and 
intramolecular phonon dynamics, the latter being solved through conventional ab 
initio methods. Association with mean-field electronic structure calculations has al-
lowed us to characterize the Peierls coupling in two rather different classes of molecu-
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lar crystals, BEDT-TTF organic superconductors and acene semiconductors. We have 
shown that the Peierls coupling plays a fundamental role in the superconducting pair-
ing mechanism. In acene semiconductors, on the other hand, the QHLD method has 
provided important clues about the obtainable crystal phases, revealing the possible 
influence of crystal phase purity on the observed mobilities. 

Acknowledgements 

Work supported by the Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali 
(I.N.S.T.M. - PRISMA 2002 project) and by the Italian Ministry of University and Research (M.I.U.R.  
– FIRB 2003 project). 

References 

[1] DELLA VALLE R.G., VENUTI E., FARINA L., BRILLANTE A., Chem. Phys., 273 (2001), 197. 
[2] GIRLANDO A., MASINO M., VISENTINI G., DELLA VALLE R.G., BRILLANTE A., VENUTI E., Phys. Rev., 

B62 (2000) 14476. 
[3] CALIFANO S., SCHETTINO V., NETO N., Lattice Dynamics of Molecular Crystals, Springer-Verlag, 

Berlin, 1981. 
[4] HOFFMANN R., J. Chem. Phys. 39 (1965), 1397. 
[5] ZERNER M.C., LOEW G.H., KIRCHNER R.F., MUELLER-WESTERHOFF U.T., J. Am. Chem. Soc., 102 

(1980), 589. 
[6] LANG M., MUELLER J., [in:] K.H. Bennemann, J.B. Ketterson (Eds.), The Physics of Superconduc-

tors, Vol. 2, Springer-Velag, Heidelberg, 2003. 
[7] GIRLANDO A., MASINO M., BRILLANTE A., DELLA VALLE R.G., VENUTI E., Phys. Rev., B66 (2002), 

100507 (R). 
[8] GIRLANDO A., MASINO M., BRILLANTE A., DELLA VALLE R.G., VENUTI E., [in:] R.W. Stevens (Ed.), 

New Developments in Superconductivity Research, Nova Science Publishers, Hauppauge, 2003,  
p. 15. 

[9] ALLEN P.B., DYNES R.C., Phys. Rev., B12 (1975), 905. 
[10] MARSIGLIO F., CARBOTTE J.P., Phys. Rev., B 33 (1986), 6141. 
[11] DRICHKO N., HAAS P., GORSHUNOV B., SCHWEITZER D., DRESSEL M., Europhys. Lett., 59 (2002), 774. 
[12] LUDWIG T., SCHWEITZER D., KELLER H.J., Synth. Metals, 85 (1985), 1587. 
[13] WOSNITZA J., LIU X., SCHWEITZER D., KELLER H., Phys. Rev., B 50 (1994), 12747. 
[14] SADEWASSER S., LOONEY C., SCHILLING J.S., SCHLUETER J.A., WILLIAMS J.M., NIXON P.G., WINTER R.W., 

GARD G.L., Solid State Comm. 104 (1997), 571. 
[15] CAUFIELD J., LUBCZYNSKI W., PRATT F.L., SINGLETON J., KO. D.J.K., HAYES W., KURMOO M., DAY P., 

J. Phys. C : Condens. Matter 6 (1994), 2911. 
[16] DIMITRAKOPOULOS C.D., MASCARO D.J., IBM Res. & Dev., 45 (2001), 11. 
[17] HANNEWALD K., BOBBERT P.A., Phys. Rev., B69 (2004), 075212. 
[18] DELLA VALLE R.G., VENUTI E., FARINA L., BRILLANTE A., MASINO M., GIRLANDO A., J. Phys. Chem., 

B 108 (2004), 1822, and references therein. 
[19] VENUTI E., DELLA VALLE R.G., BRILLANTE A., MASINO M., GIRLANDO A., J. Amer. Chem. Soc., 124 

(2002), 2128. 
[20] CAMPBELL R.B., ROBERTSON J.M., Acta Cryst., 15 (1962), 289. 
[21] HOLMES D., KUMARASWAMY S., MATZGER A.J., VOLLHARDT K.P., Chem.Eur.J., 5 (1999), 3399; SIEGRIST T., 

KLOC CH., SCHOEN J.H., BATTLOGG B., HADDON R.C., BERG S., THOMAS G.A., Angew. Chem. Int. Ed. 
Engl., 40 (2001), 1732; MATTHEUS C.C., DROS A.B., BAAS J., MEETSMA A., DEBOER J.L., PALSTRA T.T.M., 
Acta Cryst., C 57 (2001), 1732. 



A. GIRLANDO et al. 316 

[22] DELLA VALLE R.G., VENUTI E., BRILLANTE A., GIRLANDO A., J. Chem. Phys. 118 (2003), 807. 
[23] BRILLANTE A., DELLA VALLE R.G., FARINA L., GIRLANDO A., MASINO M., VENUTI E., Chem. Phys. 

Lett. 357 (2002), 32. 
[24] FARINA L., BRILLANTE A., DELLA VALLE R.G., VENUTI E., AMBOAGE M., SYASSEN K., Chem. Phys. 

Lett. 375 (2003), 490. 
[25] VENUTI E., DELLA VALLE R.G., FARINA L., BRILLANTE A., MASINO M., GIRLANDO A.Phys. Rev. B 70 

(2004), 104106. 
[26] WONG W.K., WESTRUM JR.E.F., Mol. Cryst. Liq. Cryst. 61 (1980), 207. 

Received 14 September 2004 
Revised 2 November 2004 

 
 



Materials Science-Poland, Vol. 22, No. 4, 2004 

 

Highly conducting organic composites obtained by 
charge transfer reaction in the solid state 
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In this paper, we shortly present and discuss structural, electrical and spectral properties of organic 
composites with the general formulae (BEDT-TTF)x/A and (BEDO-TTF)x/A, where A denotes an elec-
tron-acceptor species such as iodine, AuI, or AuI3. Electron transfer between large conducting grains 
restricts electrical conductivity of the composites; the most probable mechanism being fluctuation 
-induced tunnelling conduction. Extensive spectral properties of organic composites are presented. It is 
shown that spectral studies can provide specific information about charge localization, electron-electron 
and electron-molecular vibration interactions, and about changes in the properties of highly conducting 
organic composites with ageing or annealing. 

Key words: organic composites; BEDT-TTF; BEDO-TTF; electrical transport; optical spectroscopy 

1. Introduction 

Charge transfer (CT) complexes with the tetrathiafulvalene (TTF) organic donor 
or its derivatives possess very interesting physical properties such as high anisotropy 
and two-dimensional metal-like electron transport; some of them also show supercon-
ductivity and charge or spin ordering. However, these materials usually crystallize in 
the form of tiny and brittle crystals, which are difficult to handle and utilize. One of 
the possibilities of obtaining organic material in a form convenient for applications 
and with good physical properties is to prepare conducting organic composites di-
rectly in the solid state. As was shown by Brau and Farges [1, 2], charge-transfer reac-
tions between suitable electron donor and acceptor moieties occur in the solid state in 
the course of grinding them together. Such a mechano-chemical method has been 
employed for the preparation of highly conducting composites of tetrathiafulvalene 
(TTF), bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF), and bis(ethylenedioxy)- 
tetrathiafulvalene (BEDO-TTF) [3–5], with various electron acceptors, e.g. iodine, 
_________  
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AuI, AuI3, and AuBr3. The main advantage of this method is an unlimited size and 
shape of the composite samples. Physical properties of such composites roughly re-
semble the properties of their crystalline analogues obtained by traditional ways. 
Grains forming the composite sample, however, are anisotropic and exhibit all the 
properties typical of single crystals. We have already widely exploited the method of 
Brau and Farges [1, 2], and some of our observations will be reviewed here. 

2. Organic composites – preparation and structural properties 

One of the methods of preparation of organic composites is to produce the conduc-
tive material by a CT reaction, which occurs directly in the solid state between or-
ganic electron donor and acceptor parent substances. The reaction is evidenced by 
a significant darkening of the mixture, prepared quite simply by crushing both donor 
and acceptor in an agate mortar. An appropriate molar proportion of substrates is 
ground for a defined time, then compacted and annealed (for details see [2–6]). 

The morphology of the composites depends on their composition, and on the con-
ditions of the synthesis and annealing procedure [7]. Usually, the morphology of the 
composite resembles the texture of a sponge. It has been suggested from X-ray dif-
fractograms and Raman spectra that the composites are built mainly of grains, whose 
composition corresponds to the stoichiometry of the corresponding crystalline com-
plexes, e.g. (BEDT-TTF)2I3, (BEDT-TTF)2AuI2, or (BEDO-TTF)2I3 [8]. The conduct-
ing grains are separated by amorphous matter of various composition and electrical 
properties; in some cases, neutral grains of metallic gold also occur. This composition 
has been confirmed and described in detail by SEM imaging and energy dispersive X-
ray analysis (EDX) [7, 9, 10]. From the SEM and EDX investigations, it was also 
stated that annealing the composite leads to the development and completion of the 
CT reaction, as well as to chemical exchange between components [5, 7, 9, 10]. 

3. Electrical transport properties – basic remarks 

The electrical properties of BEDT-TTF- and BEDO-TTF-based composites have 
been recently reviewed [5, 11]; this is why the discussion of transport properties in 
this presentation will be limited to the most important problems.  

BEDT-TTF-based composites exhibit a variety of electrical properties depending 
on their preparation conditions [5, 11, 12]. Samples of (BEDT-TTF)x/I, where x de-
fines the molar proportions of solid donor and acceptor, show semiconducting behav-
iour before annealing. Appropriate thermal treatment, however, changes these proper-
ties from metal-like at high temperatures and semiconductor-like at low temperatures 
to metal-like behaviour over the entire temperature range (for properly annealed sam-
ples). Composites obtained by grinding BEDT-TTF with gold iodides (AuI or AuI3) 
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present similar properties, although in this case it is more difficult to obtain samples 
that display metallic conductivity in the whole temperature range [12].  

The transport properties of BEDO-TTF-derived composites are completely differ-
ent. The electrical conductivity of these materials reaches 15 S⋅cm–1 at room tempera-
ture (RT) and is even higher when the temperature is lowered [4]. The prominent fea-
ture of (BEDO-TTF)x/I composites is their metal-like behaviour observed down to 
about 150 K for non-annealed samples (Fig. 1). On the other hand, ageing and anneal-
ing of BEDO-TTF composites causes the degradation of their transport properties. 

 
Fig. 1. Temperature dependence of the d.c. conductivity of: fresh (a) and 2-month (b)  

samples of (BEDO-TTF)1.1/I composite, a sample of (BEDO-TTF)1.1/I  
before (c) and after (d) annealing. Solid lines are fits with Eq. (1)  

For the production of composites with desired electrical properties, it is very im-
portant to understand what mechanisms are responsible for temperature variations of 
the conductivity and to identify factors influencing electrical properties of the com-
posites. Two mechanisms seem to be the most probable reasons for the semiconduct-
ing behaviour of non-annealed composite samples: charge carrier localization due to 
material defects and intergrain effects (poor contacts between grains). SEM investiga-
tions have shown that in BEDT-TTF-based composites during annealing both grain 
recrystallization and contact improvement between them take place. The first process 
can lead to a defect reduction and electron delocalization in grains, while the second 
improves the electrical transport between the grains. The crossover in annealed sam-
ples to semiconducting behaviour at low temperatures points out that one or both of 
the processes mentioned previously are not suppressed enough for metallic properties 
to be achieved at all temperatures. 

From an analysis of the experimental data [13] it appears that fluctuation-induced 
tunnelling of the electrons (FIT) between grains is the most probable mechanism of 
composite conductivity at low temperatures [14]. Thermal fluctuations give rise to 
a decrease in intergrain resistances with increasing temperature, and the conductivity 
shows T–α behaviour typical of the contribution of metallic intragrain conductivity. To 
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fit experimental data at all temperatures, one can introduce the simplest model of the 
composite as a system of arrays with various resistances; one resistance represents the 
contribution of intergrain junctions and another one represents the grains themselves. 
In this case, the temperature dependence of composite conductivity can be approxi-
mated with the formula 

 

1

1

0

( ) exp
T

T B CT
T T

ασ
−

  
= +  +   

 (1) 

where B and C are geometrical factors depending on the fraction of the sample length 
and cross-section area which correspond to the intergrain regions and conducting 
grains, respectively; the parameters T0 and T1 depend on the properties of contacts 
between grains [15]. The above equation can be fitted to experimental values of 
electrical conductivity. A good agreement between experimental data and fits allows 
one to suggest that the annealing of composites makes the influence of electron local-
ization negligible and inhibits (but does not eliminate entirely) the undesirable effect 
of intergrain tunnelling. Using relations between T0, T1, and the contact parameters 
(contact width, area, and barrier height) [15], one can find out, for example, how con-
tact characteristics change with x, annealing conditions, grinding time, and other 
composite preparation parameters. This information is required to understand the 
processes of composite formation. 

 
Fig. 2. Temperature dependence of the (BEDT-TTF)2.17/(AuI3) composite as a function of 

annealing time. Solid lines are fits by Eq. (1). In the insert, the changes of  
intergrain contact width on annealing, deduced from the fit parameters, are shown 

The electrical properties of annealed BEDT-TTF composites almost do not change 
in time. On the other hand, the properties of non-annealed samples change with com-
posite ageing [13]. Analysis of the experimental data shows that the ageing of non-
annealed samples can be considered as non-effective annealing. The temperature de-
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pendence of the conductivity of aged samples as a function of annealing time is 
shown in Fig. 2. Aged samples need to be annealed for tens of hours to achieve the 
same effect as fresh samples annealed for 1–2 hours. The conductivity of the (BEDT-
TTF)2.17/(AuI3) composite has been analysed in terms of the FIT model in order to 
obtain information on how annealing influences intergrain contacts. The dependence 
of contact width on annealing time is shown in the insert of Fig. 2. Contact width 
decreases with annealing (contacts improve), which is in agreement with SEM obser-
vations. 

An analysis of the temperature dependence of the conductivity of BEDO-TTF-
derived composites (Fig. 1) shows that, as in the case of BEDT-TTF composites, the 
conductivity of these materials is determined mainly by two factors: 1) the metal-like 
conductivity of (BEDO-TTF)2.4I3 grains and 2) fluctuation-induced tunnelling of car-
riers between grains. The T-dependence of BEDO-TTF composite conductivity can 
thus also be approximated by Eq. (1). As the conductivity of single crystals at high 
temperatures is proportional to T–2 [16], the parameter α was taken to be equal 2. 

 
Fig. 3. Dependence of intergrain contacts on x for (BEDT-TTF)x/(AuI) (A)  
and (BEDO-TTF)x/I (B) composites. For comparison, the x-dependence of  
RT conductivity is presented. The solid curves are only to guide the eye 

Changes in intergrain distances with x for (BEDO-TTF)x/I composites are shown 
in Fig. 3. Contrary to similar parameter variations for (BEDT-TTF)x/(AuI), no mini-
mum of the contact width at x ≈ xopt is found in this case. These differences in the 
transport properties of both types of composites reflect the differences in their struc-
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tures. In (BEDT-TTF)x/(AuI), conducting grains of (BEDT-TTF)2I3 and (BEDT 
-TTF)2AuI2 are formed. Grain concentration is the largest for x = xopt, hence intergrain 
distance (contact width) is minimal. In (BEDO-TTF)x/I, an insulating phase of (BEDO 
-TTF)I3 is formed together with conducting grains of (BEDO-TTF)2. This phase forms 
a layer between (BEDO-TTF)2.4I3 grains and unreacted iodine. The thickness of the 
(BEDO-TTF)I3 shell decreases with increasing x due to the deficit of iodine, which 
also leads to a monotonic decrease in the contact width. 

Suggestions resulting from analysing the temperature dependence of conductivity 
should be confirmed by other methods. IR investigations, discussed below, give addi-
tional information about conduction electrons and appear to be in agreement with the 
conclusions made here. Thermoelectric power measurements can also be used to con-
firm these suggestions [13, 17]. As shown by us, the same effect is observed for all types 
of annealed composites: although d.c. conductivity shows a strong x-dependence, the x-
sensitivity of thermoelectric power is weak in the region of optimal composition (xopt) 
and above it. Not only RT thermoelectric power but also its temperature dependence 
do not depend on x when it is close to xopt [13, 17]. In contrast to the conductivity, 
both thermoelectric power and its T-dependence change weakly with the annealing of 
composites for x ≈ xopt. Conducting microcrystals give the main contribution to the 
thermoelectric power of the composites [13, 17]. Weak sensitivity of the composites 
to thermal treatment means that the annealing influences mainly the non-conducting 
intergrain layers and weakly changes the thermoelectric properties of conducting 
grains. On the other hand, the thermoelectric properties of these microcrystals are 
almost the same as those of corresponding single crystals.  

The interpretation of the electrical properties of BEDT-TTF and BEDO-TTF 
composites presented here allows one to make suggestions about ways to control and 
improve the electrical transport properties of composites obtained by direct CT reac-
tion in the solid state. As intergrain conduction plays the most important role in 
BEDT-TTF composites, first of all one should try to improve the contacts between 
grains. One of the ways, proposed by us, is to apply the hot pressing method for or-
ganic composite production [13]. With this method, composites with better electrical 
transport characteristics have been obtained. Better intergrain contacts in composites 
prepared by hot pressing are responsible for improvement in their electrical proper-
ties. In BEDO-TTF-derived composites, mainly the insulating (BEDO-TTF)I3 shell 
affects the electrical properties of the composites and their changes on ageing. 
Therefore, to improve the transport properties and stability of composites one should 
suppress (BEDO-TTF)I3 phase formation or use some procedure to remove this phase 
after the composite has been prepared. 

4. Spectral properties of organic composites 

Optical spectral studies play an important role in the investigation of organic con-
ductors, including not only crystalline but also polymeric and other unconventional 
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forms, such as highly conducting organic composites obtained by direct CT reaction 
in the solid state. Properties of organic conductors are determined by various interac-
tions and instabilities. The optical properties of these materials can be roughly de-
scribed by the simplest model, assuming non-interacting electrons (the one 
-electron model). In this approximation, the infrared (IR) properties may be derived in 
the self-consistent approximation. Assuming a frequency-independent relaxation rate 
γ and a background electric permeability ε0 arising from high-frequency transitions, 
the result takes the Drude form [18]: 

 ωγω
ω

εωε
i
p

−
−= 2

2

0
* )(
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where ωp is the plasma frequency. This expression is frequently used to describe the 
optical properties of organic metal-like conductors in the IR region and to estimate 
some of their electron parameters. On the other hand, electron-molecular vibration  
(e-mv) coupling plays a fundamental role in organic conductors. In general, the inter-
action of electrons with intramolecular vibrations can be written in the form given by 
Rice [19]: 

 
,
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i
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The first two terms describe radical electrons and molecular vibrations in the ab-
sence of vibronic coupling. A linear e-mv coupling is expressed explicitly by the third 
term. The set {gα} of constants denotes linear π-electron-molecular vibration constants. 

Vibrational spectroscopy plays an important role in the characterization of highly 
conducting organic composites. Major spectroscopic interest is centred in the follow-
ing areas: 1) differentiation and identification of various phases in composites and the 
evaluation of the charge distribution on their grains; 2) determining the extent of 
charge transfer from a donor to an acceptor moiety as a result of the CT reaction in 
the solid state; 3) determining of optical anisotropy, electronic structure, plasma fre-
quencies, optical band gap, optical conductivity, and other parameters characterising 
electronic properties of the composite grains; 4) evaluating surface homogeneity of 
composite samples; 5) assignment of vibrational features. As will be shown below, 
the data mentioned above are helpful in offering a model of composite structure. 

It is known from SEM and EDX investigations [7, 9, 10] that composites obtained 
by CT reaction in the solid state have a complex heterogeneous structure, containing 
grains of various compositions and properties, as well as intergrain matter. These 
observations of composite morphology, however, cannot give more exact information, 
maybe beyond confirming the existence of free gold grains in BEDT-TTF composites 
with gold iodides. As a microscopic tool, vibrational spectroscopy can differentiate 
between grains that exhibit metallic conductivity, e.g. (BEDT-TTF)2I3, (BEDT-
TTF)2AuI2, and (BEDO-TTF)2.4I3, and those that are semiconducting or insulating. 
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The IR spectra of the complexes show characteristic features, such as interband transi-
tions (usually in the range of 1000–4000 cm–1), accompanied by very strong and broad 
vibronic bands originating from a coupling of electronic excitations with the totally 
symmetric (Ag) intramolecular vibrations of the organic donor molecules (such as 
BEDT-TTF or BEDO-TTF). The latter features are localized between 100 and 1500 
cm–1, with a characteristic strong absorption near 1250 cm–1 [20]. The spectra of 
semiconducting composites, complexes, or ion-radical salts show distinct CT bands 
with an onset between 1500 and 2500 cm–1 and a well developed set of vibronic bands 
corresponding to Ag modes of the donor molecule. The spectra of metal-like compos-
ites or other organic conductors are, oppositely, dominated by the broad and strong 
absorption given by conduction electrons. The strongest vibronic band or bands are 
usually detectable as sub-maxima on the broad electronic absorption [20]. Such quali-
tative information can be restated precisely by Raman scattering investigations. 

Raman scattering spectra of selected BEDT-TTF-derived composites, namely 
(BEDT-TTF)0.67/I, (BEDT-TTF)2/AuI3, and (BEDT-TTF)0.82/I, are shown in Fig. 4 [8]. 
The maximum at 30 cm–1 is attributed to bending and the one at 120 cm–1 to stretching 

vibrations of the 3I
− anion. In the spectra of (BEDT-TTF)2/AuI3 and (BEDT-TTF)0.82/I, 

one can also see the 3I
−  line, and an additional band at 160 cm–1, which can be as-

signed to stretching vibration of the 2AuI−  anion [21]. This suggests that there are also 
(BEDT-TTF)2AuI2 grains in the two latter composites, except in (BEDT-TTF)2I3. This 
is corroborated by an analysis of the range 20–60 cm–1, corresponding to bending 
vibrations, where a distinct evolution with the appearance of a new band below  
60 cm–1 is observed.  

 
Fig. 4. Resonant Raman scattering spectra of (BEDT-TTF)0.67/I (a), 
(BEDT-TTF)0.82/AuI (b), and (BEDT-TTF)2/AuI3 (c) composites 
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Fig. 5. Raman spectra of (BEDO-TTF)x/I composites  
in the frequency range of C=C stretching vibrations 

Phase identification and evaluation of charge on the donor moieties can be per-
formed with IR or Raman spectroscopy. The latter is more accurate, since Raman 
lines are better separated than IR bands. Raman spectra of (BEDO-TTF)x/I composites 
in the most interesting range, between 1300 and 1700 cm–1, are shown in Fig. 5. These 
spectra, independent of sample composition (described by the parameter x), consist of 
four lines at 1424, 1474, 1578, and 1630 cm–1. These lines are assigned to Ag stretch-
ing vibrations of the central and ring C=C bonds, respectively, downshifted according 
to the value of charge on the BEDO-TTF cations in the composites [22, 23]. A similar 
effect, a linear correlation between vibrational band localization and charge on the 
considered bond has been observed some time ago by Farges et al. [1] in their studies 
on the IR absorption of the TEA(TCNQ)2 organic conductor. The presence of four 
lines in the Raman spectra of (BEDO-TTF)x/I composites suggests that two kinds of 
microstructures (grains) co-exist in the composites [24]. The doublet at 1474 and 
1630 cm–1 is characteristic of one grain type and the doublet at 1424 and 1578 cm–1 of 
the other. Ionisation shifts are approximately 53 and 27 cm–1 in the former case, and 
104 and 79 cm–1 in the latter case [25]. In order to evaluate the CT degree (ρ) on the 
cation, a linear dependence between the frequencies of the two totally symmetric C=C 
modes and the charge on the BEDO-TTF was assumed. Using the formulae of Droz-
dova et al. [23]: 

 

3,obs1524.9
,

109.0

ν
ρ
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= 2,obs1660.8

74.1

ν
ρ
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where ν3,obs and ν2,obs are the observed wave numbers of the bands, one can evaluate 
the degrees ρ' = 0.42 and ρ'' = 1.0 of each expected microstructure type for (BEDO 
-TTF)x/I composites [24, 25]. The former one corresponds to the crystal stoichiometry 
of 2.4:3 and the latter to 1:3. This indicates that the composite contains two phases, 
(BEDO-TTF)2.4I3 and (BEDO-TTF)I3.  



A. GRAJA, M. GOLUB 

 

326 

 
Fig. 6. Raman intensity of the C=C Raman lines as a function of x for  
(BEDO-TTF)x/I composites. The solid curves are only to guide the eye 

  
Fig. 7. Raman spectra of (BEDO-TTF)1.0/I composites: A) spectra of : 9- (a), 15- (b), and 38- (c)  

day old samples; B) spectra of non-annealed (a) and annealed (b, c) samples; the latter were  
annealed for 1 h (b) and 2 h (c) at a temperature of 80° C 

The contents of grains of both types strongly depend on the sample composition 
(Fig. 6), its age, and thermal treatment (Fig. 7) [25]. The intensity of Raman lines 
(Fig. 6), characteristic of (BEDO-TTF)2.4I3, decreases in the region of optimal compo-
sition (x ≈ 1). The intensity of the lines assigned to (BEDO-TTF)I3, however, in-
creases in the same region. This means that for x < 1 and x > 1 the relative amounts of 
(BEDO-TTF)I3 and (BEDO-TTF)2.4I3 phase are different. The ageing process for the 
(BEDO-TTF)1.0/I composite is illustrated in Fig. 7A. The Raman spectrum of a rela-
tively fresh sample is dominated by the lines at 1474 and 1630 cm–1. These compo-
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nents decrease slightly during the ageing of the sample; at the same time, the compo-
nents at 1424 and 1578 cm–1 increase distinctly and become dominant after about 
40 days. This evolution shows that the phase with the stoichiometry of 2.4:3 dominates 
in the beginning, but during ageing the contents of the 1:3 phase prevails. This process 
can be enhanced if the sample is annealed, as is shown in Fig. 7B. These spectral results 
show that annealing causes an evolution of the sample towards increased content of the 
(BEDO-TTF)I3 phase. This is a low-conducting phase, therefore the electrical conduc-
tivity of the BEDO-TTF composite decreases strongly with annealing. 

 
Fig. 8. Absorption spectra of (BEDT-TTF)x/(AuI) composites for various  

sample compositions, recorded in a KBr matrix; the spectrum of neutral BEDT-TTF,  
taken in the same conditions, is shown for comparison 

The IR spectra of the composites also give important information on the samples 
[20, 24–28]. Absorption spectra of (BEDT-TTF)x/(AuI) composites in the most inter-
esting spectral region, for various sample compositions, recorded in a KBr matrix, are 
shown in Fig. 8. For comparison, the spectrum of neutral BEDT-TTF, taken in the 
same conditions, is also shown. The spectra are typical of conducting BEDT-TTF 
materials [3, 26, 27] and are similar to those of BEDO-TTF composites [24, 25]. They 
can be roughly divided into two parts: 1) from 7000 cm–1 to the sharp absorption in-
crease at about 1600 cm–1 (not shown here) and 2) from 1600 to 600 cm–1. In the first 
part, quite a broad absorption band is observed with a maximum between 3200 and 
2900 cm–1, depending on the sample composition. This band is generally assigned to 
an electronic interband transition between split bands. The splitting is caused by 
strong intermolecular interactions between electron donor and acceptor molecules. 
This feature can be viewed as the plasma part of the spectrum. The second, most in-
formative part of the IR spectra of the composites, shows a very rich vibrational struc-
ture. The majority of the observed bands can be assigned to the normal vibrations of 
BEDT-TTF+ (or BEDO-TTF+) cations. These bands are down-shifted with respect to 
the corresponding bands of the neutral donor. The shifts are independent of the 



A. GRAJA, M. GOLUB 

 

328 

sample molar composition and are influenced by the average electron charge on the 
donor and by a modified charge distribution on the donor moieties after composite 
formation. A broadening of these bands is observed with increasing donor concentra-
tion in the mixture, which is characteristic of the formation of highly conducting 
composites as well as crystalline complexes [3, 25–27]. There are two particularly 
interesting bands in the IR spectra of BEDT-TTF and BEDO-TTF composites: in BEDT-
TTF composites, a broad band centred at about 1320 cm–1 and a structure at about 1400 
cm–1, and in BEDO-TTF-derived materials at about 1340 cm–1 and 1600 cm–1. The cou-
pling of totally symmetric normal vibrations (Ag modes) in a donor molecule with 
appropriate electronic excitations [27, 28] is the origin of the activation of these 
bands. The Ag modes mentioned above are attributed to the stretching of the central 
and ring C=C bonds, respectively [22, 27].  

 

 
Fig. 9. Optical conductivity spectra of (BEDT-TTF)x/I composites before (A)  

and after (B) annealing, for various x, recorded in a KBr matrix 

As was shown before, BEDT-TTF composite conductivity, which is semiconduc-
tor-like just after preparation (before annealing), becomes metallic after appropriate 
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thermal treatment. Such a drastic change in physical properties can also be observed 
by IR spectral methods. For example, the optical conductivity spectra, which are 
equivalent to absorption spectra of (BEDT-TTF)x/I composites before and after an-
nealing, for various x, are shown in Fig. 9. After annealing, the bands become 
broader, are down-shifted and overlap with the broad and strong electronic absorption 
caused by conducting electrons. The conducting electrons are responsible for plasma-
edge-like dispersion, which appears in the near IR region both for highly conducting 
crystalline synthetic metals and for metal-like organic composites. The IR reflectivity 
spectrum of the (BEDO-TTF)1.0/I composite and a least-square fit to the reflectance 
calculated from the Drude model [18] (dashed line) are shown as an example in 
Fig. 10. From the best fit one can evaluate fitting parameters such as ωp, γ, ε0, relaxa-
tion time τ, mean free path of charge carriers Λ, and optical conductivity at zero fre-
quency σopt(0). It is difficult to directly compare such evaluated transport parameters 
with the parameters for corresponding crystalline complexes due to their anisotropy 
and to the scattering of data from various papers, even for the same material. The 
plasma frequency and dielectric constant evaluated for composites are usually reason-
able when compared with data for related single crystals, but the damping rate of the 
composites is significantly higher than that of single crystals with the same composi-
tion [24]. The transport of charge carriers is strongly damped in composites due to 
their granular structure and grain defects. Consequently, the mean free path is rela-
tively short. 

 
Fig. 10. Reflectance spectrum of the (BEDO-TTF)1.0/I composite. Least-square fit  
to the reflectance, calculated from the Drude model, is shown by the dashed line 

Microreflectance studies of composites suggest that the organic conductors ob-
tained by CT reaction in the solid state are macroscopically homogeneous [26, 27]. 
This observation is conformable to SEM and EDX investigations. Besides, spectral 
methods are appropriate for characterizing materials and confirming the appearance of 
particular molecular groups. Various IR spectral methods (absorption of composites 
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dispersed in KBr pellets, absorption of very thin composite samples, reflectance from 
the composite surface, optical conductivity evaluated from composite reflectance), 
supplemented by Raman scattering studies, give extensive information on the spectral 
properties of the investigated materials. 

As mentioned in this chapter, optical studies of organic composites are crucial for 
understanding their macroscopic structure, electronic interactions, and electronic 
structure. Information comes from studies in the wide spectral region, from far IR to 
vacuum ultraviolet. Spectral studies of organic composites can provide specific in-
formation about the localization of charges, electron-electron and electron-molecular 
vibration interactions, vibronic activations of the modes, phase transitions, and 
changes in the properties of highly conducting organic composites with ageing or 
annealing.  

5. Concluding remarks  

The synthesis of non-traditional organic materials that display good physical prop-
erties, in particular high electrical conductivity, optical transparency or nonlinearity, 
and good stability, is an important aspect of contemporary molecular engineering. 
Organic conductors are precursors of such momentous species as nano-materials. At 
present, it is possible to fabricate various organic conductors not only as crystals but 
also in the form of thin conducting films, conducting reticulate doped polymeric 
films, or polycrystalline samples. Although these materials are of great practical im-
portance, they exhibit some shortcomings. One of them is the rather difficult and ex-
pensive technology associated with them. This is why we present a relatively simple 
mechano-chemical way of preparing conducting organic composites. 

We have given a discussion of the basic problems concerning the physical proper-
ties of BEDT-TTF- and BEDO-TTF-derived composites, especially their spectral 
properties. It seems that a better understanding and description of the phenomena 
occurring in these type of new organic materials are necessary to both develop their 
technology and to discover their applications in molecular electronic devices. 
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We have studied the pressure-induced neutral–ionic phase transition of tetrathiafulvalene-chloranil 
(TTF-CA) with polarized infrared absorption spectra of single crystals inside a diamond anvil cell (DAC). 
The evolution of the phase transition is complex, implying at least two steps. The nature of the intermedi-
ate regime is briefly discussed. 
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1. Introduction 

Neutral–ionic phase transitions (NIT) in mixed stack charge-transfer (CT) crystals 
were discovered nearly 25 years ago [1, 2], but continue to attract considerable atten-
tion [3] in view of the intriguing properties exhibited at the transition, such as unusual 
dielectric responses [4] or negative resistance effects [5]. NITs are characterized by 
a change in the degree of ionicity, ρ, the average charge on the electron-donor (D) and 
electron-acceptor (A) molecules that alternate along the stack. In the ionic phase 
(ρ ≥ 0.5), the stack dimerises due to Peierl instability [3]. Therefore, there is a com-
plex interplay between electronic valence instability (order parameter – ρ) and the 
structural phase transition (order parameter – the extent of dimerisation δ). 

Among CT salts undergoing NIT, the prototype tetrathiafulvalene-chloranil (TTF 
-CA) occupies a special place, because it is almost unique in undergoing both tem-
perature- [2] and pressure-induced [1] neutral–ionic phase transitions. On the other 
hand, most experimental studies have been devoted to the T-induced phase transitions. 
_________  
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Studies on the p-induced transitions [6–10] showed that it occurs through some sort of 
“intermediate phase”, whose nature has remained elusive. The issue is important for 
a proper construction of the TTF-CA pressure–temperature (p–T) phase diagram 
[11, 12] and for the understanding of the NIT mechanism in general. 

2. Experimental 

TTF-CA single crystals were prepared by vacuum sublimation (75° C) of crystals 
obtained by mixing saturated acetonitrile solutions of commercial grade TTF and CA. 
In this way, very thin single crystals, suitable for absorption spectroscopy, were 
grown. The crystals exhibit significant dichroism in white light transmission: they 
appear green when the light is polarized parallel to the stack axis a, and yellow when 
polarized perpendicular to the stack. 

The infrared (IR) absorption spectra were measured with a Bruker FTIR spec-
trometer (model IFS66), equipped with an A590 microscope. The spectral resolution 
was 2 cm–1. High-pressure measurements up to 3.2 GPa were performed with a cus-
tom designed gasketed diamond anvil cell (DAC), able to fit under the IR microscope. 
Nujol or perfluorocarbon oil was used as the pressure-transmitting medium. Nujol oil, 
which is hydrostatic up to 5 GPa, gave good results in terms of pressure homogeneity 
inside the DAC. On the other hand, the pressure appeared to be inhomogeneous 
throughout the sample when perfluorocarbon oil was used, so these measurements 
were disregarded. Pressure calibrations were done with the ruby luminescence tech-
nique [13]. Error bars in pressure readings were ± 0.05 GPa. 

3. Results 

Figure 1 shows a portion of the absorption spectra polarized perpendicular to the 
stack axis (i.e. roughly parallel to the molecular planes) as a function of pressure. The 
reported spectral region (1525–1685 cm–1) shows the pressure evolution of the CA 
b1u ν10 normal mode, corresponding to carbonyl antisymmetric stretching. The fre-
quency of this mode is generally used to estimate ρ by assuming a linear frequency 
dependence: ν(ρ) = ν(0) – ∆ionρ, where ∆ion = 160 cm–1 is the ionicity frequency shift 
from the fully neutral (CA0, 1685 cm–1) to the fully ionic molecule (CA–1, 1525 cm–1). 

Figure 2 compares the pressure evolution of ionicity, as estimated from the fre-
quency of the CA b1u ν10 mode, with the corresponding temperature evolution [14]. In 
the temperature induced NIT, ρ jumps discontinuously from 0.3 to 0.5 at TN-I = 81 K, 
evidencing the first-order character of the phase transition. The evolution of the pres-
sure-induced phase transition is much more complex. The ionicity increases smoothly 
on increasing pressure up to ρ ≈ 0.45 at 0.85 GPa. Above this pressure, two bands 
corresponding to the CA b1u ν10 mode are clearly seen, which indicates the coexis- 
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Fig.1. Pressure dependence of the TTF-CA absorption spectra polarized perpendicular to the stack axis 

in the 1525–1685 cm–1 spectral region. Continuous-line spectra refer to the intermediate phase 

 

Fig. 2. Temperature (left panel) [14] and pressure (right panel) evolution of the ionicity ρ, 
as estimated from the CA b1u mode (see text). The vertical lines indicate  

the pressure range stability of the intermediate phase 

tence of two CA species of different ionicities, namely ρ1 ≈ 0.5–0.6 and ρ2 ≈ 0.7. The 
relative amount of the two species varies with pressure: The band corresponding to 
the more ionic ρ2 species, present in the 0.9 GPa IR spectra only as a shoulder, gradu-
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ally gains intensity and dominates over the ρ1 band above 1.1 GPa (Fig. 1). In addi-
tion, while the ionicity of the ρ2 species is nearly constant around 0.7, the ionicity of 
the ρ1 species slightly increases from 0.5 to 0.6 on increasing the pressure (right panel 
of Fig. 2). We point out that the doublet structure in the IR spectra is hardly due to 
any macroscopic inhomogeneity, such as a non-uniform strain in the crystal, as we 
have checked for pressure homogeneity by means of micro-Raman mapping of the 
crystal sample. Moreover, the spectral changes are well reproducible for various cy-
cles on different crystal samples. The doublet structure disappears above 1.2 GPa, and 
we observe a single CA b1u ν10 band. Above this pressure, the ionicity is unique again, 
and increases from ρ ≈ 0.70 to ρ ≈ 0.78 at 2 GPa. 

4. Discussion 

We will now review previous studies on the pressure-induced NIT of TTF-CA and 
compare them with the data presented above. A generally accepted picture emerging 
from previous spectroscopic studies is that the p-induced NIT in TTF-CA occurs 
through some sort of intermediate state, in which quasi-ionic and quasi-neutral mo-
lecular species (I + N) coexist. Indeed, evidence of a doublet structure for bands 
mostly sensitive to ionicity has been found in vibrational IR [6, 8], Raman spectra [9], 
and in UV-VIS optical reflectivity measurements [7]. At room temperature, this in-
termediate mixed (I + N) state starts at a pressure around 0.7 GPa and ends up at 
1.1 GPa, when the system undergoes the transition towards a single ionicity ionic 
phase [6, 8]. 

More recently, the p-T phase diagram of TTF-CA has been investigated by means 
of neutron diffraction and nuclear quadrupole resonance in a remarkable work by 
Lemée-Cailleau et al. [11]. They postulate the existence of a triple point, located ap-
proximately at 0.5 GPa and 205 K, above which the N-I first order phase transition 
line splits into two. Such an observation agrees with the picture described above, im-
plying an intermediate phase in the p-induced NIT above 205 K. The nature of this 
unusual solid-state p-T phase diagram has been described in terms of the condensation 
and ordering of CT excitations [11, 12]. In other words, at relatively high tempera-
tures, the neutral phase should be considered to be composed of neutral and ionic 
dynamic domains, thermally fluctuating in time and space. When the concentration of 
the ionic domains is high enough, a first order phase transition occurs: the ionic do-
mains condense in 1-D strings, forming the intermediate phase. The first order line 
ends up at a critical point, when the difference between the neutral and intermediate 
phases disappears. By further increasing pressure, a 3-D ordering phase transition of 
the 1-D ionic strings drives the intermediate phase to the ionic phase. 

Our data (Fig. 1) confirm the presence of an intermediate phase, which now ap-
pears well established even at room temperature. As a consequence, the neutral phase 
-to-intermediate phase transition line should be extended up to at least 300 K, shifting 
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the critical point, if any, to a higher temperature. At variance with previous studies, 
we observe the starting of the intermediate state at a pressure around 0.85 GPa, 
slightly higher than the previously reported values. Both species (ρ1 + ρ2) seem to be 
already on the ionic side. We remark, however, that the IR spectra polarized parallel 
to the stack axis, which are not reported here and currently under analysis, show sig-
nificant changes already at 0.7 GPa. In addition, we point out that the neutral–ionic bor-
derline changes with the stack structure: if the stack is regular, theory puts the crossover 
at ρ ≈ 0.68 [15], whereas for a chain of DA dimers the crossover is at ρ ≈ 0.5. Further 
studies, both experimental and theoretical, are therefore needed, and are in progress, to 
understand the complex nature of the pressure-induced NIT in TTF-CA. 
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Spectral investigations of new organic conductors (BEDO-TTF)2(C3H2N3O3) and (DB-TTF) (C3H2N3O3) 
were performed. Optical absorption spectra in the range of 400–40 000 cm–1 of the powdered salts dispersed 
in KBr pellets were recorded and analysed. The spectra of (BEDO-TTF)2(C3H2N3O3) are characteristic of 
organic metals and show small anisotropy, which is typical of quasi-two-dimensional materials. On the other 
hand, the spectra of (DB-TTF)(C3H2N3O3) are typical of semiconducting materials. The (BEDO 
-TTF)2(C3H2N3O3) salt undergoes a phase transition at about 120 K. The polarized reflectance spectra of 
single crystals of (BEDO-TTF)2(C3H2N3O3) were recorded in the range of 600–7000 cm–1, down to 4 K. The 
frequency dependences of reflectivity were fitted with a Drude model and the transport parameters were 
evaluated and investigated vs. temperature. An assignment of some vibrational bands in the IR spectra 
was proposed. 

Key words: BEDO-TTF salt; DB-TTF salt; TTF derivatives; organic conductors; IR spectroscopy; 
 transport properties 

1. Introduction 

Most of the research concerning organic conductors has been focused on the syn-
thesis and studies of cation radical salts based mainly on the bis(ethylenedithio)- 
tetrathiafulvalene (BEDT-TTF or ET) molecule and its numerous structural modifica-
tions. For our spectral investigations we chose new salts formed by bis(ethylenedi- 
oxy)tetrathiafulvalene (BEDO-TTF) and dibenzotetrathiafulvalene (DB-TTF) donors, 
with a monosubstituted anion of isocyanuric acid (C3H2N3O3)

– (Scheme 1). 

_________  
*Corresponding author, e-mail: barszcz@ifmpan.poznan.pl. 
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Scheme 1. The DB-TTF molecule, BEDO-TTF molecule and (C3H2N3O3)

– isocyanuric acid anion 

BEDO-TTF and DB-TTF are modifications of the BEDT-TTF molecule; the differ-
ence between these molecules lies in their outer rings. The BEDO-TTF molecule, with 
four sulphur atoms in the outer rings substituted by oxygen atoms, is a well-known do-
nor molecule that has been successfully used for the synthesis of many ion-radical salts 
exhibiting metallic conductivity and superconductivity [1–4]. The DB-TTF molecule is 
less commonly used; instead of two outer rings with ethylenedithio fragments, it con-
tains two outer benzene rings. The carbon atoms in the benzene rings are smaller than 
sulphur (in BEDT-TTF) or oxygen atoms (in BEDO-TTF), which strongly influences 
physical properties of DB-TTF salt compared to the salts of BEDT-TTF and BEDO 
-TTF.  

Similar to (BEDT-TTF)2(C3H2N3O3) [5], the crystal structure of (BEDO-TTF)2- 

(C3H2N3O3) has a layered arrangement; the BEDO-TTF layers alternate with 
(C3H2N3O3)

– anions. In DB-TTF salt, one can observe one-dimensional stacks. As in 
(BEDT-TTF)2(C3H2N3O3) [5], the anions in (BEDO-TTF)2(C3H2N3O3) and (DB-
TTF)(C3H2N3O3) are also linked by hydrogen bonds in one-dimensional polymer chains, 
which do not interact with each other. (BEDO-TTF)2(C3H2N3O3) is a 2D metal-like con-
ductor down to 120 K (σRT =3.34 S/cm); at this temperature the salt undergoes a phase 
transition. (DB-TTF)(C3H2N3O3) salt, on the other hand, exhibits semiconducting prop-
erties with a room temperature conductivity of σRT =10–1 S/cm [5]. 

In this communication, we report the first spectral studies of (BEDO 
-TTF)2(C3H2N3O3) and (DB-TTF)(C3H2N3O3) salt. The aim of these investigations is 
to obtain information on the physical properties of these salts over broad spectral and 
temperature ranges.  

2. Experimental 

Crystal preparation by electrocrystallization has been described elsewhere [5]. The 
typical dimensions of the single crystals selected for spectral investigations were 
about 0.02 × 0.5 × 1.0 mm3 for BEDO-TTF salt and 0.02 × 0.1 × 2.0 mm3 for DB-TTF 
salt. Samples of (BEDO-TTF)2(C3H2N3O3) crystallize in the form of elongated plates 
with flat and reflecting faces, whereas (DB-TTF)(C3H2N3O3) crystallizes in the form 
of needles. The DC conductivity of (BEDO-TTF)2(C3H2N3O3) was measured by 
a standard DC four-probe technique down to the helium temperature. 
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The near normal polarized reflectance spectra of (BEDO-TTF)2(C3H2N3O3) salt 
for frequencies in the range of 600–7000 cm–1 were investigated as a function of tem-
perature (4–300 K). The spectra were recorded from the best-developed crystal face, 
parallel to the conducting layers, using a FT-IR Perkin Elmer 1725X spectrometer 
equipped with a suitable IR microscope and cryostat. The spectra were measured for 
two mutually perpendicular polarizations of the incident IR beam, corresponding to 
the maximum (Emax) and minimum (Emin) of the reflected energy. For low-temperature 
measurements, the samples were mounted in an Oxford Instruments helium cryostat, 
connected to a temperature controller. The plasma-edge-like dispersion in the reflec-
tance spectra was fitted with a Drude dielectric function. Temperature dependences of 
optical transport parameters (plasma frequency – ωp, relaxation rate – Γ, and all 
higher frequency contributions to the dielectric function – ε∞) were investigated. Ad-
ditionally, we studied the absorption spectra of powdered samples of both BEDO-TTF 
and DB-TTF salts dispersed in KBr pellets in the frequency range of 400–40 000 cm–1, 
at room temperature. These investigations were performed with two spectrometers: 
a Bruker Equinox 55 and a UV/Vis/NIR Perkin Elmer Lambda 19.  

3. Results and discussion 

3.1. Electronic structure 

The electronic and vibrational absorption spectra of (BEDO-TTF)2(C3H2N3O3) and 
(DB-TTF)(C3H2N3O3) salts are shown in Fig. 1. 

 
Fig. 1. Electronic absorption spectra of (BEDO-TTF)2(C3H2N3O3)  

and (DB-TTF)(C3H2N3O3) powders dispersed in KBr pellets (weight concentration 1:2000). 
The inset shows the vibrational part of the absorption spectrum 
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The spectrum of (BEDO-TTF)2(C3H2N3O3) consists of intermolecular charge 
transfer bands at about 3000 cm–1 and 12 200 cm–1, and a band related to intramolecular 
excitations at about 20 000 cm–1. The band at 3000 cm–1 corresponds to the charge trans-
fer process BEDO-TTF0 + BEDO-TTF+ → BEDO-TTF+ + BEDO-TTF0 [6]; its position 
depends on the hopping integrals and the Coulomb repulsion energy between two elec-
trons on adjacent molecules. The band at 12 200 cm–1 is attributed to the charge transfer 
process BEDO-TTF+ + BEDO-TTF+ → BEDO-TTF2+ + BEDO-TTF0 [7]. The position 
of this band can be described approximately by the value of the effective Coulomb in-
teraction, which is given by U = U0 – V1, where U0 is the intramolecular Coulomb repul-
sion energy between two electrons on the same site. The most important difference be-
tween the electronic spectra of BEDT-TTF and BEDO-TTF reveals itself in the position 
of the mentioned intermolecular band at about 12 000 cm–1; it is observed in BEDT-TTF 
salt at a lower frequency, namely around 10 000 cm–1. It results from calculations of 
valence force constants that the rigidity of the outer rings of BEDO-TTF is larger than 
that of BEDT-TTF [8]. This can lead to a less effective screening of Coulomb interac-
tions and an increase in both U0 and the frequency of this charge transfer band. The 
spectrum of (DB-TTF)(C3H2N3O3) consists of bands at about 3400 cm–1, 11 000 cm–1, 
16 500 cm–1, and 28 000 cm–1. By analogy to BEDT-TTF compounds (see e.g. [7]), we 
relate the first two bands to intersite charge transfer excitations, whereas the bands at 
16 500 cm–1 and 28 000 cm–1 to the intramolecular excitation of the DB-TTF mole-
cule. 

The reflectance spectra of (BEDO-TTF)2(C3H2N3O3) salt at 300 K and 40 K, for 
two perpendicular polarizations, are displayed in Figs. 2 and 3. 

 

Fig. 2. Polarized reflectance spectra of 
(BEDO-TTF)2(C3H2N3O3) single crystals  
at 300 K and 40 K for two perpendicular 

polarizations, Emax (upper panel)  
and Emin (lower panel) 
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Fig. 3. Polarized reflectance spectra of (BEDO-TTF)2(C3H2N3O3) single crystals at room temperature  

for two perpendicular polarizations, Emax and Emin, of the IR beam (dotted lines represent the Drude fits). 
The inset shows the temperature dependence of electrical conductivity for (BEDO-TTF)2(C3H2N3O3) 

 
Fig. 4. Temperature dependences of the Drude parameters, extracted from fitting the reflectance data of 
(BEDO-TTF)2(C3H2N3O3) crystals for two perpendicular polarizations, Emax and Emin, of the IR beam;  

ωp is the plasma frequency, ε∞ represents all higher frequency contributions to the dielectric function, and Γ  
is the damping constant, which is related to the relaxation time of carriers τ (Γ = 1/cτ, c is the speed of light) 

The electronic dispersion observed below about 6000 cm–1 is characteristic of com-
pounds showing metallic properties; it is in agreement with electrical conductivity 
measurements (see the inset in Fig. 3). The observed plasma-like dispersion authorized 
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us to use the Drude model for calculating the plasma frequency ωp and relaxation rate Γ. 
Least squares fits to the experimental reflectance in the range of 2000–7000 cm–1 (not 
taking into account the region of vibrational bands, which could perturb the fit parame-
ters) were made for reflectance calculated from the Drude dielectric function 

( ) ( )2 .p iε ω ε ω ω ω Γ∞= − +  The results of the fitting procedure at room temperature, 

for the two perpendicular polarizations of the IR beam Emax and Emin, are shown in Fig. 3. 
The temperature dependences of the transport parameters, determined by the Drude 
analysis, are presented in Fig. 4. 

The phase transition in (BEDO-TTF)2(C3H2N3O3) considerably influences the 
band structure parameters. When decreasing the temperature down to about 140 K, 
the relaxation rate Γ and plasma frequency ωp grow for a polarization of Emax and 
decrease for a polarization of Emin. Below 140 K, the plasma frequency ωp slightly 
grows with decreasing temperature, whereas the relaxation rate Γ decreases. Such 
a behaviour of the transport parameters can be related to an increase in transfer inte-
grals, in turn resulting from a reduction of the unit cell volume at lower temperatures. 
It should be emphasized that the phase transition in (BEDO-TTF)2(C3H2N3O3) is 
smeared over a broad temperature range in electrical conductivity measurements, and 
is observed at temperatures lower than the phase transition temperature determined 
from spectroscopic data. The modification of the transport parameters in this salt can 
be explained by a redistribution of charge density, and by an increase of the fraction 
of localized charges due to a decrease in the interactions between the BEDO-TTF 
molecules of neighbouring stacks. 

3.2. Vibrational structure 

Compared to the vibrations of the BEDT-TTF molecule [9], a normal coordinate 
analysis of BEDO-TTF [8] shows that the substitution of sulphur by oxygen in the outer 
rings leads to a markedly different charge distribution. The charge densities on the cen-
tral C2S4 fragments of both molecules are practically the same but important differences 
are observed in the outer rings; the strongly electro-negative oxygen almost completely 
gathers the electron density of the carbon atoms. Many bands, especially those related to 
C-O-C fragments, therefore appear at shifted frequencies. The presence of the oxygen 
atoms also leads to a sharp increase in electron-molecular vibration (EMV) coupling for 
totally symmetric Ag modes related to the outer rings [8]. 

The infrared spectrum is useful for evaluating the ionicity of the ground state of 
CT complexes, and the degree of CT from donor to acceptor molecules. It can be es-
timated by utilizing specific vibrational frequencies which are sensitive to the ionicity 
of the molecule [10]. Moldenhauer et al. [11] have reported that the four absorption 
bands of BEDO-TTF0 (864, 963, 1011, and 1082 cm–1) display distinct ionisation 
frequency shifts on CT complex formation. According to the normal coordinate 
analysis of the neutral BEDO-TTF molecule, the above four bands involve vibrations 
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of C-O bonds [8]. In this work concerning (BEDO-TTF)2(C3H2N3O3) single crystals, 
the appropriate bands are observed at 856, 956, 1000, and 1078 cm–1. Taking into 
account this result [11], we estimate that the average charge per donor molecule in the 
salt is +0.5e.  

The most characteristic feature of the IR spectra of BEDO-TTF salt is the large red 
shift of the ring C=C stretching band upon oxidation which appears between 1646 cm–1 
(neutral BEDO-TTF) and 1456 cm–1 (BEDO-TTF2+). These peaks may be assigned to 
BEDO-TTF in a partly oxidized state, especially the peak appearing at 1527 cm–1 
(Fig. 1) was assigned to the C=C stretching in BEDO-TTF+ [12]. The IR spectra of 
(BEDO-TTF)2(C3H2N3O3) salt are much richer than those of BEDO-TTF; Shinohara 
et al. [6] have observed a similar effect. Different absorption wavenumbers from that 
of BEDO-TTF also imply that new electronic states appear, different from those of 
neutral BEDO-TTF. 

4. Conclusions 

In this paper, the spectra of two new salts, namely (BEDO-TTF)2(C3H2N3O3) and 
(DB-TTF)(C3H2N3O3), were presented and preliminarily discussed for the first time. 
An analysis of the spectra allowed us to obtain information about their electronic and 
vibrational properties. The spectral data confirm the presence of a phase transition in 
(BEDO-TTF)2(C3H2N3O3) at about 120 K. Subsequent investigations of the salts will 
be published soon. 
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We report the room-temperature polarized infrared reflectance spectra of two radical cation salts 
based on halogenated TTF and two-dimensional polymeric iodoplumbate or Ag-doped iodoplumbate 
anions. These salts were β-(EDT-TTF-I2)2(Pb5/6�1/6I2)3 and β-(EDT-TTF-I2)2(Pb2/3+xAg1/3-2x�xI2)3, where  
x = 0.05 and � is a vacancy. Both materials display a metallic response, characteristic of quasi-one-
dimensional organic conductors. The β-(EDT-TTF-I2)2(Pb2/3+xAg1/3-2x�xI2)3 salt, with x = 0.05 is partly 
transparent along the lowest conductivity direction in the infrared frequency range. The single-crystal 
polarized absorption spectrum recorded in this direction displays a number of vibrational features related 
to the intramolecular modes of the EDT-TTF-I2 molecule, which are assigned using available normal 
mode calculations. In addition, the absorption spectrum of the β-(EDT-TTF-I2)2(Pb2/3+xAg1/3-2x�xI2)3 
material dispersed in a KBr pellet is reported and discussed. 

Key words: EDT-TTF-I2; iodoplumbate anion; organic conductors; reflectance spectrum; absorption 
spectrum 

1. Introduction 

The manipulation of weak noncovalent intermolecular interactions for designing 
new low-dimensional solids has received increasing attention (see [1, 2] and refer-

_________  
*Corresponding author, e-mail: ywy@ifmpan.poznan.pl. 
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ences herein). Recently, two metallic radical cation salts based on two-dimensional 
polymeric iodoplumbate anions and halogenated TTF, namely β-(EDT-TTF-I2)2 

(Pb5/6�1/6I2)3 and β-(EDT-TTF-I2)2(Pb2/3+xAg1/3-2x�xI2)3, where x = 0.05 and � is 
a vacancy, have been synthesized (EDT-TTF-I2 is a shortcut for ethylenedithio-1,2 
-diiodo-tetrathiafulvalene) [1]. In these materials, organic–halogen···inorganic 
–halogen (I···I) van der Waals interactions help stabilise the organic–inorganic inter-
face. 

Both β-(EDT-TTF-I2)2(Pb5/6�1/6I2)3 and β-(EDT-TTF-I2)2(Pb2/3+xAg1/3-2x�xI2)3, with 

x = 0.05, have a similar triclinic layered structure with the space group 1P  [1]. 
A conducting layer parallel to the ab-plane is formed by EDT-TTF-I2 molecules, 
which are arranged in the well-known β-motif with loose stacks of one-electron-
oxidized dimers along the b-direction. In the charge compensating inorganic PbxAgyI2 
slab, the edge-sharing octahedra form a polymer of the CdI2-type [1]. Unlike the two-
dimensional electronic structure typical of the β-(BEDT-TTF)2X family [3], the in-
termolecular interactions within a conducting donor layer are characterized by weak 
interchain interactions, accompanied by significantly stronger uniform interactions 
along the EDT-TTF-I2 chains. The specific one-dimensional-like electronic band 
structure [1] is related to the head-to-tail arrangement of asymmetric donor molecules 
in the stack. In spite of the close similarities between β-(EDT-TTF-I2)2(Pb5/6�1/6I2)3 
and β-(EDT-TTF-I2)2(Pb2/3+xAg1/3-2x�xI2)3, with x = 0.05, both in their crystal and elec-
tronic structures, there is a significant difference between their room temperature d.c. 
conductivities, which are 2.5 Ω–1

·cm–1 and 110 Ω–1
·cm–1, respectively. 

In order to characterize the optical properties of β-(EDT-TTF-I2)2(Pb5/6�1/6I2)3 and 
β-(EDT-TTF-I2)2(Pb2/3+xAg1/3-2x�xI2)3, with x = 0.05, we have measured the room tem-
perature polarized reflectance and absorption spectra of single crystalline samples. 
Our overall goal is to investigate the structure–property relationships in this class of 
low-dimensional solids. 

2. Experimental 

Single crystals of both materials were prepared by the electrochemical method as 
described elsewhere [1]. Samples of β-(EDT-TTF-I2)2(Pb5/6�1/6I2)3 were square-shaped 
shiny platelets with a typical size of about 0.2 × 0.2 × 0.05 cm3. On the other hand,  
β-(EDT-TTF-I2)2(Pb2/3+xAg1/3-2x�xI2)3, with x = 0.05, crystallizes in very thin, flat, and 
partly transparent brown needles; the lengths of the largest samples used for meas-
urements were about 1.3 mm. Samples were oriented based on the polarized infrared 
reflectance spectra and calculated interaction energies [1]. Near-normal incidence 
polarized reflectance and absorption spectra in the conducting ab-plane were meas-
ured using a Perkin-Elmer 1725 X Fourier-transform infrared spectrometer, equipped 
with an infrared microscope (650–7000 cm–1, resolution 2 cm–1) and a gold wire grid 
polariser. The absorption spectra of the KBr pellets were recorded using a Bruker 
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Equinox 55 Fourier-transform infrared spectrometer (400–7000 cm–1, resolution 2 cm–1) 
and a Perkin Elmer Lambda 19 spectrophotometer (5000–40 000 cm–1). Optical con-
ductivity spectra were calculated by the Kramers–Kronig analysis, based on the ex-
trapolation of infrared reflectance to low frequencies with a metallic Hagen–Rubens 
equation; standard extrapolations were used for higher frequencies. 

3. Results and discussion 

Figure 1 shows the reflectance (upper panel) and optical conductivity spectra (lower 
panel) of β-(EDT-TTF-I2)2(Pb5/6�1/6I2)3 and β-(EDT-TTF-I2)2(Pb2/3+xAg1/3-2x�xI2)3, with 
 

 
Fig. 1. Infrared reflectance (a) and optical conductivity (b) spectra of  

β-(EDT-TTF-I2)2(Pb5/6�1/6I2)3 (dotted line) and β-(EDT-TTF-I2)2(Pb2/3+xAg1/3-2x�xI2)3,  
with x = 0.05 (solid line), polarized along the b direction 

x = 0.05, polarized in the b-direction. Both materials display similar behaviour, char-
acteristic of one-dimensional organic conductor [4, 5]. In the b-direction which is 
parallel to the stacks of EDT-TTF-I2 molecules, reflectance is high and metallic in 
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character, with a plasma edge about 4000 cm–1. The ⊥b spectra (not shown) are flat 
and generally structureless but influenced by interference fringes (weakly in the case 
of β-(EDT-TTF-I2)2(Pb5/6�1/6I2)3, and very strongly in the case of β-(EDT-TTF-
I2)2(Pb2/3+xAg1/3-2x�xI2)3, with x = 0.05), which appear because both materials are par-
tially transparent to infrared light. In the ||b optical conductivity spectra (lower panel), 
two distinct low-energy electronic bands are observed in the frequency range of 
1000–2000 cm–1. They are possibly related to charge transfer excitations along the 
EDT-TTF-I2 stack. The Drude peak, which is expected in a metallic material, does not 
appear in the two spectra due to the limited frequency range (above 650 cm–1); the 
Drude feature can be very narrow for organic conductors [4]. 
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Fig. 2. Absorption spectrum of β-(EDT-TTF-I2)2(Pb2/3+xAg1/3-2x�xI2)3,  
with x = 0.05, polarized along the ⊥b direction, in the frequency range of  

intramolecular modes; the bands discussed are shown by arrows 

The ⊥b absorption of β-(EDT-TTF-I2)2(Pb2/3+xAg1/3-2x�xI2)3, with x = 0.05, meas-
ured in the transmission mode in the frequency range of the vibrational features, is 
displayed in Fig. 2. The spectrum is polarized approximately parallel to the short 
EDT-TTF-I2 axis in the crystal structure. Here, a number of vibrational bands are 
shown, and we assign them as intramolecular modes of the EDT-TTF-I2 molecule. In 
addition, a weak electronic excitation is observed about 1300 cm–1; another weak and 
very broad electronic band appears about 3000 cm–1 (not shown). Due to the low 
symmetry of β-(EDT-TTF-I2)2(Pb2/3+xAg1/3-2x�xI2)3 with x = 0.05, which results from an 
asymmetric donor molecule, all intramolecular modes can appear both in Raman and 
infrared spectra. Using normal mode calculations, infrared spectra, and Raman spectra 
for neutral EDT-TTF-I2 [6], we attribute the 1468 cm–1 feature as a stretching C=C 
mode, whose frequency is downshifted from 1516 cm–1 (the Raman mode in neutral 
molecule) due to oxidation and also possibly to electron-molecular vibration (EMV) 
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coupling with low-lying electronic excitations [7, 8]. In the case of an asymmetric donor 
molecule, only weak coupling is expected, but basically all intramolecular vibrations are 
allowed for coupling*. In fact, the C=C stretching vibration is barely seen in the infrared 
spectra of neutral EDT-TTF-I2 [6], and it is the strongest band in the infrared spectrum 
of β-(EDT-TTF-I2)2(Pb2/3+xAg1/3-2x�xI2)3 with x = 0.05. This can serve as a proof that  the 
band is activated by EMV coupling. Other relatively strong and broad features that are 
possibly EMV-activated include the mode at 1283 cm–1 related to C–H wagging, 1253 
cm–1 (C–H wagging), 1014 cm–1 (C–H rocking, C–C stretching), 920 cm–1 (C–S stretch-
ing, C–I stretching), 867 cm–1 (C–H rocking), 775 cm–1 (C–H rocking, C–S stretching), 
and 701 cm–1 (C–S stretching, C–I stretching). 

 
Fig. 3. Infrared and optical (inset) absorption spectra of β-(EDT-TTF-I2)2(Pb2/3+x Ag1/3-2x�xI2)3,  

with x = 0.05, dispersed in a KBr pellet (unpolarised) 

Figure 3 shows the unpolarised absorption spectrum of β-(EDT-TTF-I2)2(Pb2/3+x 

Ag1/3-2x�xI2)3, with x = 0.05, dispersed in a KBr pellet. We relate most of the bands in the 
spectrum to electronic excitations. In the infrared frequency range, we observe features 
polarized in both the IIb- and ⊥b directions. The A1 band is probably related to the low-
est energy excitation in the b direction (Fig. 1b), and to the ⊥b excitation (the dashed 
line in Fig. 2). A very broad A2 band is probably connected to both the 2000 cm–1 
excitation polarized in the b direction (Fig. 1b) and the 3000 cm–1 excitation in ⊥b-
direction. The sequence of higher energy excitations (the inset in Fig. 3) is somehow 
reminiscent of the classification developed by Torrance et al. for one-dimensional 
TCNQ-based compounds (TCNQ – tetracyanoquinodimethane) [9]. In this picture, A 
and B bands both involve charge transfer between donor molecules (B excitation 

_________  
*In the case of the lowest symmetry (C1), all intramolecular modes are of the A-type and can be cou-

pled with the electronic states. 
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leads to a double-charged donor molecule, so its energy can serve as a rough estima-
tion of the electron Coulomb interaction U); C and D bands correspond to in-
tramolecular excitations. On the other hand, EDT-TTF-I2 is substantially different 
than TCNQ, and it is well known that iodoplumbate compounds can have excitations 
in the visible frequency range, which is where  C and D bands are located [10]. 

4. Conclusions 

We investigated the room temperature polarized response of the organic conduc-
tors β-(EDT-TTF-I2)2(Pb5/6�1/6I2)3 and β-(EDT-TTF-I2)2(Pb2/3+xAg1/3-2x�xI2)3, with  
x = 0.05, in the infrared frequency range. These materials exhibit similar one-
dimensional metallic behaviour, as expected from electronic band structure calcula-
tions [1]. In the vibrational frequency range, signatures of EMV coupling are found. 
The strongest bands, arising from intramolecular modes, are assigned. Further studies 
are on the way to give more information on the complicated picture of charge transfer 
excitations and EMV coupling in both materials. 
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Phase transitions in β-(BEDT-TTF)2XF6  
(X = P, Sb or As) salts as seen by Raman Spectroscopy 
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Department of Molecular Physics, Technical University of Łódź, 90-924 Łódź, Poland 

Raman spectra of three charge-transfer salts, β-(BEDT-TTF)2XF6 (where X = P, Sb, As), were meas-
ured in the temperature range of 300–80 K. The salts exhibit fluctuations in charge ordering, indicating 
the formation of Wigner-like crystals. 

Key words: Raman spectroscopy; charge ordering; Wigner crystal  

1. Introduction 

The nature of phase transitions in low-dimensional organic metals has attracted 
a lot of interest for many years. In some organic conductors, phase transitions gener-
ate a charge ordered (CO) state in the form of charge-rich and charge-poor sites. Such 
a phase transition is connected with charge localisation on molecules, and a possible 
explanation of these phenomena is electron correlation effects. In the presence of 
a strong dimerisation, on-site Coulomb interactions can give rise to a dimer Mott insu-
lating state, while the inter-site Coulomb interactions can stabilize the CO as 
a Wigner crystal, even in the presence of some weak dimerisation [1]. 

 In the present study, we have investigated vibrational spectra for three salts of the 
bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) donor molecule: β-(BEDT-TTF)2PF6, 
β-(BEDT-TTF)2SbF6, and β-(BEDT-TTF)2AsF6. These salts show a metal–insulator 
phase transition at 293 K (X = PF6), 273 K (X = SbF6), and 264 K (X = AsF6) [2– 4], 
respectively. In crystals of the β-(BEDT-TTF)2PF6 salt, the donor molecules are 
strongly dimerised [5]. The two other salts, β-(BEDT-TTF)2SbF6 and β-(BEDT-
TTF)2AsF6, show only weak dimerisation [3, 5]. It was therefore of interest to check 
which of the effects (Mott insulator or Wigner crystal) is responsible for the phase 
transitions. 

_________  
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Vibrational spectroscopy is an effective method of investigating electron correla-
tion effects and phase transitions in BEDT-TTF salts. The frequencies of some C=C 
stretching modes in the donor molecule carry information on the charge localised on 
the molecule making possible the determination of charge spatial distribution in the 
crystal’s unit cell [6]. Charge ordering can be observed in the Raman spectrum as a 
splitting of the Raman bands sensitive to the charge on the donor molecules. It is well 
known that for the BEDT-TTF molecule two in-phase ring C=C stretching modes, ν2 
and ν3, show large charge-dependent frequency shifts. There is also one antiphase ring 
C=C stretching mode sensitive to the charge, ν27, which can be observed in infrared 
spectroscopy. Nevertheless, the antiphase vibration of molecules forming a dimer can 
become Raman active and in such a case the mode ν27 will be visible in the Raman 
spectrum [6]. 

2. Experimental 

Single crystals of the charge transfer salts (BEDT-TTF)2XF6 (where X = P, Sb, 
As) were synthesized by electro-crystallisation according to the known procedure [4]. 
Crystallographic X-ray investigations have shown that all the crystals obtained are in 
the β-phase. The salt β-(BEDT-TTF)2PF6 belongs to the orthorhombic crystal system, 
with the Pnna space group at room temperature [2]. The salts β-(BEDT-TTF)2SbF6 and 
β-(BEDT-TTF)2AsF6 belong to the monoclinic crystal system, with a C2/c space group 
at room temperature [4]. 

Raman spectra in the temperature range of 300–80 K were recorded using a Mi-
cro-Raman Spectrometer (Jobin-Yvon T64000) and 514.5 nm laser light. Single crys-
tals were mounted with silicon grease on a cold stage in a homemade helium cryostat. 
The spectra were collected upon cooling in ca. 20 K intervals; the crystals were ther-
mostated at each temperature for ca. 20 minutes. The Raman bands in the characteris-
tic frequency range of the C=C stretching modes (1200–1700 cm–1) were recorded for 
the incident light polarised along and perpendicular to the long axis of the BEDT-TTF 
molecules.  

3. Results and discussion 

The Raman spectra obtained for all the investigated BEDT-TTF salts show an 
abrupt change in the C=C stretching band, from a broad band at high temperatures to 
multiple peaks below the metal-isolator transition temperature. The spectra for all 
three salts are very similar at room temperature, i.e., in the metal states. Therefore, in 
Fig. 1 and Fig. 2 we show the spectra at different temperatures only for the salt  
β-(BEDT-TTF)2AsF6. For the two other salts, only the spectra obtained at 80 K (i.e., 
well below their phase transition temperatures) are presented in the insets. 
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Fig. 1. Temperature dependences of the Raman active C=C stretching modes  

for β- (BEDT-TTF)2AsF6 salt, with the laser light polarisation plane  
parallel to the long axis of the donor molecules. The inset shows spectra  

for β-(BEDT-TTF)2PF6 (A) and β-(BEDT-TTF)2SbF6 (B) salts  
at 80 K and the same polarisation 

Figure 1 shows the spectra obtained for the incident light polarised along the long 
axis of the BEDT-TTF molecules. The bands marked as a and b, observed at 300 K, 
undergo a splitting at 260 K, i.e. at the metal–insulator transition temperature for  
β-(BEDT-TTF)2AsF6, observed in resistivity and EPR measurements [4]. Among the 
multiple peaks observed at 80 K, we can attribute the peaks c (1547 cm–1) and a1 
(1489 cm–1) to ν2, the peak a2 (1482 cm–1) to ν27, and the peak a3 (1463 cm–1) to ν3. 
Since the frequencies of the ν2 mode are sensitive to charge, the observed position of 
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the bands after splitting indicates that peak c corresponds to the charge-poor site, 
while peak a1 corresponds to the charge-rich one. Basing only on the frequency of the 
ν2 mode, we estimated the deviation of the charge on the donor molecules to be 0.16 
and 0.84. 

An unequivocal assignment of three peaks at lower frequencies (b1 at 1422 cm–1, 
b2 at 1415 cm–1, and b3 at 1403 cm–1) is difficult. One of them should be assigned to 
the ν3 mode, the others probably to bending ones.  
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Fig. 2. Temperature dependences of the Raman active C=C stretching modes 

 for the β-(BEDT-TTF)2AsF6 salt, with the laser light polarisation plane 
perpendicular to the long axis of the donor molecules.  
The inset shows spectra for β-(BEDT-TTF)2PF6 (A)  

and β-(BEDT-TTF)2SbF6 (B) salts at 80 K and the same polarisation 
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For the β-(BEDT-TTF)2PF6 salt, the splitting of the observed a and b bands starts 
at room temperature. This is due to the fact that the metal–insulator phase transition 
occurs at 293 K in this salt. In β-(BEDT-TTF)2SbF6, analogous changes were ob-
served at 270 K (the phase transition occurs at 273 K). Comparing the spectra re-
corded for these two salts at 80 K (see the inset in Fig. 1), one can notice that both are 
very similar to the spectrum of the salt β-(BEDT-TTF)2AsF6 taken at the same tem-
peratures. The most important difference relates to the a2 band (ν27), which is consid-
erably weaker in the spectrum of (BEDT-TT)2SbF6 than in that of the two other salts 
(see inset B in Fig. 1).  

Figure 2 shows the temperature dependence of the Raman spectrum for the  
β-(BEDT-TTF)2AsF6 salt, taken with a laser light polarisation plane perpendicular to 
the long axis of BEDT-TTF molecule. The broad bands, marked a and b, split at low 
temperatures, and at 80 K five main bands, a1, a2, a3, b1, and b3 (1489 cm–1, 1482 cm–1, 
1463 cm–1, 1422 cm–1, and 1403 cm–1, respectively), can be distinguished. We can 
attribute the peak a1 to ν2, a2 to ν27, and a3 to ν3. The a1 band, assigned to the ν2 mode, 
corresponds to the charge-rich site (analogous to the a1 band in Fig.1.). The assign-
ments of the b1 (1422 cm–1) and b3 (1402 cm–1) bands are not certain, as discussed 
above in relation to the spectra in Fig.1. Note that the same bands are observed for 
both light polarisations - only their relative intensities are different.  

The spectra for the two other salts for perpendicular incident light polarisation are 
also similar to the spectrum of the β-(BEDT-TTF)2AsF6 salt – see the inset in Fig. 2. 
Also in this case, the β-(BEDT-TTF)2SbF6 salt exhibits only a weak a2 (ν27) band, 
which is shown in inset B.  

The results published by Laversanne et al. [4] and Mori et al. [5] indicate that 
among the three investigated BEDT-TTF salts, β-(BEDTTTF)2PF6 exhibits the 
strongest dimerisation of the donor molecules, and the two other salts show rather 
weak dimerisation. Taking into account the relative intensities of the ν27 bands, we 
can conclude from our studies that strong dimerisation occurs also in β-(BEDT 
-TTF)2AsF6. 

The temperature dependence of the Raman spectra for the β-(BEDT-TTF)2PF6 salt 
has already been published by Ding and Tajima [7]. In contrast to the results obtained 
by us, they did not observe any splitting of the b band. In fact, this band disappears in 
their spectra at low temperatures. As discussed above, one should expect the second 
ν3 mode in this region, which can appear at low energies due to the e-mv interaction. 

4. Conclusions 

The results obtained show that the dimerisation occurs in all three investigated 
salts, (BEDT-TTF)2XF6 (where X = P, Sb, As), upon cooling below their M–I phase 
transition temperatures. On the other hand, the splitting of the C=C stretching bands 
ν2 and ν3 clearly demonstrates that charge ordering occurs in the insulating state, 
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indicating formation of a Wigner-like crystal. The splitting of the ν2 mode indicates 
an irregular charge distribution in the unit cell. Therefore, we conclude that the phase 
transitions in the (BEDT-TTF)2XF6 salts are caused by charge localizations. To verify 
these conclusions derived from Raman studies, X-ray diffraction investigations at 
different temperatures are in progress. 

Acknowledgments 

We wish to thank Prof. Janina Karolak-Wojciechowska from Technical University of Lodz for the 
help in performing the X-ray diffractions. 

References 

[1] SEO H., FAKUYAMA H., Synthetic Metals, 133–134 (2003), 257. 
[2] KOBAYASHI H., MORI T., KOBAYASHI A., SASAKI Y., SAITO G., INOKUCHI H., Chemistry Lett. (1983), 581. 
[3] LAVERSANNE R., AMIELL J., DELHAES P., CHASSEAU D., HAUW C., Mol. Cryst. Liq. Cryst.,  119 

(1985), 405. 
[4] LAVERSANNE R., AMIELL J., DELHAES P., CHASSEAU D., HAUW C., Solid State Commun.,  52 (1984), 177. 
[5] MORI T., KOBAYASHI A., SASAKI Y., KATO R., KOBAYASHI H., Solid State Commun.,  53 (1985), 627. 
[6] YAMAMOTO K., YAKUSHI K., MIYAGAWA K., KANODA K., KAWAMOTO A., Phys. Rev. B, 085110 

(2002), 65. 
[7] DING Y., TAJIMA H., Synth. Metals, 135–136 (2003), 599. 

Received 14 October 2004 
Revised 10 November 2004 

 



Materials Science-Poland, Vol. 22, No. 4, 2004 

 

Reflectivity spectra of some conducting BETS salts 
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We have measured the polarized reflectivity spectra of three BETS-based organic metals with the 
α-phase structure: α-(BETS)2NH4Hg(SCN)4 (I), α-(BETS)2TlHg(SeCN)4 (II), and α-(BETS)2Cu5I6 (III) 
in the range of 600–6500 cm–1. The spectra exhibit a metallic-type reflection with the plasma edge about 
4000–5000 cm–1 and high reflectivity at low frequencies. The electron-vibrational bands observed in the 
range of 1200–1400 cm–1 are due to the interaction of the intramolecular vibrational modes of BETS with 
conduction electrons. 

Key words: organic conductors; optical properties 

1. Introduction 

Radical-cation salts of bis(ethylenedithio)tetraselenafulvalene (BETS) attract 
considerable attention due to unique properties (such as superconductivity or the 
Shubnikov–de Haas effect) of some of them ([1, 2] and refs. therein). We have stud-
ied the optical properties of three BETS-based organic metals of the α-phase struc-
ture: α-(BETS)2NH4Hg(SCN)4 (I), α-(BETS)2TlHg(SeCN)4 (II) [1], and α-(BETS)2 

-Cu5I6 (III) [2] in the range of 600–6500 cm–1.  

2. Experimental 

Reflectivity spectra of the compounds studied were recorded at room temperature 
in the range of 600–6500 cm–1 in polarized light by means of a Perkin-Elmer 1600 and 
Perkin-Elmer Spectrum BX Fourier transform spectrometers. The samples were made 
of one or two single crystals (of typical dimensions 1×2 mm2 each). The spectra were 
taken from the plane of conducting BETS layers. 

_________  
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Optical conductivity spectra were obtained from the reflectivity spectra by means 
of the Kramers–Kronig analysis. The result of the analysis in the range of 600–5000 
cm–1 does not qualitatively depend on the kind of extrapolation to low and high fre-
quencies. We suppose that the reflectivity approaches unity at low frequencies (which 
is typical of metals) and that it is constant at high frequencies. 

3. Results and discussion 

3.1. Electronic spectra 

Figure 1a shows the polarized reflectivity spectra of (BETS)2NH4Hg(SCN)4 in the 
range of 600–6500 cm–1 for the two main optical directions, x and y, for which the 
maximal differences in reflectivity are observed. Figure 1b shows the spectra of opti-
cal conductivity for the same main optical directions. Figure 2 shows the reflectivity 
and conductivity spectra of (BETS)2TlHg(SeCN)4, belonging to the same isostructural 
family [1]. The spectra resemble those of the analogous isostructural ET compounds 
(ET)2TlHg(SeCN)4 [3] and (ET)2NH4Hg(SCN)4 [4]. Figure 3 shows the spectra of the 
(BETS)2Cu5I6 salt. 

The α-phase structure is characterized by the presence of stacks of BETS mole-
cules with strong intermolecular interactions in the direction perpendicular to the 
stacks. The directions x and y correspond to polarizations with the electric vector per-
pendicular and parallel to the direction of BETS stacks [1, 3]. This means that the 
electronic reflectivity is greater for the polarization perpendicular to BETS stacks for 
all three salts studied. This fact is due to a large amount of shortened contacts be-
tween S(Se) atoms in the BETS molecules of adjacent stacks. The spectra of 
(BETS)2NH4Hg(SCN)4 exhibit a pronounced plasma edge in the x direction, while in 
the y direction and in the spectra of (BETS)2TlHg(SeCN)4 the plasma edge is much 
less pronounced. The conductivity spectra of (BETS)2NH4Hg(SCN)4, similar to those 
of (BETS)2TlHg(SeCN)4 and (ET)2TlHg(SeCN)4 [1, 3], do not exhibit a maximum in 
conductivity at about 3000 cm–1, which is usual for many ET and BETS salts [3–6]. 
This may be an evidence of the absence of an energy gap in the spectrum of electronic 
states of these salts. On the contrary, the optical conductivity spectra of (BETS)2Cu5I6 
exhibit such a maximum at ca. 2300 cm–1, which may be taken as an evidence of an 
energy gap (or pseudo-gap) in the electronic spectra of this salt. 

The reflectivity spectra of the salts studied may be described in terms of the 
Drude–Lorentz model used for α-(ET)2I3 [5]. The obtained parameters (dielectric 
constant at high frequencies ε∝, plasma frequency ωp, electron energy gap 2∆, elec-
tronic damping Γ) are shown in Table 1.  

Carrier effective masses mx and my were obtained from the equation  
2 2=4π /p ne mε ω∞ (e is electron charge, n is the concentration of carriers taken as 
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n =1×1021 cm–3 from the structure data, supposing one electron charge per two BETS 
molecules in analogy with [1]) and the transfer integrals tx = 0.14 eV and ty = 0.12 eV 
were calculated from the effective masses by numerical integration in analogy with 
[6] (intermolecular distances were accepted as half periods along x and y directions, 
ax = 0.5 nm and ay = 0.5 nm, in analogy with [1]).  

 

 
Fig. 1. Reflectivity (a) and optical conductivity (b) spectra of  α-(BETS)2NH4Hg(SCN)4 

 for the two main optical directions x and y. The circles and triangles show the Drude–Lorentz fit 
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The parameters obtained are summarized in Table 1. In all cases, the effective 
masses are higher and the transfer integrals lower in the y direction (parallel to mo-
lecular stacks). In comparison with other salts, (BETS)2NH4Hg(SCN)4 is character-
ized by much lower effective masses and much larger transfer integrals (i.e., wider 
conduction bands). 

 

 
Fig. 2. Reflectivity (a) and optical conductivity (b) spectra of α-(BETS)2TlHg(SeCN)4 

for the two main optical directions x and y. The circles show the Drude–Lorentz fit 
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Fig. 3. Reflectivity (a) and optical conductivity (b) spectra of α-(BETS)2Cu5I6 

for the two main optical directions x and y. The circles show the Drude–Lorentz fit 

Table 1. Parameters of the Drude–Lorentz fit 

α-(BETS)2NH4Hg(SCN)4 α-(BETS)2TlHg(SeCN)4 [1] α-(BETS)2Cu5I6 [2] 
Parameter 

x y x y x y 

ε∝ 
ωp, cm–1, 
2∆, cm–1, 
Γ, cm–1 
m, me 
t, eV 

3.0 
4600 
1600 
3300 
1.4 

0.14 

2.7 
3600 
1400 
3300 
2.6 

0.12 

2.5 
3850 
1400 
3000 
2.4 

0.09 

2.0 
3100 
1300 
2850 
4.7 

0.06 

1.8 
3200 
1600 
4000 
4.8 

0.033 

1.8 
2100 
1500 
3500 
11.3 

0.031 
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3.2. Vibrational spectra 

The insert in Fig.1a shows the spectral range of molecular vibrations. Similar to 
(BETS)2TlHg(SeCN)4 and (ET)2TlHg(SeCN)4 [1, 3], the doublet electron-vibrational 
band (with a slight reflectivity minimum at 1284 cm–1) is observed in the polarization par-
allel to BETS stacks (y direction), while the electron reflectivity is more intensive in the 
polarization perpendicular to the stacks. The maxima of this doublet are slightly shifted to 
higher frequencies: 1272 and 1347 cm–1, vs. 1270 and 1340 cm–1for (BETS)2TlHg(SeCN)4 
and 1258 and 1316 cm–1 for the ET salt. For comparison, an analogous doublet in the  
κ-phase salt (BETS)2FeCl4 was observed at 1280 and 1320 cm–1 [7]. These bands are due 
to the interaction of the conduction electrons with the symmetric vibrational modes of 
BETS molecules [4–6], apparently including C–C stretching modes (taking into account 
relatively small shift between BETS and ET containing salts). For the x direction, only 
a weak, broad maximum is observed in the electron-vibrational range of 1000–1400 cm–1, 
similar to that of (BETS)2TlHg(SeCN)4 and (ET)2TlHg(SeCN)4.  

An interesting peculiarity of (BETS)2Cu5I6 is the absence of the minimum of re-
flectivity at 1280–1290 cm–1, observed in other salts. This may be due to the absence 
of centrosymmetric BETS molecules in the crystal stucture of this salt [2]. 

Narrow bands near 2100 cm–1 are due to vibrations of CN fragments in the anionic 
layer. The maxima of these bands are slightly shifted to higher frequencies compared 
with that of analogous salts: 2112 and 2110 cm–1 for x and y directions cf. 2110 and 
2105 for (BETS)2TlHg(SeCN)4 and 2104 and 2102 cm–1 for (ET)2TlHg(SeCN)4 [1]. 
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Some new findings concerning the structural, optical, transport, and magnetotransport properties of  
τ-phase organic conductors, based on the donor molecules ethylenedioxy-S,S-dimethylethylenedithio-
tetrathiafulvalene, ethylenedioxy-R,R-dimethylethylenedithio-tetrathiafulvalene, pyrazino-S,S-dimethyl- 
ethylenedithio-tetrathiafulvalene, pyrazino-R,R-dimethylethylenedithio-tetrathiafulvalene, pyrazino-r-di- 
methylethylenedithio-tetrathiafulvalene, pyrazino-S,S-dimethylethyledithio-diselenadithiafulvalene, pyra- 
zino-r-methylethylenedithio-tetrathiafulvalene, and pyrazino-r-methylethylenediseleno-tetrathiafulvalene 
are described. Some similarities and differences in their properties are discussed. 

Key words: organic conductors; structure; optical properties; transport properties 

1. Introduction 

During the last ten years, a number of τ-phase conductors have been prepared and 
studied [1–13]. They were based mainly on the following unsymmetrical π-donor 
molecules: 
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(EDO-X-DMEDT-TTF): X  =  S, S; R, R; r ( = S, S + R, R)  
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and also on linear anions such as 2 2 3AuI , AuBr  and I− − − . Most of work has been done on  
τ-(P-S,S-DMEDT-TTF)2(AuBr2)1+y and τ-(EDO-S,S-DMED-TTF)2(AuBr2)1+y (y ≈ 0.75). 
Recent investigations of the optical absorption spectra of polycrystalline samples of 
these two salts in the spectral region from UV to far IR showed some differences in 
their optical behaviours, attributed to differences in the relative concentrations of the 

neutral and charged species (i.e., D0, D•+, D2+) in the corresponding salts [1, 2]. Con-
siderable changes in the properties have been observed after heat treatment of the 
crystals [2, 10]. The changes have a similar origin, since during heat treatment some 
portion of the anion escapes, leaving the material with various compositions. Also, the 
redox potentials of the corresponding donor molecules in solution indicate that the 
preparation and stabilization of (P-X-DMEDT-TTF)2+ is more difficult than that of 
(EDO-X-DMEDT-TTF)2+ [2]. Moreover, it has been found from magnetic measure-
ments that τ-(P-S,S-DMEDT-TTF)2(AuBr2)1+y undergoes an antiferromagnetic transi-
tion at ca. 11 K, while τ-(EDO-S,S-DMEDT-TTF)2(AuBr2)1+y does not exhibit any 
long-range magnetic order (see [7, 8] and refs. therein). In the last salt, the angular-
dependent magnetoresistance oscillations have a peak as the field direction ap-
proaches the layers, which indicates interlayer coherency [7, 8]. Also, magnetotrans-
port properties related to the quantum Hall effect and chiral surface states, rather than 
to other effects [14], have been reported [1]. 

In this paper, some new findings concerning the properties of the compounds 
• τ-(EDO-S,S-DMEDT-TTF)2(AuBr2)1+y, τ-(P-S,S-DMEDT-TTF)2(AuBr2)1+y, 
• τ-(EDO-R,R-DMEDT-TTF)2(AuBr2)1+y, τ-(EDO-R,R-DMEDT-TTF)2(AuI2)1+y, 
• τ-(P-R,R-DMEDT-TTF)2(AuBr2)1+y, τ-(P-S,S-DMEDT-DSDTF)2(AuBr2)1+y, 
• τ-(P-r-DMEDT-TTF)2(AuBr2)1+y, τ-(EDO-S,S-DMEDT-TTF)2[Ag(CN)2]1+y, 
• τ-(P-r-MEDT-TTF)2(AuBr2)1+y, and τ-(P-r-MEDS-TTF)2(AuBr2)1+y  

are described. Some similarities and differences in the properties of these compounds 
are discussed. 



Some new findings in τ-phase organic conductors 

 

367 

 

2. Results and discussion 

The compounds of τ-phase are crystallized in the form of platelets showing several 
habits. Typical examples of the morphology of crystals and their schematic presenta-
tions are shown in Fig. 1. In all cases, the largest surface of each crystal is parallel to 
the (highly conducting) ab-plane, i.e., perpendicular to the c-axis. 

 
Fig. 1. Morphology of crystals of τ-phase conductors  

(four typical habits: A, B, C and D) and corresponding schematic presentations 

Room-temperature X-ray diffraction data led to the following results for the crystal 
structures. The compounds τ-(EDO-S,S-DMEDT-TTF)2(AuBr2)1+y, τ-(P-S,S-DMEDT-
TTF)2(AuBr2)1+y, τ-(P-R,R-DMEDT-TTF)2(AuBr2)1+y, and τ-(EDO-S,S-DMEDT-TTF)2 

[Ag(CN)2]1+y are crystallized with the noncentrosymmetric space group I4122 (see [6] 
and refs. therein). τ-(P-r-DMEDT-TTF)2(AuBr2)1+y, τ-(P-r-MEDT-TTF)2(AuBr2)1+y and 
τ-(P-r-MEDS-TTF)2(AuBr2)1+y are crystallized with the centrosymmetric space group 
I41/amd [3, 6]. Also, we found that τ-(EDO-R,R-DMEDT-TTF)2(AuBr2)1+y and τ-(P-S,S-
DMEDT-DSDTF)2(AuBr2)1+y are crystallized with the centrosymmetric space group 
I41/amd. In the last two cases, diffraction data do not provide a clear choice between the 
centrosymmetric and a noncentrosymmetric space groups (see [3] and ref. [6] cited 
therein). An uncertainty concerning crystal structures has also been noticed in some 
other compounds, such as 4,5-dimethylethylenedithio-1,3-dithiole-2-thione (see [3] and 
ref.[6] cited therein) and (TMET)3(ClO4)2 (see [11] and ref.[4] cited therein). The crystal 
structure of the compound τ-(EDO-R,R-DMEDT-TTF)2(AuI2)1+y has not yet been defi-
nitely determined. In the compounds τ-(EDO-S,S-DMEDT-TTF)2(AuBr2)1+y and  
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τ-(P-S,S-DMEDT-TTF)2(AuBr2)1+y, no considerable differences in the crystal struc-
tures among the several habits have been found. 

The reflectance spectra, with the wave vector of light parallel to the conducting 
plane, and optical absorption spectra of τ-phase crystals exhibit a broad band at ca. 
5500 cm–1. Figure 2. shows the observed [4, 9] and calculated spectra, based on the 
mean-field Hubbard model, assuming anti-ferromagnetic order [7, 9, 15]. One can see 
that there is a good agreement between experiment and theory. 

 
Fig. 2. Observed (a) and calculated (b) optical conductivity spectra of  

τ-(EDO-S,S-DMEDT-TTF)2(AuBr2)1+y (solid lines) and τ-(P-S,S-DMEDT-TTF)2(AuBr2)1+y  
(dotted lines), using transfer integral values of t1 = 0.184 and 0.138 eV, respectively, t2 = 16 meV,  

a filling factor of ρ = 0.9375, and ∆ = 0.31 eV 

The in-plane resistivity (ρab) of τ-(P-S,S-DMEDT-TTF)2(AuBr2)1+y shows a metal-
lic temperature dependence down to low temperatures, with an upturn at ca. 10 K and 
a weak crossover at ca. 120 K. The out-of-plane resistivity (ρc) shows a semiconduct-
ing behaviour down to low temperatures, a crossover at ca. 20 K, and an upturn in 
resistivity at ca. 5 K. The resistivity anisotropy ρc/ρab is of the order 103 at room tem-
perature and much higher at low temperatures (see [5, 7, 8] and refs. therein). The 
compounds τ-(P-R,R-DMEDT-TTF)2(AuBr2)1+y and τ-(P-r-DMEDT-TTF)2(AuBr2)1+y 
exhibit  similar behaviour [6]. The resistivity anisotropy for these compounds was 
found to be 310–1250 at room temperature. The in-plane resistivity of τ-(EDO-S,S 
-DMEDT-TTF)2(AuBr2)1+y shows a metallic temperature dependence, with an upturn 
at 30–50 K. The out-of-plane resistivity varies from crystal to crystal. Some crystals 
exhibit weak metallic behaviour down to very low temperatures (ca. 0.4 K), while 
other crystals exhibit an upturn in resistivity at ca. 30–40 K. The resistivity anisotropy 
is of the order 103–104 (see [1, 7, 8, 10] and refs. therein). Interlayer transport is co-
herent in τ-(EDO-S,S-DMEDT-TTF)2(AuBr2)1+y and incoherent in τ-(P-S,S-DMEDT 
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-TTF)2(AuBr2)1+y [7, 8]. The results are similar in τ-(EDO-R,R-DMEDT-TTF)2(AuBr2)1+y, 
as shown in Fig. 3. In the crystal (#0209), the temperature dependence of in-plane resistiv-
ity shows a metallic behaviour down to low temperatures, while the temperature 
 

 
Fig. 3. Temperature dependences of the in-plane resistivity (a) and out-of-plane  

resistivity (b) for two crystals of τ-(EDO-R,R-DMEDT-TTF)2(AuBr2)1+y 

dependence of the out-of-plane resistivity shows weak metallic behaviour and an up-
turn at ca. 50 K. There is no crossover in ρc at high temperatures. Also, as in other 
compounds, resistivity anisotropy is large. Similar results have been obtained for  
τ-(P-S,S-DMEDT-DSDTF)2(AuBr2)1+y, except that ρc shows a weak crossover at ca. 
270 K [3]. The behaviour of ρab and ρc for one crystal (#0302) of this compound is 
similar to that observed in [3] for two other separate crystals. Also, another crystal of τ-
(EDO-R,R-DMEDT-TTF)2(AuBr2)1+y (#0213) exhibited metallic behaviour in ρab, and 
weak metallic behaviour in ρc down to ca. 5 K (Fig. 3). Details will be reported elsewhere 
[12]. The results are much different in τ-(EDO-R,R-DMEDT-TTF)2(AuI2)1+y, as shown in 
Fig. 4. This compound exhibits metallic behaviour in both directions, with resistivity 
anisotropy of the order 103. A weak crossover is observed in ρc at ca. 250 K. At 7K, 
a sudden drop in ρab was observed, which is not associated with superconductivity. As 
in the case of other τ-phase compounds, several significant features are observed in 
the temperature dependence of resistivity at low temperatures (e.g., a weak upturn in 
resistivity is observed at ca. 5 K). These are more pronounced under pressure, as 
shown in Fig. 5. One can see that when the pressure is increased from 0 to 1.23 GPa, the 
compound becomes more metallic. As the pressure increases above 1.65 and 2.02 GPa, 
however, the compound becomes semiconducting, showing upturns in resistivity at ca. 
18.3–20.5 and 24.8–26.5 K, respectively. The results are similar to those observed for τ-
(EDT-S,S-DMEDT-TTF)2(AuI2)1+y [2, 11], where EDT-S,S-DMEDT-TTF is ethylenedi-
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thio-S,S-dimethylethylenedithio-tetrathiafulvalene, abbreviated as S,S-DMBEDT-TTF 
in [11]. The behaviour is different in τ-(EDO-S,S-DMEDT-TTF)2[Ag(CN)2]1+y, τ-(P-r 
-MEDT-TTF)2(AuBr2)1+y, and τ-(P-r-MEDS-TTF)2(AuBr2)1+y. 

 
Fig. 4. Temperature dependences of in-plane (a) and out-of-plane (b) resistivity 

for τ-(EDO-R,R-DMEDT-TTF)2(AuI2)1+y (under ambient pressure) 

 
Fig. 5. Temperature dependences of in-plane (a) and out-of-plane (b) resistivity  

for τ-(EDO-R,R-DMEDT-TTF)2(AuI2)1+y under ambient and high pressure 

In these compounds, both ρab and ρc exhibit a semiconducting behaviour from room 
temperature down to very low temperatures. The anisotropy ρc/ρab for the first com-
pound is c.a. 103, while for the latter two it is small, i.e., 27 and 3–15, respectively. 
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Some similarities and differences concerning magnetotransport properties of  
τ-(ΕDO-S,S-DMEDT-TTF)2(AuBr2)1+y and τ-(P-S,S-DMEDT-TTF)2(AuBr2)1+y have 
been reported in [1, 6, 7]. Crystals of τ-(P-S,S-DMEDT-TTF)2(AuBr2)1+y, τ-(P-R,R-
DMEDT-TTF)2(AuBr2)1+y, and τ-(P-r-DMEDT-TTF)2(AuBr2)1+y exhibit a negative 
magnetoresistance at low fields and fast Shubnikov–de Haas (SdH) oscillations at 
higher fields (see also [5–8]), with frequencies close to those of τ-(EDO-S,S 
-DMEDT-TTF)2(AuBr2)1+y, as well as weak slow oscillations of frequency ca. 180 T 
[7, 8]. The compounds exhibit an upturn in magnetoresistance near ca. 35 T. Semiconduct-
ing and metallic crystals of τ-(EDO-R,R-DMEDT-TTF)2(AuBr2)1+y exhibit two kinds of 
SdH oscillations at high fields, with frequencies of 42.1–44.5 T and 487–500 T. In other 
words, the Fermi surface area shows some dependence on the sample. The details of SdH 
oscillations in metallic and semiconducting crystals of this compound will be reported 
elsewhere [12]. Also, the compound τ-(EDO-R,R-DMEDT-TTF)2(AuI2)1+y exhibits nega-
tive magnetoresistance at low fields. At high fields, the compound exhibits SdH oscilla-
tions with frequencies << 40 T and ca. 586 T [13]. 

Finally, the magnetoresistance was measured for virgin and heated samples from the 
same crystal of τ-(EDO-S,S-DMEDT-TTF)2(AuBr2)1+y at 0.5 K and up to 45 T. Both 
samples showed two series of SdH oscillations corresponding to the smaller and larger 
Fermi surfaces. It was found that the SdH frequency corresponding to the smaller Fermi 
surface decreases by about 20% after heating the sample up to 400 K, while the faster 
frequency remains unchanged. No difference was found with X-ray studies in the crystal 
structures of another sample before and after heating up to 420 K. This means that band 
filling can be controlled by simply heating the crystal in vacuum. 

In conclusion, we found that the properties of τ-phase compounds exhibit small 
differences from crystal to crystal of the same compound, and large differences from 
compound to compound, the origin of which being not understood yet. Also, external 
conditions play an important role in the properties of these materials. Under ambient 
pressure, EDO-containing conductors exhibit similar transport properties (see Figs. 
3, 4 and refs. [1, 5, 12]). It is expected that these compounds will also exhibit quan-
tum Hall plateaus and chiral surface effects in their magnetotransport properties, as in 
the case of τ-(EDO-S,S-DMEDT-TTF)2(AuBr2)1+y [1]. 
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The topography of quartz and semiconducting (In2O3 and SnO2) surfaces coated with a dye–polymer 
layer was investigated with optical microscopy and scanning force microscopy. The following macromo-
lecular systems were used in the experiments: copper or zinc porphyrins covalently linked to polyethylene 
glycol (PEG) or polyisopropylacrylamide (PNIPAM) polymers. It was shown that images of the surface 
topography are closely connected with the relation between the magnitude of substrate grains and 
geometrical size of the dye–polymers. The dye–polymer layer, based on the PNIPAM polymer, shows 
a ring-like structure, whereas the sample based on the PEG polymer is characterized by a longitudinal 
dendritic topography. When the dye–polymer layer was deposited on the surface, absorption spectroscopy 
in polarized light was used to determine dye orientation with respect to the substrate surface. The tilt 
angle between the dye layer and substrate was estimated. A correlation between the substrate surface 
topography and the molecular arrangement of dyes is also discussed. 

Key words: light microscopy; electronic spectroscopy; scanning force microscopy; “smart” polymers; 
surface image 

1. Introduction 

Organic dye-labelled polymers are perfect molecular systems which find a wide 
range of applications in science, technology and medicine [1, 2].The family of por-

_________  
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phyrins and phthalocyanines constitutes a group of dyes that are very good agents as 
photoconverters in solar devices and as photosensitisers in photodynamic therapy and 
cancerous tissue diagnostics. They can also be used as molecular systems modelling 
biological objects (e.g. in photosynthesis) [3, 4]. On the other hand, “smart” polymers 
are also the subject of extensive investigations due to their particular physical proper-
ties (e.g. a wide range of electrical conductivity), and they can also serve as models of 
biomimetic systems (proteins, lipid–protein complexes) [5, 6]. Since porphyrin dyes 
and polymers are interesting objects for investigations, and  they can be quite easily 
chemically modified to provide a wide variety in their molecular structure (and thus 
modifications in their physical, photophysical, and photochemical properties), a sys-
tem of porphyrin macrocycles bound with polymer chains could potentially be very 
useful in photovoltaics and optoelectronics. Therefore, copper and zinc porphyrins 
covalently linked to a polymer chain are the subject of our present investigations. 

In a recent study, it has been stated  that only the dye layer that is in close contact 
with the semiconducting electrode is involved in photoelectric processes [7]. Some 
photophysical processes, such as charge separation upon light illumination, electron 
injection, etc., can occur at the dye layer–semiconductor interface, and it has been 
shown that the dye effectiveness in photoconversion also depends on the kind of sub-
strate and its roughness [8, 9]. 

Therefore, in this paper, we focus our attention on the topography of porphyrin 
-labelled polymer layers on solid substrates. Some photophysical properties of dye 
–polymer thin layers were also investigated. As far as we know, the topography of 
such polymer–dye species has never been investigated by optical microscopy or scan-
ning force microscopy (SFM). These methods are especially useful techniques for 
studying the topography of solid substrates, the sizes of their grains, the formation of 
islands, and surface roughness. 

The results presented in this paper could be essential in the study of the electronic 
processes occurring in dye–sensitised solar cells and in optoelectronics. 

2. Materials and methods 

The molecular systems under investigation are copper (CuTPP) and zinc (ZnTPP) 
complexes of 5-(4-pyridyl)-10,15,20-tri(4-methoxy-phenyl)porphyrin, covalently bound 
to polymers: CuTPP connected with poly(N-isopropylacrylamide (PNIPAM copoly-
mer) (samples 1 and 2), and ZnTPP linked to polyethylene glycol 6600 (PEG poly-
mer) (sample 3). The synthetic procedure for the samples 1 and 2 was similar to that 
described in Refs. [10, 11], and the molecular structures of the investigated macro-
molecules are shown in Fig. 1. Systems 1 and 2 differ in the distance between the 
porphyrin dyes and length of the polymer chains, and thus also in the average dis-
tances between dyes linked to the polymer chains. The x/y ratios in polymers 1 and 2 
are 330 and 2678, respectively (Fig. 1). Sample 3 was synthesised as described below. 
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Fig. 1. Molecular structures of the investigated samples 

Commercial PEG-6600 was purchased from Serva Co. 5-(4-Pyridyl)-10,15,20 
-tri(4-methoxyphenyl)porphyrin and synthesized as described previously [11]. It 
exhibits satisfactory 1H NMR data [11]. Thionyl chloride was purchased from Aldrich 
Chemical Co. For the synthesis, reagent-grade solvents were used without further 
purification, except for tetrahydrofuran (THF), 1,4-dioxane, and pyridine, which were 
distilled from calcium hydride. 

2.1. Preparation of Cl-Modified PEG-6600 

0.21 ml (3 mmol) of thionyl chloride was added under stirring at room temperature 
to 6.6 g (1 mmol) of PEG-4000 and 0.22 ml (3 mmol) of pyridine dissolved in 30 ml 
of THF. After 24 h, the solution was refluxed for 1 h and treated with active carbon 
(1 g). Carbon was filtered off and washed with hot dioxane (2×10 ml). The combined 
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filtrates were evaporated to 10 ml and cooled to room temperature. Hexane (100 ml) 
was added to the solution and well mixed. The obtained precipitate was filtered off, 
washed with hexane (2×20 ml), and dried in vacuo at room temperature. Yield 6.16 g 
(93.3%). Anal. (C2H4O)148.6C2H4Cl2 (44)148.6+99: Calcd. C 54.10, H 9.01, O 35.82; 
Found C 54.11, H 8.74, O 35.67. IR (KBr, cm–1) 735 (ν C–Cl). 

2.2. Preparation of porphyrin-labelled PEG-6600 

Cl2-PEG-6600 (66 mg, 10-5 mol) and Zn-5-(4-pyridyl)-10,15,20-tri(4-methoxy-
phenyl)porphyrin (7.6 mg, 10-5 mol) were dissolved in 1,4-dioxane (8 ml). The reaction 
flask was shielded from ambient light and the resulting solution was magnetically stirred 
under reflux for 30 h. It was cooled to room temperature and then hexane (50 ml) was 
added. The purple suspension was filtered, washed with hexane (2×10 ml) and dried in 
vacuo at room temperature. Yield 49.2 mg (66,6%). It was dissolved in a minimal vol-
ume of dioxane and then precipitated by hexane to purify the labelled PEG from the 
porphyrin traces.  

Elementary microanalysis was performed using a Vario ELIII device. The porphy-
rin units content in the samples (Fig. 1) was calculated from the absorption of poly-
mers solution in dioxane, with the use of Cu-TPP and Zn-TPP extinction coefficients 
[12] (absorption spectra were taken with a Varian UV-Vis-NIR Cary 500 Scan spec-
trophotometer, and IR spectra were recorded with a Specord 75 IR spectrophotome-
ter). The relationships between dye and polymer absorption band intensities depend 
on the average amount of dye molecules per unit polymer chain (x/y). 

In our experiments, the following substrates were used: a quartz plate and two 
semiconductors (In2O3 and SnO2) deposited on a quartz plate. The semiconducting 
(In2O3 or SnO2) substrates were deposited by evaporation onto a quartz plate. Since 
the investigated dye-containing polymers have a high solubility (e.g. in water), it is 
impossible to prepare Langmuir and Langmuir–Blodgett films of such compounds. 
Therefore, the modified dynamic deposition method was applied for preparing thin 
organic films on the quartz or semiconducting substrates [13–15]. In our experiments, 
chloroform was used for the dynamic deposition on solid substrates. In sample prepa-
ration, 100 µl of the dye solution in chloroform (c = 1 mM) was deposited on the 
cleaned substrate. The solution was spread over the solid substrate, which was set at 
25 degrees with respect to the ground. The solid film was obtained as a result of chlo-
roform evaporation during the lamellar flow of the solution. The thickness of the de-
posited dye layer was about 20 nm (estimated on the basis of the SFM studies).  

Polarized absorption spectra for the dye layer were measured in the range of  
400–900 nm with a Specord M40 UV-Vis spectrophotometer. The reference sample 
was a proper substrate without dyes. The dye concentration was 1 mM for sample 
preparation. The accuracy of the absolute absorbance intensity was 0.001. Two ab-
sorption components were measured: AII and A⊥ (AII and A⊥ are the absorbance com-
ponents measured for the light electric vector parallel and perpendicular to the deposi-
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tion direction of the layer, respectively). AII and A⊥ were measured in two geometrical 
arrangements:  

• with the light beam perpendicular to the sample surface (β = 0°), 
• with the light beam inciding at β = 10°. 
Such an experimental approach allows the molecular arrangement to be deter-

mined with respect to the substrate surface, according to the method of Yoneyama 
et al. [16], using the following equation  
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where i = 0° or β, and θ is the angle between the molecular skeleton (assuming that 
the absorption transient moment lies in the dye molecular scaffold) and substrate sur-
face; D = AII/A⊥. 

The linear dichroism was defined as [17] 
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The fluorescence spectra of the investigated polymers were measured with 
a steady-state spectrofluorometer Hitachi F4500. The experimental arrangement of 
such measurements for the dye layers on the solid plates was as described in [18]. 

The optical microscopy images were obtained using a micro-optical 3D measuring 
device (GFM, Teltow, Germany). SFM measurements were performed with a Nano-
scope IV in air at room temperature. The images were obtained using a standard Si3N4 
microtip with a force constant of 0.38 N·m–1. An applied force of about 10 nN was 
estimated from the signal of the feedback set point. This is only an approximate meas-
ure, since the capillary condensation contributions between the tip and the surface 
layer are unknown. All images were obtained at the scanning rate of 2.54 Hz. None of 
the features in the micrographs were changed when the scan rate was varied around 
this value. The best results were obtained in the SFM contact mode. No damage in the 
molecular coating was observed after several scans. 

Investigations with SFM give two types of micrographs: a deflection and height 
picture. Deflection images were obtained from the data that came from the differential 
signal of the SFM photodiode pair. The z (height) piezo voltage set by the feedback 
calculation in the digital signal processor was used to produce the height image. This 
image was thus caused by a signal of the difference between the loop error and point 
set control. The image, therefore, showed the edges clearly. The height picture was 
used to analyse the roughness of the samples. However, topographical features can be 
seen best from the deflection pictures, and these are given in this paper [19, 20]. 

The roughness parameter Ra was determined as an average value in a sample area 
of 1×1 µm2. Ra is the arithmetical mean line deviation or the so-called centre line av-



A. BOGUTA et al. 378 

erage. It is defined as the arithmetic average over all absolute values of height hi with 
respect to a reference line [20, 21] and can be measured automatically within SFM.  

3. Results 

3.1. Electronic spectroscopy 

Figure 2 shows the polarized absorption spectra (AII and A⊥) of dye–polymer films 
on a quartz plate as an example. The bands that range between 400 and 900 nm are 
assigned to the dye moieties, whereas polymers are responsible for absorption in the 
range of 200–300 nm (not shown). The absorption spectra of the dyes on solid sub-
strates are more or less changed with respect to dye–polymers dissolved in water 
[1, 11, 22]. Slight shifts of the Soret bands (2 nm for samples 1 and 2, 5 nm for the 
 

 
Fig. 2. Polarized absorption spectra of the dye–polymer films on quartz plates.  

The absorption components AII and A⊥ were measured with a light beam perpendicular 
to the sample surface (0°) and with the light beam inciding at 10° 

polymer 3) are assigned to the interaction of the dye–polymer with the solid surfaces. 
For the polymer 3, the splitting of the Soret band is observed – the band intensity (the 
ratio of the band at 425 nm and 449 nm) changes as compared to that in aqueous solu-
tion [1, 22]. This band splitting could be assigned to a strong interaction between dye 
moieties, which are close to one another, as observed for strongly interacting mole-
cules. The shapes of the spectra for the remaining substrates (In2O3 and SnO2) are 
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essentially unchanged (not shown). The relative intensities of these bands, however, 
are altered when thin films are deposited on quartz, In2O3, or SnO2 plates. This 
indicates that the interaction between the dye molecules and polymer chains is dis-
turbed in different ways by various solid substrates. It can also be due to a different 
dye orientation with respect to the solid surface. 

On the basis of polarized absorption measurements, the orientation of dye mole-
cules on the solid surface can be evaluated. We begin with a description of the orien-
tation of sample 3 on quartz, In2O3 and SnO2. The first interesting feature is that the 
perpendicular component (A⊥) is a little higher in intensity than the parallel one (AII). 
This indicates that the dye molecules are oriented rather perpendicular to the substrate 
surface. Such an arrangement of the porphyrin dyes is supported by the values of the 
linear dichroism (LD) parameters. The corresponding tilt angles and LD parameters 
are given in Table 1. We realize that our estimation is rather rough due to small dif-
ference between AII and A⊥ and due to the low absorbance of dyes in the thin films. 
Nevertheless, the data in Table 1 show a tendency of the dye molecules to be arranged 
in an out-of-plane orientation. In our previous paper, we have also investigated the 
orientation of porphyrin dyes in a form of the Langmuir or Langmuir 
–Blodgett layers [9]. A flat arrangement of the LB dye layer (without polymer) on 
solid In2O3 and SnO2 was shown [9]. The estimated angles were from 24° to 33° in the 
Langmuir–Blodgett layer [9], whereas in this paper the angles lie between 56° and 
68°. For a similar porphyrin, the variation in the tilt angles on the same substrates 
could be assigned to the large influence of the polymer skeleton 3 on the orientational 
behaviour of the dye molecules. 

Table 1. Linear dichroism (LD)1 values of dyes on different substrates and the angles θ 
between the dye molecular skeleton and substrate surface 

LD θ, deg 
Substrate Sample 

Quartz In2O3 SnO2 Quartz In2O3 SnO2 
1 0.030 0.050 0.020 26 9 13 
2 -0.010 0.030 0.110 68 7 32 
3 -0.010 -0.010 -0.010 68 56 61 

1LD estimated at the maximal dye absorbance. ∆LD = ±0.005, ∆θ = 3°. 

On the other hand, the dye molecules are rather in-plane oriented when linked to 
the other polymer chains (samples 1 and 2). The estimated tilt angles range between 
70 and 320 (except for polymer 2 on the quartz plate). In comparison with our previ-
ous LD observation for porphyrin molecules in the LB film on In2O3 and SnO2 sub-
strates [9], the arrangement of the dye molecules is also disturbed by the presence of 
the polymers. This conclusion is supported by the data presented in our previous pa-
per for the porphyrin molecule in the absence of polymers (1 and 2) [9]. 
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Fig. 3. The fluorescence spectra of dye–polymer 3 on various substrates 

The dye–polymer species studied do not show any fluorescence in aqueous solu-
tion (or it is extremely low; data not shown). The fluorescence features are dramati-
cally changed after depositing the dye layers on the solid substrates. Figure 3 shows 
examples of the dye–polymer 3 on quartz, In2O3 and SnO2. Two bands, typical of 
porphyrin dyes, are observed. One band is located around 610 nm and the other at 
about 650 nm. The band locations are different from those obtained for the dyes in, 
e.g. DMSO [9]. Also, the bands are much broader than those observed for these dyes 
dissolved in organic solvents [9, 23]. This means that the interaction of the dye–
polymers with the solid surface affects their fluorescence behaviour. In the previous 
work [24], the infrared spectroscopy showed the charge redistribution in the dye mac-
rocycles after dye Langmuir–Blodgett layer formation. We can thus suppose that elec-
tronic interaction between π electrons in the dye skeleton and the solid is the reason 
for the enhanced dye fluorescence observed in this paper. 

Summarizing, we conclude that the dye arrangement in thin films on the solid sub-
strates depends crucially on the substrate material. The most important observation is 
that the dye orientation is altered in the presence of the polymer chains. A marked 
variation in dye arrangement is shown for the ZnTPP dye linked to the polymer sys-
tem (3). We thus suggest that the molecular arrangement and electronic interactions in 
the dye–polymer systems could affect the final topography of the thin film.  

3.2. Microscopic studies 

In our experiments, we use three solid substrates: a quartz plate, and In2O3 or SnO2 
deposited on the quartz plates. Previously, the differences in their topographies were 
shown and they were characterized by a different size of grains [9]. The quartz plate 



Metalloporphyrin-labelled polymers on different substrates 

 

381 

 

had a very smooth surface with the lowest roughness parameter (Ra = 0.1 nm), In2O3 
on quartz was characterized by low surface granularity (Ra = 0.4 nm), and the SnO2 
layer exhibited the highest value of the roughness parameter (Ra = 2.2 nm). The same 
substrates were used in this paper, and their images are comparable with those pre-
sented in the previous paper [9]. 

 
Fig. 4. Optical microscopy images  

of 3 on quartz, In2O3 and SnO2 

Deposition of sample 3 on the quartz plate and on In2O3 and SnO2 (Fig. 4) leads to 
differences in the macroscopic images. A marked variation in the topography of the 
dye–polymer system 3 is observed as compared to the images of the substrates [9]. 
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A dendritic structure of the polymer film, with crystallization centres, can be seen (on 
In2O3 and SnO2 substrates). Its character depends on the granularity of the original 
surfaces. The higher the roughness parameter, the larger are the visualised dendritics 
and crystallization grains. 

For samples 1 and 2, rather smooth homogeneous surfaces are observed, and the 
differences between the surface structures of these samples on quartz and SnO2 are 
due to variations in the grain sizes of these two solid substrates (data not shown). 

In summary, we conclude from this part of the paper that the dye–polymer systems 
1 and 2 present rather homogeneous topographies, while the dye–polymer 3 exhibits 
a dendritic topography and its final image depends on the granularity of the solid sur-
face. 

A deeper insight into the topography of dye–polymer systems can be obtained 
from SFM experiments, since SFM visualization gives much more details than optical 
microscopy. The SFM images of samples 1, 2, and 3 on SnO2 give very similar im-
ages (not shown). For each dye–polymer on SnO2, an image of the substrate is ob-
served rather than the individual character of the polymer layer owing to the large 
granularity of SnO2. Detailed SFM images of the film are thus impossible to obtain 
due to the high roughness of the SnO2 substrate. 

Much more interesting results were obtained for dye–polymer films deposited on 
substrates of low granularity – on quartz and In2O3. Figures 5–8 show the results for 
samples 1 and 3, respectively, on quartz or In2O3. A comparison of these figures evi-
dently shows that the final SFM images depend strongly on the dye–polymer and the 
granularity of the solid substrate. For sample 1, a ring-like topography is observed 
(Fig. 5). The sequences of the rings are repeated along the whole sample. In the panel 
in Fig. 5, a cross-section analysis of this structure is presented. The size of the poly-
mer could be estimated basing on the evaluation of the roughness parameters for the 
bare substrates. The height of the polymer is about 9–11 nm. The diameter was esti-
mated to be about 450 nm. 

Small changes can be observed in the SFM images when the porphyrin–polymer 1 
covers the In2O3 surface. Figure 6 shows the SFM image of this sample on In2O3, with 
the section analysis of the image also shown. Again, a ring-like structure could be 
recognized, but it is not as clear as for the same dye–polymer on quartz. Cross-section 
analysis gives the height values 12 and 17 nm. These values could be described as 
follows. On the basis of our previous results concerning SFM images of the In2O3 
substrate, the height of In2O3 grains was estimated to be about 5–7 nm. The first cross 
section value (12 nm) can thus be assigned to the thickness of polymer layer that is in 
contact with the In2O3 grain pit. The higher value (17 nm) reflects the height of the 
polymer layer on top of an In2O3 grain. This value is higher than that for the same 
sample on quartz, as expected. The variations in the SFM images of sample 1 on In2O3 
and quartz and the differences in height could be caused by either a difference in grain 
size between the two substrates or by a different dye orientation with respect to the 
substrates. 
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Fig. 5. SFM images of 1 on quartz: an overview, and cross-section analysis (the straight lines  

represent the directions in the sample taken into consideration in the profile analysis) 
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Fig. 6. SFM images of 1 on In2O3: an overview, and cross-section analysis (the straight lines  

represent the directions in the sample taken into consideration in the profile analysis) 
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Fig. 7. The cross-section analysis of SFM images of 3 on quartz. The straight lines  

represent the directions in the sample taken into consideration in the profile analysis 

The surface of the dye–polymer system 3 can be seen in Fig. 7, which presents the 
SFM image of this sample on a quartz plate. The sample is characterized by a longitudi-
nal topography, in which the dye–polymer chains are observed. Basing on the cross-
section analysis of surface 3, we find that the average value of polymer chain height is 
about 1.1 nm. Figure 8 confirms again the longitudinal structure of sample 3 on the 
In2O3 surface. The section analysis is also shown. A complex profile of the surface to-
pography indicates a multicomponent structure of the dye–polymer with the thickness of 
about 12 nm with respect to a pit of the In2O3 grain. The values of 2.5 nm and 5 nm 
could describe the layer-by-layer thickness jumps of the polymer on the substrate. 
These values could be correlated with the van der Waals radius of the PEG chain, 
being about 3.5 nm [25]. 

The cross-section results indicate that the final morphologies of the thin films in 
the dye–polymer systems are affected by the kind of the sample and by the original 
topography of the substrate. 
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Fig. 8. The cross-section analysis of SFM images of 3 on In2O3. The straight lines  

represent the directions in the sample taken into consideration in the profile analysis 

4. Discussion 

A general idea of this paper was to show that the optical microscopy and SFM im-
ages of polymeric samples are affected by their molecular structure, by polymer 
length, and by the population of dye molecules covalently linked to the polymeric 
chain. To find a correlation between the variation of the final images of dye–polymer 
systems and the granularity of the substrates, one has to consider several effects and 
factors: 

• the relation between the granularity of the substrate and the size of the dye 
–polymeric systems, 

• differences between molecular structures of various dye–polymeric systems; 
samples 1, 2, and 3 differ in their polymer chain structure, polymer chain length, and 
in their population of dye molecules along the chain, 
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• differentiation of the orientation of dye–polymer samples with respect to the sub-
strate surface. 

Samples 1 and 2 are characterized by a rather homogeneous topography when de-
posited on a quartz plate or In2O3. This effect could be discussed in terms of the dye 
dimensions and dye orientation with respect to the substrate. The size of these poly-
meric samples are suitable for quartz and In2O3 granulites. Every dye–polymer system 
exhibits different topography when deposited on solid surfaces: the dye–polymer 1 
shows a ring-like structure, whereas the dye–polymer 3 presents a dendritic surface 
structure with well observed crystallized grains. In the case of the dye–polymer 1, the 
ring–like structure lies almost flatly on the quartz and In2O3 substrates (the tilt angles 
are 90 and 130, respectively), owing to the rather low granularity of In2O3. On the 
other hand, although the polymer 3 has a dendritic structure, its chains also lie flatly 
on the In2O3 surface due to low In2O3 granularity. Similar results were also observed 
for much smaller molecular materials (phthalocyanines) [9, 15], and these new results 
confirm our previous observation. 

We have also shown that the substrate with large grains (SnO2) exhibited a ten-
dency to preserve its own topography. Although the investigated dye–polymer sys-
tems differ essentially in their molecular structures and sizes, the image of the SnO2 
surface is rather weakly changed after coating it with the macromolecular materials 
due to the original large grains. It is evidently seen for the dye–polymer 3; the original 
topography is still preserved, and this could be interpreted to be caused by filling the 
troughs between SnO2 grains by perpendicularly oriented dyes and dendritic poly-
mers. This polymer is thus not seen on the surface of large grains upon SFM examina-
tion. Studying dye–polymers deposited on SnO2, however, is difficult due to a high 
roughness of the substrate. Small changes in the SFM image of SnO2 were also ob-
served after the surface was coated by some porphyrin and phthalocyanine dyes. 
These changes are discussed in terms of the large grain of SnO2 and out-of 
-plane orientation of the dyes with respect to the semiconducting surface [9]. 

Summarizing, we have shown that the final topography of the dye–polymer layer 
covering the solid substrate depends predominantly on the molecular structure of the 
polymer. Also, the granularity of the substrate has a great influence on the final image 
of the dye–polymer layer. The effect of sample orientation cannot be excluded. In the 
case of the substrate with large grains (SnO2), the space between grains is sufficiently 
large to be filled and covered by the polymer chain. Otherwise, when the substrate has 
a more homogeneous topography, the polymer is rather flatly deposited on the sub-
strate surface (quartz, In2O3). 
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We present a study on photovoltaic devices based on polypyrrole (PP) and SiC nanoparticles 
(~30 nm) in the matrix of poly(N-vinylcarbazole) (PVK). The photovoltaic cell structure was 
ITO/(polymer with SiC)/Ca/Al. The photophysics of such photoactive devices is based on photoinduced 
charge transfer from donor-type semiconducting conjugated polymers to acceptor-type SiC nanoparticles. 
The process mimics early photo effects in natural photosynthesis. In the general context of organic photo-
voltaics, polymeric materials have a cutting edge since they combine the photoelectrical properties of 
semiconductors with the large scale/low cost technology of polymeric materials.  

Key words: photovoltaic effects; polymer; photovoltaic cell 

1. Introduction 

Organic photovoltaics, one of the first organic double layers reported in 1986 by 
Tang [1], only recently have become of broader interest. Organic materials, especially 
conducting polymers have been studied extensively owing to their potential applica-
tion in active electronic devices [2, 3].  

Polymer photovoltaics offer great technological potential as a renewable, alterna-
tive source of electrical energy. The potential advantages of an all-polymer hetero-
junction solar cell include: low cost (large scale production using the existing polymer 
processing technology), large area (plastic thin films can be produced with macro-
scopic dimensions), flexibility (the mechanical properties of polymers). The materials 
used are hydrocarbon-based non-toxic molecules, and the production of these thin 
film solar cells is done at room temperature without any dangerous exhausts. Since 
the band gap of polymeric semiconductors can be manipulated, it is possible to tune 

_________  
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the colour of the solar cells, which in return is uniquely important for architecture. 
Furthermore, this approach allows unused large areas other than roofs to be accessed 
for photovoltaic energy conversion, by fabricating semitransparent photoactive thin 
films. These potential advantages bring a legitimate relevance for industrial interest to 
this approach. 

Most of the development in polymer electronics has been done in the production 
of either p-n junctions or Schottky and metal-insulator-semiconductor diodes [4–6]. 

In spite of the intensively investigated photophysics of conjugated organic materi-
als, the mechanism of charge carrier photogeneration is still under debate. The pri-
mary photoexcitations can be considered to be excitons that have a certain probability 
to dissociate into free charge carriers (polarons) (Fig. 1) if the binding energy of the 
exciton can be compensated [7]. There is a fast photoinduced charge transfer reaction 
in these polymer photovoltaic cells at the donor acceptor interface, which results in a 
metastable charge-separated state [8].  

 
Fig. 1. Band energy diagrams for a D/A double layer device in the short circuit mode.  

Left: the built-in field, due to ∆Wf between the electrodes, leads to tilted bands  
if only a few free charge carriers are present. Right: at higher charge carrier concentrations, 

 the bands can remain flat in the bulk, and blocking contacts may be formed [1] 

 
Fig. 2. The current versus applied voltage of a solar cell. The extracted current 

 is negative. The fourth quadrant represents the voltage and current generated by the cell.  
An externally applied voltage is necessary to obtain data points in the first and third quadrant 
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The left figure in Fig. 1, shows a simplified band energy diagram for a double 
layer device with a low concentration of free charge carriers. The difference between 
the work functions of the electrodes ∆Wf can cause the bands to tilt, as shown, which 
creates a constant field across the bulk. The right figure in Fig. 1 shows the situation 
for a device with a free charge carrier concentration high enough to compensate the 
built in field within a fraction of the layer thickness. According to this picture, the 
driving force, i.e., Voc is mainly determined by the offset at the D/A junction, although 
the increased built in field can help transport charges through the bulk. 

The overall efficiency ηeff of a solar cell is calculated by the following formula: 

 eff
light

( )oc scV I FF

I
η =  (1) 

where Voc is the open circuit voltage, Isc is the short circuit current in A/m2, FF is the 
fill factor, and Ilight is the incident solar radiation in W/m2. The fill factor of solar cells, 
which reflects their diode properties, is determined by 

 mpp mpp

sc oc

I V
FF

I V
=   (2) 

with Impp and Vmpp being the current and voltage at the maximum power point in the 
4th quadrant of the I/V curve (Fig. 2). 

2. Experimental 

Semiconducting polymers can be used as electron donors in combination with SiC 
nanoparticles as electron acceptors to construct polymer photovoltaic cells.  

ITO 

ITO 

Ca/Al 

Ca 

Glass 

PVK with SiC 

Al  

Polypyrrole 

 
Fig. 3. Structure of the photodiode 

Commercial poly(ethylene oxide)(poly(oxy-1,2-ethanedienyl), PEO, type Polyox 
WSRN 750, produced by Union Carbide, was used without further purification. An-
hydrous iron(III) chloride (FeCl3, Merck) was purified by sublimation. The PEO-
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FeCl3 (7:3) complex was prepared as described in [9]. Complex films were obtained by 
spin coating from solutions in nitromethane (10 wt. %). The polymerisation of pyrrole 
was carried out in the saturated monomer vapour at room temperature (21±2 °C). Thin 
polypyrrole composite films were prepared on the surface of the glass covered with 
ITO. Next, the tetrahydrofuran solution of PVK, used as a matrix of SiC nanoparticles 
(20–40 nm), was spin-coated on the polypyrrole layer (Fig. 3).  

The chemical structure of the compounds is shown in Fig. 4. Calcium and subse-
quently aluminium as an electrode were evaporated on the surface. 

 
Fig. 4. Structures of poly(N-vinylcarbazole) (PVK) and polypyrrole (PP) 

The photovoltaic cell had an active area of 0.3×0.5 cm2. The structure of the cell, 
obtained this way, was ready to measure. 

3. Results and discussion 

First, an I–V characteristic of the structure was determined (Fig. 5), then the cur-
rent in short circuit mode under light and voltage in open circuit were measured. Fig-
ure 5a shows the curves I vs. V of ITO/polypyrrole-PVK with SiC/Ca/Al structure in 
the dark, which exhibits a clear current rectification. Under illumination, the device 
exhibits a short-circuit current and an open-circuit voltage (Fig. 5b), which makes this 
structure a photovoltaic cell. Although it presents a very low current intensity, it is 
promising from the materials research point of view. 

Figure 6 shows a schematic energy diagram of a PP and PVK with SiC heterojunc-
tion photovoltaic cell. The ionisation potentials of PP and PVK with SiC films were 
evaluated by photoelectron spectroscopy to be about 5.5 and 5.6 eV, respectively. The 
band gaps of PP and PVK with SiC were evaluated from the absorption edge to be 
about 3.2 and 3.0 eV, respectively. The work function of ITO [10] and Ca [11] were 
4.6 and 3.2 eV, respectively. Since the conduction band of PVK with SiC is located 
about 0.2 eV below the conduction band of PP, electrons should be injected into PVK 
with SiC from PP at the PP/PVK interface by the dissociation of photoexcited exci-
tons or exciton-polarons in PP. 

It was assumed that the top of the valence band of PP is located at a higher energy 
than that of PVK with SiC by about 0.1 eV. This should make it possible to photoin-
duce hole transfer from PVK with SiC to PP in the same manner. That is, the photoin-
duced charge transfer by the dissociation of excitons and exciton-polarons results in  
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Fig. 5. Current density–voltage characteristics of an ITO/polypyrrole/PVK  

with SiC/CaAl cell: a) in the dark, b) in the dark and under 12 mW/cm2 light irradiation 

Table 1. Photovoltaic parameters for a sequence of layers 

Sequence of layers 
Short-circuit 

current density 
[µA/cm2] 

Open-circuit 
voltage  
[mV] 

Power  
conversion 
efficiencies 

Fill factor 
FF [%] 

A) ITO/polypyrrole/PVK  
with SiC /Ca/Al 

4.3 48 0.8 % 28 

B) ITO/PVK  
with SiC-polypyrrole/Ca/Al 

3.25 33 0.6 % 26 

C) ITO/blend of polypyrrole 
and SiC/Ca/Al 

0.25 167 0.2 % 17 

a) 

b) 
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the presence of positive carriers in PP and negative carriers in PVK with SiC. When 
the structure of the photovoltaic cell changes (ITO/PVK with SiC/PP/Ca/Al), the 
properties of the solar cell also change (Table 1). All characteristic photovoltaic pa-
rameters are smaller. The differences are not so large, because there is a small differ-
ence between the energy levels (Fig. 6) of the CB bands of PP and PVK with SiC. The 
same is true for VB bands, and is also caused of small values of Voc for the investi-
gated materials. In the case of structure C (Table 1), solar cells were built from a 
blend PP with SiC; their properties are different. The short circuit current is smaller 
than that for multilayer solar cells by one order of magnitude, but the open circuit 
voltage is higher. 

 

Fig. 6. Schematic energy band diagram of the ITO/PP/PVK  
with SiC/Ca/Al heterojunction photovoltaic cell 

This effect is probably a result of the recombination of charge carriers and exci-
tons in the bulk blend. Recombinations are caused by the migration of both negative 
and positive charges in the same material. This effect decreases the number of charges 
on the electrodes and sometimes increases the temperature of the cell.  

4. Conclusions 

Further optimisation of device performance can be achieved by optimising its 
physics: 

• Optimising the choice of the D/A pair (energetics determine the open circuit po-
tential). In addition, the band gap of the semiconducting polymer should be chosen for 
efficient harvesting of the solar spectrum. 

• Optimising the network morphology of the phase-separated composite material 
for enhanced transport and carrier generation. The absorption of light and mobility of 
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the charge carriers within the components of the bulk heterojunction have to be maxi-
mized. 

The photocurrent of the B) system photovoltaic cell (Table 1) is larger than that of 
the C) system photovoltaic cell by more than one order of magnitude. 

The observed photoirradiation effects in the heterojunction photovoltaic cell can 
be explained in terms of photoinduced interfacial charge transfer between PP and 
PVK with SiC by taking into account the difference between the electronic states of 
PP and PVK with SiC. 
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In order to build efficient single-layer polymer photovoltaic devices, the realization of an equivalent 
distributed p-n junction is proposed. Orientation in the initially centrosymmetric material is obtained by 
ordering polar molecules contained in a polymer matrix with a DC field. The molecular rectification 
effect induced in an oriented polymer film improves the efficiency of polymeric semiconducting devices 
like solar cells. The first experiments were conducted with a poly(methylmethacrylate) (PMMA) matrix 
containing azo-dye compounds (such as the Disperse Red 1, DR1) as the polar molecules, grafted onto 
the chains of the polymer backbones. Although this material allows for high orientation efficiencies, it is 
not adapted for photovoltaic applications, since DR1-MMA has very poor semiconducting properties due 
to the dielectric nature of PMMA. Organic semiconductors are uncommon and it is difficult to find an 
appropriate polymer system. We present preliminary results obtained for two intrinsically semiconducting 
and dye-functionalised polymer systems which may be found applicable in the fabrication of organic 
photovoltaic solar cells using the concept of polar molecular ordering. We use polymer systems with a 
covalent bond between the dye molecule and conjugated backbone to obtain a high dye content and to 
avoid phase separation problems. To achieve the largest stable molecular polar orientation possible and to 
optimise the electric field stored in an oriented structure, we studied the orientation parameters of sam-
ples, i.e., the orientation field, temperature, poling duration, and cooling conditions. 

Key words: organic semiconductors; polymer semiconducting film; molecular diode; organic photo-
voltaic cell 
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1. Introduction 

Semiconducting polymers are receiving growing attention in view of the fabrica-
tion of flexible and low-cost organic photovoltaic cells, with standard coating and 
printing processes taking advantage of their easy processability [1, 2]. In order to cre-
ate efficient solar cells, building a rectifying junction is mandatory. The structure 
leads to the existence of an internal field allowing a charge separation after exciton 
generation [3]. Such a junction can be of the Schottky-type, between an organic semi-
conductor and a metal, or it can be a p-n junction, between p- and n-type organic 
semiconductors. p-n type junctions, in which the metal to polymer contacts are ohmic, 
turn out to be the most efficient in the realization of optoelectronic devices. They also 
permit to avoid degradation problems, characteristic of the Schottky junctions and 
resulting from electrochemical potential differences at the rectifying contacts that 
induce the diffusion of the electrode material into a polymer film. This is corrected in 
p-n junctions by the ohmic nature of their metal-polymer contacts. The realization of 
a standard p-n junction requires the use of two polymer layers bearing wet-processing 
compatibility. Moreover, n-type organic semiconductors are less common than p-type 
ones, due to their lower stability under oxygen in consequence of their reductive be-
haviour. A further limitation of this approach concerns a weak extension of the deple-
tion zone (between 10 nm and 50 nm), where the majority of the exciton dissociation 
occurs. This limits the maximum thickness of the devices, making it very difficult to 
efficiently harvest the visible light. 

To increase the efficiency of a photovoltaic polymeric device, we propose an al-
ternative to the classical p-n junction: induction of an internal field over the whole 
thickness of a photovoltaic layer through orientation of polar molecules, obtained by 
the application of a static electric field. Oriented molecules (push-pull type) induce 
a rectifying effect, behaving as a distributed homojunction in an initially centrosym-
metric material [4]. The junction is distributed throughout the entire thickness of the 
device. All photogenerated excitons are likely to find a junction and split before re-
combination, thus avoiding recombination channels (radiative and non-radiative). 

It has also been demonstrated that molecular-induced orientation in a polymer de-
vice increases the charge mobility in the material [5] and that the barrier height be-
tween the electrode material and the polymer decreases with growing polar order [6]. 
The improvement of the efficiency of photovoltaic cells based on a polymeric single 
layer bearing oriented polar chromophores has also been clearly evidenced [5]. In 
fact, it is known that the photogenerated excited states in organic molecules, termed 
excitons, which are exploited in organic photovoltaic devices, split themselves into 
electrons and holes in presence of strong electric fields, such as those provided by 
physical interfaces between different materials. In view of this, it is interesting to 
investigate if the proposed poling method, which is capable of providing molecularly 
distributed homojunctions, may be of help in enhancing the photovoltaic performance 
of organic solar cells when applied to the appropriate polymer systems. Organic solar 
cells are seriously affected by the recombination of relatively long-living excitons. 
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A polymer fulfilling the basic requirements for application in oriented photo-
voltaic solar cells should possess the following characteristics: 

• It should be intrinsically semiconducting and produced with high purity and low 
defect concentration, in order to prevent trapping, and possess ordered regions in the 
100 nm scale to guarantee efficient transport channels of charges. 

• It should be grafted with dye molecules possessing high dipolar moments; more-
over, these molecules should have good photochemical stability. 

• It should possess a high Tg (typically higher than 80 °C). Another solution would 
be a crosslinkable system, in order to ensure a higher stability of the induced molecu-
lar polar order. Indeed, crosslinkable polymers permit the polar molecular orientation 
to be frozen by the induction of covalent bonds between the chromophore and 
conjugated backbone after the orientation process. 

• It should be easily soluble in common organic solvents, to permit an easy fabri-
cation of thin films of good optical quality and low roughness, avoiding short circuits 
during electrode deposition. If the surface of a polymer layer is not smooth, the sur-
face of an evaporated electrode will consequently be rough. A rough polymer surface 
means that there are zones where the thickness of the film is lower than in neighbour-
ing ones. These low-thickness zones may be destroyed during electrode evaporation, 
which results in short circuits. 

Further, as the molecular polar orientation is directly related to the number of ori-
ented molecules, it will also be necessary to optimise the grafting ratio of the polymer 
matrix in order to obtain the optimal molecular concentration, at which the dipolar 
interactions (intermolecular interactions) do not hinder the orientation of molecules; 
typically, a 30% molar concentration in chromophores is chosen. Additionally, its 
synthesis must exhibit high yields, in order to test the reproducibility of the results in 
the long term. Furthermore, grafted dye polar molecules should possess very little or 
no photoinduced molecular movements. This avoids any disorientation following 
illumination with solar light. The polymer systems described above are uncommon 
and till now few materials have been investigated in view of their potential applica-
tions in ordered photovoltaic devices [5]. 

In this work, we report the results for two polymer systems grafted with the Disperse 
Red 1 (DR1) molecules that are intrinsically semiconducting. The optimisation proce-
dure of the induced molecular orientation is presented in view of the potential applica-
tion of the studied polymers in the fabrication of photovoltaic organic solar cells. 

2. Experimental 

In previous studies, the DR1-MMA copolymer system has been used [4]. The 
PMMA polymer matrix is optically inactive and transparent in the visible and near-
infrared ranges. DR1-MMA was tested, as the orientation process is very effective in 
this material. PMMA is not appropriate for photovoltaic applications due to its poor 
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semiconducting properties (very weak currents, in the range of several nA/cm2). In 
order to optimise the polymer system and to obtain a maximal photovoltaic device 
efficiency, we performed preliminary studies on two intrinsically semiconducting 
polymers grafted with dye polar molecules, namely poly(1-methoxy-4-(O-disperse red 
1))-2,5-phenylenevinylene) and (poly((3-hexyl)-co-(3-(2-(4-(4’-Nitrophenyl-azo)phe- 
noxy)-ethyl))thiophene. Polar molecular order is induced in the studied materials 
through the electric field poling method (Corona poling). 

We have identified two polymer materials that may be employed in the prepara-
tion of plastic photovoltaic devices. The first is the commercially available poly- 
(1-methoxy-4-(O-disperse red 1))-2,5-phenylenevinylene) (DR1-PPV), purchased from 
Aldrich and tested without any additional purification procedure. Disperse Red 1 (4-
(N-(2-hydroxyethyl)-N-ethyl)-amino-4'-nitroazobenzene, or DR1 (with the dipole 
moment of 7 D), grafted to a polyphenylenevinylene (PPV) matrix, was used as the 
active polar molecule. DR1-PPV, shown in Fig. 1, is grafted at a 100% molar ratio. Its 
glass transition temperature Tg, measured by Differential Scanning Calorimetry (Met-
tler DSC 20 TC 11), was found to be 65 °C. A solution of DR1-PPV in 1,1,2-tri- 
chloroethane (15 g/1 l) was first filtered through 0.45 µm and then 0.2 µm PTFE Tef-
lon Millipore filters in order to remove any insoluble parts of the polymer. The solu-
tion was then spin-coated onto ITO-coated glass substrates. The thickness of the ob-
tained samples was determined with a Dektak profilometer to be about 48 nm (± 2%). 
The resulting films were baked in an oven at 60 °C for 30 minutes to remove any re-
sidual solvent.  

 
Fig. 1. Chemical structure of poly(1-methoxy-4-(O-disperse red 1))-2,5-phenylenevinylene)  

(DR1-PPV). The polymer matrix is grafted at 100% with the chromophore molecule 

The thin films of DR1-PPV were oriented without an upper semitransparent metal 
electrode. The polymer thin films were oriented under 10 kV (positive charge) for 
10 minutes at 60 °C, after which the samples were cooled down to room temperature 
with the tension still applied in order to freeze the molecular order.  
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The second polymer system was an azo dye-substituted, solution-processable 
polythiophene, namely poly((3-hexyl)-co-(3-(2-(4-(4′-Nitrophenyl-azo)phenoxy)ethyl))- 
thiophene, or PEAHT. The synthesis of the polymer and its characteristics are de-
scribed elsewhere [7, 8]. The structure of the polythiophene-based copolymer, func-
tionalised with NLO-active chromophoric units, is presented in Fig. 2. The molecular 
weight of the polymer (Mw) was 44 000, as determined by GPC measurement vs. 
polystyrene standards. The amount of dye incorporated in the copolymer was equal to 
the 33% molar ratio. This polymer is easily soluble in common organic solvent due to 
the presence of flexible alkylic side chains. 

 
Fig. 2. Chemical structure of the polythiophene copolymer with alkyl side chains, partially  

functionalised with chromophore groups (PEAHT). The chromophore molar concentration is 33% 

Tg of this polymer was estimated to be around 100 °C upon poling evidences, 
while DSC measurements delivered a value of about 80 °C. This difference may be 
ascribed to the partial crosslinking occurring during polymer storage (several months), 
as the tests on this polymer were not performed directly after its synthesis. For the 
preparation of the device, 33 mg of the PEAHT were dissolved in 1 ml of chloroform 
(CHCl3). The solution was then filtered through a 0.45 µm filter and spin-coated onto 
clean ITO substrates. The film thickness, measured with the Dektak profilometer, was 
130 nm. The sample was oriented under 6 kV for 15 minutes at 100 °C by Corona 
poling, in order to test the orientation.  

The spin-coating of thin polymer films onto substrates is usually followed by Al 
electrode deposition by thermal evaporation in vacuo 10–6 Torr (20 nm upper semi-
transparent aluminium electrode). The resulting device consists of a polymer layer 
sandwiched between two electrodes (ITO as a bottom one). The active surface of the 
device was 28 mm2. The structure of a typical cell fabricated by this procedure is 
shown in Fig. 3. In complete devices, the polar order is induced through applying the 
electric field directly to electrodes. Nevertheless, this requires a very precise control 
of the metal electrode deposition. In our studies, the Corona poling method was used, 
as it is much easier to realize than orientation through the electrodes of a cell and 
permits the procedure of orientation itself to be optimised, and to obtain the most 
stable polar order and largest internal electric field possible. 
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Fig. 3. Side-view of a Schottky type photovoltaic cell 
sandwich-type structure. The glass substrate 

is 10 mm thick, the ITO transparent electrode  
– 150 nm, the organic thin film – around 100 nm,  

and the semitransparent metal electrode (Al) – 20 nm 

Experimentally, the molecular order was controlled using second harmonic gen-
eration, as the SH intensity is directly related to the induced dipolar molecules orien-
tation [4]. The samples were always mounted in such a way that the ITO coated glass 
or glass surface faced directly toward the incident beam. The fundamental IR laser 
source at 1.064 µm was an actively Q–switched Nd:YAG laser with 25 ps pulses at 
a 10 Hz repetition rate. The fundamental p-polarized infrared light beam impinged 
upon the sample at a non-normal incidence angle, passing through the glass substrate 
and/or the ITO coating and then a polymer layer. The second harmonic signal gener-
ated by the sample was detected using a photomultiplier tube (PMT) and integrated by 
a boxcar. The whole experiment was computer controlled. 

 3. Results and discussion 

The UV-Vis absorption spectra of the studied polymers were taken using 
a Lambda 19 Perkin-Elmer spectrometer. As can be noticed in Fig. 4 presenting  
 

 
Fig. 4. UV-Vis absorption spectra of the DR1-PPV copolymer before (48 nm thick,  

dashed line, OD at 532 nm equal to 0.28) and after orientation by Corona poling  
(solid line, OD at 532 nm equal to 0.26). The absorption maximum is found at 483 nm  

(OD before and after orientation is 0.35 and 0.30, respectively) 
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the absorption spectra of DR1-PPV (before and after the polarization process), the 
optical density decreases after the orientation process. This means that, after the po-
larization process, a certain number of polar molecules are oriented perpendicular to 
the polymer surface, making the absorption lower. The maximal orientation degree 
obtained was 14% (±12%) (calculated as ∆ODmax/ODmax, where ∆ODmax is the change 
in optical density after the polarization process at the absorption maximum and ODmax 
is the optical density at the absorption maximum before orientation). The error of the 
optical density measurement is equal to 0.02, which is the value obtained from meas-
uring the reference calibrated filters. The orientation degree obtained also seems to be 
rather low when compared to the value of 30% normally reached by grafted polymers. 
Due to a grafting ratio of 100%, however, there are problems of steric congestion and 
the movements of molecules may be hindered by the movements of others.  

 
Fig. 5. UV-Vis absorption spectra of the PEAHT polymer film (130 nm thick) (dashed line, 
OD at absorption maximum at 380 nm equal to 0.75) and after orientation by Corona poling  

(solid line, OD at 380 nm equal to 0.70). The optical density at 532 nm almost does not change 
during the polarization process (OD before and after orientation is 0.138 and 0.135, respectively) 

The absorption spectra of spin-coated thin films of PEAHT are given in Fig. 5 (be-
fore and after orientation, and on glass substrates). The degree of orientation obtained 
was 7% (±5%). The absorption maximum of the PEAHT polymer was found at 
380 nm (OD was 0.92), which is typical of the π-π* transition of the azobenzene moi-
ety in the trans isomeric form; the broad band found around 450 nm corresponds to 
the overlapping of the π-π* transition of the conjugated polythiophene backbone and 
the weaker n-π* transition of the azobenzene group [8]. The error of the optical den-
sity measurement was 0.02. 

Polythiophenes are very attractive materials in the class of intrinsically semicon-
ducting polymers, because of their good thermal and chemical stability and ease of 
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functionalisation with various chromophores, thus permitting their physical and elec-
tronic properties to be engineered [9]. The low ordering degree obtained for this 
polymer, however, may be attributed to a probable crosslinking of the polymer, which 
renders it more rigid with respect to non-crosslinked ones, and hence less prone to the 
poling process. 

Second harmonic generation studies were performed for all oriented samples. 
These measurements are necessary as they permit the exact value of the SH generated 
signal to be calculated, which is in turn needed to determine the value of the internal 
field stored in an oriented structure. Moreover, this technique allows for the optimisa-
tion of the orientation process itself (the electric voltage applied, the temperature, the 
poling duration, the cooling conditions, etc.). 

SHG in DR1-PPV on ITO and in PEAHT on glass substrates was measured in or-
der to estimate their potential application in photovoltaic organic solar cells. The 
thermal and photostimulated relaxation of polar orientation was registered. By photo-
stimulated relaxation we understand that an intense monochromatic light induces 
much faster relaxation than a moderate heating [10]. In both cases, the decay of the 
SH signal was tested until it disappeared completely due to continuous illumination 
with an infrared beam and thermal diffusion. 

 
Fig. 6. A study of the temporal decrease of the SH signal generated by DR1-PPV  

on a glass substrate, oriented by Corona poling. The sample is heated up to 60 °C, starting  
at ambient temperature with a heating rate of 10 °C/minute. The SH signal decays as the molecular  

polar order disappears due to thermal diffusion. At the beginning of the measurement,  
a “zero” level signal is registered, for which there is no sample placed on the heating plate 

In Figure 6, we present the decay of the SH signal generated by DR1-PPV. The 
sample, oriented by Corona poling (10 kV applied for 15 minutes at 60 °C), was 
cooled to room temperature and then heated up to 60 °C (a heating rate of 10 °C/min) 
and kept at this temperature. The decay of the SH signal with temperature indicates 
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that the observed decrease in optical density in the absorption spectrum after orienta-
tion is due to the molecular ordering induced in the sample. 

 
Fig. 7. The decay of the SH signal generated by PEAHT on a glass substrate, oriented  

by Corona poling. The sample is heated up to 100 °C, starting at ambient temperature with a heating 
rate of 2.6 °C/minute. The SH signal decreases as the molecular polar order  disappears 

due to thermal diffusion. The “zero” level signal corresponds to no sample on the heating plate 

 In Figure 7, the decrease of the SH signal generated by PEAHT, heated up to Tg 
with a heating rate of 2.6 °C/minute and starting from ambient temperature, is shown, 
after Corona poling (a voltage of + 6 kV applied for 15 minutes at 100°C).  

Thermally induced disorientation is at the origin of the decrease in the SH signal for 
both polymer systems, which permits the conclusion that both materials at least do not 
deteriorate chemically in a strong electric field. Although the errors of the calculated orien-
tation degrees induced after Corona poling are quite high (several percent), the studies of 
the decay of the SH signal with temperature prove that the observed decrease in optical 
density after orientation is due to molecular ordering. Studies of this material are now un-
der way in order to optimise the orientation parameters (the applied temperature and 
electric field, orientation duration, and cooling conditions), to optimise the internal field 
stored in the structure, and to realize organic photovoltaic devices.  

4. Conclusions 

In this paper, we have presented preliminary results of studies on the effects of 
Corona poling on dipolar dyes covalently attached as side chain substituents to two 
different conjugated polymers. An evidence for successful poling have been found for 
both considered polymers, although more work is required for a quantitative evalua-
tion of the poling effectiveness. 
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Although preliminary, these results are very interesting in view of the potential 
applications of dye-substituted polymers in the realization of oriented single layer 
organic photovoltaic solar cells, since they indicate that it could be possible to realize 
devices that have a large electric field stored in the cell. This would in turn be an ad-
vantage in creating local strong electric fields, paving the way for fast exciton split-
ting on an intramolecular basis.  

As an outlook, the main goal now is to optimise the polymeric material itself (i.e. 
the grafting ratio and glass transition temperature, solubility and processability, etc.) 
and the device construction conditions (poling conditions, photovoltaic cell structure, 
electrode choice and evaporation, etc). 

Another optimisation process will concern the orientation method itself. Indeed, in 
semiconducting polymers, charge injection may occur during electric field poling, 
which reduces the efficiency of the whole process. Moreover, thin polymer films tend 
to degrade in strong electric fields. Different orientation techniques are therefore be-
ing optimised: optically assisted and all-optical polarization methods. The orientation 
degree attained by all-optical poling should be close to that obtained by Corona pol-
ing, since the efficiency of orientation by all-optical poling is the same as that of 
electric field poling [10]. 

We believe that the intrinsically semiconducting DR1-PPV and PEAHT polymer 
systems presented here are good candidates for potential photovoltaic applications.  
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Gold nanoparticles were obtained directly in solid polymer films by thermal decomposition of the 
[O(Au(PPh3))3][BF4] precursor molecularly dispersed in the polymer and by decomposition of microcrys-
tals on different supports. The nanoparticles were characterized with transmission electron microscopy 
(TEM), scanning electron microscopy (SEM), UV-Vis spectroscopy, and wide-angle X-ray scattering 
(WAXS). In spite of high precursor concentration, the size of the obtained nanoparticles was similar to 
those prepared in diluted solutions. 

Key words: metal nanoparticles; polymer nanocomposites; organometallic precursor; TEM; WAXS 

1. Introduction 

The synthesis as well as chemical and physical properties of metal and semicon-
ductor nanoparticles (NPs) and nanocomposites are presently of considerable interest 
due to their potential application in materials science, including molecular electronics. 
Obtaining polymeric materials containing nanoparticles has been the subject of sev-
eral studies (e.g. [1–4]). The nanoparticles are usually obtained in a separate process 
and dispersed in polymers using various methods. The surfaces of nanoparticles are 
covered by stabilizers screening interactions between the metal and polymer. It is also 
difficult to obtain a uniform dispersion of NPs in the matrix. The decomposition of 
organometallic precursors directly in the polymer film should lead to a “clean” metal 
surface (no strongly bound stabilizer layer between the metal and polymer) and good 
dispersion without using additional stabilizers. 
_________  
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There are only a few reports on the preparation of metal particles in situ in solid 
polymer films. Tannenbaum et al. [1] obtained Fe particles by thermolysis and 
photolysis of carbonyl complexes. Polymer composites with several transition metal 
nanoclusters were also obtained by decomposing organometallic precursors in phase 
-separated block copolymers [2, 3]. 

We have found [5] that different organometallic precursors, e.g. Ru(COD)(COT) 
(COD – 1,5-cyclooctadiene, COT – 1,3,5-cyclooctatriene), Co(η3-C8H13)(η4-C8H12), 
Ni(COD)2, and Rh(allyl)3 can be decomposed under dihydrogen yielding small metal 
nanoparticles also in the solid state. The nanoparticles obtained are only a few nano-
meters in size, not much more than when the decomposition is carried out in dilute 
solution. 

In this paper, we report the preparation of gold nanoparticles by decomposition of an 
organometallic precursor dispersed in solid polymer films or as microcrystals. The or-
ganometallic complex, µ3-oxo[tris(triphenylphosphine)gold](1+)tetrafluoroborate(1-) [O  
-(Au(PPh3))3][BF4], was chosen as the Au atom precursor, because it has been shown 
to be a good source of Au for NP synthesis in solution, well soluble in many organic 
solvents, and sufficiently stable to handle in an ambient atmosphere [6]. 

2. Experimental 

[O(Au(PPh3))3][BF4], was synthesized according to [7]. The starting materials used 
to obtain nanocomposites with gold nanoparticles were polymer films with a dispersed 
organometallic complex. Poly(methyl methacrylate) (PMMA) (Tg = 115 °C) was used as 
the stabilizing matrix. The films were prepared by casting toluene (for PMMA) solu-
tions and slowly evaporating the solvent. Initial solutions (4% of the polymer with 
respect to the solvent) contained the precursor (0.25–15 wt. % of the precursor with 
respect to the polymer). Two kinds of films were studied: standard free-standing films 
cast on glass plates (ca. 20 µm thick), which were used for UV-Vis and XRD meas-
urements, and thin films (below 200 nm) prepared by placing a drop of the solution 
directly on a TEM copper support grid covered with a carbon layer. The decomposi-
tions of precursor crystals or thin layers obtained from solution, without the polymer, 
on TEM grids or on a solid support were also carried out. Samples for SEM were 
prepared by depositing a drop of the precursor solution or gold NPs in a suitable sol-
vent on a freshly cleaved mica or Si support covered with a 100 nm SiO2 layer. 

Thermal decompositions of the gold precursor were performed in air at 130 °C 
(above Tg

 of the polymer). The initially transparent film turns red during the reaction due 
to absorption by surface plasmons. For comparison, the decomposition was also carried 
out in a mesitylene solution. The reaction was carried out in air (20 min. at 130 °C). 
Hexadecylamine was used as the stabilizing agent. Transmission electron microscopy 
(TEM) and scanning electron microscopy with a field emission gun (SEM-FEG) were 
used to determine the morphology, particle size, and size distribution. TEM measure-
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ments were performed on a JEOL 200 CX (200 kV), SEM measurements on a JEOL 
JSM 6700F – both at the TEMSCAN facility, Université Paul Sabatier, Toulouse. 
More than 200 particles were measured in order to draw a size histogram. UV-Vis 
transmission measurements of standard films with Au NPs were carried out using 
a Perkin-Elmer Lambda 35 spectrophotometer. Structural characterizations of NPs by 
wide angle X-ray scattering (WAXS) were performed in the solid state. The polymer 
film was rolled and measured in air. Measurements of the X-ray intensity scattered by 
the samples irradiated with graphite-monochromatised molybdenum Kα radiation 
(0.071069 nm) were performed using a dedicated two-axis diffractometer. Fluores-
cence of gold was removed in the measurement step by filtering. The data collection 
time was typically 30 hours for a set of 457 measurements collected at room tempera-
ture, in the range of 0° < θ < 65° for equidistant s values [s = 4π(sinθ/λ)]. 

3. Results 

Figure 1 shows TEM images of gold NPs obtained by the thermal decomposition 
of [O(Au(PPh3))3][BF4] in a thin PMMA film for various concentrations of the pre-
cursor. It can be seen that for precursor concentrations of 1–2 wt. %, the obtained NPs 
are small (ca. 5 nm) and uniformly distributed. For higher concentrations, the average 
size increases and the size distribution is much broader. This is probably caused by 
the coalescence of small NPs rather than by their continuous growth. At high concen-
trations, NPs have some tendency to agglomerate in the film and their distribution is 
not so uniform. The formation of gold nanoparticles gives rise to surface plasmon 
absorption in the visible range. In Figure 2, we show UV-Vis spectra of nanocompo-
sites prepared by annealing PMMA standard films containing oxonium salt. Increas-
ing the concentration above 2 wt. % of the precursor leads to a red shift of the surface 
plasmon resonance peak, caused by a change in the distances between NPs (agglom-
eration) and to some extent by an increase in their size. 

Figure 3 shows the reduced radial distribution function (RDF) of Au NPs in a 
PMMA film (5 wt. % of the metal). The pattern observed is typical of Au NPs of fcc 
structure, and no distances above 4 nm are observed. The instrument used for WAXS 
measurements, however, introduces a significant peak broadening. Since the size ob-
served by TEM (ca. 9 nm) is much larger than the related instrumental size limit 
(ca. 4.5 nm) and no evidence of polycrystallinity has been observed for the NPs, the 
former is retained as the actual size. 

Figures 4 and 5 show SEM micrographs of Au NPs obtained by decomposition of 
precursor crystals and its layers deposited on a support. In spite of a very high, 100% 
concentration of the precursor, the size of the nanoparticles is only ca. 10 nm. The 
kind of support used (mica or Si) does not significantly influence the NP size. Non 
-uniform distribution of NPs seems to be caused by a inhomogeneous thickness of the 
initial precursor layer in some places. 
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Fig. 1. TEM images of gold NPs obtained by the thermal decomposition of  

[O(Au(PPh3))3][BF4] dispersed in a thin PMMA film: a) 1%, b) 2%, c) 4%, d) 8wt. %  
of the precursor. The insets show size distributions 

 

 
 

Fig. 2. UV-Vis spectra of gold nanoparticles prepared 
by annealing of [O(Au(PPh3))3][BF4] dispersed  

at different concentrations (from 0.25 to 8 wt. %) 
in PMMA standard films 
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Fig. 3. RDF of Au NPs in PMMA films (5 wt. %),  

compared to a computed RDF for a 4 nm fcc structure 

 
Fig. 4. SEM-FEG images of [O(Au(PPh3))3][BF4] microcrystals deposited on a Si support. 

Insets show Au NPs obtained after the decomposition of the crystals (5 min. at 130 °C) 
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Fig. 5. SEM-FEG images of gold NPs obtained by decomposing (10 min. at 130 °C)  

a thin layer of [O(Au(PPh3))3][BF4] crystals deposited on a Si support 

4. Discussion 

Our results show that small metal nanoparticles can be obtained in the solid state 
not only by hydrogen reduction (described by us in detail elsewhere [5]), but also by 
thermal decomposition of the [O(Au(PPh3))3][BF4] precursor. The obtained Au NPs 
are much bigger than those of Ru, Co, and Rh obtained by us previously (ca. 2 nm, 
obtained, however, below Tg), but they are still only 5 nm in size, even when precur-
sor concentration is very high, up to 100% in the case of precursor crystal or thin lay-
er decomposition. This is interesting in view of the efforts of various groups that use 
diluted solutions, different stabilizing agents, or “nanoreactors”. It is not surprising 
that after the decomposition of the precursor in a polymer matrix, metal nanoparticles 
are formed (in agreement with results obtained by other groups [1–3]) but one could 
expect the formation of bigger particles by solid precursor decomposition. This result 
means that the products of precursor decomposition act as stabilizers, preventing the 
growth of NPs. These results also show that this effect is quite common, as we have 
observed it for several different precursors and for different metals. 

From the point of view of polymer composite preparation, the relatively strong in-
teraction of NPs with the products of precursor decomposition can be a disadvantage, 
since it means that the decomposition products are difficult to remove from the system 



Synthesis of gold nanoparticles in the solid-state 

 

413 

 

and that the polymer may not be in direct contact with the metal. Comparing with the 
results for the carbonyl precursor decomposition presented in [1], our nanoparticles 
are several times smaller and more homogeneously dispersed. This can be related to 
a more homogeneous, probably molecular, distribution of the precursor in the matrix 
in our case. 

5. Conclusions 

We have shown that polymer nanocomposites with small metal nanoparticles can 
be prepared by the decomposition of organometallic precursors dispersed in solid 
polymer films and even precursor crystals or layers. The obtained NPs have fcc struc-
ture, that of bulk gold, with a coherence length of ca. 4 nm. Also, the decomposition 
of precursor microcrystals and thin layers yields small metal nanoparticles. The ob-
tained nanoparticles were in all cases only a few nanometers big, not much larger than 
when the decomposition was carried out in dilute solution. The presented method can 
probably also be used to obtain semiconductor nanoparticles, and it offers new possi-
bilities of preparing materials for molecular electronics. 
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oriented anisotropic layers of organic materials 
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A method for the preparation of oriented, anisotropic layers of soluble molecular materials on 
substrates that were not pre-oriented (so-called zone casting) is presented. The method consists in casting 
a suitable solution, continuously supplied by a nozzle, onto a moving substrate. Solvent evaporation takes 
place from the surface of the meniscus formed between a special flat nozzle and the substrate. Due to 
a gradient of the solute concentration, its solidification proceeds in a narrow zone under highly 
anisotropic conditions. The conditions of stationary deposition and the influence of various parameters on 
the process, such as casting speed, the diffusion coefficient, evaporation rate, are discussed. It is shown 
that the zone casting can be used to obtain anisotropic layers of many different low-molecular-weight and 
macromolecular materials. 

Key words: zone casting; solution processing; orientation; anisotropy 

1. Introduction 

Physical properties of organic molecules exhibiting interesting electrical and opti-
cal properties are usually highly anisotropic. Therefore, the preparation of materials in 
which molecules are appropriately arranged is of a great importance. Obtaining suffi-
ciently large single crystals is usually very difficult or impossible. Anisotropic layers 
of organic materials of distinctive properties in the direction perpendicular to the sub-
strate surface can be obtained by some methods, e.g. by the Langmuir–Blodgett tech-
nique or, to some extent, by vacuum deposition. It is more difficult to achieve good 
orientation in the direction parallel to the substrate, which can be obtained by me-
chanical deformation or by solution casting on pre-oriented substrates. In this com-
munication, we present an alternative method of preparing oriented anisotropic layers 
_________  
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of molecular materials (which can be solution-processed) on substrates not having 
been pre-oriented. The conditions of stationary deposition in the zone casting method, 
developed in the Centre of Molecular and Macromolecular Studies of the Polish 
Academy of Sciences [1–4], are discussed and examples of applications for different 
classes of materials are presented. 

2. Description of the technique 

Zone casting consists in the deposition of a material from solution on a moving 
substrate. The casting process is schematically presented in Fig. 1.  

 
Fig. 1. Schematic presentation of the zone casting technique 

The solution is continuously supplied to the evaporation zone by a flat nozzle. The 
solvent evaporates from the meniscus zone and the solute is deposited on the moving 
substrate. The solution supply rate, substrate velocity, initial solute concentration, 
solvent evaporation rate, and crystallisation rate must be chosen properly to obtain 
stationary conditions. The last two parameters can be controlled by a choice of the 
solvent and casting temperature. 

3. Evaporation zone stability conditions 

The profile of the evaporation zone is determined by the casting speed, evapora-
tion rate, and the contact angle of the solution on the substrate (or on the deposited 
solid layer, especially for low molecular weight materials). The meniscus shape is 
stable if the volume of the solvent evaporated in a time dt equals the volume of the 
solution supplied to the nozzle. To a first approximation, assuming a triangular me-
niscus, we have 

 
sin

eV S
Sdx dtρ θ=  (1) 

where Ve is the evaporation rate [kg/(m2
·sec)], ρ is the solvent density, θ is the contact 

angle which depends on surface tension, the kind of substrate, and the casting speed, 
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and S is the nozzle cross-section; S = hl, where h denotes the nozzle height and l the 
width of the deposition zone. 

The casting speed νs = dx/dt is thus related to the evaporation rate and contact an-
gle:  

 
sin

e
s

V
v ρ Θ=  (2) 

The contact angle cannot change too much (otherwise the solution/substrate con-
tact is broken and the process is no longer stationary but step-wise). Therefore, the 
casting speed cannot be changed too much unless the evaporation rate is changed, for 
example by changing the casting temperature.  

4. Phase separation conditions 

The driving force of the orientation and anisotropy of the layer being formed is the 
solute concentration gradient in the region where the critical concentration is reached. 
The concentration profile depends on the relation between the solution supply rate, 
diffusion coefficient, and evaporation rate. Due to solvent evaporation, the solute 
concentration is not uniform in the evaporation zone. It increases from the initial con-
centration in the nozzle, in the casting direction, until the critical concentration for 
phase separation is reached. 

The concentration profile depends on the relation between the evaporation rate 
and solute diffusion coefficient D. The critical concentration can be reached in differ-
ent zones of the meniscus, and the direction of the concentration gradient can be dif-
ferent depending on the relationship between these parameters. Figure 2 presents the 
results of simulations of the solute concentration profile for two different ratios of the 
casting rate and diffusion coefficient, namely for k =104 and 105. The simulation pa-
rameters were chosen arbitrarily, but were close to the range covered in the experi-
ment (e.g., D = 10–9 m2/sec and a casting speed νs = 10–5 m/sec). The concentration 
dependence of D is neglected. The black region can be considered to be the region 
where the critical concentration is reached and phase separation takes place. One can 
see that for high k the concentration gradient is low and parallel to the casting direc-
tion. The critical concentration is reached close to the end of the evaporation zone. 
Orientation in the obtained layer is parallel to the casting direction. For larger k, the 
concentration gradient is high, but perpendicular to the solvent surface and not to the 
casting direction. The critical concentration is reached far from the end of the evapo-
ration zone. Orientation in the layer obtained under such conditions (if the layer has 
any important anisotropy) is perpendicular to the surface. 

A suitable choice of the parameters, in order to obtain a proper concentration gra-
dient, is a necessary but not sufficient condition to obtain a continuous layer, since the 
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casting speed must also match the crystallisation rate (or more generally, the phase 
separation rate). 

 

 
Fig. 2. Simulated solute concentration profile near the end of the evaporation zone  

for a slow and fast casting rate, relative to the diffusion coefficient k = 104 (a) and k = 105 (b) 

5. Equipment 

Figure 3 shows the zone casting equipment constructed at our laboratory. It con-
sists of two heating blocks mounted on a metal substrate. The upper block houses a 
syringe used to continuously supply the solution to the nozzle. The substrate, on  
 

 
Fig. 3. Zone casting equipment 

a) 

b) 
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which the film is cast, is moved on the surface of the lower block. A step motor is 
used to move the piston in the syringe and the substrate. In other versions, a second 
motor drives the substrate independently. Temperatures and velocities are controlled 
electronically. 

6. Selected applications 

The first reported application of the zone casting technique was a successful 
preparation of anisotropic polymer/organic metal composites [1–5]. Highly oriented 
networks, micro- or nanowires of the molecular metal tetrathiotetracene-tetracyano- 
quinodimethane (TTT-TCNQ), embedded in a polymer matrix, were obtained (Fig. 4).  

Fig. 4. Highly oriented network of TTT-TCNQ  
microcrystals in a polypropylene matrix. The arrow  

shows the casting direction (see [3] for details)  

The systems exhibit a very high anisotropy of electrical conductivity (106) [1–4]. 
TTT-TCNQ networks in polypropylene (PP) also show a high anisotropy of optical 
properties, which allows the excitations that have transitions in the direction perpen-
dicular and parallel to the long axis of the crystal to be identified [5]. Recently, 
oriented anisotropic thin layers of a discotic compound hexabenzocoronene derivative 
(HBC-C12) of good quality have been obtained [6, 7]. They have good orientation on 
an area of square centimetres, with a highly ordered columnar structure and large 
coherence length, as evidenced by atomic force microscopy images (Fig. 5). Such 
layers have been shown to act as optical molecular switches [8] and active layers in 
organic field effect transistors [9, 10]. Other discotic compounds of perylene and 
HBC derivatives have also been used, and it has been shown that such layers have 
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highly anisotropic optoelectric properties [7, 10]. Preliminary results have also been 
obtained for other low molecular-weight materials. Highly optically anisotropic thin 
layers of metallorganic dyes on glass have been obtained, in which the orientation in 
the obtained layer and the orientation of the optical axes is parallel to the casting di-
rection (in cooperation with A. Pucci, F. Ciardelli, Universiti di Pisa, Dipartimentà di 
Chimica e Chimica Industriale, Italy). 

 
Fig. 5. AFM image of the columnar structure of a zone-cast film of HBC-C12.  

The arrow shows the casting direction (see [6] for details) 

Very recently, we have found that the ZC technique can also be applied to obtain 
orientation in another class of materials – block copolymers. Phase separation in 
diblock copolymers leads to the formation of various morphological structures (cylin-
ders, spheres, etc.), depending on block length and external conditions. We were able 
to obtain thin layers of highly oriented cylinders (in cooperation with T. Kowalewski 
and K. Matyjaszewski, Carnegie Mellon University, Pittsburgh PA, USA). An inter-
esting feature of this system is that the long axis of the cylinders is oriented perpen-
dicular to the casting direction (Fig. 6). 

 
Fig. 6. The formation of the ordered cylinder morphology 

of a diblock copolymer zone-cast film 
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7. Conclusions 

Zone casting makes possible a continuous deposition of anisotropic layers of 
soluble materials. For each compound, stationary deposition conditions must be 
determined by choosing a proper solvent, initial concentration, and adjusting casting 
parameters such as temperature and casting speed. Under the appropriate conditions, 
the zone-cast films that are uniform in the centimetre scale and exhibit highly 
anisotropic macroscopic properties can be obtained for many compounds. The 
presented examples of different zone-cast materials (low molecular-weight 
conductors, discotic molecules, oligomers, and copolymers), which can be success- 
fully processed using zone-casting, demonstrate the universality of this technique.  
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Envisaged applications of organic thin-film transistors in future polymer electronics lead to require-
ments on the supply voltage, threshold voltage, subthreshold characteristics, on-off ratio, and cut-off 
frequency. We present an analysis of the corresponding requirements using both analytical estimates and 
numerical two-dimensional simulations. Of special importance are the connections between cut-off fre-
quency, channel length and mobility, mobility and doping, thicknesses of the active layer and gate insula-
tor, doping, interface charges and states, and threshold voltage, traps and subthreshold slope. They lead to 
demands on both material properties and transistor design. Considering a minimum application-relevant 
cut-off frequency and a limitation of the mobility for low-cost solution-based deposition, one is led inevi-
tably to the need of a submicrometer channel length and rather thin organic gate insulator. Experimental 
realization is shown and an approach to submicrometer organic CMOS is discussed. 

Key words: polymer electronics; transistor; organics; scaling 

1. Introduction 

Novel polymer (or “plastic”) electronics is expected to present its first commercial 
products within the next few years. Possible applications, such as electronic watermarks, 
E-paper, replacements  of the barcode, and smart cards, are generally characterized as 
low-performance and low-cost in a region where silicon technology will not be competi-
tive. As an additional special feature, the new circuits should be flexible. One vision is 
a large scale printing of such circuits. It was only about twenty years ago that scaling 
down became a decisive issue in microelectronics, when the feature length, especially 
the channel length of MOS transistors, was reduced below one micrometer. That devel-
opment was connected to Moore’s law describing the transition to higher packaging and 
increased speed [1]. For the development of polymer electronics based on organic field-
effect transistors (OFETs), in spite of encouraging demonstrations of different applica-

_________  
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tions [2–4], there is actually a barrier for overcoming the minimum requirements for 
successful mass applications: scaling down of present OFETs is a precondition, even for 
the introduction of polymer electronics. In this article, the scaling of OFETs is outlined, 
based on analytical estimates and numerical simulations [5]. 

2. Analytical estimates 

To begin with, some basic requirements should be mentioned. OFETs should op-
erate at voltages less than 10 V. Correspondingly, a threshold voltage of only few 
volts and of the same polarity as the gate voltage (negative for a p-channel device) is 
needed (otherwise additional circuitry is required), connected with a subthreshold 
swing less than several hundred mV/dec. Thereby an on-off ratio of the current larger 
than 104 must be realized. The cut-off frequency (at which the voltage gain is reduced 
to unity) should be larger than 100 kHz. 

The design and material parameters of OFETs are closely related. Most suitable 
polymers are thus unintentionally p-doped, source and drain are made from metals, and 
it is believed that inversion is hardly achievable. Therefore, thin-film transistors are 
used, which operate with an accumulation channel in the on-state. As a consequence, the 
off-state with depletion, and also clear saturation with depletion at drain, require a layer 
thickness d less than the depletion length ldep, which in turn depends on the doping level 
(ldep = [2εε0|2ϕb|/eNA]1/2, where ϕb < 0 is the bulk potential for the p-material, and NA is 
the density of ionized acceptors). For poly(phenylene-vinylene) (PPV) and poly(3-alkyl 
thiophene) (P3AT), one has ldep ≈ 240 nm up to 24 nm for doping levels from 1016 down 
to 1018 cm–3. For high doping levels it becomes important to prepare layers in the 50 nm 
range and with small roughness compared to thickness. 

The next important quantity is the threshold voltage, which is given for d < ldep by 

 

2
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eN d d
V V

C l
ϕ

 
= + −   ′′  

 (1) 

where VFB is the flat band voltage and 0 /ox ox oxC dε ε′′ =  is the gate insulator capacitance 
per a unit area. Only the first term is negative when a low-work function gate is chosen. 
The second term, in particular, contributes high positive values in the unwanted direc-
tion for high doping. The main dependences are demonstrated in Fig. 1 (parameters: 
2 eV gap of the active layer, ε = 3.24, affinity 3 eV, gate work function 5 eV,  
εox = 2.56 for the organic insulator, VFB = 1 V + ϕ b). According to Fig. 1a, the thresh-
old voltage is sufficiently low for the considered layer thicknesses only at low and 
moderate doping (<1016–1017 cm–3). For higher doping (Fig. 1b), a strong increase in 
the threshold voltage can be prevented only by choosing both a thin insulator and 
a thin active layer. Indeed, for all-polymer circuits the most stringent requirement 
concerns the rather thin organic gate insulator. In addition, a shift in threshold voltage 
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can result from a flat band voltage shift caused by charges at the interface (areal 

charge ''
ifQ ) between the active layer and gate insulator, according to 
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where ∆ΦMS is the gate-semiconductor work function difference. Such interface 

charges can occur unintentionally. For 12 210 cmifN −′′ =  and εox = 3, the flat band volt-

age is shifted by 3 V (18 V) for a gate insulator thickness of 50 nm (300 nm), again 
showing the importance of a thin organic insulator. In principle, by introducing such 
a charged layer, one can shift the threshold voltage in the needed direction. 

  

Fig. 1. Dependence of the threshold voltage in Eq. (1) on doping (a)  
and on gate insulator thickness (b) for the indicated parameters 

For low-voltage transistor operation, the inverse subthreshold slope S = ∂VGS/∂lg(ID),  [A] 
must be as low as possible. At room temperature, its minimum value is 60 mV/dec, whereas 
experimental values for OFETs are often several V/dec, which is rather large. Actually, 
recharging the capacitances of the depletion layer and interface traps leads to higher val-
ues, according to 

 depln10 1 itB

ox

C Ck T
S

e C

+ 
= + 

 
 (3) 

Bulk traps contribute to the depletion capacitance. For the trap-free case in a thin 
layer, the layer is depleted and one would have the ideal minimum value. Bulk and 
interface traps in the thin layer thus cause a deviation from the ideal minimum value. 
Corresponding numerical simulations will be shown below. 

Most important for scaling OFETs is the cut-off frequency f0 = gm/(2πCGS), which 
is determined by the maximum transconductance gm and the gate-source capacitance 
CGS, which is larger than the gate insulator capacitance due to overlap capacitances. 
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An upper limit for the cut-off frequency is obtained from the simplest approximation 
for the drain current of a transistor with channel length L and width w 

 0 ,eff2

1
  

2π 2π
m

GS
ox

g
f V

C wL L

µ≤ =
′′

 (4) 

where VGS,eff is the gate voltage relative to threshold, for drain voltage VDS = VGS,eff 
pinch-off occurs and the transconductance has its maximum. The channel width can-
cels out in Eq. (4). For a given low operation voltage (e.g., VGS,eff = 10 V) and suffi-
ciently large f0 (100 kHz, 1MHz, 10MHz) one gets from Eq. (4) the required upper 
limit for the channel length as a function of the mobility of the active layer, as demon-
strated in Fig. 2. Thus, for the mobility µ = 0.01 cm2

·V–1
·s–1 (which seems to be 

achievable in low-cost solution deposition) and the lowest cut-off frequency, the up-
per limit for the channel length is already as small as 3 µm. Practically, one must ex-
pect that only submicrometer channel lengths will lead to the needed operation speed. 
Now another problem occurs: one must take care to avoid short-channel effects for 
such devices. These can be analyzed only by two-dimensional simulations. 

 

Fig. 2. Channel length as function of mobility, 
according to Eq. (4), which for a given  
effective voltage of 10 V leads to three  
different cut-off frequencies, namely  

100 kHz, 1 MHz and 10 kMHz 

3. Simulation of short-channel effects 

As already discussed, down-scaling also concerns the gate insulator thickness, in 
order to enable operation at low voltage with an appropriate threshold voltage and 
reduced influence of possible interface charges. In addition, a thin gate insulator is 
needed to avoid short-channel effects. Since in a field-effect transistor the perpendicu-
lar field creating the accumulation channel must be much larger than the longitudinal 
field driving the current in the channel, the gate oxide thickness must be much smaller than 
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the channel length. From experience in microelectronics, one expects roughly the condi-
tion dox < L/10. Detailed information, however, requires two-dimensional simulations. 
They have been carried out by us in advance, before preparing short channel transistors. 
The method and standard parameters are described in the appropriate references [6, 7]. In 
the simulations the prepared device is modelled (see the cross section in Fig. 5).  

  
Fig. 3. Simulated output characteristics (current per unit channel width) for a 10 V gate-source voltage:  

a) for a 400 nm thick P4VP gate insulator the channel length is varied as indicated; b) for the two channel 
lengths 0,5 µm (lines) and 0,3 µm (with symbols), gate insulator thickness is varied.  

Other parameters: p-doping 1017 cm–3 of the 30 nm P3OT layer, mobility µ = 10–3 cm2/(V·s)  

In Figure 3a, the thickness of the organic insulator (poly-4-vinylphenol, P4VP) is 
400 nm, as large as is practically realizable, in order to prevent leakage current. The 
output characteristics show saturation only for a channel length larger than 1 µm and 
a large supralinear current for shorter channels. Simulated field and concentration 
profiles prove that this is a short channel effect, due to drain-induced barrier lowering 
indeed caused by the decreasing ratio of transversal and longitudinal electric fields. A 
reduction of insulator thickness down to 50 nm for devices with 0.5 µm and 0.3 µm 
channel lengths reduces this effect, as shown in Fig. 3b. Such organic insulators are 
not yet available. Therefore, short-channel OFETs should be fabricated at present 
with a hybrid structure, in which the gate insulator is a thin (e.g. 30 nm) silicon diox-
ide layer on a n+-silicon wafer that serves as the gate electrode. An example is given 
below. 

4. Trap recharging and inverse subthreshold slope 

In contrast to the ideal low value of the inverse subthreshold slope (Eq. (3)) and its 
need for the low voltage operation of organic transistors, one is usually confronted 
with rather large values [6, 8, 9]. An example is demonstrated in Fig. 4 [6] for a tran-
sistor with organics in the insulator and active layer. The source/drain contacts are 
deposited as finger structures on an organic substrate (poly(ethylenetherephthalate)), 
PET; channel length and width are L = 2 µm and w = 10 mm, respectively. Then the 
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active layer, the organic insulator, and gate are deposited. The active layer (30 nm) is 
made from regioregular poly(3-dodecylthiophene) (P3DDT), and the gate insulator 
(500 nm) from poly(4-vinylphenol) (P4VP). For this device, the peculiarities in the 
subthreshold region have been described in detail in [6, 10], and a few main results 
will be summarized here. The transistor turns on (Fig. 4a) close to a threshold voltage 
of Vth = 0 V, indicating that the layer is fully depleted at positive gate voltages. Con-
sequently, the maximum possible value of the doping concentration is NA ≈ 6×1017 
cm–3. The mobility estimated from the linear region of the transfer characteristics of 
Fig. 4a is µp= 5×10–3 cm2/(V·s) for drain voltages of –5 V and –10 V, and µp = 2×10–3 
cm2/(V·s) for –1 V. The inverse subthreshold slope, estimated from the transfer curves 
in the logarithmic scale, is very large. For VDS = –1 V one has S = 7.7 V/dec. More-
over, the subthreshold current depends on the drain voltage. This feature is usually 
considered to be a short channel effect, not expected for the investigated long channel 
device. To clarify the origin of such peculiarities, numerical two-dimensional simula-
tions have been carried out. Thereby the mobilities, as determined from experimental 
data, have been used, along with the following parameters: static dielectric constants 
of both materials, εox = 2.56 for P4VP and ε = 3.24 for P3DDT, a monomer density of 
1021 cm–3, and a work function of the gate, drain, and source electrodes (Au) of 5.0 
eV. 

  
Fig. 4. Measured transfer characteristics of a thin film transistor with w/L = 5000, L = 2 µm (a); 

comparison of the measured and simulated transfer characteristics  
in a logarithmic scale for different drain voltages (b). Parameters for the acceptor-like  

or donor-like interface states are indicated in the figure 

In the first step, the doping concentration was varied. According to Eqs. (1) and (2), 
the threshold voltage and hence all transfer characteristics are determined not only by 
doping, but also by fixed interface states. Above the threshold voltage the curves 
measured are well described by simulations with either NA = 1016 cm–3 without fixed 
interface states or with a higher doping concentration and positive interface charge. 
However, there is a large difference in the subthreshold region between the measured 
and simulated characteristics. Whereas the measured curve has the  mentioned large 
inverse subthreshold slope, the simulation yields S ≈ 0.2 V/dec. Furthermore, in con-
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trast to the measurement, the simulated transfer characteristics approach a common 
subthreshold dependence. According to Eq. (3), the inverse subthreshold slope can be 
influenced either by interface or bulk traps. A systematic variation of acceptor con-
centration NA, the concentration Nia and energy of acceptor-like interface states (neu-
tral if empty and negative if occupied by an electron), or the concentration Nid and 
energy of donor-like interface states, has shown that there is no influence of trapped 
interface charges on the drain current above the threshold voltage. In the off-state, 
however, the inverse subthreshold slope depends strongly on the occupancy of 
interface traps. Recharging with varying gate voltage then leads to the observed deg-
radation of the inverse subthreshold slope and also to the drain voltage dependence of 
the subthreshold current. The experimental dependencies can actually be well de-
scribed with either acceptor-like traps and lower acceptor doping (Fig. 4b) or with 
donor-like interface states and higher acceptor doping. The corresponding concentra-
tions and positions of the trap energy level relative to the valence band are indicated 
in the Figure. In both cases, there is good agreement of the curves above the threshold 
voltage and in the subthreshold regime up to a gate voltage of 5 V. At higher voltages, 
the simulated curves with acceptor-like interface traps better describe the experimen-
tal data. The simulations thus reveal that anomalous subthreshold characteristics, with 
an extremely large inverse subthreshold slope and a drain voltage dependence of the 
subthreshold current, can arise from a recharging of interface states. Apart from inter-
face traps, variations in bulk charges, caused for example by bulk traps, can also lead 
to such peculiarities [10]. To achieve the required low inverse subthreshold slope, 
materials and preparations are needed that avoid deep bulk and interface traps. 

5. Submicron transistors by underetching 

As described above, one must expect that only devices with submicrometer chan-
nel lengths lead to the needed OFET operation speed. Different patterning techniques, 
such as screen printing [11], soft lithographic stamping [12], and inkjet printing [13], 
have demonstrated neither the desired resolution nor alignment accuracy as yet. Pho-
tolithography [2] is expected to be too costly for the submicrometer regime. Recently, 
Stutzmann et al. [14] used embossing to fabricate vertical-channel field-effect transis-
tors with submicrometer channel lengths, but could not observe saturation in the 
measured output characteristics. 

We have developed [15, 5] high performace submicrometer channel length poly-
mer field-effect transistors using only standard low-cost microelectronic techniques. 
In order to prevent short-channel effects, one needs also a rather thin gate insulator. 
Since until now no organics are available for this purpose, we used a hybrid technol-
ogy – a 30 nm silicon dioxide layer on a highly doped silicon wafer serving as a gate. 
Source and drain, separated from each other by a short channel (1 µm or less in 
length), are fabricated by gold sputtering, low resolution photolithography, underetch-
ing, and the lift-off technique [15]. Finally, the active layer is spin coated. We used 
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soluble poly(3-octylthiophene) (P3OT) and poly(3-hexylthiophene) (P3HT), which are 
unintentionally highly doped. To enable the off-state of the transistor, the layer thickness 
must be less than the depletion length. In our case, the thickness is as low as 30 nm, 
which is controlled by the spin coating process. Until now no scanning electron micro-
scope (SEM) images of the cross sections of prepared OFETs have been published. In-
deed, due to a low atomic weight of the polymer constituents, imaging requires special 
techniques. A perpendicular cut through a prepared OFET with 1 µm channel length 
was been prepared [16] using the focused ion beam (FIB) technique. Previous electrical 
measurements have proven a good performance of the device (see below). In order to 
visualize the surface of the top layer made of P3HT, an additional layer of gold was 
been evaporated (40 nm). The resulting SEM image* (5 kV, sample tilted by 45°) is 
shown in Fig. 5. As a guide for the eye, the structure is repeated schematically in the 
lower part. Notice the thin gate insulator, the short channel between source and drain, 
and the additional top gold layer to mark the P3HT surface. 

 
Fig. 5. SEM image of the cross section of an OFET with 1 µm  

channel length. The lower panel shows a schematic view 

As an example of electrical properties, the output and transfer characteristics are 
depicted in Fig. 6. They demonstrate the following advantages: (i) operation at volt-
ages lower than 5V, (ii) pronounced saturation of the output characteristics, (iii) only 
marginal short channel effects, (iv) a high on-off ratio (104), (v) a small inverse sub-
threshold slope (S = 0.5 V/dec), and (vi) negligible contact resistances. Hysteresis 
effects are still characteristic of OFETs [7, 17, 18]. In our case they are negligible for 
the drain voltage sweep at a given gate voltage (Fig. 6a), but different characteristics 
are obtained by decreasing or increasing the gate voltage. This is seen clearly in the 

_________  
* The FIB–SEM image has been taken by Dr. S. Menzel [16]. 
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transfer characteristics (Fig. 6b and c). The associated shift of the threshold voltage, 
however, is less than 1 V and thus small compared to literature values. Since the used 
P3AT were not specially treated, mobility is still low ((2–3)×10–5 cm2/(V·s)). 

 

 

 
Fig. 6. Output characteristics of a P3HT transistor with a channel length of L = 740 nm  

and channel width of w = 1000 µm at different gate voltages and sweep directions  
(the hold and delay times are 180 s and 1 s, respectively) (a) ; transfer characteristics  

of the same transistor for different drain voltages and sweep directions: linear scale (b)  
and logarithmic scale (c); (the hold and delay times are 180 s and 10 s, respectively) 

The success is that submicrometer OFETs with such a good performance can be 
fabricated without high-resolution lithography, and using only well established low-
cost microelectronics processes. Before reaching the above mentioned goals, how-
ever, several problems remain unsolved. First, the mobility of the active layer must be 
enhanced by modifying the material and deposition process. Also, a thin organic gate 
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insulator material is needed. Finally, circuits must be fabricated on plastic substrates, 
and in order to achieve high frequencies, parasitic capacitances must be reduced. The 
latter requires a self-aligned gate. Finally, for effective CMOS (complementary metal 
oxide semiconductor), circuits, n-channel devices are also needed. 

6. Towards submicrometer organic CMOS 

Until now, few n-channel OFETs have been described in literature [19, 20]. How-
ever, they are not likely for a common preparation with p-channel OFETs as submi-
cron devices on the same substrate in a low-cost. In connection with recently prepared 
ambipolar OFETs, it has been suggested that they can serve as both  
p-channel and n-channel devices in CMOS circuits [21, 22]. In order to minimize 
power consumption in such circuits, one of the transistors (e.g. the n-channel OFET) 
should be in the off-state and the other in the on-state. Ambipolar OFETs, however, 
do not have an off-state with a sufficiently low current. Moreover, the current levels 
of both devices should be of the same order of magnitude. 

Several rules can be formulated that lead to a proposal for n-channel OFETs for 
CMOS circuits. These rules are based on published results of single-layer (interpene-
trating) networks of poly-[2-methoxy-5-(3′,7′-dimethyloctyloxy)]-p-phenylene vi-
nylene (OC1C10-PPV) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM), pre-
cursor-pentacene [21]) and hetero-layer ambipolar OFETs (pentacene as the hole 
transport layer and N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13) as 
the electron transport layer [23]), on our simulations of a single-layer model ambipo-
lar OFET [24], on simulations of top contact and bottom contact OFETs [25], espe-
cially with a Schottky-type material for source and drain, and on improved carrier 
injection by contact modification in organic light emitting diodes (OLEDs) [26]. The 
main problem with n-channel OFETs lies in the low affinity of the appropriate active 
layer organics, which is around 3 eV. This makes it hard to find a material for 
source/drain with a work function that is also comparably low. Even Mg (the work 
function from 3.6 eV to 3.7 eV) has an extremely large electron barrier, effectively 
a Schottky-type contact to the electron accumulation channel. According to our simu-
lations [25], in this case the current for a top contact may be larger by orders of mag-
nitude than that for a bottom contact. Nevertheless, the barrier is so large that one can 
hardly achieve balanced electron and hole currents, since good accumulation contacts 
are possible for the holes (e.g. with Au). The effect of this large barrier for electrons 
can be reduced in a way similar to OLED [26] (in this case, for the hole injecting an-
ode) by an intermediate thin layer with somewhat larger affinity (between 3 eV and 
3.6–3.7 eV) leading to a staggered barrier. Even then electron injection is still worse 
than hole injection at the Au accumulation contact. An active material is needed in 
which not only electron and hole mobilities are both large (c.a. µ = 0.01 cm2

·V–1
·s–1), 

but one in which electron mobility is the larger of the two. Results on a hetero-layer 
ambipolar OFET indicate that pentacene is a suitable candidate. Although the P13 
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layer was intended as an electron conducting layer, according to our simulations [24], 
both the p-channel and n-channel are formed in the pentacene layer and the P13 layer 
leads to a staggered barrier at the Mg top contact. For low-cost and solution-based 
preparation, the formation of pentacene from a soluble precursor [27] is preferred.  

 
Fig. 7. Design of n-channel OFETs 

A design for an n-channel OFET according to these considerations is shown in 
Fig. 7. The layer with an affinity larger than that of the active layer is denoted as the 
injection layer. Since the low-cost underetching technique for the preparation of sub-
micron channel lengths [15] has already been realized with gold on a plastic substrate 
(Mylar), it should also work with Mg if an appropriate etching agent is used. For the 
design of the p-channel with Au as source and drain, no injection layer is needed. 
Problems to be solved include the need for a sufficiently thin and solution-processible 
organic gate insulator and the preparation of a self-aligned gate. For the latter, a re-
cently published method [28] should be adapted. With an optically transparent sub-
strate, source and drain can serve as an opaque optical mask for the gate definition. 

7. Conclusions 

A breakthrough in polymer electronics requires thin film-transistors that operate at 
voltages below 10 V. A threshold voltage of only a few volts and of the same polarity 
as the gate voltage is needed, connected with a subthreshold swing less than several 
100 mV/dec. Thereby an on-off ratio of the current larger than 104 must be realized. 
The cut-off frequency should be larger than 100 kHz. Considering the connections 
between material properties and design, corresponding demands for the devices can 
be formulated. Since in low-cost solution-based fabrication the electron and hole mo-
bilities can hardly exceed values of 10–2 cm2/Vs, scaling down the channel length to 
the submicrometer region seems inevitable. For the definition of such short channels, 
an effective and cheap method based on underetching has been developed recently 
[15]. In addition, an (organic) gate insulator thickness less than 50–100 nm is required 
in order to avoid short channel effects. Analysis of transport and injection leads to 
a proposal for the design of n-channel OFETs suitable for CMOS circuits. 
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Spin-dependent transport  
and inter-wall coupling in carbon nanotubes 

C. J. LAMBERT, S. ATHANASOPOULOS, I. M. GRACE
*, S. W. BAILEY 

Department of Physics, Lancaster University, Lancaster LA1 4YW, United Kingdom 

Theoretical results for electron transport through two structures involving carbon nanotubes are pre-
sented. The first structure was a nanotube inserted into another nanotube of a larger diameter. The electri-
cal conductance of the resulting double-wall CNT is an oscillatory function of the length of the insertion. 
The frequency and amplitude of these oscillations reflect the position dependence of inter-tube interaction 
in multi-wall CNTs. The second structure was a single-wall carbon nanotube (CNT) in contact with fer-
romagnetic electrodes, exhibiting giant magnetoresistance (GMR). An intuitive picture of GMR in clean 
nanotubes with low-resistance contacts is presented and ab initio results are obtained for GMR in Nickel-
contacted nanotubes. 

Key words: carbon nanotubes; giant magnetoresistance; electron transport 

1. Introduction 

Multi-wall carbon nanotubes (MWNT) are coaxial cylinders with low translational 
and rotational energy barriers, which allow the inner tubes to easily slide with respect 
to the outer tubes [1]. This has been demonstrated by recent experiments, which have 
shown that it is possible to slide the inner-walls of a MWNT in a “telescope” motion 
[2, 3], and has led to the suggestion of low-friction, MWNT-based NEMS, such as 
oscillators with frequencies in excess of 1 GHz [4–6]. One aim of this paper is to 
demonstrate that the experiments of [2, 3] not only provide a new probe into mechani-
cal inter-wall interactions in MWNTs, but that they also open up the possibility of 
probing the effect of inter-wall interactions on electronic properties. For single wall 
nanotubes (SWNTs), electronic properties are primarily determined by chirality [7], 
whereas in MWNTs the inter-wall interaction can cause the formation of pseudogaps 
[8] and in the case of telescoping nanotubes, resonances in the differential conduc-
tance of ballistic structures [9–11]. 
_________  

*Corresponding author, e-mail: i.grace@lancaster.ac.uk. 
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Another aim of this paper is to examine spin-polarized transport in CNTs con-
nected to ferromagnetic contacts. Experiments suggesting that CNT-spintronic de-
vices could soon become a reality, including early observations [12] of hysteretic 
magnetoresistance in Co-contacted nanotubes showed a maximum resistance change 
of 9%. More recently, Jensen et al. [13] have measured a magnetoresistance ratio of 
almost 100% in single wall carbon nanotubes contacted with Fe electrodes. In this 
paper, we investigate Giant Magnetoresistance (GMR) in clean CNTs connected to 
(n,n) CNT leads coated with Nickel. We compute the change in electrical conductance 
when the orientation of the magnetization is switched from parallel to antiparallel. 

The conductance is given by the Landauer formula †
0G G Trtt= , where G0 = 2e2/h 

and t is the transmission matrix. 

2. Transport in telescopes and shuttles 

We begin with an analysis of the electron transport properties of the telescoping 
MWNT shown in Fig. 1a, as a function of the displacement δx of the inner tube rela-
tive to the outer tube. Using a first principles approach, we predict that transport 
properties are strongly modified by displacements δx of the order of the interatomic 
spacing. We also analyse the shuttle structure shown in Fig. 1b, whose electronic 
properties are closely related to those of the corresponding telescope. Although the 
mechanical properties of telescoping nanotubes have been investigated experimentally 
as a function of the length of the telescoping region, no electrical measurements are 
currently available and the predictions are intended to stimulate such experiments. 

  
Fig. 1. Telescoping MWNT, in which a small-diameter NT is inserted a distance L  

into a larger diameter NT (a). The NTs are each connected to reservoirs on the left and right  
of the structures. In both cases, electrons are scattered at the points, separated by the distance L, 

 where the NTs terminate. A “shuttle” system, in which a large-diameter SWNT (the shuttle) of the length L  
is placed outside a small-diameter inner wall NT, which in turn is connected to external reservoirs (b) 

The problem of computing the δx-dependence of conductance is quite different 
from the problem considered in [10], where the energy dependence of the electron 
transmission coefficient is computed for δx = 0 only. To illustrate this, we note that 
since a NT is formed by repeatedly joining together identical slices of carbon atoms 
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(which form the unit cells of the NT), the length L of the overlap region in a telescope 
can be written as L = Nb + δx, where b is the length of a slice of the inner or outer NT 
and δx is a displacement lying between ±b/2 (i.e., δx = L modulo b). For an infinite 
MWNT, the ab initio, mean-field Hamiltonian H is a periodic function of δx, with 
a period of b, and therefore H must be recomputed self-consistently for each value of 
δx in order to compute transport properties as a function of displacement. 

 
Fig. 2. Ab initio (6,6)@(11,11) band structure close to the Fermi Energy (0 eV) (a). Gap opening  
due to interwall interaction (b). Band structure with no interwall interaction (c). The difference,  
δkπ–π = k2 – k1, and average of the π band Fermi wave vectors k1 and k2 as a function of δx (d) 

The telescope shown in Fig. 1a comprises two coaxial SWNTS, with the inner NT 
connected to a SWNT extending to +∞ and the outer NT connected to a SWNT with 
a larger diameter extending to –∞. As a definite example, we focus on the armchair 
(6,6)@(11,11) MWNT, which has an inter-wall separation of 3.4 Å. This system is 
typical of most armchair MWNTs, as it does not possess axial symmetry. 

In what follows, transport properties are computed using the recursive Greens 
function scattering technique developed in ref. [14], combined with a Hamiltonian 
generated using the first principles density functional theory code SIESTA [15]. We 
use the local density approximation as parameterised by Perdew and Zunger [16] and 
nonlocal norm-conserving pseudopotentials [18]. The valence electrons are described 
by a single-ζ basis set. The cut-off radius for the s and p orbitals is chosen to be 
4.1 a.u. Before computing transport properties, it is useful to examine the band struc-
ture of an infinite (6,6)@(11,11) MWNT. Since the Hamiltonian and overlap matrix 
elements depend on the positions of the carbon atoms of the inner NT relative to those 
on the outer NT, this band structure depends on the displacement xδ  of the inner NT 
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relative to the outer NT. Figures 2a and b show the calculated band structure of an 
infinite, non-displaced (6,6)@(11,11) MWNT, corresponding to δx = 0. 

Figure 2a shows that for positive k, in the vicinity of the Fermi energy, the band 
structure of an infinite MWNT possesses two π bands with positive slope and two π* 
bands with negative slope. Several features of this band structure are relevant to un-
derstanding transport in telescopes and shuttles. First, as shown in Fig. 2b, in the vi-
cinity of the Fermi energy, small energy gaps of the order of 2meV open at the band 
crossings. In what follows, we demonstrate that oscillations in transport properties 
arise over a wide energy range and therefore these gaps are unimportant at most ener-
gies. Secondly, the π* bands of the inner NT are shifted relative to those of the outer 
NT, mainly due to charge transfer between the NTs. This feature is demonstrated in 
Fig. 2c, which shows the band structure when all matrix elements between orbitals on 
the outer and inner NT are artificially set to zero. In this case, the π bands are almost 
coincident, whereas the π* bands on the different tubes remain shifted relative to each 
other. Finally, the π band of the inner NT is shifted relative to that of the outer NT, 
mainly due to the inter-wall interaction. This is demonstrated by the fact that the main 
effect of switching on the inter-wall matrix elements (i.e., in going from Fig. 2c to 
Fig. 2a) is a shift in the π bands, whilst leaving the others almost unaffected. The lat-
ter feature is crucial, since it produces large π-π scattering in telescopes and shuttles, 
while scattering involving other channels remains negligible. In view of the linearity 
of the bands near EF, the wave vector difference δkπ-π = k2 – k1 between the two π 
 

 
Fig. 3. Ab initio conductance G(EF) as a function of δx in a (6,6)@(11,11) telescope,  

for scattering regions of the length: a) N = 10, b) N = 250. Analytic description of T(E)  
for the telescope model, for the lengths: c) N = 10 and d) N = 250 
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bands is almost independent of energy. The Fermi wave vectors k1 and k2 of the π 
bands, however, are extremely sensitive to the displacement δx of the inner tube rela-
tive to the outer tube. This is illustrated in Fig. 2d, which shows the dependence of 
δkπ-π and (k1 + k2)/2 on δx. For an infinite MWNT, these quantities are periodic func-
tions of δx, with a period equal to the repeat distance b = 2.45Å of the MWNT. 

 
Fig. 4. Ab initio conductance of the shuttle (6,6)@(11,11) nanotube as a function of δx,  

for scattering lengths: a) N = 10, b) N = 250. Analytic description of transmission  
for the shuttle model, for the lengths: c) N = 10 and d) N = 250 

Having examined the band structure as a function of displacement δx, we now turn 
to the transport properties of the telescoping (6,6)@(11,11) double wall nanotube and 
demonstrate that the above δx-dependence of the π wave vectors is accessible via 
conductance measurements on telescopes and shuttles. For scattering regions of the 
length L = Nb + δx, Figs. 3a and b (4a and b) show ab initio results for the electrical 
conductance G(EF) = T(EF) in units of 2e2/h as a function of δx, for a telescope (shut-
tle) with two values of the number of overlapping slices N. Perhaps the most striking 
feature of these results is the presence of large oscillations for δx < b. To demonstrate 
that these unexpected oscillations are a direct consequence of the δx-dependence of 
the Hamiltonian, we have developed [19] an analytical description of these oscilla-
tions based on retaining only the π-π inter-wall coupling. This approximation is partly 
justified by comparing Figs. 2a and 2c, which shows that switching on the inter-wall 
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coupling yields a large shift in the π bands, while leaving the other bands almost un-
changed. 

 
Fig. 5. Transmission coefficient versus energy for a telescope (a) and shuttle (b) 

A restriction to π-π coupling is further suggested by comparing the energy de-
pendence of the transmission coefficient for shuttles and telescopes. For δx = 0, Fig. 5 
shows the electron transmission coefficient T(E) versus energy for fixed values of N. 
For energies in the approximate range ±1 eV, where only the π and π* scattering 
channels are open, the transmission coefficient of the telescope (shuttle) oscillates 
between 0 and 1 (1 and 2). For higher energies, where four additional scattering chan-
nels are open, both exhibit remarkably different behaviours. Namely, T(E) for the 
telescope continues to oscillate between 0 and 1, whereas T(E) for the shuttle in-
creases by 4 and oscillates between 5 and 6. This difference reflects the fact that for 
the telescope only the π band of the outer tube scatters into the π band of the inner 
tube and no other channels are transmitted, whereas for the shuttle only the π band of 
the inner tube is scattered by the presence of the shuttle, while all other channels are 
transmitted with a probability of almost one. For comparison, Figs. 3c, d, 4c, and 4d 
show results for this π-π analytical description, the details of which are given in [19]. 

3. Giant magnetoresistance (GMR) in single-wall CNTs 

Using the above first principles approach, we now examine spin-polarised transport in 
single-wall NTs contacted to ferromagnetic electrodes. Before presenting the exact results, 
it is useful to have a simple picture of the origin of GMR. Consider the case of armchair 
(n,n) CNTs, which are metallic with a finite conductance 2G0 at the Fermi energy. For an 
infinitely long CNT with uniform magnetization, the differential conductance of the up-

spin carriers, G↑
++ , is shifted by the exchange energy h, and for the down-spin carriers, 

G↓
++ , by –h. The total conductance of the system is G G G↑ ↓

++ ++ ++= + . In the case of two 

semi-infinite leads with antiparallel alignment of magnetization, a crude approximation for 
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the conductance G+– is { }min 2 , .G G G↑ ↓
+− ++ ++=  As shown in Fig. 6, this simple picture 

predicts that the difference G++ – G+– is non zero only near step edges, where the change in 
conductance is ∆G = (G++ – G+–)/G0 = 2. A similar argument can be applied to zig-zag 
CNTs. 

 
Fig. 6. Differential conductance for the: a) up and b) down spin carriers, total  

conductance for: c) ferromagnetic and d) antiferromagnetic alignment,  
and e) relevant change in conductance for metallic armchair CNTs 

As a first material-specific calculation of GMR in CNTs, we consider the simplest 
possible case of a single wall CNT in contact with CNT leads. To induce a magnetic 
moment in the leads, magnetic Ni impurities are placed along the axis of the leads. 
For a Ni electrode in contact with a CNT, this situation may occur if Ni atoms migrate 
along the axis of the CNT. To perform ab initio self-consistent transport calculations, 
we work within the generalized gradient approximation (GGA) of Perdew–Burke 
–Ernzerhof [17]. Core electrons are replaced by nonlocal, norm-conserving pseudopo-
tentials (Troulier–Martins) [18], while the valence electrons are described by a linear 
combination of numerical orbitals. We use a single-zeta basis set for Carbon and 
a double-zeta singly polarized basis set for Nickel. Real space integrations are per-
formed on a regular grid with an equivalent plane wave mesh cut-off of 150 Ry. The 
atomic positions are relaxed until all force components are smaller than 0.02 eV/Å. 
After relaxation, the tight binding Hamiltonian for the system can be extracted. Using 
the recursive Green's function technique [14] we calculate the transmission for a hy-
brid system consisting of two semi-infinite nanotube leads with Ni atoms located on 
the CNT axis, in contact with a finite length clean CNT (Fig. 7). 
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�

Fig. 7. Armchair carbon nanotube in contact  
with ferromagnetic electrodes. Ni atoms  

encapsulated along the axis of a (5,5) CNT 

Consider the case of an armchair CNT with Ni atoms located on the axis of the 
tube, as shown in Fig. 7. Results will be presented for a (5,5) CNT, using a unit cell 
(i.e., a supercell with a lattice constant a = 2.46 Å) of 20 C atoms and one Ni atom. In 
the relaxed structure, the Ni atoms remain near their initial positions on the axis of the 
tube. The total magnetization of the unit cell is M = 1.71µB.  

 

 
Fig. 8. Band structure for a clean (5,5) CNT (a), the (b) majority and (c) minority spin carriers  

of a 1-D Ni chain, the (d) majority and (e) minority spin carriers of a (5,5) CNT  
with coaxial Ni atoms. Step edge model of GMR for a (5,5)-Ni CNT (f) 
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Figures 8d and e show the band structures for majority and minority spin carriers, 
respectively. For comparison, Fig. 8a shows the band structure of a clean (5,5) CNT, 
and Figs. 8b and c the band structures of a 1-D Ni chain for majority and minority 
spin carriers, respectively. We use a single-zeta basis set for Carbon in the clean (5,5) 
CNT and a double-zeta singly polarized basis set for Ni in the 1-D chain calculation. 
The lattice constant for the Ni chain was a = 2.46 Å in order to keep the same intera-
tomic distance between the Ni atoms as in the CNT calculation. 

As a prelude to a full transport calculation, we first examine this structure using 
the above step-edge model of GMR by counting the number of open channels at a 
specific energy. The resulting step-edge approximation is presented in Fig. 8f, which 
shows the dimensionless conductances G++/(e2/h) and G+–/(e

2/h) and the change in 
conductance ∆G = (G++ – G+–)/(e

2/h). To obtain the corresponding ab initio result, we 
consider two semi-infinite (5,5)-Ni CNT leads, in contact with a clean tube L cells 
long. For L = 20, the corresponding G++ and G+– are shown in Fig. 9a, while the mag-
netoconductance ∆G is plotted in Fig. 9b. At zero temperature, the GMR ratio δG = 
∆G/G++ vanishes at the Fermi energy, whereas for nearby energies it takes positive 
values ≈34%. Fig. 9b also shows that small negative values of GMR occur as well. 
These are due to multiple scattering from the ends of the CNT and are sensitive to the 
length L of the scattering region, as discussed in [20]. 

  
Fig. 9. Differential conductance for ferromagnetic and antiferromagnetic alignment (a) and the relevant 

change in conductance for a (5,5)-Ni CNT in contact with a clean CNT of the length L = 20 cells 

Compared with the step edge model, we find that high values of ∆G are indeed as-
sociated with conductance steps in the spin conductances. The ab initio conductances, 
however, are suppressed compared to the step-edge picture, because the absence of Ni 
in the scattering region removes a significant number of conducting channels. 

4. Conclusions 

We have calculated conductance oscillation as a function of the displacement in 
CNT telescopes and shuttles and argued that these oscillations arise from the depend-
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ence on displacement of the coupling between inner and outer tube π channels. The 
non-monotonic behaviour in the conductance as a function of displacement δx can 
therefore be used to probe the electronic inter-wall coupling. We have also calculated 
the magnetoconductance of Ni-contacted CNTs and compared this with a simple step-
edge model of GMR. We find that GMR ratios of the order of 34% can be expected in 
(5,5) armchair CNTs when Ni atoms migrate along the axis of the CNT leads. 

Acknowledgements 

We are pleased to acknowledge helpful discussions with S. Sanvito and J. Ferrer and support from 
the EU MCRTN-CT-2003-504574, EPSRC, MoD and the Royal Society. 

References 

[1] BOURLON B., GLATTLI D.C., BACHTOLD A., FORRO L., http://arxiv.org/abs/cond-mat/0309465 (2003). 
[2] CUMMINGS J., ZETTL A., Science 289 (2000), 602. 
[3] MIN-FENG YU, YAKOBSON B.I., RUOFF R.S., J. Phys. Chem B, 104 (2000), 8764. 
[4] ZHENG Q., JIANG Q., Phys. Rev. Lett., 88 (2003), 45503. 
[5] LEGOAS S.B., COLUCI V.R., BRAGA S.F., COURA P.Z., DANTAS S.O., GALVAÕ D.S., Phys. Rev. Lett., 

90 (2003), 55504. 
[6] RIVERA J.L, MCCABE C.AND CUMMINGS P.T., Nano. Lett., 3 (2003), 1001. 
[7] MINTMIRE J.W., DUNLAP B.I., WHITE C.T., Phys. Rev. Lett., 68 (1992), 631. 
[8] KWON Y.K., TOMANEK D., Phys. Rev B, 58, R16001 (1998). 
[9] SANVITO S., KWON Y.K., TOMANEK D., LAMBERT C.J., Phys.Rev. Lett., 84 (2000), 1974. 

[10] KIM D.-H., CHANG K.J., Phys. Rev. B, 66 (2002), 155402. 
[11] KIM D.-H., SIM H.-S., CHANG K.J., Phys. Rev. B, 64 (2001), 115409. 
[12] TSUKAGOSHI K., ALPHENAAR B.W., AGO H., Nature, 401 (1999), 572. 
[13] JENSEN A., NYGARD J., BORGGREEN J., [in:] H. Takayanagi and J. Nitta (Eds.), Toward the Control-

lable Quantum States, Proc. MSS 2002, World Scientific, 2003 , p. 33–37. 
[14] SANVITO S., LAMBERT C.J., JEFFERSON J.H., BRATKOVSKY A., Phys. Rev. B, 59 (1999), 11936. 
[15] SOLER J.M., ARTACHO E., GALE J.D., GARCÍA A., JUNQUERA J., ORDEJÓN P., SÁNCHEZ-PORTAL D.,  

J. Phys. Condens. Matter., 14 (2002), 2745. 
[16] PERDEW J.P., ZUNGER A., Phys. Rev. B (1981), 23, 5048. 
[17] PERDEW J.P., BURKE K., ERNZERHOF M., Phys. Rev. Lett., 77 (1996), 3865. 
[18] TROULLIER N., MARTINS J.L., Phys. Rev. B, 43 (1991), 1993. 
[19] GRACE I.M., BAILEY S.W., LAMBERT C.J., submitted to Phys. Rev. B., 2004. 
[20] BABIACZYK W.I., BULKA B.R., http://arxiv.org/abs/cond-mat/0207672 (2002). 

Received 15 September 2004 
Revised 3 November 2004 

 



Materials Science-Poland, Vol. 22, No. 4, 2004 

Spin transport through nanostructures 

B. KRAMER
1*, K. DITTMER

1, S. DEBALD
1, J. OHE

1,  
F. CAVALIERE

1, 2, M. SASSETTI
2 

1Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany 

2 INFM-Lamia, Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy 

The influences of non-Fermi liquid correlations and spin-orbit scattering on the transport properties 
of quantum nanostructures connected to interacting leads are studied. Signatures of the spin are investi-
gated in the transport. One-dimensional quantum dot is studied in the sequential tunnelling regime using 
the master equation approach. Quantum coherent conductance is calculated using the transfer matrix 
method for a quasi-one dimensional system with the Rashba coupling Hamiltonian, and for a two 
-dimensional quantum dot in a multi-terminal geometry modelled by the Ando Hamiltonian. In the se-
quential tunnelling regime, states with a higher total spin can be stabilized by suitably adjusting bias and 
gate voltages. Spin polarized current can be achieved by locally applying a magnetic field. For coherent 
linear transport through a multi-terminal device at zero magnetic field, we find a spin polarized current at 
certain energies, induced by spin-orbit scattering. 

Key words: spin transport; nanostructures; quantum dot; Rashba coupling 

1. Introduction 

Transport properties of nanostructures related to the charge of the electron have 
been extensively studied during the past two decades, since the discovery of the con-
ductance quantisation of quantum point contacts and two-dimensional electron sys-
tems in a quantising magnetic field, and of the Coulomb blockade in quantum dots 
connected to conducting leads by high tunnel barriers**. The latter can be used to con-
struct a single electron transistor (SET), in which switching between non-conducting 
and conducting states is done essentially with a single charge. 

Transport phenomena in nanostructures related to the spin of the electron have at-
tracted considerable interest only during the past few years***, after the theoretical 

_________  
*Corresponding author, e-mail: kramer@physnet.uni-hamburg.de. 

**Overviews of the field can be found in Ref. [1]. 
***Some recent overviews can be found in Ref. [2]. 
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proposal of a “spin transistor” [3]. Central issue of such a device is the possibility of 
producing a spin-polarized current that can be controlled by external means. In anal-
ogy to the SET device, the ultimate spin device could be imagined as a “single spin 
transistor” (SST), which would be switched between an “on-state” and “off-state” 
with a single electron spin. The discoveries of the spin blockade in sequential trans-
port through quantum dots due to spin selection rules [4] and spin charge separation 
[5, 6] were important steps for achieving such a goal. 

The standard way to generate a spin-polarized current is to inject electrons into 
a semiconductor from a ferromagnet [7], where it can be subsequently influenced by gate 
voltages. This is not very efficient due to scattering at the interface. The spin polarization is 
very small and there is also an accompanying charge current. Theoretically, several means 
of obtaining spin-polarized currents in nanostructures based on spin-orbit coupling have 
been discussed [8–13]. They are based on the fact that spin-orbit interaction has a polariz-
ing effect on the quantum mechanical scattering of particles [14]. 

In the present paper, we address two issues. First, we investigate the control of spin 
in sequential transport through quantum dots in the presence of electron correlations. 
We show that by suitably adjusting source-drain voltage and the heights of tunnelling 
barriers one can stabilize states with higher total spin in a quantum dot. These states can 
lead to a negative differential conductance. By Zeeman splitting, one can achieve a spin 
polarization of the current, enhanced by electron correlation [15]. Differential spin con-
ductance is strongly enhanced in the region of a higher spin state. Secondly, we study 
possibilities of achieving spin-polarization without using an external magnetic field. We 
find that in the presence of spin-orbit scattering, individual scattering states in low di-
mensional quantum nanostructures, such as quantum wires and quantum dots, can have 
spatially modulated spin polarizations. In non-equilibrium, such as is realized by linear 
dc current flow, the spatial modulation of the spin polarization of the states can lead to a 
polarization of the current. This happens when the Fermi energy is adjusted near the 
energy of a scattering state with a specific spatial polarization pattern and current and 
voltage probes are suitably attached to the nanostructure. 

2. Spin blockade in sequential tunnelling 

In this section, we summarize the theory of sequential transport through quantum 
dots in the presence of correlations, taking electron spin into account. 

2.1. The Hamiltonian of a quantum dot with correlated electrons 

For studying the interplay between spin polarized sequential tunnelling and corre-
lations, we consider a one-dimensional quantum dot of length a, described as a Lut-
tinger liquid, connected to non-interacting leads [15]. The Hamiltonian is (adopted 
units are such that ħ = 1) 
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 ( ) ( ) ( ) ( ) ( )2 2
0

,

, ,
2 2g B

q

E E
H q b q b q n n s sρ σ

ν ν ν
ν ρ σ

ω ν ρ σ+

=

= + − + − =∑ ∑   (1) 

The first two terms take the collective charge (v = ρ) and spin (v = σ) density waves into 
account with the creation and annihilation operators bν

+  and bν , respectively. Here,  
n and s represent the total number of charges and the z-component of the total spin (units 

2� ) of the electrons in the quantum dot, respectively. The total charge and spin are 

defined with respect to the average background values 0n N=  and 0s = , and are 

constrained by even n + s. The third term represents the energy necessary in order to 
change the charge n in the dot. An external gate voltage Vg has been incorporated into 
the Hamiltonian via the charge induced by the gate voltage nge = CgVg, with Cg being the 
gate capacitance and –e the electron charge. The fourth term is analogous to the third 
one, and describes the energy needed to change the total spin s. An external magnetic 
field B induces a Zeeman splitting of B Bg Bµ− , where gB is the Landé factor and µB is 
the Bohr magneton. This in turn induces an effective average “spin number” 

 B
B

g B
s

Eσ

µ=   (2) 

which is the ratio between the Zeeman splitting and the spin addition energy Eσ. Note 
that the roles of ng and sB are very similar, as the last two terms in Eq. (1) describe the 
energy contributions due to charge and spin addition. Their physical origins, however, 
are very different. The charge addition energy is due to classical Coulomb repulsion, 
whereas the spin addition energy is a consequence of the Pauli principle [16] and is 
present in a system of finite size even without interaction. 

2.2. Energy scales 

An eigenstate of the Hamiltonian (1) can be represented by a state vector 

 { } { }, , ,q qj n s l lρ σ=   (3) 

with { },
ql
ρ σ  being the integer occupation numbers for a charge and spin collective 

mode. The energy of such a state can be written in terms of addition and excitation 
energies [15, 6] 

 ( ) ( ) ( ) ( )2 2

2 2q q g B
q

E E
U l q l q n n s sρρ σ σ

ρ σω ω = + + − + − ∑   (4) 



B. KRAMER et al. 448 

The dispersion relation of the collective modes is linear due to the liberalization of 
the free spectrum around the Fermi level and to the assumption of short-range interac-
tions 

 ( ) Fv
q q

gν
ν

ω =   (5) 

where vF is the Fermi velocity. The parameters gv parameterise the electronic interac-

tions, 2gρ
−  being essentially the spatial average of the interaction potential. Here we 

neglect the exchange interaction, assuming a SU(2) spin invariance, such that gσ =1. 
For a noninteracting system gσ = 1, while for repulsive interactions gρ < 1. A linear 
spectrum of the collective modes gives rise to a constant level spacing of charge and 
spin density waves 

 ,F Fv v

ag aρ σ
ρ

π πε ε= =   (6) 

The two remaining energy scales are the charge and spin addition energies Eρ and 
Eσ, respectively. The charge addition energy 

 
2

π

2
Fv

E
ag

ρ
ρ

=   (7) 

is strongly renormalized by the repulsive interactions between the electrons. On the 
other hand, spin addition is given by the noninteracting level spacing 

 
π

2
Fv

E
aσ =   (8) 

As mentioned above, this energy scale is basically a result of the Pauli principle. 
In the model presented above, many physical effects affecting Eρ have been disre-
garded, such as coupling with the external gates or a nearby 2D electronic gas. Such 
effects can lead to significant deviations from (7). Therefore, we will treat Eρ as a free 
parameter in what follows. 

2.3. Sequential transport 

We assume that the quantum dot is connected via tunnelling barriers (Ht) to nonin-
teracting left (L) and right (R) leads (HL,R), which are kept at the chemical potentials 
µL and µR, respectively. The bias voltage applied to the quantum dot is eV = µL – µR. 
The total Hamiltonian is 

 0 t L RH H H H H= + + +   (9) 
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We assume very large left and right tunnelling resistances, RL,R >> RK = h/e2. We 
also assume that the excited collective states in the quantum dot relax instantaneously 
to the ground state. With this assumption, it is still possible to tunnel into an excited 
state. Since the relaxation time of the collective excitations is assumed to be much 
faster than any other time scale of the system, however, it is not possible to tunnel out 
of the quantum dot via such a state. In contrast, states with additional charge and/or 
spin are assumed to be stable. Therefore, the states of the dot that are relevant for 
transport can be labelled by the number of charges n and spin s alone, by the vector 

,n s . We study transport in the sequential tunnelling regime, with tunnelling through 

left and right barriers being independent. The time-dependent occupation probabilities 
of the states in the quantum dot, ( ),n sP t , satisfy the master equation 

 ( ) ( ) ( )
, , ,', ' , , ,

, 1 ' 1
t n s n s n sn s n s n s n s

L R n n s s

P t P Pλ λ

λ
Γ Γ′ ′ ′ ′→ →

′= = ± = ±

 ∂ = −
 ∑ ∑ ∑   (10) 

with the tunnelling rates Γ determined in the lowest order of perturbation theory for 
Ht [6]. For low temperatures, kB T << Eσ, they have the form 

 ( ) ( ) ( ) ( )0∆ ∆ll
l l

E a a E l l
σρ

ρ σ

λ λ ρ σ
ρ ρ σ σΓ Γ γ ε ε

∞ ∞

=−∞ =−∞
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where 
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εω εΓ
ω ω

   
=    

   
  (12) 

Here, ωC is a cut-off frequency and ∆E ≡ Ef – Ei is the energy associated with 
a particular transition between an initial and a final state. We have defined the Fermi 
function for the leads as 

 ( )
xe

x βγ
+

=
1

1
  (13) 

with 1 Bk Tβ = . The weights la
ρ

ρ , la
σ

σ  arise from the density of states in the quantum 

dot. In the low temperature regime considered here, they are 
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where Γ(x) represents the Euler gamma function. In the stationary limit, the left hand 
side of Eq. (10) is zero. The normalized probability distribution ,n sP  is given by the 
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solution of a linear system of equations, with ,,
1n sn s

P =∑ . We define the current for 

spin-up (+) and spin-down (–) electrons as 

 ( ) ( ) ( )
, , 1, ∆ , 1, ∆

, ∆ 1

R R
n s n s n s s n s n s s

n s s

I V e P ϕ Γ ϕ Γ± ± → + + → − +
=±

 = −
 ∑ ∑ ∓

  (15) 

where ( )1 ∆ 2sϕ± = ± . The charge conductance is given by the derivative of the total 

current I I Iρ + −≡ +  with respect to the bias voltage 

 ( ), ,g B

I
G V n s

V
ρ

ρ
∂

=
∂

  (16) 

The transport of spin is described by the spin-polarized current, −+ −= IIIσ , with 

a corresponding differential spin conductance 

 ( ), ,g B

I
G V n s

V
σ

σ
∂

=
∂

  (17) 

 
Fig. 1. Top: Differential conductance Gρ (solid line, units ( )2

0
Re Γ ) and spin polarization p (dash-dot line) 

as a function of V (units Eσ/e) along the dotted horizontal line in Fig. 3 (top), with ng = 0.5. Bottom:  
the corresponding stationary occupation probabilities ,n sP  for ,0n  (solid line), ,2n  (dash-dot line), 

and , 2n −  (dashed line). The small probabilities 1, 1nP + ±  are not displayed in this plot. Note, however, 

that the population of the states 1, 1n + ±  gives rise to positive conductance peaks (top panel) near  

V ≈ 0.6 and V ≈ 1.4. The parameters are gσ = 1, gρ = 0.4, Eρ = 25Eσ, sB = 0.2, kBT = 0.02Eσ, and RR/RL = 20 
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Figure 1 shows the voltage dependences of ,0 ,nP  ,2nP , and , 2nP −  near a Cou-

lomb blockade peak for a transition from even n to n + 1, the corresponding differen-
tial conductance, and the spin polarization .p I Iσ ρ≡  Negative differential conduc-

tances occur when states with 2s = ±  become occupied (Fig. 3). 
Let us discuss the behaviour of the transport in more detail. Charge and spin 

density waves represent collective excitations of the system. These modes, how-
ever, are not the only excited states of the system. For instance, 0,0,2,2 psqn ==  

(p and q are integers with 1p ≥ ) are excited states with 2p partially aligned spins, 

without collective excitations. At zero magnetic field, the total-spin up and total-
spin down components are energetically degenerate, and separated from the ground 
state 0,0,0,2 == sqn by δEp = 2p2Eσ. States with an odd number of electrons, 

n = 2q + 1, can be considered similarly. Here, the excited states with partially 
aligned spins have spin ( )2 1, 1 .s p p= + ≥  

States with higher spins can be accessed in the non-linear transport regime. In or-
der to relax to the ground state, the total spin has to be changed. This is not possible 
without spin-flip scattering processes, apart via a tunnelling event. Even in the pres-
ence of spin-flip processes it remains difficult to relax to an energetically lower state 
and simultaneously change the total spin [17]. It is thus reasonable to assume that, in 
contrast to internal collective excitations, excited states with higher spins do not in-
trinsically relax. Dynamical states are characterized by their total number of charges n 
and the total spin s. 

Such high-spin states play an important role in the transport, particularly in sys-
tems with asymmetric barriers, as discussed below. At finite, non-zero magnetic 
fields, such states can become ground states of the system due to Zeeman splitting of 
the total-spin up and total-spin down components. 

2.4. Results 

In this section, we summarize some of the results obtained for sequential tunnel-
ling, including the identification of parameter regions for which high-spin states yield 
the dominant contributions to transport [6]. We also summarize some recent results on 
spin polarized differential conductivity in the presence of a magnetic field localized at 
the quantum dot. It appears that the contributions of higher-spin states can not only 
lead to negative differential conductances but also increase the differential spin con-
ductance. 

In the following, we concentrate on the region close to a resonance in the linear 
conductance. This is given by the condition that the chemical potentials in the left and 
right leads are the same as the chemical potential of the quantum dot, defined as the 
difference in the ground states of n and n + 1 electrons 
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 ( ) 1
1

1

2 2
n n

d g n n B

s s
E n n E s s sρ σµ +

+
+  = + − + − −   

   
  (18) 

with ns , 1ns +  being the spin of the ground state for n, n + 1 electrons, respectively. 
For a fixed ng, the ground state of the dot can be found by minimizing the total energy 

(4) with respect to ,n s ∈z, with 0q ql lρ σ= ≡ . 

 

Fig. 2. Greyscale plot of the differential conductance Gρ (units ( )2
0

Re Γ ) as a function of sB and ng  

for V → 0. Eρ = 5Eσ, kBT = 0.1Eσ, and other parameters as in Fig. 1. In each region, the corresponding 
ground state , nn s  of the dot is shown. Starting with small values of ng, peaks for the transitions n = 0 

↔ n = 1 and n = 1 ↔ n = 2 appear. With increasing B, the states 1,1 , ,2 , 1,3n n n+ + …   

successively become ground states of the quantum dot. This is indicated by the zigzag behaviour  
of the conductance peak positions as a function of sB 

Figure 2 shows the linear conductance (V → 0) in the plane of ng and sB. The zig-
zag behaviour of the peaks with increasing B is due to the fact that states with succes-
sively higher spins become ground states of the quantum dot. 

With increasing voltage V, higher spin states can contribute to the transport. 
A scheme of the spin transitions near , 1, 1n s n s→ + ± , with n even and 0 1Bs< < , 

is shown in Fig. 3 together with numerical results for asymmetric barriers. When tran-
sitions to the state with s = 2 become possible, the latter accumulates transition prob-
ability at the expense of the states with s = 1 and s = 0 (Fig. 1). This leads to a nega-
tive differential conductance, indicated in the lower panel of the figure. 

Figure 4 shows greyscale plots of the differential conductance Gρ and spin con-
ductance Gσ for asymmetric barriers (RR/RL = 20) in the plane of bias voltage V and 
magnetic field sB, for a value of ng in the Coulomb blocked region and n even, such 
that states with successively higher spins become ground states (cf. Fig. 2). For V = 0 



Spin transport through nanostructures 

 

453 

 

(Fig. 4, top), we clearly observe the above-mentioned analogy between sB and ng. This 
is indicated by the equidistant conductance peaks at sB = 1/2, 3/2, 5/2, 7/2, ... and the 
constant current regions between them. In these regions, spin states with higher spins 
sB = 1, 2, 3, 4, ... become stabilized, in close analogy to the Coulomb blocked charge 
states along ng at V = 0 for sB = 0. As soon as higher spin states become occupied in 
the non-linear regime, the conductance becomes negative as mentioned earlier [5, 6]. 

 
Fig. 3. Top: scheme of the possible transitions for sequential transport through a quantum dot,  
with 0 < sB < 1 in the plane of V (units Eσ/e) and ng, around the resonance between the states  

,0n  and 1,1n + , for even n and low spin values. Each transition line is labelled  

by the spin involved. Dashed transition lines do not contribute to the differential conductance. 
Dash-dotted lines: transitions involving a spin density wave. Arrows: movement of the transition 

lines with increasing B. Horizontal dotted line: cut along which the conductance,  
current polarization and occupation probabilities are shown in Fig. 1. Bold lines: regions  

of negative differential conductance. Bottom: greyscale plot of the differential conductance  
(arbitrary units) for kBT = 0.1Eσ, and other parameters as in Fig. 1; black/white lines:  

positive/negative differential conductance 
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Fig. 4. Greyscale plots of differential conductances (units ( )2
0

Re EσΓ )  

as a function of sB and V (units E eσ ), for ng = 0.5 and even n, such that successively  

higher-spin states become ground states with increasing B; parameters: gσ = 1, gρ = 0.4,  
Eρ = 25Eσ, kBT = 0.02Eσ  and RR/RL = 20. Top: total conductance Gρ; starting  

with small values of sB, for V = 0 equidistant conductance peaks occur  
at sB = 1/2, 3/2, 5/2, 7/2 ... for the ground-state-to-ground-state transitions 

, 0 1,1 , 1,1 , 2n n n n>↔ + + >↔ , etc. Bottom: spin conductance Gσ;  

exactly at V = 0, the spin conductance vanishes, since temperature is finite;  
spin conductance becomes large when the transition lines involved  

with higher spin states intersect 

The behaviour of the spin conductance (Fig. 4, bottom) is the most interesting. The 
spin conductance vanishes for non-zero temperature exactly at zero bias voltage, since 
positive and negative spin conductances cancel around V = 0 in the temperature win-
dow given by kBT. At the points where transition lines involving higher spins inter-
sect, however, the spin conductance is enhanced. This is related to the fact that the 
spin polarization p changes from positive to negative at these points. 
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3. Spin polarization via spin-orbit interaction 

In this section, we investigate the influence of spin-orbit scattering on transport 
through quantum wires and dots in the metallic regime, i.e. where resistance is of the 
order of resistance quantum, R ≈ h/e2. We will show that even without a magnetic 
field the current can become spin polarized, given the quantum structure is suitably 
contacted. 

3.1. Spin-orbit Hamiltonian 

In the inversion layer of heterostructures, spin-orbit interaction can be described in 
the effective mass approximation by the Rashba Hamiltonian [18] 

 ( ) ( ) ( )21 1
,

2 2R B zH p eA V x y g B p eA
m

αµ σ σ = + + + − + ×
 

� �� � �

�
  (19) 

Here, ( ),x yp p p=�

is the momentum operator in the plane of the inversion layer, A
�

 is 

the vector potential of the magnetic field ( )0,0,B B=
�

 perpendicular to the inversion 

layer, m is the effective mass, g is the Landé factor of the electron and V(x,y) is an 
additional confining potential. The Rashba parameter α describes the average strength 
of the electric field, due to the asymmetric potential well confining electrons in the 
inversion layer at z = 0. In general, in addition to the Rashba term, there is also a band 
structure contribution [19], due to the absence of inversion symmetry. It can be ne-
glected in InAs, in which Rashba spin-orbit interaction is strong. 

For a zero magnetic field and no additional confinement, the Rashba Hamiltonian 
can be diagonalised. The energy eigenvalues are 

 
2

2

2
E k k

m
α± = ±�

  (20) 

and the corresponding eigenspinors 

 1,2

1
ik r

i
e

e ϕψ ⋅
−

 
=  

± 

�

�

  (21) 

with ( ), ,x yk k k=
�

 ( ), ,r x y=�

cos ,yk k ϕ=  and kx = ksinϕ. For a given energy, there 

are two wave numbers contributing to the propagation of the particle. This has two 
important consequences. First, the spin rotates upon propagation in a given direction. 
A spin-up state at x = 0 will be converted into a spin-down state at x π/∆k ≡ πħ/2mα. 
This may be easily seen by considering one-dimensional propagation in the  
x-direction. Second, when a plane wave with a given wave vector and energy is re-
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flected from a hard wall, say along the x-direction, the reflected wave consists of par-
tial waves with different x-components of the wave vector. This implies that there is 
a spatial modulation of the spin polarization, which depends on the incidence angle of 
the plane wave. This is a special case of a general result in quantum mechanical scat-
tering theory, namely that the spin polarization of the scattering wave function of 
a strong spin-orbit scatterer is spatially modulated [14]. Generally, this is simply 
a consequence of the spin not being a good quantum number due to the spin-orbit 
scattering term in the Hamiltonian. It should be emphasized that in equilibrium, with-
out a magnetic field, this does not yield any spin polarization. Since the Hamiltonian 
is time reversal invariant, such that Kramers degeneracy remains intact, each energy 
corresponds to two degenerate states, which have exactly opposite spin polarizations. 
In the above example of Rashba states, these degenerate are the states with opposite 
wave vectors. 

3.2. Spin polarization in a quantum wire 

As a more detailed illustration, we consider the states in a quasi-one dimensional 
system described by Eq. (19), along the y-direction with a symmetric confinement 
V(x) = V(–x) and B = 0. In this case, the Hamiltonian commutes with py and the uni-
tary operator 

 x x xU P σ=   (22) 

where Px is the inversion operator for the x-coordinate. Without spin-orbit interaction, 
Px and σx are conserved separately. The operator Ux is called spin parity. This symme-
try is broken for B ≠ 0. 

Spin parity symmetry at B = 0 has two consequences. First, there is a degeneracy 
of the energy spectrum at k = 0, even without Zeeman splitting. This degeneracy dis-
appears for B ≠ 0, which yields a quantisation of the dc conductance, in units of e2/h 
instead of 2e2/h, as a function of the Fermi energy. The latter is significantly different 
from that due to simple Zeeman splitting of the subbands (Fig. 5). For large B, the 
splitting of energy bands converges towards spin split Landau levels. 

Second, at B = 0, spin-parity invariance [H,Ux] = 0 implies, for the components of 
an eigenspinor of the Hamiltonian 

 ( ) ( )
( )

, yik y x
x y e

x

ψ
ψ

ψ

↑

↓

 
 =
 
 

  (23) 

the symmetry property 

 ( ) ( )x xψ ψ↑ ↓= ± −   (24) 
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This, for the local spin density in a given eigenstate, in general yields 

 ( ) ( ) ( ) ( ) ( )
2 2 2 2

0z x x x x xσ ψ ψ ψ ψ↑ ↓ ↑ ↑= − = − − ≠   (25) 

since Px alone is not a symmetry operation. The average spin density vanishes for B = 0, 
but 0zσ ≠  for B ≠ 0. Also, due to Kramers degeneracy, the local spin density at a given 

energy vanishes for B = 0, since there is a second, time-reversed state, corresponding to the 
wave vector –ky if the former had ky, with exactly the opposite polarization. 

 
Fig. 5. The lowest twelve eigenenergies of a quantum wire at k = 0 as a function  

of the magnetic field, for lSO = l0 and typical InAs parameters: α = 1.0×10–11 eVm, g = –8,  
and m = 0.04m0. Dashed lines: a fan of Landau levels ħωC(n + 1)/(n + 1/2) ± δ/2; inset:  

results for low fields; shaded region: bulk Zeeman splitting δ 

In order to obtain a non-zero polarization at a given energy, time reversal symme-
try has to be broken. This can normally be achieved by applying a magnetic field or 
by magnetic scattering. 

3.3. The conductance of a spin-orbit scatterer 

Even without a magnetic field, however, the time reversal symmetry can be bro-
ken, namely by injecting a current into the system and thus generating a stationary 
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non-equilibrium state. This can be done in a transport experiment. Quantum mechani-
cally, this corresponds to a scattering experiment in which an incoming wave with 

wave number k
�

 is scattered. The stationary scattering wave function, corresponding 
to a given wave vector, will thus exhibit a spatial modulation of the spin polarization 
for a spin-orbit scatterer. If such a wave function is then locally probed, it should be 
possible to detect local spin polarization. 

 
Fig. 6. The fork-shaped three-terminal device used 

 for calculating the quantum conductance 
shown in Fig. 7. The conductance is measured  
between the left and uppermost right contacts 

In nanostructured quantum systems, such local probing can be achieved by con-
tacting the system and performing a dc-transport experiment. Theoretically, this can 
be done by calculating the conductance via the Landauer formula 

 
2

Tr
e

G t t
h

+=  (26) 

with t being the transmission matrix of the scatterer. 
For numerical purposes, it is convenient to use the corresponding tight binding 

Hamiltonian [20] instead of Eq. (19). On a two dimensional lattice with (l.m) points 
and a lattice constant a 

 
cos sin cos sin

1 1 .
sin cos sin coslm

i
H V lm lm l m lm h c

i

θ θ θ θ
θ θ θ θ

−   
= − + − +   

   
∑   (27) 

where V(cosθ (= ħ2/2ma2) is the energy unit, and the angle θ describes the spin-orbit 
scattering. This angle can be related, via the discretisation of Eq. (19), to the parame-
ter α according to 

 
2

tan
maαθ =
�

  (28) 

Numerical results for the spin-resolved conductance of a rectangular quantum dot 
attached to three quantum wires (Fig. 6) are shown in Fig. 7. Current flows from the 
contact on the left hand side to the contact on the upper right. The predicted strong 
spin polarization due to spin-orbit scattering of the conductance is clearly observed at 
certain Fermi energies. 
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4. Conclusion 

In this contribution, we have discussed several features of the transport properties 
of quantum dots related to electron spin. Two transport regions have been considered. 
In sequential transport, we have described features related to the occupation of corre-
lated many-electron states with higher total spins, namely the spin blockade phenom-
ena that lead to negative differential conductance in the non-linear transport regime. 
We have seen that these higher spin states also give rise to strong differential spin 
conductances in the presence of a magnetic field in the quantum dot. 

 
Fig. 7. The linear total conductance (dashed, units e2/h) and the spin polarization 

P =
�

Tr ( ) totalt t Gσ+ �

 (full line) as functions of the Fermi energy  

of a rectangular quantum dot connected to three leads in the geometry of a fork 

Furthermore, we have considered a spin-orbit scatterer in the quantum coherent 
metallic regime. We have argued that scattering states exhibit a spatial modulation of 
spin polarization. When time reversal invariance is broken, this can be used to gener-
ate a spin-polarized current, even when no magnetic field is applied and no magneti-
zation is present. It has been argued that such a situation can be achieved in stationary 
non-equilibriums such as a dc-transport experiment. 

The effects discussed here might be of importance for designing a pure-
semiconductor based spin transistor. 
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Electronic transport in a ferromagnetic single-electron transistor is analysed theoretically in the se-
quential tunnelling regime. One of the external electrodes and the central part (island) of the device are 
assumed to be ferromagnetic, with the corresponding magnetizations being non-collinear. The analysis is 
based on the master equation method, and the respective transition rates are determined from the Fermi 
golden rule. It is shown that the electric current and corresponding tunnel magnetoresistance (TMR) 
strongly depend on the angle between the magnetizations. For an arbitrary magnetic configuration, TMR 
is modulated by charging effects, which give rise to characteristic dips (cusps) at the bias voltages corre-
sponding to the Coulomb steps in the current–voltage characteristics. 

Key words: single electron transistor; spin-polarized transport; tunnel magnetoresistance 

1. Introduction 

Electronic transport in single electron transistors (SETs) with nonmagnetic islands 
has already been the subject of extensive experimental and theoretical studies [1–3]. 
The problem of spin-polarized transport in SETs based on quantum dots or metallic 
particles, however, has been addressed only recently [4–6]. The transport properties 
of such devices have mainly been investigated in situations where magnetic moments 
are aligned either in parallel or antiparallel. Nevertheless, in real systems the magnetic 
moments of the leads can form an arbitrary angle and such a non-collinear configura-
tion may strongly affect transport characteristics. 

_________  
*Corresponding author, e-mail: justynka@spin.amu.edu.pl. 
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In this paper, we present the results of our theoretical analysis of spin-polarized 
electronic transport in a ferromagnetic single-electron transistor (FM SET), whose 
one external electrode and the central part (referred to as the island) are ferromag-
netic, while the second external electrode is nonmagnetic. The angle β between the 
spin polarizations of the ferromagnetic lead and the island is arbitrary. Our main ob-
jective is to analyse the dependence of electric current and tunnel magnetoresistance 
(TMR) on the angle β. It is shown that the transport characteristics of an FM SET 
strongly depend on its magnetic configuration. Such a dependence stems from the 
spin asymmetry of tunnelling rates for spin-majority and spin-minority electrons. 

In order to analyse transport in FM SETs, we have employed the lowest-order per-
turbation theory. The corresponding transition rates are then given by the Fermi 
golden rule, whereas the relevant probabilities that the island is in respective charge 
states are determined from the appropriate master equation. We have analysed nu-
merically the electric current flowing through the system and the corresponding TMR 
in various magnetic configurations. It is shown that both current and TMR exhibit 
a nontrivial dependence on the angle between magnetic moments of the ferromagnetic 
lead and island. In addition, discrete charging has been shown to modulate TMR, with 
characteristic dips (or cusps) at the bias voltages corresponding to the Coulomb steps. 

The consecutive sections of this paper deal with the following. In Section 2 we 
present the model and theoretical description, numerical results are shown and dis-
cussed in Section 3, and conclusions are given in Section 4. 

2. Model and theoretical description 

A scheme of the single-electron transistor under consideration is shown in Fig. 1. 
The first lead as well as the island is made of a ferromagnetic material, whereas the 
second lead is nonmagnetic. There is a nonzero angle β between the spin moments of 
the left electrode and island. Further, a gate voltage is attached capacitively to the 
island, enabling a tuning of system operation. 

 
Fig. 1. Schematic diagram of the ferromagnetic single-electron transistor.  

The arrows indicate the net spin moments of the island  
and left electrode, forming an angle β. The electrode on the right is nonmagnetic 

If thermal energy is smaller than the charging energy, then the energy needed to 
transfer an extra electron onto the island becomes dominant and establishes a new 
relevant energy scale. Discrete charging effects then become observable and the cur-
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rent flowing through the system displays current–voltage characteristics with typical 
Coulomb steps. Apart from this, Coulomb oscillations of electric current occur with 
increasing gate voltage. We show that these effects lead to characteristic dips (cusps) 
in TMR with increasing bias voltage. 

When the applied voltage does not exceed a certain threshold voltage, sequential tun-
nelling is exponentially suppressed and the system is in the Coulomb blockade regime. 
Although first-order tunnelling is then prohibited by the energy conservation rule in the 
Coulomb blockade, the current can still be mediated by higher-order tunnelling processes 
(like co-tunnelling) which take place through the virtual states of the island. 

In our considerations, however, we take into account only sequential tunnelling 
processes and assume that the contribution coming from higher-order processes is 
small compared to the first-order. This is justifiable when the barrier resistances 
significantly exceed the quantum resistance, Rj >> Rq= h/e2 (j = 1, 2), which implies 
that the island is in a well defined charge state and the orthodox tunnelling theory is 
applicable. Electrical resistance of the first (left) tunnel barrier depends on the tunnel-
ling matrix elements between the corresponding states in the left lead and the island, 
which in turn depend on the relative angle between their magnetizations. The resis-
tance of the second barrier is independent of the magnetic configuration. We further 
take into account only spin-conserving tunnelling processes and assume that spin re-
laxation time on the island is shorter than the time between two successive tunnelling 
events, which means that there is no spin accumulation. Moreover, the island is as-
sumed to be relatively large, so that the quantization of the corresponding energy lev-
els can be neglected. 

Electric current flows through the system due to successive tunnelling events. The 
tunnelling rate of a spin-majority (+) electron from the first lead to the spin-minority 
(–) electron band in the island can be expressed in terms of the Fermi golden rule as: 

 
2

1 1

2π
( )i T i f iHΓ Ψ Ψ δ ε ε+−

→ + −= −
�

 (1) 

where 1Ψ +  and iΨ −  are the wave functions for majority electrons in the first elec-

trode and minority electrons in the island, respectively, εi (εf) is the energy of the ini-
tial (final) state of the system, whereas HT is the tunnelling Hamiltonian. The wave 
functions are written in local reference systems (with local quantization axes deter-
mined by the local spin moments). As the global reference system, we assume the 
local one in the island. When a bias voltage V is applied to the system, the tunnelling 
rates from the first (ferromagnetic) lead to the island, which is already occupied by N 
excess electrons, can be written in the form: 

 ( ) ( )2
1 1, cos ,

2
p

i iN V N V
βΓ Γ++ +

→ →=  (2a) 

 ( ) ( )2
1 1, cos ,

2
p

i iN V N V
βΓ Γ−− −

→ →=  (2b) 
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2
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 ( ) ( )2
1 1, sin ,

2
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i iN V N V
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with ( )( )
1 ,p

i N VΓ + −
→  denoting the tunnelling rate of spin majority (+) and spin minority 

(–) electrons in the parallel configuration, whereas ( )1 ,ap
i N VΓ →  is the tunnelling rate 

for both spin orientations in the antiparallel configuration. The tunnelling rates 

( )( )
1 ,p

i N VΓ + −
→  are defined as: 
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∆
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where – e  is the electron charge (e > 0), ( )
1
pR + −  denotes the spin-dependent resistance 

of the left junction in the parallel configuration, kB is the Boltzmann constant, and T 
stands for temperature. Here, ∆E1(N,V) describes a change in the electrostatic energy 
of the system caused by the respective tunnelling event. A similar expression also 

holds for ( )1 ,ap
i N VΓ → , but with ( )

1
pR + −  replaced by 1 .apR  Since both ferromagnetic 

electrodes are assumed to be made of the same material, 1
apR is independent of the 

electron spin. In a similar way one can derive the tunnelling rates from the island back 
to the first electrode. 

The rates for tunnelling through the second junction are also spin-dependent, but 
they are independent of the angle β. For any magnetic configuration, they are given 

by formula (3) with ( )
1
pR + −  replaced by ( )

2R+ −  and ∆E1(N,V) replaced by ∆E2(N,V). 
The electrostatic energy of the system is given by: 

 ( ) ( )2

,
2

Ne Q
E N Q

C

−
=  (4) 

where C = C1 + C2 + Cg is the total capacitance of the island, C1 and C2 are the capaci-
tances of the first and second junctions, Cg is the gate capacitance, whereas Q = C1V1   
+ C2V2 + CgVg represents the charge on the island induced by the applied voltages. 

In order to calculate the electric current flowing through the system in a stationary 
state, we take into account the fact that the net transition rate between charge states 
with N and N + 1 excess electrons on the island is equal to zero in a steady state [7]. 
The corresponding master equation then determines the probability P(N,V) of finding 
the island in a state with N excess electrons when a bias voltage V is applied to the 
system. The steady-state master equation reads: 
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 (5) 

Finally, the electric current flowing through the system can be calculated from the 
formula: 

 ( ) ( ) ( ) ( ), ' , '
1 1

, ' ,

, , ,i i
N

I V e N V N V P N Vσ σ σ σ

σ σ
Γ Γ

∞

→ →
=+ − =−∞

 = − − ∑ ∑  (6) 

Equation (6) corresponds to the current flowing through the first junction, which 
in the stationary limit is equal to the current flowing through the second junction. 

3. Numerical results and discussion 

Equation (6) can be used to calculate the tunnelling current for any magnetic con-
figuration. For a given bias voltage V, the tunnel magnetoresistance is quantitatively 
described by the ratio 

 
( ) ( )

( )
0I I

TMR
I

β β
β

= −
=  (7) 

where I(β) is the current flowing when the angle between spin moments of the lead 
and island is equal to β (β = 0 corresponds to the parallel configuration). Below we 
present the results of our numerical calculations of electric current flowing through 
the system and the corresponding TMR as a function of the bias voltage (Fig. 2) and 
the angle β  (Fig. 3). 

For all magnetic configurations, the dependence of electric current on the bias 
voltage is non-linear and exhibits characteristic Coulomb steps, as shown explicitly in 
Fig. 2a for a few values of the angle β. The electric current decreases with increasing 
angle over the whole bias range. This dependence of electric current on magnetic 
configuration leads to a non-zero TMR effect, as shown in Fig. 2b. Two local minima 
(dips) in TMR, visible in Fig. 2b, occur at bias voltages corresponding to the positions 
of Coulomb steps in the current–voltage characteristics of Fig. 2a. It is worth noting 
that this is not a general behaviour and that for some other parameters one finds 
maxima (cusps) instead of minima in TMR at the current steps [5]. It also follows 
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from Fig. 2b that the magnitude of TMR increases monotonously with an increasing 
angle between magnetizations. 

 

 
Fig. 2. The bias dependence of electric current (a) 
and TMR (b) in a symmetrically biased (V1 = V/2,  

V2 = –V/2) FM SET with non-collinear  
magnetizations for several values of the angle  

between magnetic moments. The parameters used in 
the numerical calculations are: C1 = C2  = Cg 1 aF,  

Vg 0,  1
pR + = 25 MΩ, 1

pR − = 1 MΩ, 2R+ = 0.5 MΩ, 

2R−  = 0.1 MΩ, and 1 1 1 1
ap ap p pR R R R+ − + −= =  

Fig. 3. Electric current (a) and the corresponding 
tunnel magnetoresistance (b) as a function of the 

angle between spin moments of the left lead 
and island. The bias voltage is V = 50 mV  

(V1 = 25 mV, V2 = –25 mV), while the other 
parameters are the same as in Fig. 2 

The dependence of electric current flowing through the system on the angle β, and 
the corresponding TMR, are shown explicitly in Fig. 3a and b, respectively, for a par-
ticular bias voltage. The minimum in electric current occurs in the antiparallel mag-
netic configuration, which corresponds to a maximum in TMR. This behaviour is 
qualitatively similar to the normal spin valve effect observed in magnetic layered 
structures. 
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4. Conclusions 

In this paper, we have calculated and analysed in detail the current flowing 
through a ferromagnetic single-electron transistor with non-collinear magnetizations 
and the corresponding tunnel magnetoresistance. The FM SET device consists of 
a ferromagnetic island and one ferromagnetic electrode, whereas the second external 
electrode is nonmagnetic. The bias dependence of electric current reveals a character-
istic Coulomb staircase. Furthermore, the current flowing through the system, as well 
as the tunnel magnetoresistance, strongly depend on the angle between magnetiza-
tions. 
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Weak antilocalization and spin relaxation 
in integrable quantum dots 

OLEG ZAITSEV
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We study spin relaxation and weak (anti)localization arising from Rashba spin-orbit interaction in 
ballistic quantum dots with integrable orbital dynamics. We employ a recently developed semiclassical 
theory for spin-dependent quantum magneto-transport to reveal the dependence of spin dephasing on 
different types of regular, spatially confined motion. In particular, we analytically derive spin relaxation 
in circular cavities and compare it with corresponding numerical results. Moreover, we show that differ-
ent integrable confinement geometries show remarkable differences in their spin evolution. 

Key words: spin relaxation; antilocalization; spin dephasing; circular cavity 

1. Introduction 

During the last years research on the effects of spin-orbit (SO) interactions on trans-
port has again received increasing attention. The reason for the revival of such studies, 
both experimentally and theoretically, lies in an important role SO interactions play in 
spin electronics and spin-based quantum information processing: in spintronics research, 
spin interference devices have been suggested, such as spin transistors [1], spin rotators 
[2], and spin pumps [3], based on SO interactions; in proposals for spin-based quantum 
computing using quantum dots, SO effects can influence the time scales 1T  for coherent 

spin relaxation (dephasing) and 2T  for decoherence processes [4]. 
A useful experimental probe for SO-effects in quantum transport is, on one hand, 

the beating pattern of Shubnikov-de Haas oscillations in the magneto-conductivity of 
high-mobility bulk semiconductors [5, 6], which, however, require additional moder-
ate magnetic fields. On the other hand, weak localization (WL) and antilocalization 
(AL) are prominent examples for SO-interaction-induced quantum interference effects 
on the conductance in low-dimensional electronic systems [7, 8]. While WL arises 

_________  
*Corresponding author, e-mail: oleg.zaitsev@physik.uni-regensburg.de. 
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from the constructive interference of backscattered waves, reducing the conductance 
for systems with time-reversal symmetry, SO coupling turns constructive interference 
into destructive interference and hence causes an enhanced conductance, i.e. AL. Re-
cently, weak AL has been reconsidered in a number of corresponding experiments, 
both for GaAs- [9] and InAs-based [6, 10, 11] two-dimensional (2d) electron gases, as 
well as for ballistic quantum dots [12, 13]. While SO scattering in (disordered) bulk 
systems is reasonably well understood [8], the new experiments pose the question of 
how spatial confinement affects spin relaxation, which is also theoretically of interest 
and pertinent for the proposals on quantum dot-based quantum computing. 

Hence, recently a number of theoretical papers appeared that treat spin relaxation 
and the interplay between SO and Zeeman coupling in quantum dots [14–17]. Most of 
these approaches, however, rely on random-matrix assumptions [15, 16, 18, 19], 
thereby assuming disordered or completely chaotic cavities. In this contribution, we 
will focus on the opposite case, on integrable confinement geometries giving rise to 
regular orbital dynamics, where random matrix theory (RMT) is not applicable. To 
this end, we will employ a recently developed semiclassical approximation to the 
Landauer formula for spin-dependent quantum transport [17, 20]. This approach con-
stitutes a link between classical orbital dynamics and quantal spin evolution, and it is 
rather generally applicable to quantum dots with different types of classical dynamics. 
In a first application of this tool, spin relaxation in extended disordered and confined 
ballistic systems with Rashba SO interaction has been compared [17]. As a result, 
spin relaxation is much slower in confined chaotic cavities than for diffusive motion, 
in accordance with experiments [12] and related theoretical work [14, 18]. Moreover, 
this preliminary analysis reveals that certain integrable confinement potentials give 
rise to a saturation of spin relaxation, i.e. an initial spin polarization is preserved to 
a certain degree even for long times. 

Here we will address this interesting finding in detail and present a case study for two 
representative examples of integrable quantum dots that give rise to rather distinct spin 
evolution behaviours: a circular billiard with conserved angular momentum and its de-
symmetrised version, a quarter circle in which angular momentum is no longer a constant 
of motion. Spin relaxation in the circular geometry has also been recently numerically 
studied in a closely related semiclassical approach [21]. Here, besides presenting numerical 
results, we derive an analytical formula for the spin relaxation exhibiting characteristic 
oscillations. Furthermore, we include the effect of an additional magnetic flux and give 
predictions for weak (anti)localization for the two geometries. 

2. Semiclassical Landauer formula for spin-dependent transport 

We consider a Hamiltonian linear in the spin operator ŝ  

 0
ˆˆ ˆ ˆ ˆ ˆ ˆˆ ( ) ( )H H= , + ⋅ ,q p s C q p�  (1) 
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where 0Ĥ  represents the spatial part, including the confinement potential, and ˆ ˆ ˆ( ),C q p  

is a rather general vector function of the position and momentum operators ˆ ˆ,q p . The 

term ˆ ˆ ˆ( ),C q p  can include SO coupling, as well as an external (inhomogeneous) mag-
netic field. For a large number of systems of interest, and usually in experiments, as in 
those mentioned above 

 0( )s H| , |C q p� �  (2) 

even if the spin-precession length, i.e. the distance a particle travels in space during 
one period of precession of its spin vector, is of the order of the system size. In 
Eq. (2), s is the particle spin, and the phase-space functions without the hat denote the 
classical counterparts (Wigner–Weyl symbols) of the respective operators. As a con-
sequence of inequality (2), the back action of the spin dynamics on orbital motion can 
be neglected. This regime, which we study in this paper, is formally realized by taking 

0→� , while keeping all other quantities finite. This corresponds to the orbital sub-
system H0 being in the semiclassical regime, i.e. the typical classical actions � �S . 
In other words, the Fermi wavelength λF must be much smaller than the system, which 
is well fulfilled if the quantum dots are of µ m size, as e.g. in Ref. [12]. 

Hence, only H0 governs the classical trajectories ( ( ) ( )),t tγ = ,q p  along which an 

effective time-dependent magnetic field ( ) ( ( ) ( ))t t tγ = ,C C q p  acts on spin via the 

Hamiltonian ˆˆ ( ) ( )t tH γγ = ⋅s C� . We thus employ a semiquantal approach, in which 

the spin dynamics is treated quantum-mechanically in terms of a (time-ordered) 
propagator 

 
0

ˆˆ ( ) exp ( )
t

t T i dt tK γγ
′ ′ = − ⋅

  ∫ s C  (3) 

In this way, a weak SO coupling was incorporated into the Gutzwiller trace for-
mula [22] for the semiclassical density of states of s = 1/2-particles [23]. This ap-
proach was generalized to arbitrary spin using path integrals in orbital and spin vari-
ables [24, 25]; a general semiclassical approach to SO interaction, without relying on 
inequality (2) and including the back action of the spin onto the orbital degrees of 
freedom can be found in [24, 26]. 

Our approach to spin-dependent coherent quantum transport through quantum 
dots is based on a semiclassical Landauer formula [27, 28] that we generalize to 
systems with SO and Zeeman interaction. To this end, we start from the Landauer 
formula in 2d relating the two-terminal conductance 2( )G e h= / T  to the transmis-
sion coefficient [29] 

 
2

1 1

N N s

n m
n m s

t σ σ
σ σ

′

′,
′= = , =−

=∑∑ ∑T  (4) 
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The leads support N and N′ open orbital channels m and n, respectively. We dis-
tinguish 2s + 1 spin polarizations in the leads, labelled by σ = –s, ..., s, and assume 
that there is no spin-orbit interaction or external magnetic field in the leads. In Eq. (4), 

n mt σ σ′,  is the transition amplitude between the incoming channel ,m σ  and outgoing 

channel n σ ′, ; a corresponding equation holds for the reflection coefficient R, satis-

fying the normalization condition (2 1) ,s N+ = +T R  which follows from the unitar-
ity of the scattering matrix. 

The transmission and reflection amplitudes can be represented with Green func-
tions. Starting from a path-integral representation of the Green functions, and follow-
ing the lines of [27] for the spinless case, our semiclassical evaluation yields the spin-
dependent transmission amplitudes [20] 

 
( )

ˆ( ) expn m
n m

i
t Kσ σ σ σ γ γγ

γ

 
 
 ′ ′,
 
 ,

= ∑
�

A S  (5) 

The transmission amplitudes (and, again, correspondingly the reflection amplitudes) 
are semiclassically approximated as a coherent sum over classical transmitted (back-
reflected) paths at fixed energy. A similar Ansatz has been used in Ref. [30]. The sum runs 
over classical trajectories ( )n n m mγ = ± , = ±  that enter (exit) the cavity at “quantised” 

angles Θm ( nΘ ), measured from the normal at the lead cross section. For hard-wall bound-

ary conditions in the leads, sin π /m m kwΘ =  and sin π /n n kw′Θ = , where k is the wave 

number, and w, w′ are the lead widths. In (5), γA  is the classical stability amplitude [27], 

and dγ = ⋅∫p qS  is the action along a path γ. For the case of billiards considered below, 

kLγ γ= �S , where L vTγ γ=  is the orbit length, v is the magnitude of the (Fermi) velocity, 

and Tγ  is the time. The entire spin effect is contained in the matrix elements ˆ( )K σ σγ ′  of 

the spin propagator ˆ ˆ ( )TK K γγ γ≡  (Eq. (3)) between the initial and final spin states. 

Inserting Eq. (5) into (4), we find the transmission T and reflection R for spin-
dependent magneto-transport in a semiclassical approximation [17] 

 ( )( )

( ) ( )

( ( ) ( )) i

nm n m n m

E E e γ γ
γ γ γ γ

γ γ

′/ −∗
′ ′,

′, ,

, , , =∑ ∑ ∑B B � S S
T R M A A  (6) 

In the case of transmission (reflection), the paths γ γ ′,  connect different leads (re-
turn to the same lead). Equation (6) is still rather general and contains SO and Zeeman 
interactions. The orbital contribution of each trajectory pair is weighted by the spin 
modulation factor 

 †ˆ ˆTr ( )K Kγ γ γ γ′ ′, =M  (7) 

where the trace is taken in spin space. 
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3. General discussion 

In many physical situations one is interested in the energy average of the reflec-
tion ( )E,BR  (Eq. (6)), subject to an external arbitrarily directed magnetic field B. 

The actions ( )Eγ , /B �S  are rapidly changing functions of E in the semiclassical limit. 

Therefore, only the orbit pairs γ γ ′,  with (nearly) equal actions yield non-vanishing 
contributions to the energy average. 

The classical reflection is obtained after summing up the terms γ γ′ =  [27], for 
which the phase in the exponent of Eq. (6) disappears. The modulation factor is then 

†ˆ ˆTr ( ) 2 1sK Kγ γ γ γ, = = +M , independent of SO interaction, and is reduced to trivial 

spin degeneracy. 
In a system with time-reversal symmetry, i.e. B = 0, each trajectory has a time-

reversed partner with identical action. Such pairs contribute to terms with n = m of the 
semiclassical sum (6) for reflection R (but not T ). The corresponding modulation 

factor is 1

2ˆTr ( )K γγ γ −,
=M , where γ–1 is the time reversal of γ. Upon energy average, the 

pairs γ,γ–1 form a diagonal quantum correction diagδR  [27]. 

The diagonal contribution alone would violate the conservation of current, making 
it necessary to account for other types of orbit pairs with close actions [27, 28]. No 
effective way of adding up these terms in a cavity with regular or mixed classical 
dynamics is known, however. Therefore, we will stay within the diagonal approxima-
tion when considering the following examples (see [27] for a similar treatment of the 
spinless case), and direct the reader to Refs. [17, 28] for a study of chaotic cavities. 

In the presence of a constant and uniform magnetic field B, the diagonal terms in 
the sum (6) will be modified. First, due to Zeeman interaction, the modulation factor 

1γ γ −,
M  is no longer 2ˆTr ( )K γ  and should be calculated directly from Eq. (7). Second, 

the field component Bz perpendicular to the cavity generates an additional Aharonov 

–Bohm (AB) phase factor 1 0exp ( )( ) exp 4π zi i Bγ γγϕ Φ−
 
 
 

 = / − = /
 

A� S S  (the field is 

assumed to be weak enough to neglect the bending of trajectories by the Lorentz 

force). Here, zd Bγ ≡ ⋅ /∫A lA  is the effective enclosed area accumulated along the 

orbits γ, and 0 hc eΦ = /  is the flux quantum. For a uniform treatment of the SO inter-
action and magnetic field effects, we thus introduce a generalized modulation factor, 

1 .ϕ γ γ ϕ−,
≡M M  Its average ( )Lϕ ;BM  over an ensemble of trajectories with fixed length 

L characterizes the effective evolution of the spinor (both direction and phase) of 
a particle transported along classical trajectories in a given cavity. The B-dependence 
includes both the AB phase and Zeeman interaction. We estimate the relative quantum 

correction to reflection as the average 
L

ϕM  over L 



O. ZAITSEV et al. 474 

 (0)
diag diag 0

( ) ( ) ( )
L

dL P L Lϕ ϕδ δ
∞

/ = ≡ ;∫B BR R M M  (8) 

where P(L) is the distribution of orbit lengths before they escape from the cavity, and 
the superscript (0) refers to zero spin and zero magnetic field. Strictly speaking, an 
expression similar to Eq. (8) has been derived in [27] for a chaotic cavity and used for 
integrable systems with an appropriate P(L). On an equal footing, we may treat the 
r.h.s. of (8) as an estimate for the full relative quantum corrections to transmission and 
reflection, (0)δ δ/T T  and (0) ,δ δ/R R  since the relative diagonal and off-diagonal 
contributions are the same in the chaotic case [20, 28]. 

4. Application to integrable billiards 

For the remainder of the paper we will focus on the case of spin s = 1/2 and 
Rashba SO interaction [31], which is often present in 2d semiconductor heterostruc-
tures. It is described by an effective magnetic field 

 2 ˆ(2 )R emα= / × ,C v z�  (9) 

where αR is the Rashba constant, me is the effective mass, v the (Fermi) velocity, and 
ẑ  is the unit vector perpendicular to the cavity*. In a billiard with fixed kinetic en-
ergy, C is constant by magnitude and its direction changes only at the boundary. We 
will characterize the SO coupling strength by the mean spin-precession angle per 
bounce, 2πR b RL Lθ = / , where Lb is the average distance between two consecutive 

bounces and 2πRL v C= /  is the Rashba length. 
Of the two systems chosen for our numerical study, the quarter-circle billiard can be 

thought of as a „typical“ representative of integrable billiards, while the circular billiard is 
rather exceptional. In the latter case, owing to angular-momentum conservation, all 
trajectories efficiently accumulate area. Hence, the AB phase grows linearly in time and 
the spin modulation factor is also affected in a similar fashion (see below). 

The dependence of the average modulation factor ( ) ( 0)L Lϕ≡ ; =BM M  on the or-

bit length for two SO coupling strengths is shown in Figs. 1 and 2. The average was 
performed over 50 000,  trajectories (in the closed system, i.e. disregarding the leads), 
with random initial velocity directions and positions at the boundary. Note that as the 
trace of a unitary matrix, the modulation factor (7) is defined in the interval [ 2 2]− ,  

(for spin 1/2). All curves in Figs. 1, 2 begin at (0) 2=M  due to the initial condition 

of Kγ(0) being a unit matrix. The value 2( ) 2b RL θ≈ −M  is also predetermined: before 

_________  
* 2

Rα /�  is kept fixed in the formal semiclassical limit 0.→�  
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its first encounter with the boundary, a particle moves along a straight line, irrespec-
tive of the geometry of the cavity. 

Fig. 1. Average spin modulation factor ( )LM   

for the quarter-circle billiard at two values  
of spin-orbit coupling strength, 2π 0 1 0 3.Rθ / = . , .  

The orbit length is measured in units of the average 
 distance between two consecutive bounces Lb 

Fig. 2. Solid curves: same as in Fig. 1 
for the circular billiard. Dashed curves:  

analytical prediction by Eq. (10)  
of the respective values of θR 

The shape of the billiard becomes important on scales L >> Lb. We find that for 

the quarter-circle billiard (Fig. 1), ( )LM  oscillates around a constant saturation 

value. With increasing θR, this value decreases down to –1, the level corresponding to 
a fully randomised spin state [20]. The oscillation frequency is independent of θR. The 

observed behaviour of ( )LM  can be explained by nearly periodic changes in the spin 
direction and phase during orbital motion in an integrable billiard. The average over 
many trajectories results in the saturation value (the remaining oscillations cannot be 
removed by averaging). 

For the circular billiard (Fig. 2), we see a completely different situation. Here, for 
a weak SO coupling the modulation factor can be estimated as 

 2
2

sin
( ) 2 1

2R R
b

x Lr
L x

x L
θ θ, = ,� �M  (10) 

where r is the radius (see Appendix A). The analytical curve (2) (dashed curve in 
Fig. 2) shows a reasonable agreement with the corresponding numerical results for 

2π 0 1Rθ / = . . As θR increases, the oscillations of ( )LM  become irregular and the satu-
ration value falls to approximately –1. 

Figure 3 presents the relative quantum correction (8) as a function of θR. It is well 
known that (0) 0δ >R  [27, 28], which is a consequence of a weak localization. The 
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enhancement of reflection due to the quantum interference between different paths in 
Eq. (6) is responsible for this effect. SO interaction reverses the sign of the quantum 
correction. This phenomenon is called weak antilocalization. According to Eq. (8), AL 

occurs if the average modulation factor ( )LM  becomes negative. Contrary to the 

situation in chaotic quantum dots [17], the shape of the length distribution ( )P L  is of 

lesser importance here, since ( )LM  quickly saturates in most integrable cavities. In 
our examples, AL occurs in the circular billiard at weaker SO-coupling strengths than 
in the quarter-circle billiard. 

 

Fig. 3. Relative quantum correction to the  
reflection (0)

diag diagδ δ/R R  (Eq. (8)) vs. spin-orbit 

coupling strength θR for the quarter-circle  
and circular billiards. Positive (negative) 

values indicate weak localization  
(antilocalization). The length distributions 

( )P L  were evaluated at perimeter/lead  

width equal to 60 

A magnetic field AB flux destroys the time-reversal symmetry, thus suppressing the 
WL and AL. We have also found numerically that Zeeman interaction destroys the AL. 

5. Conclusions 

We have applied a general semiclassical theory of spin-dependent transport in bal-
listic quantum dots [17] to 2d cavities with integrable classical dynamics. We com-
pared the properties of two billiards with rather distinct dynamics – the quarter-circle 
billiard, as a typical integrable example, and the circular billiard, where trajectories 
accumulate area linearly with time. The two systems have qualitatively different aver-
age spin evolutions, which is reflected in the dependences of their average modulation 
factors on the orbit length. For the circular billiard, we have derived the analytical 
form of this function for weak spin-orbit coupling. As a consequence of the spin dy-
namics generated by the orbital motion, AL is predicted to appear in the circular bil-
liard at weaker spin-orbit interactions than in the quarter-circle billiard. 
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Appendix A: Average modulation factor  
in the circular billiard for weak SO coupling 

We derive a generalization of Eq. (10) in the presence of an AB flux (neglecting 

Zeeman interaction). To this end, we apply a unitary transformation [18] †ˆ ˆ ˆ ˆH U HU→  to 
the Hamiltonian (1) with the Rashba interaction, where 

 ( )2πˆ exp ˆ ˆy xx y
R

U i q qs s
L

 
= − . 

 
 (11) 

Here, qi are the 2d Cartesian coordinates in the billiard plane, and ˆ is  are the respective 

spin operators (i = x, y). Carrying out this transformation to the order 2
Rθ , we obtain the 

new Hamiltonian with a rescaled SO coupling. Its effective magnetic field is 

 � ( ) � �

2
1 2π

ˆ 0
2z x y

R

C C C
L

 
= − ⋅ × , = = 

 
v z q  (12) 

With this field, the spin propagator along a trajectory γ becomes 

 
2

2π
ˆ ( ) exp ( ) ˆ z

R

t i t sK
L γγ

  
 =  
   

A  (13) 

where ( )tγA  is the area enclosed by the orbit. Clearly, the SO contribution to the 

semiclassical sum (6) is similar to the AB contribution with the magnetic field 
�

2
0π Rz LB Φ= ± / , the sign being dependent on spin polarization [18]. 

By including the additional external field Bz, we find the generalized modulation 
factor for a pair of mutually time-reversed orbits of length L to be 

 �( )
0

4π
( ) exp ( )z zL i B LBϕ γ

±

 
= ± | | Φ 
∑ AM  (14) 

The enclosed area can be estimated as ( ) ( 2 )eL M m v Lγ /A �  for an orbit in the cir-

cular billiard with angular momentum M. The average of ( )LϕM  (Eq. (14)) over M 

yields the required expression 

 �

0

sin 2π
( ) ( )z z z

x
L B x B rLB

xϕ Φ
±

±
± ±

; = , = ± | | ,∑M  (15) 

where r is the billiard radius. Note the partial compensation of the external and SO 
magnetic fields when one of the x± is zero (cf. [19]). 
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Here, a final remark is in order. A careful transformation [20] of the modulation 
factor corresponding to the unitary transformation (11) of the Hamiltonian brings 
about an additional contribution that is not included in (14). Approximately, it equals 

2 2(2π )RLϕ γδ − / | ∆ |q�M , where γ| ∆ |q  is the distance between the initial and final 

points of the orbit γ. Neglecting this term is justified, since the relevant orbits start 
and end within the lead width. In all our numerical calculations of Sec. 4, however, 
we started and ended the orbits at random points on the boundary. In this case, the 
correction 2~ Rϕδ θ−M  corresponds to the spin relaxation before the first encounter 

with the boundary (see above). This contribution is not important for long orbits when 
θR << 1. It would be desirable to refine our calculations by checking if 2

Rθ -relaxation 

is present when θR π 1 even for closed orbits (as we currently assume). 
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In this paper, we show that it is possible to manipulate the many-body wave function of an isolated 
dot with a few electrons by locally applying magnetic and electric fields. We polarize the dot at a level 
crossing, where the sensitivity is at its maximum. Time-dependent fields produce a superposition of the 
states involved in the avoided crossing. In the case of N = 2 and N =3 electrons, the results of exact di-
agonalisation give information about the nature of these states and allow us to construct an effective 
Hamiltonian describing the coupling. The formalism for evaluating the Berry phase arises naturally. We 
argue that a quantum dot, capacitively coupled to a quantum point contact, can influence its conductance. 
The quantum superposition of the states produced by cycling the fields on the dot can be measured this way. 

Key words: quantum transport device; quantum dot; Berry phase; qubits 

1. Introduction 

Manipulating the phase of a quantum electronic system in a controlled fashion is 
presently one of the challenges of nanophysics, especially in view of its possible ap-
plications in quantum computing [1]. The most promising route to achieve such a task 
is probably provided by coherent solid-state devices. For instance, a superconducting 
Josephson qubit has already been realized as the Cooper pair box, namely a small 
superconducting island weakly coupled to a charge reservoir via the Josephson junc-
tion [2]. The quantum state of the box can be tuned to a coherent superposition of the 
charge-zero and charge-one states. The possibility of realizing superpositions of flux 
states has been considered as well [3]. Entanglement in semiconducting devices made 
of two quantum dots (QD), one on top of each other (“quantum dot molecule”) has 
recently been optically measured, and double dots have been inserted into a transport 
device [4]. Double QD have been proposed as possible qubits [5]. The state of a QD 

_________  
*Corresponding author, e-mail: Arturo.Tagliacozzo@na.infn.it. 
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can be finely tuned by means of external magnetic and electric fields or by changing 
the coupling between the dot and the contacts [6]. 

Quantum algorithms usually assume that either the system dynamically evolves 

through a sequence of unitary transformations or that a set λ
�

 of external control parame-
ters of the Hamiltonian H smoothly changes in time (“adiabatic evolution”) [7]. Accidental 
level degeneracies are quite common in QD’s, which is seen both theoretically and ex-
perimentally [8]. In this work, we show that they can be used to add a Berry phase to the 
dot and to manipulate it. In fact, if adiabatic evolution is realized across a closed path γ in 
parameter space close enough to an accidental level degeneracy, the nontrivial topology of 
the Hilbert space makes the state of the system take up a “geometrical” phase Γ, referred to 
as the “Berry phase” [9]. The value of Γ may be controlled by properly choosing γ. 

Here we discuss the case of a vertical dot with a few electrons in a rather strong 
orthogonal magnetic field B. By increasing B, the energy levels undergo crossings to 
higher angular momenta states and spin states. We will show that the Rashba spin 
-orbit perturbing term, implemented by polarizing a voltage gate on top of an isolated 
dot, can turn one of these crossings into an anticrossing by mixing states of different 
quantum numbers and opening a gap. Cycling the voltage in an appropriate way al-
lows an SU(2) Berry phase to be added to the many body wave function of the elec-
trons in the dot. This phase could be monitored by means of transport measurement. 

In Chapter 2 we set up a model for a vertical QD with a few interacting electrons based 
on exact diagonalisation results and describe the crossover to the state with maximum spin 
and maximum angular momentum. The effect of the Rashba spin-orbit (SO) term on the 
ground state of the system is discussed. In Chapter 3 we concentrate on the case where N  
= 2. There is an avoided crossing at the singlet–triplet transition [10] which can be de-

scribed by an equivalent Hamiltonian H�  involving just one effective spin 1 2S = /� . We 
shall make the state of the system evolve in time by means of a time-dependent SO cou-
pling, which could be implemented by a microwave driven gate voltage. The spin state is 
shown to acquire the usual SU(2) Berry phase. In Chapter 4 we argue that a dot with N = 3 
electrons gives the chance of producing an SU(3) Berry phase. In order o perform a non-
trivial γ circuit, however, there are too many parameters to control. This makes the realiza-
tion of a full SU(3) Berry phase unrealistic at the present time. Nevertheless, we show that 
a simpler setup can be imagined based on a three-level avoided crossing and that this setup 
allows further phase manipulation. The final chapter collects comments on possible meth-
ods for reading out the added phase. 

2. Vertical quantum dot with azimuthal symmetry 

We consider an isolated, vertical QD, disk-shaped in the (x,y)-plane (θ and ρ are the 
polar coordinates in the plane). An external static magnetic field B and electric field E are 
applied along the z-axis. The dot’s Hamiltonian HD adiabatically depends on these external 
parameters, generically referred to as λ

�

 in the following. The dot’s Hamiltonian is 
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where H0D includes the confining parabolic potential of frequency ωd and the Coulomb 
interaction U(B,ωd). ωc(B) = eB/m*

c is the cyclotron frequency. The second and third terms 
at the r.h.s. of Eq. (1) are the orbital and spin Zeeman terms, respectively. The il

�

are the 

components of the electron angular momentum orthogonal to the dot disk, and µ is the 
electronic magnetic moment (2 )e m cµ ∗= /� . The last term is the spin-orbit (Rashba) term 

with a coupling constant Eα ∝
�

, which has the dimension eV·Å. The generalized momen-

tum is ( / ) ( )i ii e c A rpπ = +
�

�
� , where ip

�

 is the linear momentum of particle i and A
�

 is the 

vector potential due to the magnetic field B. In a symmetric gauge it takes the form 

2 ( 0)A B y x= / − , ,
�

. From now on we neglect the Zeeman spin splitting, since it only lifts 
the spin degeneracy. The orbital wave function for an electron in a two-dimensional har-
monic confining potential and an external B field along ẑ  is 

 ( ) ( ),
π

im

n m n m

e
R t

l

θ

Ψ ρ θ, | |, =  (2) 

where n, m are the orbital quantum numbers, 2 2 ,t lρ= / and *
0l m ω= �  

( 2 2
0 ( ) 4d c Bω ω ω= + / ). The radial wave function in Eq. (2) is expressed in terms of 

the Laguerre polynomials Lµ
ν  as 
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/ 2( ) ( );
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n m n m n mn mR t C e t L t C

n m

n m
− | | |

| | |
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| | |−|= =

 − | | !    
+ | |  !    

 (3) 

We label the single electron states in the dot by 1/ 2 zn m s s| , , = , >  ( zs s,  are the elec-
tron spin and z-component). 

In the absence of both interaction and magnetic field, the lowest lying single particle 
states are occupied with minimum spin. The GS Slater determinant for N = 5 is sketched 
pictorially in Fig. 1a, where energy is plotted on the vertical axis. Each box represents a 
single particle state labelled by n,m, and each arrow represents the spin projection along 
the quantisation axis of the electron occupying the corresponding box. 

In Figure 2 (left panels) we show the lowest lying total energy levels at a fixed an-
gular momentum M versus M for U = 13 meV and three values of B. These are B = 5 
meV (top), B = B* = 7 meV (middle), and B = 11.5 meV (bottom). 
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Fig. 1. The Slater determinants quoted in the text. Quantum numbers are N = 5, S = 1/2  

for the state at B = 0 (a) and S = 5/2 for the state at B = B*, which is  
the magnetic field at which the maximum absolute value of S is achieved (b) 

 
Fig. 2. Energy levels without SO coupling for a dot with N = 5 electrons at U = 13 meV  

and ωd = 5 meV. Magnetic field values are (in units of ħωc): B = 5 meV (top), B = B* = 7 meV  
(middle), B = 11.5 meV (bottom). Total M is on the x axis. Levels are drawn with short,  

medium, or long dashes, corresponding to the total spin: S = 1/2, 3/2, 5/2 

This level structure, as well as the radial charge and spin densities, are calculated 
by exact diagonalisation using a basis of 28 single particle orbitals. Slater determi-
nants are constructed and span the Hilbert space up to matrices (105×105), depending 
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on the number of electrons. Unscreened Coulomb electron-electron interaction matrix 
elements are calculated analytically basing on the states given by Eq. (2). 

At each M, the spin degeneracy is marked by dashes of different length: short 
dashes for S = 1/2 (doubly degenerate level), medium dashes for S = 3/2 (fourfold 
degeneracy), and long dashes for S = 5/2 (sixfold degeneracy). On the r.h.s. of the 
picture, the radial charge density of the corresponding GS is plotted vs. the distance r 
from the dot centre. Figure 2 (left panels) shows that the levels cross with increasing 
B when M or S increase. Electron-electron correlations imply that when M increases S 
also increases. 

At B = B* = 7 meV, the spin S reaches its maximum value of S = N/2. The largest 
contribution to the GS wave function is given by the Slater determinant depicted in 

Fig. 1b (for N = 5), corresponding to 
1

0
10

N
M m

−= =∑ . We concentrate on the state 

at B = B*, namely the Fully Spin Polarized (FSP) GS. This corresponds to the “maxi-
mum density droplet” state discussed in literature [11]. Qualitatively we can say that 
at B = B* the dot has the smallest radius. As can be seen from the GS charge density, a 
further increase in B leads to the so-called reconstruction of the charge density of the 
dot. For B > B*, the value of M for the GS increases, but S is no longer at its maxi-
mum. In the bottom panel of Fig. 2 it is shown that at B = 11.5 meV the GS energy is 
achieved for M = 13 with a doublet (S = 1/2) state. The corresponding charge density 
of the dot, depicted on the r.h.s., is strongly modified close to the edge [12]: it dis-
plays a node, followed by an extra non-zero annulus at a larger distance. In view of 
the fact that our expansion of the wave function includes only rotationally invariant 
components, the breaking of azimuthal symmetry is impossible. By contrast, this is 
found to occur in density functional calculations, and the corresponding GS is re-
ferred to as the de Chamon-Wen phase [13]. The GS at B = B* can be compared with 
a FSP quantum Hall state of an extended disk in the absence of lateral confinement 
(Quantum Hall Ferromagnet (QHF) at a filling of one). Indeed, Fig. 1b resembles the 
occupancy of the lowest Landau level (LLL) up to a maximum m = N – 1, except that 
in our case the single particle levels corresponding to the LLL are not all degenerate 
in energy. In the language of the quantum Hall effect, the unperturbed levels are: 

 (2 1)
2m o c

m
mνε ν ω ω, = + | | + −� �  (4) 

where ( ) 2n mν = − | | /  and 2 2 4.o d cω ω ω= + /  The LLL is for 0ν =  and 0.m ≥ The 

Slater determinant for the LLL has a charge density that is flat as a function of r  up 
to the disk edge, at which it rapidly falls to zero. In our case, this feature is lost due to 
U and the fact that the number of electrons is small. 

We now add spin-orbit interaction to the dot. This can be tuned by applying an 
electric field E in the ẑ  direction, which couples the spin of the electrons in the dot. 

At E ≠ 0, the spin-orbit term couples states with opposite spin components: 
(1/ 2)zs = ± . The matrix elements can be easily calculated 
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Here 1 1nm n m n m nmB A∗
′ ′, − − ,= , which implies that the Hamiltonian is hermitian. A pictorial 

sketch can help to understand what happens in the presence of both the orthogonal 
magnetic field and SO Rashba coupling. SO coupling tends to shift the ↓  spin density 
radially w.r.to the ↑  spin density. This is confirmed by plotting the occupation num-
bers †

nm nm nmn GS c c GSσ σ σ=< | | >  with n = m (see Fig. 3 and [14]). 

 
Fig. 3. Occupation numbers nn = m,m,σ in the GS with N 4 (5) electrons (left(right)),  

without SO (top) and with SO (α = 100 meVÅ) (bottom). Other parameters are: B = 7 meV,  
U = 13 meV, and ωd = 5 meV. White bars refers to spin down, grey bars refer to spin up.  

The FSP GS of the dot with N = (4) 5 electrons has a total spin S = 2 (5/2)  
and a z-component of the total angular momentum Jz = 15/2 
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Fig. 4. Charge density, azimuthal spin density Sz, and radial in plane spin density Sr  

in the GS (N = 5, J = 15/2) at SO couplings α = 5, 100, 250 meV·Å.  
Here, B = 7 meV, U = 13 meV, and ωd = 5 meV 

The spin density is quite sensitive to the addition of SO up to the saturation. Now 
the z-component of the total spin is no longer a good quantum number and some mix-
ing with down spin electrons appears. While sz and m are no longer separately con-
served, their sum jz = sz + m (with jz being a half integer) is still conserved. In result, 
the Rashba coupling acts as an effective in plane magnetic field that forces the preces-
sion of electron spins in the dot plane. The out of plane component of B tends to tilt 
spin out of the plane, acting oppositely to the Rashba coupling. Our calculation con-
firms the intuitive idea that SO coupling is weakened by an orthogonal magnetic field. 
Indeed, by increasing ωc in Eq. (2), the strength of the SO interaction decreases. The 
z-component of spin density and its radial component for the GS with N = 5 and Jz = 
15/2 for U = 13 meV are plotted vs. the distance from the dot centre in Fig. 4, for 
three different values of SO coupling. They are also compared to the charge density 
distribution. As it appears from Fig. 4 (top panel), the charge density of the GS is only 
mildly changed when we increase the SO coupling. 
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The SO interaction lifts the degeneracy of Jz. The multiplet with N = 5, S = 5/2, 
and M = 10 at B = B* = 7 meV and U = 13 meV splits when the strength of SO cou-
pling α is increased. The strength of U is responsible not only for the fact that the GS 
belongs to this multiplet, but also for the order in the sequence of energies: Jz = 15/2, 
17/2, 19/2, 21/2, 23/2, 25/2 (from bottom to top). At small values of U, this sequence 
has the order Jz = 25/2, 23/2, 21/2, 19/2, 15/2, 17/2, as shown in Fig. 5. With 
increasing U, some level crossings occur. This crossing defines B*, which is rather 
insensitive to SO coupling. 

 
Fig. 5. Energy levels for N = 5, B = 7 meV, ωd = 5 meV, and α = 100 meVÅ, 

for different values of U. In the upper panel the crossings that allow  
the FSP polarized state to be the ground state when U is large are shown.  

The order of the levels is magnified in the bottom panels for three different values of U 

The order at three different values of U is magnified in the bottom panels of 
Fig. 5. The case for U = 13 meV is shown in the bottom right panel of Fig. 5 – the 
lowest state in energy is for Jz = 15/2, followed by Jz = 17/2, 19/2 (almost degenerate 
with 25/2), and 25/2, 21/2, 23/2. At U = 13 meV a sizeable gap is formed between the 
Jz = 15/2 GS and the first excited state Jz = 17/2. The other states of the multiplet are 
bunched together at higher energies. 

We discuss the peculiarity of the first excited state elsewhere [15], which displays 
a spin texture with some analogies to the Skyrmion state of the QHF. 
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3. The N = 2 singlet–triplet avoided crossing 

In this chapter, we consider two electrons (N = 2) only. In particular, B is tuned 
close to the singlet–triplet transition that occurs at B = B*. In the absence of SO cou-
pling, the states of a vertical dot are usually denoted as zM S S| , , > , where M is the 
orbital angular momentum, S is the total spin, and S z is its z-component [8]. The low 
-lying energy levels are reported vs. B and in the absence of SO in Fig. 1, to be com-
pared with the ones when SO has been added. 

 

 
Fig. 6. A dot with N = 2 particles: energy spectrum vs. magnetic field ωc in the absence 

of SO for ωd = 5 meV, and U = 13 meV (left box); energy spectrum vs. magnetic field ωc  
in the presence of SO for the same parameters and α = 250 meV·Å (right box) 

The lowest lying singlet–triplet crossing is converted into an anticrossing. The 
Slater determinants that are involved the most corresponding to the states 

 † †0 0 0 0zM S S d d−↓ −↑| = , = , = >= | >   

 † †1 1 1 0zM S S d d+↓ −↓| = , = , = − >= | >   

 † † † †1
1 1 0 0

2
zM S S d d d d 

 +↑ −↓ +↓ −↑ 
| = , = , = >= + | >   

 † †1 1 1 0zM S S d d+↑ −↑| = , = , = >= | >  (6) 

a) 

b) 
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Here, †d  are creation operators for dot electrons and the label −  refers to the sin-
gle particle orbital n = 0, m = 0, while the label +  represents n = 1, m = 1. As seen in 
Fig. 6, SO couples the first and second of these states, both of which belong to the 
total angular momentum J = M + Sz = 0 (the other two belong to Jz =1 and jz = 2, re-
spectively). 

We want to show that under some special circumstances the Hamiltonian close to 
B* can be reduced to the one of Eq. (11). The Hilbert space spanned by the four states 
in Eq. (6) can be mapped onto a pseudospin representation in terms of two spins, 1/2: 

1S
�

 and 2S
�

 and with the corresponding basis zS S+ +| , > , with 1 2S S S± = ±� � �

 [16]. A 
comparison of the matrix elements onto the basis space show that the following corre-
spondence holds 

 †
1 2

1

4ns n s n n
s

P d d P n nS Sδ′ ′,
 

⇒ ⋅ − +  
∑

� �

  

 † 1 1 1
2

2 2 2 2
ssns n s n n n n

ss

P d d P inTS Sδ δσ ′ ′ ′ ′ ′, ,−+ −
′

 ⇒ + + ∑
�

� �
�  (7) 

where 1 2.T S S= ×
�

� �

P projects onto the Hilbert space of the four states. States 
zS S+ +| , >  are eigenstates of S +

�

 and 1 2S S⋅
� �

, while S +
�

 and T
�

 produce transitions 

from the singlet state to triplets. 
In this representation, the Hamiltonian close to B = B* takes the form: 

 ( )
1 2 1 2

1
2

2 2
z

S SH K BS b in h cS S S Tµ − −
, + + −

 = ⋅ − + + + . .
 

� � � �

 (8) 

where b+ = α/l. The second term is the Zeeman splitting in the triplet and the first two 
terms account for crossing at B*. SO, by coupling the singlet and triplet with 1zS+ = − , 
opens up a gap and produces the anticrossing observed in Fig. 1. It can be shown that 

while 1 2S S⋅
� �

 and S +
�

 commute, they do not commute with S −
�

 and ,T
�

nor do S −
�

and 

T
�

 commute with each other. This proves that SO couples the centre of mass coordi-
nates with the relative ones. Hence, the Kohn’s theorem does not apply and micro-
wave radiation shed onto the dot probes interactions as well. 

As seen in Fig. 6, SO does not couple the states 1 1| , > , 1 0| , > , 0 0 ,| , > and 
1 1| , − > . As far as SO is concerned, they are frozen. If we retain only the two states 

involved in anticrossing, we can further simplify the problem to a single spin 1/2: S� . 
The correspondence between states is 0 0| , >→|↑>  and 1 1| , − >→|↓> . Defining P′ as 
the projector on the two state basis, we have 
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It follows that the effective Hamiltonian of Eq. (8), rewritten in the new representa-
tion, reads 
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2 2S

K
H B b Sµ = − − − ⋅ 
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where z K Bb µ= +�  and 2bb
± ±=� . This maps the two-electron Hamiltonian of 

Eq. (1), close to the anticrossing point, onto the Hamiltonian 
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where 

2 2 2 ,ob lω α= + /  tan
ol

αϑ
ω

=  (or cos ,z ob b ϑ ω= =  sin
i t

i t e
b b e

l

ω
ω αϑ

±
±

± = = )  

and we have assumed an oscillating time dependence for the electric field 

 i tE E e ω±→  

The dot state may be controlled by properly tuning the external control parameters 
B and E. An adiabatic cycle is realized by keeping B fixed, and by slowly and periodi-
cally varying E with a time period T. 

As the first step, we find the instantaneous eigenstates of ˆ ( )S tH �

 in Eq. (11), corre-

sponding to the eigenvalues bε = ±  
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The Berry phase accumulated by the states | ± > , by adiabatically operating along a 
period T, is 

 ( ) , ,T i d λ
γ

Γ λ λ λ± = ⋅ ± ∇ ±∫ �

� � ��

�  (13) 
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Here, bλ ≡
��

 is the set of parameters describing the system. 

 ( )( ) ( ) ( )( )π

1 cos 1 cos
2

d t
t

dt T

Γ ω ϑ Γ ϑ±
±= − ⇒ = −∓ ∓  (14) 

It is useful to fix the phases of the adiabatic basis t| ±, >  in such a way that they sat-
isfy the parallel transport condition between successive times, namely 

 0
d

t t
dt

< ±, | | ±, >=  (15) 

This choice implies that non-adiabatic terms (i.e., terms of O(1/T) are always off 

-diagonal. Let us choose such an initial condition that the spin S�  is in the state | + >  

with an energy of –b. In the basis of states ( ) ( )i te t±− Γ | ± > , at later times the spin wave 
function takes the form: 

 2 cos cos sin sin
( ) 2

sin sin

i t bt i bt i bt
u t e b

i bt

ω
ωϑ

ϑ

− /
 − + | >=
  − 

 (16) 

This state is a superposition of the two states that correspond to the anticrossing lev-
els. In Chapter 5 we briefly discuss how to read out this mixture. 

4. Three electrons: a very special Berry phase 

In Figure 7 we show the avoided crossing that appears in the spectrum of N = 3, 
involving states with total angular momentum J = M + Szi = 3/2. They are: 

3 2 3 3 2 1 2 2 1 2 1 2 1 1 2z z zS M S S M S S M S| = / , = = − / > ,| = / , = = − / > ,| = / , = = / >  

The SU(3) Berry phase requires eight parameters to be available for the 3×3 her-
mitian Hamiltonian matrix. This is far too much for present fabrication possibilities. 
We have considered the possibility of controlling a smaller amount of degrees of 
freedom, which produces an accidental crossing of a third level in an otherwise SU(2) 
parameter manifold. The states given above are coupled by spin-orbit when the elec-
tric field is of the kind 

 1 2( ) ( )cos ( )sinzE t e g t g tθ θ= + +  (17) 

with 1 2 .i tg ig g e ω+ =| |  In fact, they contain Slater determinants whose single particle 
states have non zero matrix elements of the spin orbit interaction between some 
constituents of single particle states. 
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Fig. 7. A dot with N = 3 particles: energy spectrum vs. magnetic field ωc in the presence  

of SO for ωd = 7 meV, U = 13 meV, and α = 250 meV·Å. The GS is Jz = 3/2, the FES is Jz = 5/2 

 
Fig. 8. A sketch of a possible experimental setup for detecting the Berry phase (a);  

f(x) accounts for the spatial modulation of the coupling between the dot  
and interferometer (see text); energy levels of the dot, E

�
, vs. b = (3/2)(B – B*) (b) 

Let us denote the relevant single particle states by the sequence of quantum numbers 

( 1/ 2 ).zn m s s, , = ,  The states (1 ) (11 1/ 2 1/ 2 ),λ λ, ≡ , , − ,
� �

(3, ) (22, 1/ 2, 1/ 2, ),λ λ≡ −
� �

 

and (2 ) (11 1/ 2 1/ 2 )λ λ, ≡ , , ,
� �

 are present in some of the Slater determinants that form 
the many-body states given above and have non vanishing matrix elements of the spin 
orbit interaction of Eq. (17), according to the Hamiltonian: 

 [ ]1 2

0
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If b = 3(B – B*)/2, the three eigenvalues become degenerate at B = B* and E = 0. 

1 2
ˆ[ ]h b g g e, , ,  is a traceless 3×3 Hermitian matrix, belonging to the SU(2)-algebra. Its 

eigenvalues take a simple form in terms of the “polar” coordinates R, Ψ 
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In decreasing order, the energies are given by [17]: 
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In Figure 8b, we plot E1, E2 and E3 versus b for small but nonzero e and g. The 

corresponding eigenvectors will be denoted further by e λ| , >
�

�

, 1 2 3.= , ,� Figure 8b 
shows the avoided crossing vs. b. In particular, if b < 0, then the level E1 is almost 
degenerate with E2, and the degeneracy at e = g = 0 takes place at π 6.Ψ = / On the 
other hand, if b > 0, then it is E3 that is almost degenerate with E2, and the degeneracy 
takes place at π 2.Ψ = / At b = 0 an “exceptional” three-level degeneracy arises, when 
e = g = 0 (R = 0), which is not, however, an accidental three-level degeneracy. 

The explicit calculation of the Berry phase for a closed path γ at fixed b, lying in 
the subspace of the coordinates (g1, g2, e), can be found in [17]. 

For b < 0, there is an energy gap of order b between E3 and the next available en-
ergy level (E2), so that we do not expect any Berry phase to arise within such a region. 
On the other hand, we do expect a Berry phase to appear for b > 0 when E3 is almost 
degenerate with E2. Therefore, whether the Berry phase arises or not is just a matter of 
whether b > 0 or b < 0. Clearly, no fine tuning of the external field is required, pro-
vided it is possible to move B across B*. 

Our realization of the Berry phase in a quantum dot is the simplest setup that can 
be theoretically studied retaining the required features. Actually, its experimental 
realization is quite demanding, at least as long as one is concerned with a single dot. 
For instance, one can imagine a setup where the maximum of E could be off-centre in 
the dot area and rotating in time. Alternatively, asymmetries in the shape of the dot 
that slowly depend on time might produce a Berry phase. 

5. Comments on detecting the superposition of dot states 

In conclusion, by applying a rather strong orthogonal magnetic field ,B z⊥ a disk 
shaped Quantum Dot (QD) with a few electrons becomes a droplet of maximum elec-
tron density (MDD), maximum total angular momentum M, and maximum spin S. An 
increase of S and M occurs via crossings between levels. A prototype of this occur-
rence is the singlet–triplet transition in a two-electron dot. A gate voltage induces the 
Rashba (spin-orbit) term, which couples S to the electric field orthogonal to the QD 
disk. M and Sz are no longer good quantum numbers, but Jz = M + Sz is. This changes 
the crossing into an avoided crossing, because of the level repulsion between levels 
with equal Jz. We monitor these crossings for a dot with a few electrons by means of 
exact diagonalisation (up to N = 5 electrons). By operating the electric field, one can 
construct a superposition of the states involved in the anticrossing. Their phase is 
controlled by changing the applied electric field in time. 

The level structure of the dot close to the anticrossing can be modelled by an ef-
fective spin Hamiltonian. We have studied an isolated QD at fixed N  elsewhere [17], 
with a weak capacitive contact to one arm of a two path interferometer. By operating 
with a gate voltage on the dot cyclically in time, we have proposed to modulate the 
transmission across the interferometer (see Fig. 8). Electrons travelling in the edge 
states of the interferometer’s arm that are coupled to the dot may feel the charge-
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charge correlations at different times and be reflected by what looks like a change in 
the effective dielectric constant in time. 

Here, we have discussed only the cases of N = 2 and N = 3, which show marked 
avoided crossings in the level structure versus B. At larger N , these features are 
smeared out substantially and a different physics takes over. A closer look at the QD 
energy spectrum shows that e-e correlations and spin-orbit produce a spin texture in 
the first excited state beyond B*, with a reversed spin density concentrated at the ori-
gin [14]. The situation resembles a quantum Hall ferromagnet (QHF) with filling 
close to one. In the QHF, symmetry breaking due to full spin polarization sustains a 
gapless collective spin excitation, named the “skyrmion”. In the QD, the gap is finite 
and it is tuned by the Rashba coupling. This opens up many unexpected possibilities 
of controlling electron spin density at the dot and the possibly underlying nuclear 
spins coupled via hyperfine interaction. 
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Charge transport properties of short molecular chains connected to electrodes are studied using the 
non-equilibrium Green function method. The chains are described using a single-orbital Hubbard model. 
In the weak interaction range and low-temperature limit, the current flowing through the system was 
analysed within the Hartree–Fock approximation (HFA). It was found that for a weak coupling between 
the molecule and the leads I–V characteristics can be represented as a sequence of plateaus, alternating 
with regions of a finite slope. This finite slope in the I–V characteristics is related to the self-consistent 
molecular level being pinned down to the Fermi levels of the electrodes over a finite voltage regions. It is 
also related to a continuous change in the charge state of the molecule. In the strong repulsion limit, the 
HFA method is no longer credible and we resort to decoupling the equations of motion (EOM) for the 
Green functions of the chains, in order to treat all intrachain correlations and hopping exactly but to 
neglect some correlations between the molecule and the leads. A comparison of the results obtained with 
these two approaches for the same parameters allows us to make general observations concerning the role 
of correlations in transport through molecular junctions. 

Key words: charge transport through molecule; electron–electron interactions 

1. Introduction 

Fast development of nanotechnology has led to manufacturing molecular junctions 
which are expected to replace silicon-based devices in electronic applications in 
a near future [1]. Several experimental methods are currently being used to obtain 
junctions with nanometer-sized molecules trapped between their macroscopic metallic 
leads. Despite technical differences between various experimental methods, the ac-
cumulated data show some general features of molecular junctions that involve short 
atomic and molecular wires. 

_________  
*Corresponding author, e-mail: Akos@hts1.physd.amu.edu.pl. 
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Monatomic chains, for instance gold atoms pulled out from gold leads by a STM 
tip [2–4] or an H2 molecule trapped between platinum electrodes [5], behave like per-
fect ballistic conductors at small voltages, with the conductance hardly depending on 
chain length. All the damping and Joule heating takes place in the electrodes up to the 
voltage threshold (of the order of several dozens of millivolts), when the onset of ine-
lastic scattering due to electron coupling with intrachain vibrations starts to reduce the 
current in a step-wise fashion by several percent. For atoms with partially filled  
s-levels, the zero-voltage conductance is close to the quantum unit, G0 = 2e2/h, and the 
current can be as large as 80 µA (for a voltage of about 1 V). This indicates that 
a strong coupling exists between the electrodes and atomic chains, as well as that 
there is a single channel for transmission. 

Junctions involving short organic wires, like benzene dithiolate, [6], bithiol-
terthiophene [7], alkane dithiolates [8], or 4,4-bipyridinium [8] usually support rela-
tively low currents, rarely exceeding 1 µA. The resistance of polymeric wires usually 
grows exponentially with their length [8]. A much smaller conductance of junctions 
with organic wires as compared to ones with s-orbital atomic wires is due to, first of 
all, a rather small overlap of the s-orbital of the metallic leads and  
p-orbitals of the HOMO-LUMO subsystem of the molecules. Also, a Schottky-like 
barrier created at the bonding atom of the molecule (often sulphur, nitrogen, or car-
bon) can be responsible for this weak coupling. Despite weak coupling to the leads, 
this coupling significantly perturbs the molecular levels and the differential conduc-
tance exhibits relatively wide peaks with halfwidths of the order of 1 V, even at tem-
peratures much smaller than estimated for the coupling and separations of the levels. 

Theoretical works aiming to describe transport characteristics in molecular junc-
tions range from simple parametric models using tight binding models, [9–11] through 
extended Hückel calculations [7, 12–15], to ab initio methods [16–21] using density 
functional theory (DFT). While these methods differ in the number of atomic orbitals 
of the molecules included in computations and the way of treating the electron 
–electron interactions, they all belong to the class of single-particle approaches and 
neglect the effects of electron correlation. On the quantitative level, first principles 
computations often overestimate the current transmitted through junctions with or-
ganic molecules by more than an order of magnitude [18, 21], even if the shape of the 
I–V curves is fairly well reproduced. Parametric (semiempirical) calculations can be 
used to fit experimental values of current for a given voltage by a proper choice of the 
coupling parameter (or a function) Γ but in this case the overall shape of the current 
–voltage (I–V) curve is not described well [13, 7]. The value of Γ, taken in order to 
reproduce the values of the current, usually gives too narrow peaks in the correspond-
ing differential conductance curves or too sharp steps in the I–V curve. 

In the face of a quantitative disagreement between results for single particle com-
putations and experimental findings, it is natural to ask about the role of the hitherto 
neglected effects of electron correlation in a more complete understanding of the 
transport properties of molecular junctions including organic molecules. As we know 
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from work performed on systems of lithographically defined artificial atoms, i.e. quantum 
dots (QD), the effects of electron correlation can be very important, and manifest them-
selves in the Coulomb blockade [22] or Kondo effect [23]. Although correlation driven 
phenomena in QDs are observed at very low temperatures (1 K or less), the corresponding 
effects in molecular junctions could play a role in a higher temperature range as a result of 
much higher (by a factor of 103) energy parameters, i.e. intradot Coulomb repulsion, 
coupling to the leads, coupling between neighbouring QDs, etc. 

The purpose of the present work is to provide some examples of computations, 
supported by parametric models, for a very simple system (2-atom molecule), using 
both a quasiparticle approach and a method that treats electron correlations within the 
molecule in an exact manner. A comparison of the two approaches, within the same 
parameter range, may elucidate the role of electron correlation in transport through 
molecular junctions. Although such a comparison is possible only for systems with 
a very small number of electron degrees of freedom (atomic orbitals), an extension of 
the present work to larger systems could reveal some generalizations of the observed 
tendencies. 

2. Quasiparticle description of electron transport 

We describe the system of a molecule connected to macroscopic leads by the fol-
lowing Hamiltonian 

 
,

T M
L R

H H H Hα
α=

= + +∑  (1) 

where Hα is the one-particle Hamiltonian of the left (for α = L) or right (for α = R) 
lead, HT describes one-particle tunneling between the leads and the molecule (for 
simplicity, we assume that the molecule is attached to the leads by means of a single 
atom), and HM is the Hamiltonian of the molecule. 

The molecular part of the system is described by a single-orbital Hubbard Hamiltonian: 

 M jm j m j j j j
jm j j

H t d d E n U n nσ σ σ σ σ
σ σ

+
−= + +∑ ∑ ∑  (2) 

where tjm is the intramolecular hopping parameter, U is the on-site electron repulsion, 
and the site energy Ej includes a contribution from the bare external potential gener-
ated by a voltage applied to the leads (the potential ramp [15]). 

In order to analyse the transport characteristics of such a molecular junction, we 
use the non-equilibrium Green function method*. The current is computed using 
a general formula obtained by Meir and Wingreen [25] 

_________  
*For the technique of the non-equilibrium Green functions and its applications in electronic trans-

port, see Ref. [24]. 
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where 
,, , |

r ar a
jm j mG d dσ σ σ

<< +=  denotes the retarded, advanced, and the lesser Green 

functions, respectively, fα is the Fermi function, and the function Γα describes the 
coupling between the lead α and the molecule. Γα is proportional to the local surface 
density of states in the leads and the squared parameter for hopping between the 
molecule and leads (vkα). In what follows, Γα is considered to be a phenomenological 
constant. 

Because of the presence of the Hubbard interaction in the molecular Hamiltonian 
HM, it is necessary to resort to an approximative method for computing the Green 
functions in Eq. (3). Applying the quasiparticle approach, which is common to all 
first-principle calculations, we replace the molecular Hamiltonian by a single-particle 
form using the mean-field approximation (MFA) [26] 

 ,
2

MFA eff eff
M M jm j m j j j j j

jm j

U
H H t d d E n E E nσ σ σ σ

σ σ σ

+→ = + = +∑ ∑ ∑  (4) 

The non-equilibrium values of electron occupation jn σ are then computed self 

-consistently using the lesser Green functions, r
jjG σ
< . Within the MFA, the interacting 

region was replaced by some effective non-interacting region with a voltage-
dependent electronic structure of the Hamiltonian (4). 

LV I1C 1C DI2C I2C 2C

Q=2 2<Q<3 Q=3 2<Q<3 2<Q<3 Q=2  
Fig. 1. Voltage ranges in the transport of a molecular junction including a 2-atom molecule.  

Shaded areas: occupied electron levels in the electrodes. Thick solid black lines: molecular SCE levels,  
fully occupied in the weak coupling limit non-contributing to the total current. Grey lines: empty  

and non-conducting levels in the weak coupling limit. Lines with arrows: partially occupied levels  
participatinge in transport. The total electron charge of the molecule in the zero coupling limit (Q)  

does not include an extra contribution from the voltage ramp 

The main features of the voltage dependence of current in an arbitrary junction 
can be qualitatively understood by using a simple example of the two-atom system. 
The electronic structure of such a system includes just two self-consistent energy 
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(SCE) levels: the bonding level (EB) and the antibonding one (EA). In Figure 1, the 
subsequent voltage ranges in the transport through the 2-atom chain are indicated. 

Let us discuss a typical situation for low-conducting molecular systems with weak 
molecule–lead coupling (Γ << EA – EB = ∆) in the low temperature region (kBT << ∆). 
In the low-voltage (LV) range, the electrochemical potentials of the leads are usually 
positioned somewhere inside the HOMO-LUMO gap. In this region, and in the weak 
-coupling limit, the antibonding level is nearly completely empty and the bonding one 
is nearly completely filled and as a result the molecule is approximately neutral. The 
current is exponentially small in the LV region, as it requires an electron (or a hole) 
excitation through the gaps, |µL,R – EA,B|. On increasing the voltage, one of the electro-
chemical potentials reaches one of the SCE levels, say EA. In the absence of electron 
interaction in the molecular Hamiltonian, this level would be immediately loaded by 
about one electron charge (in the case of symmetric coupling to both leads) and the 
current would exhibit a step-wise increase. The system would be in a one-channel 
(1C) transport range, where charge transfer between the leads does not require 
electron excitation. 

In the presence of an electron repulsion U, the positions of the SCE levels depend 
on charge. When the electrochemical potential of the source lead hits the SCE anti-
bonding level (see the second diagram in Figure 1), the process of its filling is coun-
teracted by a corresponding rise of the level in the energy scale. In result, for finite U, 
the SCE antibonding level follows the position of the electrochemical potential of the 
source lead for some finite voltage range, and the width of this range increases with 
the repulsion. In this incomplete one-channel (I1C) transport range, the current grows 
gradually with the voltage, along with a smooth increase of the electron charge on the 
molecule. With a further increase in the voltage, the interacting system goes through 
a 1C transport range sequence and enters the I2C (incomplete 2-channel) transport 
range, where the electrochemical potential of the drain lead reaches the other SCE 
level (i.e. the bonding level in the present case). The molecule is gradually discharged 
and the current undergoes a second stage of rapid, but continuous increase with the 
voltage. This evolution ends with the 2-channel (2C) transport range, where both SCE 
levels are found inside the source-drain voltage window, become half 
-occupied (i.e. the molecule is neutral again), and the current does not increase with 
the voltage anymore. 

The above analysis can easily be generalized to a system with an arbitrary amount 
of levels. The evolution of the current with changing voltage can be described as 
a sequence of ranges: LV...(n – 1)C–InC–nC... etc., where nC denotes the n-channel 
transport range. Each range with incomplete n-channel (InC) transport is characterized 
by a continuous increase of the current with the voltage and by an accompanying 
gradual charging (for odd n) or discharging (for even n) of the molecule with rising 
voltage. The transport ranges of fast current increase alternate with the nC ranges, 
where both the current and molecule charge depend on the voltage only weakly (for 
the weak coupling limit). 
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Fig. 2. Molecular junction with a 2-atom molecule: a) voltage dependence of SCE levels,  

as obtained from HFA for several values of Coulomb repulsion; solid lines: Γ → 0 limit, circles:  
Γ = 0.01 for U = 4.0; all data are obtained for constant E + U/2 = –0.5. Broken lines  

denote the positions of the electrochemical potential in the leads, b) voltage dependence  
of the current, as obtained from HFA for several values of Coulomb repulsion; lines:  

Γ→ 0 limit, circles: Γ = 0.01 for U = 4.0; all data were obtained for constant E + U/2 = –0.5 

In Figure 2a, we present voltage dependences of the SCE levels for the 2-atom 
molecule in the weak coupling limit for E + U/2 = –0.5|t|, whereas in Fig. 2b we show 
the corresponding I–V characteristics. One can see that SCE level pinning (Fig. 2a) is 
accompanied by a linear rise of the current (Fig. 2b) and that the slope of this rise 
generally decreases with increasing U for weak-to-moderate repulsion. For U strong 
enough (U > 2|t| for E + U/2 = –0.5|t|), for which both SCE levels are simultaneously 
pinned (see the fourth diagram in Fig. 1), the current jumps rapidly and then decreases 
with increasing voltage; we call this range the double-incomplete 2-channel (DI2C) 
range. In the high voltage regime, i.e. for the 2C range, the current decreases with the 
voltage, which is due to the strong distortion of the SCE levels by the steep potential 
ramp. 

a) 

b) 
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3. Strongly correlated molecular junctions 

The above discussion of the effects of electron interactions on transport is limited to 
the range of weak-to-intermediate interactions and to low temperatures. In the limit of 
strong on-site repulsion, the electron structure of the molecule (or a collection of coupled 
artificial atoms, like quantum dots) is significantly modified by such interactions [27]. In 
particular, the repulsion leads to an extra splitting of the one-particle peaks in the conduc-
tance spectrum, as is well known from the Coulomb blockade phenomena [22, 28]. 

Previous studies on transport through atomic or molecular junctions in the strongly 
correlated regime have usually been restricted to the weak coupling (i.e. Coulomb 
blockade) regime [28–30], where Γ <<|t|,U. Other studies have used approximations 
in the sequence of the equations of motion for the Green functions, which are difficult 
to control [31–34]. Here, we outline a general approach that allows us to accurately 
reproduce the well-known limiting cases of the non-interacting model (for arbitrary 
values of coupling and temperature) and the strongly correlated limit of the Coulomb 
blockade [28, 29] (for weak coupling and not too low temperature). 

We start from rewriting the molecular Hamiltonian using Hubbard operators [35] 

 MH E Xλ λλ
λ

=∑  (5) 

Eλ denotes the exact eigenvalue of the molecular Hamiltonian (in the presence of an 
external potential generated by the leads). The Hubbard operators are constructed 
using the exact eigenstates of HM, Xµν = |µ > < ν |. The one-particle Green functions 
from Eq. (3) can be written in terms of linear combinations of “mixed” Green func-
tions, redefined in terms of Hubbard operators and single particle operators 

 , ',
'

,jm j m m mG d G G X dσ σ λλ σ λλ σ λλ σ
λλ

λ λ +
′ ′′= =∑  (6) 

The equations of motion for the Green functions defined in Eq. (6) generate 
a chain of higher-order Green functions, e.g.: 

 0( 2) ( )F B B
m k k m

d
X d v X c d

dt λλ σ α µµ ασ σ
+ + +

′ ′ ′→  (7) 

 0B F
k m k k k m

d
X c d v X c c d

dt ασ σ α ςς α σ ασ σ
+ + +

′ ′ ′ ′ ′ ′ ′′ ′→  (8) 

where Bn indicates a boson-like Hubbard operator [36] which reduces the number of elec-
trons in a state by n, F denotes a fermion-like Hubbard operator, which removes a single 
electron from a state, and ckασ is the fermion operator for the state kσ in the lead α. In order 
to close the set of equations, we neglect electron correlations between the molecule and the 
leads and decouple the higher order Green function from Eq. (8) in the following way 

 ,
F F

k k m k k k mX c c d f X dςς α σ ασ σ α σ ασ α ςς σδ+ + +
′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′→  (9) 

where fkα is the Fermi factor. In the case of a one-atom molecule, this approximation 
reduces to the results of Meir et al [37] and correctly describes the limit of the Cou-
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lomb blockade. In the non-interacting limit of the Hubbard model, it reproduces the 
exact results. For finite repulsions U, neglecting lead–molecule correlations is credible 
for temperatures higher than the Kondo temperature. In our numerical computation, we 
evaluated the poles of the Green functions in the high-temperature approximation 
(setting fkα = 1/2), neglecting the Kondo divergences. The residues of the Green func-
tions can be expressed by the averages of boson-like Hubbard operators which were 
computed here in a self-consistent manner using appropriate lesser Green functions. 

0 1 2 3 4 5 6 7 8

V [t/e]
0

1

2

J 
[2

Γe
/h

]

U=0
U=1
U=2

 

0 1 2 3 4 5 6 7 8

V [t/e]
2

3

4

Q

U0=0, Γ=0, exact
U0=2, Γ=0, HFA
U0=4, Γ=0, HFA
U0=1, Γ=1e−2, HO method
U0=2, Γ=1e−2, HO method

 
Fig. 3. Molecular junction with a 2-atom molecule: a) voltage dependence of the current,  

as obtained from the equation of motion method using the Hubbard operators, for several values  
of Coulomb repulsion for Γ = 0.01; all data were obtained for constant E + U/2 = –0.5; 

b) total electron charge as a function of the voltage, as obtained from HFA  
and the equation of motion method with second order decoupling 

In Figure 3a, we present I–V characteristics for a junction with a 2-atom molecule, 
as obtained from the equation of motion approach, for several values of repulsion. 
One can see that the current rises in a step-wise manner with increasing voltage, 
unlike in the HFA computation. The electronic structure of the 2-atom molecule, with 

a) 

b) 
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all intramolecular electron correlations taken exactly into account, is much more com-
plex [27] than the one obtained in the quasiparticle approach. The current steps in 
Fig. 3a reflect electron transitions including all excited states of the 2-atom Hubbard 
molecule. 

In Figure 3b, we show the total electronic charge in the molecule as a function of 
the voltage, as obtained from both the HFA method and the equation of motion. Quan-
titatively, the results of both methods are similar, except for the fact that HFA tends to 
overestimate the value of the charge as compared to the equation of motion approach. 
Again, the HFA method  gives a quasilinear change of the charge with voltage, which 
is consistent with SCE level pinning, whereas in the equation of motion method 
changes of the charge are step-wise. 

4. Final remarks 

We have analysed transport characteristics of a molecular junction including a 2-atom 
molecule, described by the Hubbard model. We compared the results obtained with 
the self-consistent quasiparticle approach (HFA) and equation of motion method, 
where all the intramolecular electron correlations were treated exactly and some lead–
molecule correlations were neglected. While the HFA method showed SCE level pin-
ning, accompanied by a continuous quasi-linear rise of the current for some U-
dependent voltage ranges, the calculation including electron correlations does not 
show this effect. Concerning the charge–voltage characteristics, both methods show a 
suppression of the excess transferred charge Q with increasing repulsion. The ob-
served differences are strongest for weak values of Γ, whereas for strong coupling the 
results of the two approaches are quantitatively and qualitatively more similar. 

More theoretical work is needed to understand the role of the neglected lead 
–molecule correlations. One can expect that the Kondo correlations are important at 
least in the low temperature region and for finite charge transfer from the lead to the 
molecule (Q > 2 for E + U/2 < 0). Since these correlations promote the formation of 
resonance states at the Fermi levels of the leads, a screening of the unpaired spin of 
the molecule may lead to a tendency for correlated level pinning as well. In such a 
case, one might expect the I–V characteristics to be somewhat smoother and a region 
of quasi-linear increase to appear in the current–voltage dependences. 
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Using a scattering technique combined with density-functional theory, a computational study of elec-
tron transport through two recently synthesized molecules is presented. The effect of connecting the 
molecules to gold electrodes is studied by iteratively increasing the number of gold layers, treated self 
-consistently as part of the molecule. 
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1. Introduction 

Molecular electronics, in the sense of electronic devices whose active region con-
sist of a few molecules or even a single molecule, has been proposed at the conceptual 
level for many years [1]. A typical molecular device consists of a metal–molecule 
–metal junction, formed between macroscopic electrodes and a single organic mole-
cule or a monolayer of molecules. To form a reliable molecular junction, a gap of the 
length of the active molecule has to be formed between the electrodes. 

At the moment, various techniques are used to probe the properties of single mole-
cule junctions. These are scanning probe [2], break junctions [3, 4], and electro migra-
tion [5] methods. While these techniques provide convenient laboratory tools for 
probing single molecular junctions, it is unlikely that they will be employed for the 
large-scale production of devices. One possible way forward is to employ longer 
molecules than benzene dithiol or nitroamine, which were measured by Reed et al. 
[3, 4], since longer molecules would impose less stringent requirements on the contact 
lithography. In this paper, we theoretically investigate the equilibrium transport prop-
erties of two such recently synthesized molecules [6] (Fig. 1), which are approxi-
mately 4 nm and 7 nm in length. These structures are soluble fluorenone-based  
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Fig. 1. Two rigid-rod conjugated molecules (A and B) approximately  

4 and 7 nm in length, which have protected terminal thiol groups 

molecular wires, which are suitable for single molecule device fabrication and could 
serve as building blocks in the construction of other molecular wires with precise 
conjugation lengths. 

2. Theoretical method 

One of the most important features in modelling a molecular device is the inter-
face between the molecule and electrode surface. A systematic approach, therefore, 
has to be developed to ensure that the effects of the interface are included as part of 
the calculation. 

 
Fig. 2. Molecule A extended to include the surface of the gold lead 

The structure of a molecule transport calculation can be broken down into three 
parts. The first is the structure of the lead, the second is the molecule, and the third is 
the interface between the surface of the leads and the end of the molecule. A hierar-
chical theoretical consisting of three stages approach is used here to calculate 
transport through a molecule contacted between two semi-infinite leads. The first 
stage is calculating the relaxed geometry of the molecule. This, in principle, could be 
achieved using any first principles quantum chemistry code. Here we use the density 
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functional theory code SIESTA [7], combined with a super cell approach. We use the 
local density approximation as parameterised by Perdue and Zinger [8], non-local 
norm-conserving pseudopotentials [9], and valence electrons described by a single 
-zeta basis set. This stage of the calculation also gives useful information about the 
energetics of the isolated molecule. 

One of the main problems in such calculations is correctly modelling the contact 
region between the molecule and the two leads. Both of the molecules studied here 
have terminal protected thiol groups, which are known to bond well with gold elec-
trodes. In these calculations, the contact region consists of three gold atoms arranged 
in an equilateral triangle, to which the sulphur atom covalently bonds. To accurately 
determine the bonding between the surface of the gold lead and the end of the mole-
cule self consistently, the molecule is extended to include several layers of the gold 
leads at each of its ends (Fig. 2). One unknown with these new molecules is the opti-
mal distance between the sulphur atom and the surface of the lead. It is found by 
minimization with respect to the total energy. This parameter is varied for one of 
these molecules, so as to investigate the effect of changing the coupling strength. 

Once the relaxed structure has been calculated, the tight binding Hamiltonian for 
this extended molecule and contacts can be extracted using the SIESTA code. The 
final stage in the approach is to utilize this material-specific Hamiltonian in a trans-
port calculation, using single electron, scattering codes [10] developed at Lancaster. 
This technique determines the quantum-mechanical scattering matrix of a phase co-
herent region connected to ideal external reservoirs. At zero temperature, the zero-
bias conductance is given by the Landauer–Büttiker [11] formula 

( ) ( )
22

= F

e
G E T E

h
 

where T(EF) is the total transmission coefficient evaluated at an energy of E = EF. 
In what follows, the contact region of the extended molecule consists of triangular 

layers of three gold atoms, with triangular leads whose cross-section also contains 
a triangle of three gold atoms (Fig. 2). This allows for a simple continuation between 
the semi-infinite leads and the ends of the molecule. Our results clearly demonstrate 
that a non self-consistent treatment of the contacts can yield erroneous results for 
T(E). By increasing the number of gold atoms that are self-consistently included as 
a part of the molecule contacts, however, the conductance across the molecule is 
found to converge, due to the fact that charge transfer effects at the gold-molecule 
interface decay over a small number of slices into the bulk gold lead. 

3. Results 

The first molecule, A, that we investigate is shown in Fig. 1. After computing the 
optimal geometry of its structure, its length was found to be approximately 36.93 Å. 
This is in good agreement with a S–S length of 37.4 Å determined by X-ray diffrac-
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tion [6]. The iterative process of increasing the number of gold atoms in the contact 
region, until transmission through the molecule converges, can be seen in Figs. 3a and b. 
In Figure 3a, transmission through molecules containing 2, 3, and 4 layers in the con-
tact region is shown, and while there are small differences in most of the transmission 
peaks, there is a large difference in the magnitude of the HOMO peak. Figure 3b 
shows that transmission through 5 layers is identical to transmission through 6 layers. 
Therefore, transmission through the molecule in this case has converged after includ-
ing 5 layers of gold. 

  

  

Fig. 3. Transport through molecule A for a contact region of: 2, 3, and 4 slices (a),  
and 5 and 6 slices (b). Transmission through molecule A with methyl replacing side groups  
and 6 slices of self-consistently treated gold (c). Variation in the Au–S contact distance (d) 

A closer inspection of the zero bias conductance computed for molecule A 
(Fig. 3b) shows that it has resonant peaks on each side of the Fermi energy (0 eV) and 
shows a conducting gap of approximately 0.8 eV. This behaviour is typical of trans-
port through a system with discrete energy levels and weakly connected to external 
reservoirs. To show this more clearly, the energy levels of the isolated molecule, pre-
dicted using SIESTA, are represented by the small triangles in Fig. 3b. Conductance 
shows a resonance peak for the HOMO (Highest Occupied Molecular Orbital) level at 
approximately 0.32 eV below the Fermi energy, and the LUMO (Lowest Unoccupied 
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Molecular Orbital) peak is 0.48 eV above the Fermi energy. Therefore, this predicts 
a conducting gap of approximately 0.8 eV, which is smaller than the predicted gap of 
the isolated molecule (SIESTA energy levels show a gap of 1.1 eV). One of the rea-
sons for this is the interaction between the molecule and gold leads, which causes the 
molecular levels to broaden and shift. 

Both of the molecules studied here contain complex side groups (Fig. 1), mainly to 
aid the solubility of these long structures. These groups, however, greatly increase the 
number of atoms in the molecule. In the case of longer molecules such as B, this will 
cause the computation time to increase significantly. These side groups can be re-
placed by methyl without altering the electronic properties of the molecule, 
simplifying the structure of a long molecular wire. The transmission plot for molecule 
A with methyl replacing the original side groups is shown in Fig. 3c, showing identi-
cal positions for the resonant peaks and only a slight change in the magnitude of the 
HOMO peak. Therefore, in dealing with the second molecule B, we further consider 
only the structure with the original side groups replaced by methyl. For this structure, 
such a substitution reduces the number of atoms in the molecule by 120. 

As mentioned previously, the sulphur-gold distance at the lead surface is an un-
known parameter, found by minimising the total energy with respect to this distance. 
In the case of molecule A, this was found to be 2.1Å. Figure 3d shows the effect that 
altering this distance has on the LUMO resonance in the transmission. Due to symme-
try, a weakening of the coupling strength causes the width of the transmission reso-
nances to decrease, and causes no change in the magnitude of the transmission peak. 
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The second molecule, B (Fig. 1), is much longer than molecule A and is partly formed 
by doubling molecule A. An interesting feature of this molecule is that it has various 
metastable configurations and, depending on the initial orientation of various parts of the 
molecule, its length can vary between approximately 68 Å and 74 Å. Using the configura-
tion predicted to be the most stable (i.e., minimises the energy), SIESTA predicts a S–S 
length of 72.3 Å. The geometry of this structure can be seen in Fig. 4a. Therefore, this 
molecule would allow the electrode gap to be increased to approximately 7.5 nm. 

The computed transmission through this structure can be seen in Fig. 4b, along 
with the energy levels predicted by SIESTA for the isolated molecule. In this case, the 
HOMO peak is positioned at approximately –0.7 eV, and there are three peaks close 
together at the LUMO level, at approximately 0.4 eV. Therefore, for this much longer 
molecule, formed by effectively doubling the size of molecule A, the conducting gap 
has increased to approximately 1.1 eV. This is comparable to the gap of the molecule, 
which SIESTA predicts to be 1 eV. 

4. Conclusions 

A hierarchical, theoretical approach has been employed to calculate the transport 
properties of recently synthesized molecular wires, whose relatively long lengths offer 
the technical advantage of increasing the electrode gap. A method has been described 
and implemented to accurately include the effect of the molecule-lead interface in the 
calculations. In the present paper, we have confined our calculations to the transmis-
sion coefficient T(E) and stable molecular geometries. In order to build a single mole-
cule device that could perform some basic electronic function, an understanding of 
finite bias effects is also required. The calculations presented here provide a starting 
point to understanding such effects, which may take the form of charge or conforma-
tion changes in the molecule. 

References 

[1] AVIRAM A., RATNER M.A., Chem. Phys. Lett., 29 (1974), 277. 
[2] GITTENS D., BETHELL D., SCHIFFRIN D., NICHOLS R., Nature, 408 (2000), 67. 
[3] REED M., ZHOU C., MULLER C., BURGIN P., TOUR J., Science, 278 (1997), 252. 
[4] CHEN J., REED M.A., RAWLETT A.M., TOUR J.M., Science, 286 (1999), 1550. 
[5] PARK H., LIM A., ALIVISATOS A., PARK J., MCEUEN P., Appl, Phys, Lett., 75 (1999), 301. 
[6] WANG C., BATSANOV A., BRYCE M., SAGE I., Org. Lett., 6 (2004), 2181. 
[7] SOLER J.M., ARTACHO E., GALE J.D., GARCÍA A., JUNQUERA J., ORDEJÓN P., SÁNCHEZ-PORTAL D., 

J. Phys.: Condens. Matter, 14 (2002), 2745. 
[8] PERDEW J.P., ZUNGER A., Phys. Rev. B, 23 (1981), 5048. 
[9] TROULLIER N., MARTIN J.L., Phys. Rev. B, 43 (1991), 1993. 

[10] SANVITO S., LAMBERT C.J., JEFFERSON J., BRATKOVSKY A., Phys. Rev. B, 59 (1999), 11936. 
[11]  BUTTIKER M., IMRY Y., LANDAUER R., PINHAS S., Phys. Rev. B, 31 (1985), 6207. 

Received 14 September 2004 
Revised 3 October 2004 

 



Materials Science-Poland, Vol. 22, No. 4, 2004 

Spin-dependent transport through a double dot system 

S. LIPIŃSKI
*, B.R. BUŁKA , D. KRYCHOWSKI 

Institute of Molecular Physics, Polish Academy of Sciences,  
ul. M. Smoluchowskiego17, 60-179 Poznań, Poland 

The coherent transport through a set of two capacitively coupled quantum dots placed in a magnetic 
field and coupled to ferromagnetic electrodes is considered in the limit of infinite intra- and interdot 
interactions. The densities of states are calculated in an approximation that favours separate fluctuations 
of spin, orbital isospin, and simultaneous fluctuations of both of them. Apart from the Kondo peak, 
satellite many-body peaks are also found in the densities of states. Their positions and weights depend on 
the magnetic field and polarization of electrodes. This is reflected in the spin dependence of conductance 
remarkably varying for the voltage bias corresponding to the peak positions. 
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1. Introduction 

There is currently much interest in understanding spin-dependent electron trans-
port in nanostructures. Spin-based devices hold promises for future applications in 
conventional [1] as well as quantum computer hardware [2]. Recent interest in ma-
nipulating spins in nanostructures is based on the ability to control and maintain spin 
coherence over practical length and time scales. In nanoscopic dots, the charging en-
ergy plays a dominant role and correlation effects are of importance. At low tempera-
tures and strong coupling Γ between the dot and the leads (kBT << Γ), quantum fluc-
tuations in the charge and spin degrees of freedom strongly affect transport through 
the dot. Spin fluctuations lead to the Kondo effect, which has been verified by many 
experiments on single dots [3]. Recently, the Kondo effect has also been observed in 
double dot structures [4]. The Kondo effect has two possible sources in coupled quan-
tum dots (DQD): spin and “orbital” degeneracies. The large number of tunable pa-
rameters in DQD systems allows delicate manipulation of the Kondo physics. An 

_________  
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interesting issue is how the Kondo physics is affected by the polarization of elec-
trodes. The attachment of ferromagnetic leads to carbon nanotubes has been reported 
[5], and carbon–nanotube QDs have been shown to display the Kondo physics below 
an unusually high temperature [6]. Other possible realizations of magnetic nanostruc-
tures are spin-polarized STMs and magnetic tunnel junctions with magnetic impurities 
in the barrier [7, 8]. 

Motivated by these experiments, we discuss in the present paper a spin-dependent 
transport within a simple model of a double dot system (DQD). It is assumed that the 
dots are capacitively coupled and that magnetic electrodes are attached to them. The 
aim of our work is to discuss the influence of the magnetic field and polarization of 
the leads on the many-body structure of the density of states and on the spin depend-
ence of conductance. 

2. Model 

We discuss a system of two capacitively coupled quantum dots placed in a mag-
netic field. Each dot is connected to separate pairs of ferromagnetic electrodes. The 
system is modelled by the two-dot Anderson Hamiltonian with a single level at each 
dot and an additional term for interdot interaction 

1 2 '
'

( . )kri kri kri i i i i i i ri kri i
kri i i kri

H c c c c U n n U n n t c c h cσ σ σ σ σ σ σ σ σ σ
σ σ σσ σ
ε ε+ + +

+ −= + + + + +∑ ∑ ∑ ∑ ∑  (1) 

where i numbers the dots (i = 1, 2), and leads being labelled (i, r) (r = L, R). εiσ = εi + σh, 
σ = ±1 (we set |e| = g = µB = kB = 1). The first term describes electrons in the electrodes, the 
second represents the field-dependent site energies, the third and fourth account for intra 
and intercoulomb interactions, and the last one describes the tunnelling. 

The ferromagnetism of the leads is accounted for by different densities of states 
for up and down-spin electrons. The wide-band limit is used, with the densities of 
states of the electrons in the leads assumed constant, ρiσ = 1/2Diσ , where ε < Diσ, 
and Diσ is half of the bandwidth. 

For simplicity, we restrict ourselves to the case of identical dots (εi ≡ ε0), identical 
electrodes, and equal couplings to the dots, i.e. tri ≡ t. The bare Green’s functions of the 
electrodes 

grσ = 
1

kr
k k kr

g gσ
σω ε

= ≡
−∑ ∑  

 are taken in the form g = –iπρ0. Consequently, the elastic couplings to the electrodes 
are independent of energy: Γirσ (ω) = 2πt2ρ0 ≡ Γσ. One can define the spin polarization 
of the electrodes as p = (Γ↑ – Γ↓ )/ (Γ↑ + Γ↓ ). 

Within the Keldysh formalism, the current in the DQD, I = i
i

I σ
σ
∑  [9], has the 

form 
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where ρiσ(ω) = (–1/π)Im ( ),r
iGσ ω  and fir are the Fermi distribution functions of the 

electrodes. The current, the distribution functions, and Green’s functions are also 
functions of temperature, field, polarization, and voltage bias. Spin-resolved, non 
-linear conductance can be calculated from Eq. (2) by a numerical derivative 

Ğσ(V) ≡ 
I

V
σ∂

∂
, Iσ = I1σ + I2σ. 

For strong interactions, (U1, U2, U) → ∞, and a deep dot level (–εiσ >> Γ ), retarded 
Green’s function can be approximated by the following multipole expression 

 
1

0 ,

1 1
( )

3 ( )
r
i

l i i l

n
G Ω

σ
Ω σ σ

ω
ω ε Σ Σ ω∈

−=
− − −∑   (3) 

where 0Σ  = –iΓ is the self-energy for the noninteracting QD due to tunnelling of the 

iσ electron, Ω is a set of quantum numbers labelling the virtual intermediate states in 
the tunnelling, and nΩ denotes the average total occupation of these states. 

Ω ={( i σ),(i,–σ),( ,i –σ)}, nΩ  = l
l

n
Ω∈
∑ , and { 1

,i lσ∑ } denotes the correlation parts of 

the self-energy (1 = 2, 2= 1). Expression (3) is a simple generalization of the single 
dot formula of Meier et al. [9] to the DQD system case, derived by the equation of 
motion (EOM) technique with the decoupling procedure for higher order Green’s 
functions, which neglect correlations in the leads. Formulae (3) and (4) correspond to 
the approximation that separately takes into account isospin fluctuations, spin fluctua-
tions, and fluctuations in strongly coupled spin and isospin 

 ,1 2
,

,

( )L R ki
i i

k L R i i ki i

f
t

i
σ

σ σ
σ σ σ σ

ε
ω ε ε ε δ

′ ′
′ ′

∈ ′ ′ ′ ′ ′

=
− + − +∑ ∑   (4) 

δiσ describes decoherence due to a finite voltage bias or field-induced level splitting. 
An estimate of the lifetime can be obtained from perturbation theory [9]. 

The first sequence of correlated tunnelling, represented by 1
, ,i iσ σ∑ ccurs through 

the intermediate virtual states of the same spin but from a different dot. They induce 
fluctuations in single dot occupations (the orbital isospin flips). As a result, the orbital 
Kondo resonances are built up for each spin channel. The second type of tunnelling 
process, 1 1

, - , -
,i i i iσ σ σ σ=∑ ∑  links the non-degenerate states and causes the singularity 

of self-energy in regions separated from the Fermi level by Zeeman splitting. In the 
limit of vanishing magnetic field, they correspond to the spin Kondo effect and to 
simultaneous fluctuations in spin and isospin. The neglected processes which mix the 
above-mentioned three types of fluctuations are of special importance for systems 
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close to full fourfold spin-orbital degeneracy. Their role is under investigation by 
a more careful treatment of EOM equations, and the results will be published else-
where. 

3. Numerical results 

We present numerical results for the deep Kondo limit ε0 = –4Γ. Γ = Γ↑ is taken as 
the energy unit. The bandwidth of the leads is taken as D↑ = 50Γ. We do not discuss 
any decoherence effects, and the calculations were performed with δ = δiσ = 10–4. 

 
Fig. 1. Total density of states of a capacitively coupled double quantum dot 

in a magnetic field h = 0.03 and for a polarization of the leads p = 0.05,  
calculated for the bare dot energy ε0 = –4. Spin up is represented  
by the solid line and spin down by the dotted line. Inset (a) shows  

the many-body structure for zero bias voltage, V = 0, and inset (b) for V = 0.02 

In Figure 1, we plot the spin-dependent DOS of DQD for a finite magnetic field, 
a small polarization of the leads, and vanishing voltage bias. The broad charge fluc-
tuation peak is split by the field. The widths of the spin-dependent peaks are slightly 
different, which is a consequence of the polarization-introduced difference in the tun-
nelling rates Γσ. Also, a shift of the centre of mass of the charge fluctuation peak is 
observed reflecting the renormalization of the dot levels by spin and orbital isospin 
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fluctuations. The triple-peak many-body structure is seen close to the Fermi level. 
A similar result was reported earlier by Pohjola et al., who performed the calculations 
within the resonant-tunnelling approximation [10]. 

For clarity, we also show the curves of DOS in a narrower energy region in the in-
set. Both spins contribute to the central peak (orbital isospin fluctuations). The satel-
lite peaks, located roughly in the positions ± 2h, are characterized by different spin 
polarizations. This property should manifest itself in the spin dependence of boson 
-assisted tunnelling but the possible experimental observation can be masked by de-
coherence. Inset b) shows the many-body structure of DOS for finite V. The source 
-drain voltage causes the peaks to split. 

For V ≈ ± 2h, the satellite peaks of opposite spin polarization enter the energy re-
gion between the Fermi levels of the leads from opposite sides, and consequently 
peaks in the differential conductance build up. This is illustrated in Fig. 2. The fact 
that the positions of the non-linear conductance peaks are determined by the strength 
of the field can be used for measuring the field. 

 
Fig. 2. Differential conductance vs. applied bias for spin up (solid line) and spin down (dotted line).  

A magnetic field h = 0.03 and an electrode polarization  p = 0.05 were chosen 

In the following pictures, we discuss the spin dependence of conductance by pre-
senting its polarization, defined as Pcon ≡ (Ğ↑ – Ğ↓)/(Ğ↑ + Ğ↓). Figure 3a presents the 
polarization of conductance for a fixed magnetic field and three different polariza-
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tions of the leads. Similar dependencies but for a fixed polarization of the electrodes 
and different fields are shown in Fig. 3b.  

 

 
Fig. 3. The polarization of differential conductance vs. applied bias for: a) a magnetic field h = 0.03  

and three different electrode polarizations, b) p = 0.05 and three different values of the magnetic field 
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Remarkable changes in the spin polarization of conductance are observed for volt-
ages determined by the peak positions (eV ≈ 0 and eV ≈ ± 2h). They reflect the spin 
asymmetry of the density of states, which increases with increasing  field or polariza-
tion. Apart from the intensity differences (see, e.g., inset b) of Fig. 1), the positions of 
 

 
Fig. 4. Polarization of conductance for a magnetic field h = 0.03  

and three different electrode polarizations for small bias 
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Fig. 5. Densities of states for spin up (solid line) and spin down (dotted line)  
for: a) p = 0, b) p = 0.05 in the narrow energy region close to the Fermi level 

the corresponding peaks with opposite spin orientations also differ slightly. The latter 
effect is only weakly reflected in Fig. 3; its traces are seen in the narrow oscillations 
of some curves near the satellite peaks. The many-body peaks are very narrow and the 
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mentioned shift of the peaks is small. The results in Fig. 3 are presented for a voltage 
step of ∆V = 10–3. To get a more detailed insight into the mentioned subtle effect, we 
focus in the following exclusively on the narrow voltage region V < 2·10–4, presenting 
these curves with the voltage steps of ∆V = 10–5. Figure 4a shows polarization of con-
ductance for h = 0.03 for unpolarised leads (p = 0) and for two small values of polariza-
tions. Figure 4b presents analogous curves but for a reversed field at the dot. For p = 0, 
the curve is a mirror reflection of the corresponding curve from Fig. 4a. For a finite po-
larization of the leads, the consequence of changing the relative orientation of the field 
and polarization in the leads from antiparallel (Fig. 4a) to parallel (Fig. 4b) is visible. To 
understand the presented spin dependencies, in Fig. 5 we show the evolution of the DOS 
with the lead polarization for the relevant energy region. The oscillations in the polariza-
tion of conductance observed for voltages close to V = 0 reflect the polarization-induced 
separation of opposite spin peaks located in the vicinity of the Fermi level. The ap-
proach adopted in this paper is rather crude, hence the results obtained, describing subtle 
effects, should be taken with some caution. Only a qualitative agreement can be ex-
pected, moreover, the effects mentioned can be easily masked by temperature. 

4. Conclusions 

We have studied spin-dependent electronic transport through a capacitively cou-
pled double quantum dot placed in a magnetic field and attached to a ferromagnetic 
lead. The influence of the field and polarization of electrodes was examined. Apart 
from the central Kondo peak, two satellite peaks below and above the Fermi level are 
observed in the many-body structure of DOSs. The satellite peaks are characterized by 
different spin polarizations. The field and polarization of electrodes introduce weak 
asymmetry in the weights and positions of the peaks, which rises when the field or 
polarization is increased or when moving towards the mixed valence range. This re-
flects strong variation of the polarization of conductance in the vicinity of many body 
resonances, where even a change in the sign of polarization is observed. The purpose 
of this paper was to obtain only a preliminary, very crude picture of possible influence 
of external magnetic field on the polarization of conductance in DQDs. More ad-
vanced considerations of this problem are under way. 
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Effective exchange interaction in tunnelling junctions 
based on a quantum dot  

with non-collinear magnetic moments of the leads 
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* 

Department of Physics, Mesoscopic Physics Division, Adam Mickiewicz University,  
Umultowska 85, 61-614 Poznań, Poland 

Electron tunnelling through a spin-split discrete level of an interacting quantum dot coupled to two 
ferromagnetic electrodes (leads) is investigated theoretically in the sequential-tunnelling regime. Spin-
splitting of the dot level is induced by an effective exchange interaction between the spin on the dot and 
spins in the leads. The calculations apply to arbitrary angles enclosed between the magnetizations of the 
external electrodes. It is shown that the interplay between effective exchange field and Coulomb correla-
tions on the dot may enhance the tunnel magnetoresistance at certain bias voltages. It is also found that 
a large spin splitting appearing for strong Coulomb correlations gives rise to an enhanced diode-like 
effect. Finally, it is shown that by rotating the magnetization of one of the electrodes, one can modulate 
the amplitude of the spin-polarized current, from a blockade in the parallel or antiparallel configuration to 
its maximum value in the non-collinear case. 

Key words: quantum dot; tunnelling; spin-valve effect; spin-polarized transport 

1. Introduction 

Extensive studies on spin-polarized transport phenomena in microelectronic de-
vices have contributed recently to progress in fabricating extremely small transistors, 
consisting of metallic grains or semiconductor quantum dots (QD) coupled through 
tunnel barriers to external electrodes [1, 2]. In this paper, we consider sequential elec-
tron tunnelling through an atomic spacer coupled to two ferromagnetic leads with 
magnetic moments polarized at an arbitrary angle Θ with respect to each other. The 
atomic spacer is assumed to be an interacting QD with a single discrete level, which is 
spin-split due to effective exchange interaction between the spin on the dot and spins 

_________  
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in the electrodes. It is shown that the interplay of Coulomb correlations on the dot and 
the effective molecular field can significantly enhance tunnel magnetoresistance 
(TMR) in systems with non-collinearly polarized external source and drain ferromag-
netic electrodes. Moreover, a previous analysis [3, 4] of the diode effect, predicted for 
collinear magnetic configurations in a device with one electrode being half metallic, is 
extended by taking into account modifications due to non-collinear magnetic states as 
well as due to the effective field. Therefore, an enhancement of the diode-like behav-
iour in a junction with collinearly aligned lead magnetizations is found. In turn, by 
presenting the angular dependencies of the transport characteristics, we show that 
a suppression of the diode effect occurs in non-collinear configurations. 

2. Model 

In the model Hamiltonian of the system, the left and right ferromagnetic electrodes 
are taken in the non-interacting quasi-particle limit. The term corresponding to the dot 
includes a single-particle energy level εd and the Coulomb correlation described by the 
parameter U. The spin eigenstates of the dot are denoted by σ  = ↑ for spin-up electrons 
and σ = ↓ for spin-down electrons. In turn, the tunnelling part describes spin-dependent 
tunnelling processes through the left and right barrier. Since the magnetic moments of 
the external electrodes form an arbitrary angle Θ, the tunnelling terms of the model 
Hamiltonian are written in the corresponding local reference frames, where the tun-
nelling matrices are diagonal in the spin space. The spin asymmetry of the tunnelling 
rates across the left (l) and right (r) barriers, lΓ ±  = Γ0(1 ± pl) and rΓ ±  = αΓ0(1 ± pr)  
(+ and – denote majority and minority electrons, respectively), is described by the 
parameters pl and pr. We also introduce a parameter Γ0, which is the value of the tun-
nelling rate ,l rΓ ±  at pl,r = 0, and α, which determines the ratio of the tunnelling matrix 

elements through the right and left barriers. Finally, the electrostatic potential of the 
dot is assumed to be an average value of the electrostatic potentials of the electrodes. 

The transport properties of the system will be described in the sequential tunnel-
ling regime. In order to calculate the current–voltage characteristics in a stationary 
state, we have generalized the master equation method [5]. The master equation al-
lows the occupation numbers for the dot to be obtained, which in turn can be used to 
calculate the tunnelling current J(Θ) for arbitrary magnetic configurations Θ. The 
corresponding TMR has been defined qualitatively as TMR = [JP – J(Θ)]/J(Θ), with 
JP denoting the electric current for the parallel (Θ = 0) configuration. The bias varia-
tions of transport characteristics in the non-equilibrium situation are governed by the 
bias voltage (Vt) dependencies of the effective exchange interaction between the dot 
spin and spin of electrons in the external magnetic leads. To determine the exchange 
interaction energy, Eeff, we adopted the second-order perturbation theory, developed 
for the Anderson Hamiltonian [6]. The explicit formula for Eeff is given by 
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where the symbol Ψ(z) is the digamma function, and µl,r denotes the chemical poten-
tial of the left or right electrode. Using Eqs. (1) and (2), one finally obtains the ener-
gies of the spin-split discrete level, εd↓(↑) = εd ±Eeff /2. The external magnetic leads are 
thus considered as the source of mean fields which influence the tunnelling processes 
through the QD spin channels εdσ and εdσ + U. 

3. Numerical results 

Consider first non-linear transport through a symmetrical junction, assuming an 
empty level at equilibrium, εd > 0. In Figure 1a we show the bias dependence of the 
difference between the energies of the dot spin channels εd↓ and εd↑, plotted for se-
lected Θ angles. A maximum of spin-splitting appears at a threshold voltage, for 
which either the level εd or εd + U crosses the Fermi level of the source electrode. For 
voltages below the first peak in Fig. 1a, the discrete level of the dot lies above the 
Fermi level of the source electrode and the sequential tunnelling processes are expo-
nentially suppressed. For voltages between the maxima, QD may be singly occupied. 
Finally, above the second threshold voltage two electrons may reside on the dot. 
A minimum in Fig. 1a is observed at the bias voltage for which a reorientation of the 
effective field occurs, relative to the spin quantization axes of the magnetic electrodes. 
The latter feature originates from bias-dependent dot–lead exchange interactions. In 
non-collinear cases, the interplay between these interactions and Coulomb correlations 
on the dot may lead to a negative differential conductance in the bias range between the 
threshold voltages, as is clearly seen in Fig. 1b (the curve for Θ = π/2).  

Since in this voltage range the dot is singly occupied, then in a non-collinear con-
figuration one may observe an increased accumulation of the average spin component 
<Sz> on the dot. This is due to the fact that the mean field tends to align parallel rela-
tive to the magnetization of the source lead with increasing bias, and thus the number 
of spin states available for an electron residing on the dot in the local reference sys-
tem of the drain electrode effectively diminishes. Consequently, as displayed in 
Fig. 1c, a significant enhancement of the corresponding TMR may be observed be-
tween the two threshold voltages. This is the case until the probability of occupying 
the level εd + U starts to increase at a certain bias voltage. When εd + U crosses the 
Fermi level of the source lead, both tunnelling channels become active, the spin-
polarized current increases relatively quickly and finally saturates at a certain level. 
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Fig. 1. Bias dependence of the difference between 
the energies εd↓ and εd↑ (a), tunnelling current (b), 
and the corresponding TMR (c) for the indicated 

angles Θ. The parameters are: εd = 0.1 eV,  
pl = pr = 0.5, U = 0.4 eV, α = 1, and T = 100 K 

Now consider the situation when the drain electrode (the right one) is half metal-
lic, whereas the source electrode is an ordinary 3D ferromagnet, like Co or Fe. More-
over, assume again that at Vt = 0 one has εd >0, whereas εd + U >> 0, which implies 
that the dot may only be empty or singly occupied. From [3, 4] it is known that in 
collinear configurations such a junction can work as a mesoscopic diode, i.e. the elec-
tric current can flow for one bias polarization, whereas it is suppressed or even 
blocked for the opposite bias polarization. The results for the electric current in the 
considered device with the mean field switched on, and for different angles Θ, are 
shown in Fig. 2. As discussed above, the effective field yields a maximum of discrete 
level spin-splitting at the threshold voltage. The spin-up electrons of energy εd↑, which 
enter the electron window first, may hence tunnel through the QD, giving rise to 
a significant enhancement of the resonant bump that occurs at a positive bias (Vt > 0) 
in the parallel configuration (Θ = 0). This is true until the spin channel εd↓ crosses the 
Fermi level of the source electrode. After that, at voltages above the bump, a blockade 
of the electric current appears, due to the spin-down electron that tunnelled to the dot 
from the source (left) lead. When the magnetic configuration of the junction becomes 
non-collinear, then in general an electron that has tunnelled to the QD has spin with 
both spinor components in the local reference. If only the spin channel εd↑ is active in 
tunnelling, then effectively both leads contain less available spin states for these elec-
trons, and a suppression of the resonant bump occurs.  
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Fig. 2. Bias dependence of the electric current, calculated for the large U limit,  

with the empty state in equilibrium and for the indicated angles Θ.  
The inset shows the angular dependence of the electric current,  

calculated for a bias voltage of Vt = 1 V. The other parameters are:  
εd = 0.25 eV, pl = 0.4, pr = 1, α = 0.1, and T = 100 K 

The same mechanism is also responsible for current suppression in the vicinity of 
the threshold voltage at negative bias (Vt < 0). On the other hand, when both spin 
channels are in the tunnelling window, then for positive voltages above the bump the 
current blockade is lifted. Finally, in the antiparallel case the current is blocked in the 
entire range of positive bias voltages and also in a certain range of negative bias. The 
diode effect presented here for Θ = π is thus more pronounced as compared to the 
previous predictions, evaluated for a system with spin-degenerate discrete levels 
[3, 4]. The inset in Fig. 2 shows in detail how the current varies with the angle Θ at 
selected bias voltages above the resonant bump. From this it evidently follows that 
collinear configurations are important for diode behaviour. Furthermore, the ampli-
tude of the current can be modulated with Θ, from a blockade in collinear configura-
tions to a maximum intensity in the non-collinear case. 

To summarize, we have investigated sequential tunnelling through a spin-split dis-
crete level of an interacting quantum dot coupled to non-collinearly polarized external 
ferromagnetic electrodes. In particular, we have shown that in non-collinear configu-
rations the interplay of the effective exchange field, originating from the external 
electrodes, and Coulomb correlations on the dot may lead to a negative differential 
conductance between the threshold voltages, at which a new transport channel be-
comes open for tunnelling. Moreover, we have found that in systems with a half-
metallic electrode the diode effect is suppressed when the magnetic moments of the 
leads are non-collinear. On the other hand, an interesting enhancement of diode-like 
behaviour is found in the antiparallel configuration. We predict that the latter feature 
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is most significant in junctions with strong Coulomb repulsion between electrons on 
the dot. 
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Formation of the Kondo resonance in two-atom 
molecular systems for various interaction limits 
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We consider a two-atom molecule connected to ferromagnetic leads, in the Kondo transport regime. 
To investigate the Kondo effect in the system, we use the slave–boson mean field approximation 
(SBMFA) techniques. Results are obtained for both the strong interaction limit, in which an infinite 
Coulomb repulsion U1–2 between atoms is assumed, and a finite U1–2 case. The transport is considered in 
the T = 0 and V = 0 equilibrium limit. 

Key words: Kondo resonance; interaction; two-atom molecule 

1. Introduction 

In the last decade, the Kondo resonance has been observed in semiconductor nano- 
devices (quantum dots) [1, 2], and recently also in the molecular nanodevices [3]. Due to 
the different geometry of nanodevices, the Kondo effect observed varies from that for 
doped metals. The minimum at low temperatures is achieved not by the resistivity, but by 
conductance. The mechanism of forming of the resonance is, however, similar. Namely, 
second order processes like co-tunnelling enhance transmission through the system when 
an unpaired spin occurs on the quantum dot or a single molecule. These processes add 
coherently, which results in a correlated many-electron state coupling of the electrons from 
the electrodes and allows current to flow even in the Coulomb blockade regime. 

2. The model and slave–boson techniques 

We focus on non-equilibrium spin-dependent transport phenomena in devices 
based on two-atom molecules attached to para- and ferromagnetic leads. Such a model 
can be a useful tool helping us to understand transport through real systems with bi-partite 
_________  
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molecules, like biphenyl, other similar aromatic-type molecules, or the divanadium mole-
cule [3]. 

 
Fig. 1. Schematic view of a two-atom molecule connected to metallic leads. In the ferromagnetic case, 

it is possible to change the orientation of spin polarization in one of them 

Figure 1 schematically shows a two-atom molecule connected to para- and ferro-
magnetic leads – Au and Co, respectively. The leads in the ferromagnetic system are 
spin-polarized, and one can change the polarization alignment in the system by chang-
ing the polarization orientation in one of the leads. For simplicity, each atom is repre-
sented by a single level. Such a system can be described with the double impurity 
Anderson Hamiltonian: 

 

( )

( )
, 1 2

, , ,

1 1 2 2 , ,
, , , ,

. .

i i j i j i j
i j i j

L kL R kR k k k
k k L R

H t c c U n n

t c c t c c h c c c

σ σ
σ

σ σ σ σ α α σ α σ
σ σ α

ε δ

ε

+
−

+ + +

∈

= + + +

+ + +

∑ ∑

∑ ∑
 (1) 

The first two terms correspond to the two-atom molecule, the first describing the hop-
ping of electrons between atoms and the potential energy εi of electrons on the site i, the 
second one includes the Coulomb interactions of two electrons on different sites, U1–2 be-
ing the Coulomb integral treated as an adjustable parameter. The on-site Coulomb repul-
sion is assumed to be infinite, and thus a double occupancy of the atom is forbidden. 

We use the slave–boson mean field approximation (SBMFA) techniques in our 
calculations to include partially electronic correlations. The Coleman–Barnes repre-
sentation of the auxiliary operators was chosen, as it gives reliable results for the 
paramagnetic case and describes the evolution of the physical quantities properly 
when magnetization appears in the leads. In the SBMFA Coleman–Barnes [4] repre-
sentation, the electron creation operator reads i i ic f eσ σ

+ += , where fiσ
+ is the pseudo-

fermion operator creating an electron at site i with spin σ, and ei is the mean value of 
the boson operator creating an empty state at a site i. The condition 

2 1i i i iQ e f fσ σ
+= + =  limits the action of the auxiliary operators to physical space. This 

constraint enforces an additional term in the Hamiltonian: ( )1i i
i

H H Qλ→ + −∑ , 

where λi is a Lagrange multiplier. The mean field approximation reduces the problem 
to the free electron Anderson model with shifted energies i i iσ σε ε λ= +� , and renormal-

ized hopping parameters it e tα α=�  and :i jt e e t=�  
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To obtain stable solutions for the considered system, one has to find the minima of 
the free energy F by solving a set of self-consistent equations: 

 0, 0
i i

F F

eλ
 ∂ ∂= =∂ ∂

  (3) 

with respect to the parameters ei and λi. The boson part of the free energy reads 

( )2 1b ii
F eλ= −∑ . The fermion part of the free energy can be determined within the 

Green functions techniques: ( ) ( )1 ,2

2
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π

r
fF d f Gα σ σω ω ω
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−∞
 =  ∫ , where ( )fα ω  is 

the Fermi function for the left (α = L) and right (α = R) lead, and the retarded Green 

function reads ( ) ( )( )1 ,2 .r L Rt
G d σ σ

σ σ
σ σ

Γ Γω ω
ω ε ω ε+ −

=
− −∫

� �
�

� �

The coefficients ασΓ�  denote 

renormalized molecule-lead tunnelling rates, and 

 ( )( )2 2
1 2 1 2

1
4

2
tσ σ σ σ σε ε ε ε ε± = + ± − + �

� � � � �   

are the effective energies of the bonding (–) and antibonding (+) levels of the mole-
cule, which are formed in the diagonalisation of the Hamiltonian (2). 

3. Transport in the limit of U1–2 → ∞ 

In the strong interactions limit of U1–2 → ∞, where only a single occupancy of the 
whole molecule is allowed, it is sufficient to use only one slave–boson e and one La-
grange multiplier λ to describe the system. The completeness relation and renormali-
zation then reads: 2 1.i ii

Q e f fσ σ
+= + =∑ Two self-consistent equations (3) can be 

solved using the Green functions techniques: 
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where Γσ = ΓLσ + ΓRσ. The conductance G is determined from: 
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4 rL Re
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h
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Fig. 2. Conductance in a symmetrical junction (a), effective positions of the molecular levels (b),  

and the grey-level plot of the densities of states in the leads. Densities of states in the leads  
are assumed ρ

α
 = 0.294 states/eV, tL = tR = 0.2 eV 
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In Figure 2a, the conductance of the symmetrical junction (tL= tR, ε1 = ε2 ≡ ε0) is shown. 
In the empty state regime, for large positive ε0, G tends to zero. With decreasing ε0, G in-
creases and reaches its maximal theoretical value, 2e2/h, in the Kondo regime. The conduc-
tance behaviour reflects changes in the positions of the effective molecular levels, which 
are presented in Fig. 2b. In the empty state regime, the levels are not renormalized due to 
a lack of electronic correlations in the system. The energy gap is constant in this regime. 
With decreasing ε0, ε±�  approaches the Fermi level (EF = 0). Due to renormalization, ε−�  is 

strongly occupied and stays near EF. The higher, antibonding level ε+�  is still weakly re-
normalized. In the Kondo regime, for ε0 deeply below EF, both levels are strongly renor-
malized and stay near EF. In Figure 2c, a grey-level plot of the densities of states (DOS) of 
the effective molecular levels is presented. In the empty state regime, DOS peaks are sepa-
rate and broad. The energy gap between them is constant. When approaching the Kondo 
resonance regime, the energy gap narrows, and eventually the DOS peaks merge and be-
come extremely narrow and high. 

Fig. 3. Comparison of the conductance (a) in the 
symmetrical junction tL = tR = 0.2 eV, for the cases 
ε1 = ε2 and ε1≠ ε2. A free energy plot (b) for the 
considered cases. The grey line denotes plots 

for the case ε1 = ε2, and the black for ε1≠ ε2. Dotted 
and dashed lines correspond to unstable solutions 

 

A comparison of the conductance in the asymmetrical and symmetrical junction is 
presented in Fig. 3a. For a non-zero gap between the local sites energies, the loop of G 
can be formed, because an unstable solutions appears. The system chooses a solution 
corresponding to the lowest energy. To decide which solution is stable, the total en-
ergy plot is shown in Fig 3b. The energy decreases monotonically with decreasing ε0 
till the unstable regime, where three solutions appear. For very low ε0, the levels are 
no longer renormalized, and the energy is equal to the occupied level energy. In the 
resonance regime, G exhibits a sudden drop to zero. The reason for such behaviour is 
the transport blockade in the system, when ε1 and ε2 are deeply below EF. In such 
a case, the symmetry of the molecule is broken, and the lower level is occupied with 
the whole electron (as the double occupancy is forbidden). In a symmetric case, the 
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electron is distributed equally to the both levels; in the asymmetric case, it prefers the 
lower level. The result is a consequence of the approximation adopted. 

In the ferromagnetic system, DOS in the leads are approximated with constant values 
on the Fermi level: ρ↑ = 0.174 and ρ↓ = 1.735 st./eV [5]. The magnetizations of the leads 
can be aligned parallel (P configuration) or antiparallel (AP configuration). The conduc-
tance in the symmetrical and asymmetrical junctions is shown in Fig. 4a. Unlike in the 
 

 

Fig. 4. Conductance (a) and magnetoresistance (b) 
for the system with ferromagnetic leads.  

Curves (1) denote the symmetric junction ε1 = ε2, 
tL = tR = 0.2 eV; (2) – asymmetric junction  
with ε1–ε2 = 0.1 eV and tL– tR = –0.13 eV; 

(3) – asymmetric junction with ε1–ε2 = 0.1 eV and  
and tL–tR = +0.13 eV. The solid lines in (a) denote 

a parallel (P) alignment of magnetization 
in the leads, and dashed lines an antiparallel  

alignment (AP) 

P configuration, G does not reach a value of 2e2/h in the AP configuration due to 
lower contact efficiencies. For the asymmetric case, loops of G can be observed in the 
unstable solution regime; in the empty state regime, G tends to zero in all cases. GAP can 
be larger than GP when differences in tα and εi are opposite in sign and minority spin 
transfer is preferred. Magnetoresistance, shown in Fig. 4b, is defined as the relative dif-
ference in conductance between the P and AP configurations, MR = (GP–GAP)/GP. In the 
resonance regime, MR can be positive or negative due to the asymmetry of the junction; 
in the empty state regime, MR tends to the value determined by the Julliere formula for 
the given DOS values, MRJulliere = 2p2/(1+ p2) ≈ 0.55 for all considered cases, where p = 
(ρ↓ – ρ↑)/(ρ↓ + ρ↑) is the magnetic polarization of the leads. 

4. Transport in the finite U1–2 limit 

In the finite U1–2 limit, double occupancy of the molecule is allowed. In such 
a case, we apply two slave–bosons and two Lagrange multipliers to describe the sys-
tem. The completeness and renormalization relations then read: 2 1i i i iQ e f fσ σ

+= + =  

and 1 2 ,t e e t=�

1L Lt e t=� , 2 ,R Rt e t=�  ,i i iσ σε ε λ= +�  i = 1, 2. In this case, the four self- 

consistent equations (3) can only be solved numerically. Conductance G is again de-
termined from (5). We consider only the symmetric paramagnetic junction, as the 
calculations for the asymmetrical junction and ferromagnetic cases are still in pro-
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gress. The conductance for U1–2 ≈ 0 is presented in Fig. 5a. In the empty state regime, 
the conductance is close to zero. With decreasing ε0, G increases. Unlike the strong 
interaction limit, G drops to zero for very low ε0 after attaining the value of 2e2/h near 
the Fermi level EF = 0. Conductance for higher values of U1–2 shows the behaviour 
similar to that of U1–2 ≈ 0; the G peak, however, is broadened and shifted toward lower 
ε0. The positions of the effective molecular levels are shown in Fig. 5b. In the empty 
state regime, the levels behave like in the strong interaction cases. In both 
 

 
Fig. 5. Conductance (a) and positions of the effective molecular levels (b) for the symmetric 

paramagnetic junction in the limit of U1–2 → 0. All parameters are the same as in Fig. 2 

 
Fig. 6. Conductance and total number of electrons for the symmetric junction 

in the case of U1–2 = 0. The dotted line is just a guide for the eye 

cases, when the resonance regime is approached, ε−�  (which is closer to the Fermi 
level) is fully occupied and pushed down below EF due to renormalization between 
the effective levels. Now, the transport takes place only through ε+�  now. A further 

filling of ε+�  renormalizes hopping to the leads, and transport gradually drops to zero. 
In Figure 6, the conductance and number of electrons are shown, proving that the 
resonance and therefore G have maxima of 2e2/h exactly for n = 1. 
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5. Conclusions 

We have analysed the electronic transport in systems of two-atom molecules con-
nected to para- and ferromagnetic leads, including electronic correlations for the 
molecule by applying the SBMFA techniques. The Kondo resonance and finite Cou-
lomb repulsion between sites were observed in systems with a strong interaction limit 
of U1–2 → ∞. We have shown that the resonance is formed when the local atomic lev-
els are deeply below the Fermi level. The conductance can form loops when a differ-
ence in the atomic energy levels appears due to energetically unstable solutions. In the 
magnetic system, conductance for a parallel alignment of the magnetization of the 
leads is larger than for the antiparallel case, due to larger contact efficiencies in the 
symmetric junction. The situation, however, can be reversed in the asymmetric sys-
tem. In the case of a non-zero energy levels gap, unstable solutions appear similarly to 
the paramagnetic case. Depending on the asymmetry of the system, its magnetoresis-
tance positive or negative values in the Kondo regime. 

In the empty state regime, it tends to the Julliere value for all considered cases. For 
finite values of U1–2, the Kondo resonance arises for levels positions corresponding to 
an occupancy of the molecule of n = 1, which can also be observed as a maximum in 
conductance. When the system is occupied by two electrons (n = 2), electronic corre-
lations are irrelevant due to electron–hole symmetry, and the conductance behaviour 
is the same as for the empty state limit (n = 0). 
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Macroscopic description of electronic transport in magnetic layered structures has been extended by 
including effects due to spin-flip scattering at interfaces. Such processes lead to spin-memory losses at the 
interfaces and therefore play a significant role in giant magnetoresistance and spin switching phenomena. 
They also modify distribution of spin currents, electric fields and spin accumulation in the vicinity of 
interfaces. A system consisting of two oppositely magnetized semi-infinite ferromagnets, and the case of 
magnetic/nonmagnetic superlattices in parallel and anti-parallel magnetic configurations are analysed in 
detail. 

Key words: magnetic multilayers; spin accumulation; spin-flip scattering 

1. Introduction 

Since the discovery of the giant magnetoresistance (GMR) effect in magnetic mul-
tilayers, electronic transport in artificially layered structures has been extensively 
studied, both experimentally and theoretically. The GMR effect was first observed in 
the current-in-plane (CIP) geometry [1, 2], but later it was also found for electric cur-
rents flowing perpendicularly to the layers (current-perpendicular-to-plane (CPP) 
geometry) [3]. In the latter case, the effect was even larger. The electronic transport 
along the axis normal to the layers leads to some non-equilibrium phenomena, for 
instance spin-splitting of the chemical potential (spin accumulation) at interfaces. 

One of the theoretical descriptions commonly used to interpret such experimental 
data is the macroscopic description proposed by Valet and Fert [4]. Owing to its sim-
plicity, this description allows basic parameters (for instance spin diffusion lengths) 

_________  
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to be easily extracted from the experimental data on CPP GMR [5, 6]. The macro-
scopic description takes into account spin accumulation at the interfaces and its re-
laxation in the bulk due to spin-flip scattering. However, the description ignores spin-
flip scattering at the very contact between different layers. Some experimental data 
cannot be described properly by this simplified description and one should take into 
account the fact that electrons can partially lose their spin memory when crossing the 
interface between magnetic and nonmagnetic films [7, 8]. This problem is addressed 
in the present paper, where we extend the Valet–Fert model by including the influ-
ence of spin-flip scattering processes at the interfaces. These processes are effectively 
included into the boundary conditions via the corresponding spin-mixing interfacial 
resistance. 

We consider a layered structure and assume that electric current flows along the 
axis z  normal to the interfaces. At the beginning we consider a simplified situation, 
where two semi-infinite ferromagnetic systems are in direct contact at the plane z = 0. 
Then, we analyse a magnetic superlattice, in which magnetic layers are separated by 
nonmagnetic metallic films. In both cases, we neglect interfacial spin-conserving scat-
tering and take into account only spin-flip processes. 

2. Macroscopic description of Fert and Valet 

Starting from the kinetic Boltzmann equation, Valet and Fert [4] showed that 
when the spin diffusion length ls (for both spin orientations) is much longer than the 
corresponding mean free path, electronic transport is well described by the macro-
scopic equations: 

 
2

( ) ( ) ( )s s s

s s

J z z ze

z l

µ µ
σ

−∂ −
=

∂
  (1) 
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( ) s s
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z
J z

e z

σ µ∂=
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where e is the electron charge (e > 0), σs and Js(z) are the conductivity and current density 
for the spin s, respectively, whereas ( ) ( )s s z eV zµ µ= −  is the electrochemical potential. 
As the local spin quantization axis we assume, following Ref. [4], the one determined by 
the local spin polarization (opposite to the local magnetization), with s = ↑ corresponding 
to the spin-majority electrons and s = ↓ corresponding to the spin-minority ones. Spin pro-
jection onto the global quantization axis will be denoted as s = + and s = –. When the local 
and global axes coincide, then s = ↑ (s = ↓) is equivalent to s = + (s = –). 

The above equations may be rewritten in a more suitable form as: 
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  (4) 

where the spin accumulation ∆µ(z) is introduced explicitly via the formula 
( ) ( ) ( )s z z zµ µ ∆µ= ± , and the driving electric field F(z) is determined by the deriva-

tive of the spin-independent part of the electrochemical potential: 
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F z
e z

µ∂=
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  (5) 

Equations (3) and (4) lead to the following two second-order differential equations: 
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z
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where lsf is defined as 2 2 21/ 1/ 1/sfl l l+ −= + . The general solutions of the above equations 

have the form: 

 1 2∆ ( ) exp( / ) exp( / )sf sfz C z l C z lµ = + −   (8) 

 3 4[ ( ) ( )]z z C z Cσ µ σ µ+ + − −+ = +   (9) 
where the constants C1–C4 are to be determined from the appropriate boundary condi-
tions. From the solutions of (8) and (9) one can obtain the general expressions for the 
spin accumulation ∆µ(z), electric field F(z), and current density Js(z) inside each layer 
of any multilayer structure [4]. 

3. Ferromagnetic semi-infinite systems in direct contact 

Consider a structure consisting of two equivalent semi-infinite parts, which are mag-
netized in opposite directions, e.g., the left one is magnetized along the positive axis x 
while the right one along the axis –x. Let the global spin quantization axis coincide with 
the axis x (it also coincides with the local spin quantization axis in the right part) and let 
the interface between the two semi-infinite systems be in the plane z = 0 (axis z is nor-
mal to the interface). It is convenient to introduce the bulk spin asymmetry coefficient β 
by writing the bulk resistivity of the ferromagnetic material in the form [4]: 

 
( ) ( )

1/ 2 (1 )ρ σ ρ β↑ ↓ ↑ ↓= = ∓   (10) 

where ρ↑ and ρ↓ denote bulk resistivities in the spin-majority and spin-minority chan-
nels, respectively, and the upper (lower) sign corresponds to ↑ (↓). 
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Fig. 1. Spin accumulation at the interface between two semi-infinite ferromagnets,  

calculated for ρ = 100 Ω·nm, lsf = 20 nm, β = 0.5, J = 1.5×10–6A/nm2,  
Rsf = 0.5×103 Ω·nm2 (dashed line), and 1/Rsf = 0 (solid line) 

 
Fig. 2. Spin currents at the interface between two semi-infinite ferromagnets, 

calculated for the same situation as in Fig.1 

 
Fig. 3. Electric field at the interface between two semi-infinite ferromagnets,  

calculated for the same situation as in Fig.1. The dashed-dotted line represents the field E0 
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In the limit of vanishing interface resistance and in the absence of spin-flip scatter-
ing at the interface, the solutions for spin accumulation, electric current, and effective 
field have been discussed in Ref. [4], and are presented in Figs. 1, 2, and 3 by solid 
lines. The main objective of this paper is to answer the question how interface spin 
-flip scattering modifies spin accumulation and spin currents. To answer this, we in-
clude interface spin-flip scattering effectively by a certain interfacial spin-mixing 
resistance Rsf per unit square. The interface boundary conditions are then given by the 
following expressions: 

 
1

( 0 ) ( 0 ) ( 0 ) ( 0 )sfR J z J z z z
e
µ µ− + + +

+ + + −   = − = = − = − =      (11) 

 ( 0 ) ( 0 ) 0z zµ µ+ −
+ += − = =   (12) 

 ( 0 ) ( 0 ) 0z zµ µ+ −
− −= − = =   (13) 

Since spin-flip processes allow spin transfer between the two spin channels, the 
spin current density is generally discontinuous across the boundary at z = 0. On the 
other hand, the electrochemical potentials are continuous across the interface in the 
absence of spin-conserving interface scattering. 

Using the general solutions (8) and (9) together with the boundary conditions 
(11)–(13), one can obtain the exact solutions for spin accumulation, electric field, and 
current density in both the left and right parts of the structure. These solutions for the 
left part (z < 0) read: 
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where /(2 )sf sf sfR R l ρ=�  is a dimensionless spin-flip resistance, and J is the charge cur-

rent density. The solutions for the right part (z < 0) are also given by Eqs. (14)–(16), but 
with exp(z/lsf) replaced by exp(–z/lsf), and β replaced by –β in Eqs. (15) and (14). 

As shown in Ref. [4], the interface gives rise to an additional interfacial resistance 
rI due to the spin-bottle-neck effect. The additional voltage drop can be calculated as 

0( ( ) ) ,IV F z E dz
+∞

−∞

= −∫  where 2
0 (1 )E Jρ β= −  is the electric field far away from the 
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interface (see Eq. (16)). This voltage drop can be related via Ohm’s law to the addi-
tional interface resistance, finally yielding: 

 22
1

sf
I sf

sf

R
r l J

R
β ρ=

+

�

�

  (17) 

One should note that the absence of spin-flip processes corresponds to an infinite 
value of Rsf. The resistance rI reduces then to the value 22 ,I sfr l Jβ ρ= derived in Ref. 

[4]. It follows from the above formula that the presence of interfacial spin-flip scatter-
ing reduces the magnitude of rI by a factor of [1 ].sf sfR R+� �  

The influence of interfacial spin-flip scattering on spin accumulation, electric 
current and electric field is shown in Figs. 1, 2, and 3 by dashed lines. Spin accumula-
tion is significantly reduced in comparison to that in the case without spin-flip scatter-
ing (the solid line in Fig. 1). According to Eq. (14), the suppression is described by 
the factor /[1 ].sf sfR R+� �  The same factor also describes the suppression of the addi-

tional electric field, F(z) – E0, near the interface. There is also a visible discontinuity 
of the spin currents at z = 0, ∆Jσ = Jσ(z = 0+) – Jσ(z = 0–), which follows from the pres-
ence of interfacial spin-flip processes (see Fig. 2). This discontinuity is equal to: 

 
1

∆ ∆
1 sf

J J J
R

β+ −= − =
+ �

  (18) 

and disappears in the absence of interfacial spin-flip scattering. 

4. Magnetic/nonmagnetic superlattice structure 

Let us now consider an infinite superlattice structure of nonmagnetic layers alternating 
with ferromagnetic ones. Two configurations are studied in detail – anti-parallel (AP) and 
parallel (P). The magnetic and nonmagnetic layers are characterized by the same parame-
ters as before, but we attach indices F and N to distinguish parameters characterizing fer-
romagnetic (F) material from those describing nonmagnetic (N) material. Accordingly, the 
ferromagnetic layers are characterized by β, ρF, and ,F

sfl  whereas the nonmagnetic ones by 

ρN and .N
sfl  Note that the spin asymmetry vanishes for nonmagnetic layers (the correspond-

ing parameter β is equal to zero), hence ρN = ρ↑/2 = ρ↓/2 (we therefore did not attach the 
index F to the parameter β, as this makes no confusion). 

Taking into account the superlattice periodicity and the boundary conditions (11)–
(13), we calculated numerically the influence of the finite value of Rsf on spin accumula-
tion, spin currents, and the electric field. Figure 4 shows spin accumulation in the AP 
configuration. The solid line there corresponds to the  absence of interface spin-flip 
scattering, whereas the dashed line represents the solution with a finite spin-mixing in-
terface resistance. As previously, the reduction of spin accumulation is clearly visible.  



Spin accumulation and spin currents in magnetic multilayers 

 

543 

 

 
Fig. 4. Spin accumulation in a superlattice composed of magnetic and nonmagnetic metals 
in a antiparallel configuration. The parameters used for the numerical calculations were:  
ρF = 100 Ω·nm, F

sfl = 20 nm, β = 0.5, nm (for the ferromagnetic metal), ρN = 12 Ω·nm,  

and 20 nmN
sfl = (for the nonmagnetic metal). The other parameters were  

J = 1.5×10–6A/nm2, Rsf = 0.5×103 Ω·nm2 (dashed line), and 1/Rsf = 0 (solid line) 

 
Fig. 5. The same as in Fig. 4, but for parallel magnetic configuration 

Spin accumulation for the P configuration is shown in Fig. 5, where again the 
solid (dashed) line corresponds to the case with vanishing (non-vanishing) interface 
spin-flip scattering. The influence of spin-mixing resistance on the spin currents and 
electric field is qualitatively similar to that in the case of two semi-infinite systems in 
direct contact. 

5. Conclusions 

The presence of spin-flip scattering at the interfaces in a multilayer structure sig-
nificantly reduces spin accumulation as well as other features that follow from spin 
accumulation. The suppression of spin accumulation is described by the factor 
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/[1 ].sf sfR R+� �  A finite spin-mixing interfacial resistance Rsf introduces sharp jumps in 

the spin current densities at the interfaces. Spin-memory loss at the interface has 
a significant impact on other transport characteristics, for instance on CPP GMR and 
spin switching phenomena. This is because these two phenomena rely on electron 
spin coherence at distances larger than the thickness of the nonmagnetic films separat-
ing the ferromagnetic ones. The loss of spin coherence at interfaces leads to a sup-
pression of the CPP GMR and also to a suppression of the spin torque due to spin 
transfer. 
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The aim of this report is to investigate electronic properties of a chain of atoms when its translational 
symmetry is broken by a topological disorder. The study uses the inverse participant ratio to obtain in-
formation on the localization of electrons in phase space. 

Key words: disorder; localization; inverse participant ratio; Husimi function 

1. Introduction 

It is well established that electronic processes in low-dimensional systems, such as 
molecular wires, are determined by the quantum phenomena. One of the most intrigu-
ing problems of modern physics is the localization of conduction electrons in low-
dimensional topologically disordered systems  in the presence of various perturba-
tions, such as magnetic field, temperature, spin-orbit scattering or electron–electron 
interaction. Localization in low-dimensional disordered systems has been subject to 
numerous theoretical papers, and we know that all eigenstates in such systems are 
localized by an arbitrary weak disorder [1–3] for uncorrelated random potentials [4]. 
On the other hand, localized states play a key role in the optical and transport proper-
ties of disordered systems. 

In this paper, we use a method based on the phase space representation of quantum 
mechanics [5–8] to investigate localization. We applied this method to non-interacting 
electrons in a molecular wire using a one-electron liquid Kronig–Penney model 
[9, 10] and the Husimi function [11, 12]. The inverse participant ratio in phase space 
is calculated as a function of the disorder parameter for various wire lengths. 

_________  
* Corresponding author, e-mail: woloszyn@novell.ftj.agh.edu.pl. 
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2. Theoretical model 

A one-dimensional wire with topological disorder is described by the liquid 
Kronig–Penney model [9, 10]. We consider the time-independent Schrödinger equa-
tion for a system of non-interacting electrons with effective mass m, moving in a ran-
dom potential V(x), namely 

 ( ) ( ) ( )
2 2

22

d
V x x x

m dx
ψ εψ 

− + = 
 

�
  (1) 

where ε and ħ have their usual meanings. 
In fact, the potential V(x) represents a collection of N elements, e.g. atoms or much 

more complex structures placed in a chain of the length L = xN – x1. The scattering 
potentials are assumed to be well located at random positions xi 

 ( ) ( )
2

0
1

N

i
i

V x F x x
m
δ

=

= −∑
�

 (2) 

where 2
0 0 / ,F mV b= �  and the parameter b is defined as the width of the square inter-

atomic barriers, with V0 being their height. 
In the case of a system originating from a simple regular lattice (one-dimensional crys-

tal), the locations xi of the scattering centres in the chain are determined by the formula 

 ( ) , 1, 2, ..., i ix i r a i Nη= + =  (3) 

Equation (3) includes a random number ri from the range (–1,1); a is the average 
distance between neighbouring sites, and η is a measure of the strength of disorder. 
This choice assures a fully periodic situation for η = 0 and an internal disorder pro-
portional to η when we pass from a perfect lattice to a disordered system. 

The limit of V0 → 0 and b → 0 allows us to define a constant strength of the scat-
tering potential, i.e. V0b = const. Even in the case of a disordered chain we can con-
struct a wave function for electrons that satisfies equation (1) by using the analytical 
expression for the wave function χi(x) inside the i-th square well 

 ( ) ( )cosi i ix C kxχ ϕ= +  (4) 

where Ci is the amplitude, 2 /k mε= � , and ϕi is the phase. 
Joining the solutions (4) found at the consecutive ranges gives the wave function 

ψ(x) which must satisfy the following conditions: 

 ( ) ( )i ix xψ ψ+ −=  (5) 

 ( ) ( ) ( )02
i i

i
x x

d d
x x F x

dx dx
ψ ψ ψ

+ −

− =  (6) 

where the finite discontinuity at the step results from integrating Eq. (1). 
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Knowledge of the exact form of ψ(x) allows us to construct the Husimi function as 
follows 

 ( ) ( ) ( )
2

21 2

2 2

1
, exp

2π 4H

x x
x k dx ikx xρ ψ

σ σ
 ′−  ′ ′ ′= − +  

    
∫  (7) 

where σ2 is chosen as La/π2. 

3. Results and discussion 

In disordered systems, the phase and amplitude of the electronic wave function is 
changed by spatial fluctuations of potentials. In consequence, the envelope of the 
wave function decays exponentially from a localization centre ξ. This means that the 

electronic density ( ) 2

n xψ  will not spread over the entire system, but will remain 

localized around ξ. This result can be described by the expression [15] 

 ( ) ( )expn

x
x A x

ξ
ψ

 −
∝ − 

 �
 (8) 

where A(x) is a randomly varying function describing the fluctuations in the amplitude 
of the wave function ψn(x), and � is the localization length, which can be defined as 

the asymptotic decay length of the envelope. 
For a simple regular lattice, the electronic states can be extended over the whole 

system. As the disorder becomes larger, the localized states get more compressed. 
More information on the compression of the wave function can be extracted from the 
inverse participation ratio. This quantity is defined as the second moment of the elec-
tronic density and is given in real space by the formula 

 ( ) ( ) 4

x n nP E dx xψ= ∫  (9) 

and in momentum space by 

 ( ) ( ) 4

k n nP E dk kφ= ∫  (10) 

where the function φn(k) is the Fourier transform of ψn(x). 
The inverse participant ratio is inversely proportional to the volume of the part of the 

system that contributes effectively to eigenfunction normalization [16]. Our calculations 
indicate that this quantity has a monotonic character and strongly depends on the realiza-
tion of disorder. In real space, the inverse participant number increases with increasing 
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disorder strength. Simultaneously, in momentum space, the inverse participant ratio 
decreases as the strength of disorder increases and we observe a delocalisation of the 
wave function [17]. One of the possible phase space representations of the quantum 
states nφ  is given by the Husimi function ρH, defined as in [11, 12] 

 ( ) 2

0 0, ,H nx k x kρ φ=  (11) 

where 0 0,x k  corresponds to a state whose uncertainty is minimal around x0 and k0 in 

real and momentum space [7], respectively. The implicit form of the Husimi function 
when the Gaussian form [8] for 0 0,x k  is used is given by formula (7). 

 

Fig. 1. The Husimi function for a disorder parameter η = 0, 0.05, 0.4  
and wire length L = 50, 100, 150; kmax = 2π/a 

Figure 1 presents the Husimi functions corresponding to the ground state wave 
functions for some arbitrarily chosen values of disorder and for different numbers of 
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atoms: N = 50, 100, and 150. In all cases, the average distance between neighbouring 
atoms is equal and taken as the unit length for molecular wires. Therefore, the results 
presented in Fig. 1 correspond to the lengths L = 50, 100 and 150. 

We can see that for a medium strength of disorder the Husimi function in phase 
space has the most localized form. Quantitative information on the degree of localiza-
tion of the Husimi function in phase space can be extracted from the phase space in-
verse participant number, which is given by the formula 

 ( )21
,

2πxk HP dxdk x kρ= ∫  (12) 

This quantity represents the effective volume occupied by the Husimi function in 
phase space, in analogy with the inverse participant ratio in real or momentum space. 

 
Fig. 2. The inverse participant ratio Pxk in phase space  
scaled with the chain length for L = 50, 100, and 150 

The dependence of the inverse participant ratio in phase space on the disorder pa-
rameter, as a function of length L, is presented in Fig. 2. For the shortest wires (L = 50), 
we observe a plateau for moderate and strong disorder. In the remaining cases, 
a broad maximum is formed in the limit of weak disorder. The electronic wave func-
tion for such systems is non-vanishing only for a finite number of atoms. All these 
results suggest that we should get a peak corresponding to the most squeezed quantum 
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state in the limit of very long wires. We expect that this hypothesis can be confirmed 
by numerical calculations based on high performance computing. 

4. Numerical procedure 

Each wave function of the ground state  ψ0(x) is calculated from the Schrödinger 
equation for the ground state energy, which has to be determined using the shooting 
method and assuming the boundary conditions 

 ( ) ( )0 00 0x x Lψ ψ= = = =  (13) 

The relations between the median values of the inverse participant ratio and η pa-
rameters presented in Fig. 2 have been calculated for sets of 200 chains by repeating 
this procedure for each chain in our input data. From the numerical point of view, we 
find the Pxk parameters and Husimi functions this way mainly by performing simple 
one- and two-dimensional integrations.  

All results included in this paper have been computed for chains consisting of N = 
50, 100, or 150 sites, with an average inter-atomic distance of a = 1 in all wires. 

5. Conclusion 

In conclusion, we have used a one-dimensional version of the liquid Kronig 
–Penney model to investigate the process of electron localization in molecular wires 
when the strength of disorder η and wire length L are increased. We calculated the 
inverse participant ratio in phase space as one of the possible measures of particle 
localization in disordered media. Additionally, we demonstrate the influence of disor-
der on the ground state of the system, which is represented by the Husimi function in 
phase space. 
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We use a simple formalism to calculate the conductance of any quantum network consisting of sin-
gle-channel one-dimensional quantum wires in the presence of Rashba spin-orbit coupling and a coupling 
magnetic field. We show that the Rashba effect may give rise to an electron localization phenomenon 
similar to the Aharonov–Bohm effect. This localization effect can be attributed to spin precession due to 
the Rashba effect. We present results for linear transport through a finite-size chain connected to leads, 
taking also the effect of disorder into account. The effects of applying a magnetic field and Rashba spin-
orbit coupling are studied in two-dimensional networks, showing that their interplay can lead the system 
to a transition between localized and anti-localized behaviour. 
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1. Introduction 

In the recent years, a new effect of extreme localization in a large class of rhombus 
tiling networks has been discussed [1]. This effect is related to an interplay between 
the Aharonov–Bohm (AB) effect [2] and geometry of the network. Actually, for par-
ticular values of the magnetic field, the set of sites visited by an initially localized 
wave packet is bound by the AB destructive interference. This set of sites is referred 
to as the AB cage. Such a localization does not rely on disorder [3], but only on quan-
tum-interference and on the geometry of the lattice. There have been several theoreti-
cal papers addressing different aspects of AB cages, such as the effect of disorder and 
electron–electron interaction [4], interaction-induced delocalisation [5], and trans-
_________  
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port [6]. From the experimental point of view, the AB-cage effect has been demon-
strated for superconducting [7] and metallic networks [8] in the so-called T3 lattice. 

It is known that the wave function on an electron moving in the presence of spin-
orbit (SO) coupling acquires quantum phases due to the Aharonov–Casher effect  
[9–14]. We focus on the Rashba SO coupling [15, 16], present in semiconductor het-
erostructures due to the lack of inversion symmetry in the growth direction. It is usu-
ally important in small-gap zinc-blende type semiconductors, and its strength can be 
tuned by external gate voltages. This has been demonstrated experimentally by measur-
ing Shubnikov–de Haas oscillations in two-dimensional electron gas (2DEG) [17–19]. 

In the recent letter [20], we have shown that it is possible to obtain a localization 
of the electron wave function by means of the Rashba effect in quantum networks 
with a particular bipartite geometry containing nodes with different coordination 
numbers. This phenomenon has been demonstrated for a linear chain of square loops 
connected at one vertex (Fig. 1), which has been termed the diamond chain. 

 
Fig. 1. Schematic view of the diamond chain 

In this paper, the formalism introduced in our previous work [20] is improved in 
order to take into account the phase factor due to the magnetic field. The mechanism 
of electron localization owing to Rashba an SO coupling is analysed and compared in 
detail with the AB effect. It is shown that electron localization caused by the Rashba 
SO coupling is achieved only in geometrical structures that satisfy particular restric-
tions. Furthermore, we study the effect of applying SO coupling and a magnetic field 
on the transport properties of two different two-dimensional structures, the T3 and 
square networks. One of the main results shown here is that a combination of both 
effects induces the phenomenon of electron anti-localization. 

The paper is organized in the following way. In the Section 2 we introduce a very 
general formalism for studying quantum networks, realized with single-channel quan-
tum wires in the presence of Rashba SO coupling and an external magnetic field. Sec-
tion 3 is devoted to the transport properties of the diamond chain in presence of 
Rashba SO coupling alone. A physical interpretation of the localization phenomena 
due to Rashba SO coupling and a magnetic field is presented in Section 4. Section 5 is 
devoted to two different kinds of two-dimensional quantum networks in presence of 
Rashba SO coupling and a magnetic field. The paper ends with short conclusions of 
the presented results. 
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2. Model and formalism 

We consider a single-channel quantum wire in a generic direction γ̂  in the plane 
(x,y). The system is in the presence of a magnetic field B perpendicular to the plane (x,y) 
and Rashba SO coupling. The Hamiltonian for the single-channel quantum wire is: 

 
( ) ( )

2

SO ˆˆ ( )
2

p qA k
H p qA z V

m m
σ γ

+
 = + × + ⋅ +
 

��
�� � �

 (1) 

where m is the electron mass, A
�

 is the vector potential relative to the magnetic field 

( B A= ∇×
�� �

), kSO is the SO coupling strength and ˆ( )V γ  is the wire confining potential. 
The SO coupling strength kSO is related to the spin precession length LSO by the relation LSO 
= π/kSO. For InAs quantum wells, the spin-precession length ranges from 0.2 to 1 µm  
[17–19]. The wave function on a bond (quantum wire) connecting nodes α and β, in the 
direction ˆαβγ , which takes into account SO coupling and the magnetic field, is 

 
ˆ ˆ( )

ˆ ˆ( )e e
( ) sin ( ) sin( )e e

sin( )

SOr
SO

i z k rif
i z k lifr k l r kr

kl

αβα
αβαβ αβ

σ γ
σ γ

αβ αβ α β
αβ

Ψ Ψ Ψ
× ⋅−

− × ⋅  
 
  

 = − + 

�

�

 (2) 

where k is related to the eigenenergy by ( )2 2 2
SO/ 2 ( )m k kε = −�

*, r is the coordinate 

along the bond, and lα,β is the length of the bond. The spinors Ψα and Ψβ are the val-
ues of the wave function at the nodes α and β, respectively. Spin precession due to the 
Rashba effect is described by the exponentials containing Pauli matrices in Eq. (2). 
The magnetic field contributes through the phase factor of the wave function (2) 

 { }
0

2π
exp exp

r

rif i A dlα αφ,

 
− = − ⋅ 

 
∫

��

 (3) 

where φ0 = h/e is the flux quantum. 
The wave function of the whole network [6, 20, 21] is obtained by imposing the 

continuity of probability current at the nodes. For a generic node α, it reads: 

 0αα α αβ β
α β

Ψ Ψ
< , >

+ =∑M M  (4) 

where 

 
SOˆ ˆ( )

e e
cot    and   

sin

i z k lif

kl
kl

αβαβ αβσ γ

αα αβ αβ
α β αβ

− × ⋅−

< , >

= = −∑M M

�

 (5) 

In Eqs. (4), (5), the sum 
α β< , >
∑  runs over all nodes β connected by bonds tothe  node α. 

_________  

* The term in 2
SOk  can be neglected in realistic situations. 
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3. The one-dimensional case 

The one-dimensional analysis takes into account the case where only SO coupling 
is present, that is the magnetic field is zero (B = 0) [20]. 

 
Fig. 2. Conductance (averaged over kin) as a function of spin-orbit coupling strength 

for the diamond chain (continuous line) and for the ladder (dashed line).  
The two finite-size systems connected to input/output leads  

are shown in the inset. The parameters used for the calculation are:  
50-elementary loops, kin uniformly distributed in [0, π/L]  

In the case of the AB cage, the first experimental verification came from transport 
measurements [7, 8]. To propose a possible experimental verification of the Rashba 
-cage effect, we evaluate the linear conductance of a diamond chain of finite length. 
To show that the localization effect is due to the peculiar bipartite geometry of the 
lattice, containing nodes with different coordination numbers, we contrast the dia-
mond chain with a square ladder, i.e. a chain of square loops connected at two verti-
ces, (the inset of Fig. 2). In the following, we will also refer to the latter topology 
simply as the ladder. The formalism to study the transport properties in the ladder has 
been introduced in the Ref. [20]. 

For a given kin, the conductance has a rich structure, which takes into account the 
complexity of the associated energy spectrum [20]. In particular, on increasing kSO 
gaps open and the energy of the incoming electrons ( 2 2

in in( / 2 )k mε = � ) can enter one 
of these gaps, leading to a vanishing conductance but not to a localization [20]. In 
fact, in this case the insulating behaviour is due to the absence of available states at 
the injection energy and not to the localization of the electron wave function in space. 
This effect is not present in SO in( ) ,G k L k< >  since integration over kin is equivalent to 

an average over energy. The dependence of the average conductance 
inSO( ) kG k L< >  on 

kSO is shown in Fig. 2 for both the diamond chain and the square ladder. The conduc-
tance for both kinds of chains has a minimum for kSOL = π/2, caused by phase differ-
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ences induced by the Rashba effect. Due to the existence of the Rashba cages, how-
ever, this minimum reaches zero only for the diamond chain. 

 
Fig. 3. Conductance (averaged over disorder configurations and over kin) plotted as a function of  

spin-orbit coupling strength for the diamond chain (a) and the ladder (b). The two values of disorder 
strength used in the calculation were: ∆L = 0.01L (solid line) and ∆L = 0.02L (dashed line). Disorder 

averaging is done over 50 configurations, and kin is uniformly distributed in [kF – π/2, kF  +  π/2],  
with kFL = 100. Both systems are composed of 50 elementary loops 

From studies on AB cages, we expect the localization induced by the Rashba ef-
fect to be robust against disorder only in the bipartite structure that contains nodes 
with different coordination numbers (the diamond chain). A disorder that is more 
dangerous for the Rashba-cage effect is random fluctuation in the length of the bonds 
[6, 20], as such length fluctuations induce fluctuations in the phase shifts due to spin 
-precession. Hence, we consider a model where the length of each bond is randomly 
distributed in the interval [L – ∆L, L + ∆L]. The half width of the distribution ∆L 
gives the strength of the disorder. 

In order to clarify if disorder affects the conductance, we average over disorder con-
figurations. This is relevant to experiments, as in a real sample averaging is introduced 
by a finite phase-coherence length. For intermediate values of disorder (kF∆L ≈ 1), we 
find that the Rashba-cage effect is still present for the diamond chain, whereas the 
periodicity in kSO is halved for the ladder, as shown in Fig. 3. The latter result can be 
interpreted as an analogue of the Altshuler–Aharonov–Spivak (AAS) effect [22] in-
duced by the SO coupling. At higher values of disorder, the AAS effect also prevails 
in the diamond chain. 

4. Physical interpretation 

Let us consider the closed path in Fig. 4a, in which the four arms have the same 
length. An electron injected at the point A can reach the point D by moving through 
the upper path or though the lower path. The electron wave function gains a phase 
that depends on the Hamiltonian describing the travelled path. This corresponds to 



D. BERCIOUX et al. 558 

introducing a phase operator Rpq that relates the wave function at the starting point p 
with the its value in the end point q: 

 ( ) ( )pqq R pψ ψ=  (6) 

In this simple picture, the condition for having localization in this closed path is 
that an electron injected at the point A undergoes a destructive interference at D. This 
condition, in the mathematical form, corresponds to 

 ( ) 0,BD AB CD ACR R R R ψ ψ⋅ + ⋅ = ∀  (7) 

 
Fig. 4. Closed path between the points A and D (a). This is parameterised as a function of 

 the angle α. Three-dimensional plot of the transmission probability as a function of the angle α  
between the paths AB and AC and spin-orbit coupling kSOL (b) 

When Rashba SO coupling is present and the magnetic field is zero, the phase op-
erator takes the spin precession into account being of the form 

 ( ) SOˆexp
q

pq p
R i z dl kσ

 
 
 
  

= − ⋅ ×∫
�

�

 (8) 

i.e., this is a spin-dependent operator. From Eq. (7) it is possible to retrieve informa-
tion about the transmission probability through the relation 

 2 †Trt ΓΓ 
 
 

| | =  (9) 

where BD AB CD ACR R R RΓ = ⋅ + ⋅ . In Figure 4b, the behaviour of the transmission 

probability (11) is shown as function of the angle α and of the SO coupling kSOL. It is 
clear that the transmission probability goes to zero if and only if the angle between the 
path is equal to π/2 and SO coupling is equal to π/2. This implies that we can achieve 
a complete localization only in a linear chain of square loops connected at one vertex 
and not in a chain of rhombi. 
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When the magnetic field B is present and Rashba SO coupling is zero, the phase 
operator has the form 

 
0

2π
exp

q

pq p
R i Adl

φ
 

= − 
 

∫
��

 (10) 

This operator is strongly dependent on the path along which the electron travels 
and it does not depend on spin. If we replace this phase operator in Eq. (7), the solu-
tion of the localization problem is given by 

 0
2

1

2 sin( )
B n

L

φ
α

 = + 
 

 (11) 

This equation relates the magnetic field inversely to the area of the closed path and 
tells us that for each area it is possible to apply a magnetic field that induces electron 
localization [2]. 

5. The two-dimensional case 

We now concentrate on a periodic tiling with the hexagonal symmetry, called T3 
(Fig 5a). This is a periodic hexagonal structure with three sites per a unit cell, one 
sixfold coordinated and two threefold coordinated. It is also an example of a two-
dimensional regular bipartite lattice containing nodes with different coordination 
numbers. 

In Figure 5b, the behaviour of the averaged conductance for a finite piece of the T3 
lattice is shown as a function of reduced flux with zero SO coupling and SO coupling 
with zero magnetic field. In the case of the magnetic field, we observe a suppression 
of conductance due to the existence of the AB cage. The value of the averaged con-
ductance minimum is not exactly zero. This is due to the existence of dispersive edge 
states [6], which are able to carry current even for φ/φ0 = 1/2. This value is independ-
ent of the number of injection channels. 

In the case of SO coupling, we do not observe a strong suppression of the aver-
aged conductance as in the case of the magnetic field. A minimum is present, but it is 
due to interference phenomena that do not induce complete localization. Furthermore, 
this minimum cannot be caused by the existence of edge states, because it depends on 
the number of injection channels. 

In Figure 5c, the behaviour of the averaged conductance is shown as function of 
SO coupling with φ/φ0 = 1/2 and the magnetic field with kSOLπ–1 = 0.5. In the first 
case, the averaged conductance starts out from a point of maximum localization due 
to the AB effect, in the second case the averaged conductance starts out from a point 
of maximum localization due to the Rashba SO coupling. The main feature of these 
two curves is that the general behaviour is similar in the case of fixed SO coupling as 
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in the case without it. A well-defined minimum for 0 0 5φ φ/ = .  is still observed. On 

the contrary, in the case of a fixed magnetic field we observe as the SO coupling sup-
press the destructive interference due to the AB effect and an anti-localization peak 
appears. 

 
Fig. 5. A piece of the T network (a). Black dots on the left right) represent connections to the input  

(output) channels. Averaged conductance <G>k /Nin as a function of reduced flux (solid curve) and spin-
orbit coupling (dashed curve) for a T3 lattice with 200 quantum wires (b). Averaged conductance 

<G>k/Nin as a function of reduced flux evaluated at kSOLπ–1 = 0.5 (solid curve) and spin-orbit coupling 
evaluated at φ/φ0 = 0.5 (dashed curve) for a T3 lattice with 200 quantum wires (c). Averaged 

conductance <G>dis/Nin  as function of reduced flux (solid curve) and spin-orbit coupling  
(dashed curve) for a T3 lattice with 200 quantum wires in the disordered case (d) 

In Figure 5d, the behaviour of the averaged conductance with respect to the disor-
der is shown as a function of reduced flux and SO coupling for a fixed disorder 
strength. It is clear that for the averaged conductance as a function of SO coupling the 
periodicity is no longer kSOL, but kSOL/2 according to the weak localization picture 
[22]. The averaged conductance as a function of reduced flux remains φ0 periodic with 
a large amplitude. This strongly suggests that the AB cage effect survives for this 
strength of disorder. 

We now consider transport through a finite square lattice (Fig. 6a). This network, 
unlike the T3 lattice, does not present a bipartite structure containing nodes with dif-

a) 



Quantum networks in the presence of the Rashba effect and a magnetic field 

 

561 

 

ferent coordination numbers. Accordingly, we do not expect any electron localization 
phenomenon due to the AB effect or SO coupling. On the other hand, as we have 
shown in Section 4, the square network is composed of elementary cells (squares) 
that, as single elements, permit electron localization with both a magnetic field and 
SO coupling. 

 
Fig. 6. A piece of the square lattice (a). Black dots on the left (right) represent the connections  
to the input (output) channels. Averaged conductance <G>k /Nin as a function of reduced flux  

(solid curve) and spin-orbit coupling (dashed curve) for the square lattice with 178 quantum wires (b). 
Averaged conductance <G>k /Nin as a function of reduced flux evaluated at kSOLπ–1 = 0.5 (solid curve) 
and spin-orbit coupling evaluated at φ/φ0 = 0.5 (dashed curve) for the square lattice with 178 quantum 

wires (c). Averaged conductance <G>dis/Nin  as a function of reduced flux (solid curve)  
and spin-orbit coupling (dashed curve) for the square lattice in the disordered case (d) 

In Figure 6b, the behaviour of the averaged conductance for a finite piece of the 
square lattice is shown as a function of reduced flux with zero SO coupling and SO cou-
pling with zero magnetic field. The behaviour of the averaged conductance in the case of 
SO coupling is completely different from that of the magnetic field. Both, however, 
reach the same value, the former for kSOLπ–1 = 1/2 and the latter for φ/φ0 = 1/2. Accord-
ing to Section 4, both the AB effect and SO coupling induce electron localization in 
the elementary cell of the square network for these values, that is for these two critical 
values the system behaves the same way. If we now export this simple idea to the case 
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of a square network, we infer that the conductance evaluated for kSOLπ–1 = 1/2 or φ/φ0 
= 1/2 has to show the same value. 

It is interesting to analyse what happens when both the magnetic field and SO cou-
pling are present. In Figure 6c, the behaviour of the averaged conductance is shown as 
a function of SO coupling with φ/φ0 = 1/2 and the magnetic field with kSOLπ–1 = 1/2. The 
behaviour of both curves is very similar. The results of Section 4 tell us that these two 
localization phenomena manifest the same effect but as consequence of different 
physical aspects. In the case of SO coupling, we have a destructive interference be-
tween electrons undergoing spin-precession, instead of a spin-independent destructive 
interference process as in the case of the AB effect. When both localization phenom-
ena are present at the maximum intensities, the destructive interference is completely 
lost. We then observe anti-localization rather than localization. The averaged conduc-
tance goes to the same value observed for zero magnetic field and zero SO coupling 
(Fig. 6b). 

In Figure 6d, the behaviour of the averaged conductance is shown as a function of 
reduced flux and SO coupling in the case of a disordered system. It is also manifested 
in this case that the periodicity with respect to the magnetic flux and SO coupling is 
no longer φ0 and kSOL, but φ0/2 and kSOL/2, respectively. 

6. Conclusion 

We have shown that in a quantum network with a particular bipartite geometry 
and containing nodes with different connectivities (a diamond chain), it is possible to 
obtain localization of the electron wave function by means of the Rashba effect. This 
localization shows up in the transport properties of a finite-size chain connected to 
leads. Furthermore, transport calculations in the presence of disorder show that this 
Rashba-cage effect is robust against disorder in the diamond chain. The effect of lo-
calization is not verified in two-dimensional networks with a bipartite structure and 
containing nodes with different coordination numbers, such as the T3 lattice. We have 
shown, however, that the effect of applying Rashba SO coupling and a magnetic field 
can induce a strong anti-localization phenomena in those structures. 
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The synthesis, crystal structure, and conductivity of a new bis(ethylenedithio)tetrathiafulvalene  
(ET)-based cation radical salt with a β″-(ET)2{[NMe3Ph]NaCr(C2S2O2)3(MeCN)} composition is de-
scribed. The compound is metallic down to 60 K. In the structure, conducting donor layers with a β″-type 
packing alternate with {[NaCr(C2S2O2)3]

2–}∞ anionic networks and [NMe3Ph]+organic cation layers. 

Key words: organic conductors; cation radical salt; electrical conductivity; X-ray diffraction 

1. Introduction 

The properties of organic conductors based on cation radical salts are essentially 
defined by the nature of the counter-ions. Small changes in their structure affect the 
properties of the resulting compounds. Recently, organic conductors of the 
ET4M

IMIII(C2O4)3(solvent) family (ET – bis(ethylenedithio)tetrathiafulvalene) have 
been extensively studied [1–7]. Depending on the single charged cation MI, solvent, 
and trivalent metal MIII, the compounds of this family exhibit phase transitions to a 
superconducting (MI = H3O, MIII = Fe, Cr, Ga) [1–5] or insulating state (MI = H3O, 
MIII = Fe, solvent – pyridine) [6], or reveal semiconducting (MI = K, NH4, M

III = Fe, 
Cr, Co, Al; solvent – PhCN) [4] or metallic behaviour (MI = K, NH4, M

III = Fe, Cr, 
solvent – DMF) [7] with decreasing temperature. 

_________  
*Corresponding author, e-mail: zhilya@icp.ac.ru. 
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In organic conductors of this family, MIII, MI, and the solvent were varied while 
retaining a honeycomb structure of the anionic oxalato-based sheets. It is of interest to 
study the effect of substituting an oxalate ligand (ox) for a dithiooxalate one (dto) in 
the [MIII(ox)3]

3– anion on the stoichiometry, structure, and properties of the resulting 
ET compound. In this work, we report on the synthesis, crystal structure and conduc-
tivity of a new conducting ET-based cation radical salt containing a dithiooxalato-
bridged honeycomb anion network with a β″-(ET)2[(NMe3Ph)NaCr(dto)3(MeCN)] 
composition. 

2. Experimental 

[NMe3Ph]2NaCr(dto)3 was synthesized according to the procedure described in 
[8]. Single crystals of (ET)2{[NMe3Ph]NaCr(dto)3(MeCN)} (1) were obtained by the 
electrochemical oxidation of ET (7.6 mg, 2 mmol) at 16 °C in the presence of 30 mg 
of [NMe3Ph]2NaCr(dto)3 under an argon atmosphere and at a current of 0.1 µA. Thick 
shiny plates were collected after two weeks. 

The resistivity of single crystals was measured down to 4 K by a standard dc four 
-probe technique with graphite paste. 

The main crystallographic data for β″-(ET)2[(PhMe3N)NaCr(dto)3(MeCN)] are: 
C37H33CrN2NaO6S22, the triclinic centro-symmetrical space group, 1P , а = 10.335(2), 
b = 11.211(2), c = 26.016(5) Å, α = 82.79°, β = 86.63°, γ = 62.64°, V = 2656(1) Å3, 
dcalcd = 1.728 g/cm3, and Z = 2. The structure was solved by direct methods using the 
SHELXL-97 program suite [9]. The final refinement parameters were R = 0.0957, and 
GOOF = 0.964. 

3. Results and discussion 

The compound 1 was precipitated by the electrochemical oxidation of ET from 
a constant-current electrocrystallisation cell using a low concentration solution of 
[NMe3Ph]2NaCr(dto)3 in MeCN. The crystals of 1 form shiny and thick elongated 
plates. The compound loses the solvent during storage, the crystal surface losing its 
lustre and becoming rough. 

1 has a layered structure. The crystal structure is characterized by four alternating 
layers along the c direction in the sequence: ET, [NaCr(dto)3]}∞, [NMe3Ph]+ cations 
together with CH3CN molecules, and [NaCr(dto)3]∞. The ET molecules are aligned 
side-by-side and form a 2D array within the ab plane shown in Fig. 1, in which a view 
of the ET cation layer along the longer axis of the donor molecule is presented. Nu-
merous shortened S…S intermolecular contacts exist between molecules within the 
donor cation layer, giving the material a two-dimensional electronic character. The 
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overall donor ion packing exhibits the so-called β" type [10] donor arrangement, 
which often occurs in conducting ET salts. 

 
Fig. 1. View of the ET cation layer along the longer molecular axis 

Each [NaCr(dto)3]∞ sheet has a honeycomb arrangement, in which Na and Cr al-
ternate to form an approximately hexagonal network. Organic [NMe3Ph]+ cations are 
enclosed between the two [NaCr(dto)3]∞ sheets. Half of the cations are intercalated in 
the first network and the other half are intercalated in the other. 

No short interatomic S…S contacts were found between the ET donor layers and 
anionic ones. The shortest distance from the S dto atom to the S atom of ET 
(S1…S13) was 3.74 Å. This value exceeds that of a normal van der Waals S…S con-
tact, namely 3.60 Å [11]. 

Of the ET cation-radical salts usually comprising a donor and one anion, the salt 1 
has both an unusual composition and structure. Apart from the donor, it contains the 
[Cr(dto)3]

3– anion, two different cations and a solvent molecule, and can be said to be 
a four(multi)-component system, similarly to the so-called three-component 
ETnM

IHg(SCN)4 family [12, 13]. In the three-component ETnM
IHg(SCN)4 system, as 

well as in β″-ET4[M
IMIII(ox)3]⋅(solvent), there is a third component M (alkali metal, 

ammonium, or hydroxonium cations) which participates during the formation of the 
polymeric network of an insulating layer. In contrast to the above-mentioned families, 
whose structures involve only two alternating layers (ET and a polymeric network), 
the polymeric anion networks in the title compound alternate with either ET or 
[NMe3Ph]+ layers. In fact, the packing motifs of two structures are combined in one 
structure: β″-ET4[M

IMIII(ox)3]⋅(solvent) [1–7] and the molecular ferromagnet [Bu4N] 
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[MnCr(ox)3] [14]. The most important difference between the crystal structures of 1 and 
the molecular ferromagnet [Bu4N][MnCr(ox)3] is that the number of [NMe3Ph]+ cations in 
the cation layer of 1 is twice as large as the number of [Bu4N]+ cations in 
[Bu4N][MnCr(ox)3] Also, in 1 they are intercalated in both of the nearest networks, while 
the organic cations in [Bu4N][MnCr(ox)3] are intercalated only in one network [14]. 

 
Fig. 2. Temperature dependence of relative electrical resistance  
for a single crystal of β″-(ET)2{[NMe3Ph]NaCr(dto)3(MeCN)} 

Conductivity data for 1 are shown in Fig. 2. (ET)2{[NMe3Ph]NaCr(dto)3(MeCN)} 
is metallic at room temperature, with σ298K = 120 S⋅cm–1. With decreasing tempera-
ture, the complex remains metallic down to 60 K. At lower temperatures, its resis-
tance smoothly rises, being lower than the room-temperature value. In this case, 
a gradual localization of conduction electrons appears to be caused by the quality of 
the crystal and impurities. 

4. Conclusion 

A new metallic ET cation radical salt with a dithiooxalato-bridged honeycomb anion 
network, namely (ET)2{[NMe3Ph]NaCr(C2S2O2)3(MeCN)}, has been synthesized and 
characterized. The conducting layers in this cation radical salt alternate with three insu-
lating layers and adopt the β″-packing motif found in other ET cation radical salts. In 
fact, the crystal structure of this compound combines the features characteristic of both 
β″-ET-oxalatometallates and the molecular ferromagnet [Bu4N][MnCr(ox)3]. The title 
compound is metallic with the room temperature conductivity of 120 S⋅cm–1. Below 
60 K, its resistance smoothly increases on decreasing temperature, not attaining, how-
ever, the room-temperature value. 
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Spectral and electric properties of six new materials for electroluminescent devices are described, includ-
ing materials for emitting layers based on triazole derivatives and zinc chelate complexes, and a high-Tg hole 
-transporting material based on triphenylamine. 

Key words: organic electroluminescence;  photoluminescence; new materials 

1. Introduction 

The study of organic electroluminescent (EL) materials is now a rapidly develop-
ing field of science due to promising practical applications [1, 2]. In spite of the im-
pressing achievements of the last decade, the problem of searching for new effective 
luminescent materials of different emission colours is still topical. Another important 
task in the design of organic EL devices is improving their thermal stability in order to 
prevent degradation due to morphological changes in amorphous organic layers near 
the glass transition temperature (Tg). Therefore, materials with high Tg are required for 
organic EL devices.  

In the present work, we report a study of spectral and electroluminescent proper-
ties for some new materials. The chemical structures of the materials studied are 
shown in Fig. 1. 

 

_________  
*Corresponding author, e-mail:kaplunov@icp.ac.ru. 
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Fig. 1. Chemical structures of the materials studied 
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3-(4-dimethylaminophenyl)-4-(4′-tert-butylphenyl)-5-diphenyl-1,2,4-triazole or DA-Bu 
TAZ, is a promising 1,2,4-triazole derivative for blue emitting layer [3]. 

Zinc complexes containing the azomethine group –CH=N–R (R is an alkyl group) 
and characterized by blue electroluminescence have been recently proposed [4]. We 
have synthesized three new electroluminescent materials based on zinc chelate com-
plexes with azomethine groups, which are characterized by electroluminescence in the 
blue and green spectral regions: bis(N-(2-oxybenzylidene)cyclohexylamine)-zinc, 
(Zn(OBCG)2), N,N′-bis(2′-oxybenzylidene)-1,2-phenylenediamine-zinc, (Zn(OB-PDA)), 
and bis(N-2-oxybenzylidene)-4-tert-butylanyline)-zinc (Zn(OBBA)2) [5]. The addition 
of various substituents at the nitrogen atoms or bridges between them enables chang-
ing the position of the absorption and luminescence spectral maxima due to changes in 
the electron density and conjugation length. Also, new Zn complexes with quinoline 
derivatives, bis(2-methoxy-8-oxyquinoline)zinc (Zn(MeQ)2) and bis(2-methyl-8-oxy- 
quinoline)zinc (Zn(CH3Q)2) were synthesized and studied. 

We have also proposed a novel high-Tg oligomeric material (PTA) for hole-
transporting layers (HTL) in EL devices based on triphenylamine. Dimeric triphenyl-
amine, or N,N′-diphenyl-N′N′-bis(3-metylphenyl)-1,1′-biphenyl-4,4′-diamine (TPD), 
is a well-known hole-transporting material exhibiting excellent hole injection and 
transport capability with good electron-blocking capability at the HTL boundary. It is 
not very stable, however, due to its low Tg value [6]. Oligomers of triphenylamine 
with an oligomerisation number n in the range of 2–5 have been shown to have good 
hole-transporting characteristics, and the Tg for these materials is shown to increase 
with increasing n – from 60 °C for TPD to 140 °C for the oligomer with n = 5 [6]. 
PTA is a mixture of triphenylamine oligomers of a general formula shown above with 
oligomerisation numbers n from 7 to 11, characterized by the Tg as high as 185 °C [3]. 

2. Experimental 

The synthesis of the materials was described elsewhere [3, 5]. TPD was an Al-
drich commercial product. The electroluminescent devices in our study were of the 
four-layered structure ITO/HTL/EML/M, where ITO is a transparent anode of 
In2O3:SnO2 on a glass substrate, HTL is a hole-transporting layer, EML is an emitting 
layer, and M is a metallic cathode of Al or Mg:Ag alloy. The HTLs were prepared by 
the spin casting of PTA or by the vacuum evaporation of TPD. EMLs and metal cath-
odes were prepared by vacuum evaporation at a base pressure of about 5⋅10–6 Torr. 

The current–voltage and brightness–voltage characteristics of the EL devices were 
recorded simultaneously with a computer-controlled potentiostat PI-50 and a cali-
brated photomultiplier, or with a Hewlett-Packard semiconductor parameter analyser 
HP4155A and Si photodiode. The technique for measuring the absorption and photo-
luminescence (PL) spectra and PL quantum yields is described elsewhere [7]. 
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3. Results and discussion 

Figure 2 shows the absorption and photoluminescence (PL) spectra for the evapo-
rated films of the studied materials. For the zinc chelate complexes, the maximum 
with the longest wavelength absorption band shifts to longer wavelengths in the order: 
Zn(OBCG)2, Zn(OBBA)2, Zn(OBPDA). In the PL spectra, the broad bands (a half 
-width of about 100 nm) with maxima at 453, 510, and 565 nm, correspondingly, are 
observed shifting to longer wavelengths in the same sequence. For DA-BuTAZ films, 
the PL maximum is observed at about 430 nm. We have measured the PL quantum 
yield for DA-BuTAZ and PTA in benzene solutions, being estimated at about 90% 
and 70%, respectively. We have estimated the PL quantum yields of evaporated films 
of zinc complexes at 20–25% for Zn(OBCG)2, 7–10% for Zn(OBBA)2, and 1–2% for 
Zn(OBPDA). With the exception of the last complex, these quantum yields are com-
parable or higher than that of the well-known tris-8-oxiquinolate aluminium Alq3, for 
which the PL quantum yield is reported to vary from 8–10 to 32% depending on the 
source of data [8]. The film containing 0.5% of Nile Red (NR) in Zn(OBBA)2 is char-
acterized by a PL band in the red spectral region, with a maximum at 625 nm and 
a quantum yield of about 100%, which is due to electron excitation energy transfer 
from Zn(OBBA)2 molecules to NR molecules [7, 9]. Spectral properties of the materi-
als studied are summarized in Table 1. 

 

Fig. 2. Absorption (1) and photoluminescence (2) 
spectra of the materials: a) DA-BuTAZ,  

b) Zn(OBCG)2, c) Zn(OBBA)2 (dashed curve  
– PL of the film containing 0.5% of Nile Red),  

d) Zn(OBPDA) 
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Typical current–voltage and brightness–voltage characteristics of the studied de-
vices with a ITO/TPD/DA-BuTAZ/Al structure are shown in Fig. 3a. Exchanging 
TPD with PTA does not principally change the electric and luminous properties, but 
systems with PTA are more stable at high currents. Exchanging the Al cathode with 
a Mg:Ag alloy gives a sufficient increase in luminosity (about two orders of magni-
tude) and a shift of the light appearance threshold to lower voltages (down to 8–10 V 
for DA-BuTAZ). The EL properties of the materials with a ITO/PTA/EML/Mg:Ag 
structure are given in Table 1. 

 

 
Fig. 3. Typical current–voltage and brightness–voltage characteristics of the EL device 

ITO/TPD/DA-BuTAZ/Al (a) and the current-voltage curve of the same device in a double logarithmic 
scale (b); the insert shows a part of this curve in the Fowler–Nordheim coordinates: J/U2 vs. 1/U 
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Table 1. Absorption, photoluminescence (PL), end electroluminescence (EL) of the materials studied 

Compound Colour 
Absorption 
λmax, nm 

PL 
λmax (∆λ) 

nm 

PL 
QY, % 

EL 
λmax  (∆λ) 

nm 

Brightness, 
cd/m2   

(at voltage, V) 

EL 
efficiency, 

cd/A 

DA-BuTAZ blue 320 430 (70) >90 451 (70) 120 (12.8) 24 
Zn(OBCG)2 blue 376 453 (87) 20–25 450 (75) 120 (8.4) 1,4 
Zn(OBBA)2 green 406 510 (115) 7–10 520 (112) 360 (12.7) 15 
Zn(CH3Q)2 green 374 514 (100) – – 10 (50) 0.05 
Zn(MEQ)2 green 386 520 (100) – – 140 (14.8) 2.8 

Zn(OBPDA) 
yellow 
-green 

387–415 565 (95) 1–2 560–580 360 (8.5) 1,7 

Zn(OBBA)2+NR red 406; 525 625 (50) ~100 625–650 280 (20) 0.1 

PTA blue 370 
420 (120) 
480 (sh) 

~70 – – – 

 
Figure 3b shows the dependence of the current density J on voltage U in the dou-

ble logarithmic scale. Three regions can be seen in the current–voltage curve. At low 
voltages (less than 1 V), the current is proportional to voltage, which is the usual Oh-
mic behaviour. Beyond the Ohmic region up to the electroluminescence threshold, the 
dependence of the current on voltage follows a power law (J∼Um). Such a behaviour is 
characteristic of trap-controlled space charge-limited currents, and indeed it has been 
observed in EL devices based on Alq3 and polymers with m changing from 2 to about 
10 [10, 11]. The third region (beyond the light appearance threshold) may be charac-
terized by a power low with a very high power index m (18–30), much higher than 
usually observed [10, 11]. An alternative explanation for this region is the injection 
limitation of current, for example by the Fowler–Nordheim tunnelling mechanism, 
which has been shown to be appropriate for some polymer based EL devises [12]. 
This is illustrated in the inset in Fig. 3b, which demonstrates a linear dependence of 
log(J/U 2) vs. 1/U. This corresponds to the Fowler–Nordheim law: J∼U2exp(–C/U)  
(C is a parameter depending on the shape of the potential barrier at the layer inter-
face). Another confirmation of the tunnelling mechanism is the experimental fact that 
changing the metallic cathode significantly changes the electric properties, possibly 
due to changes in the metal work function [12]. 
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