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Abstract. When modelling financial data the jump-diffusion processes, driven by Wiener    

(W) and Poisson (N) processes, gain increasing importance. On the one hand, they explain 

better than the Itô diffusion the heavy tails of distributions of percentage changes of stock 

prices; on the other hand, unlike for example α-stable processes, they are based on the well 

developed mathematical tools for the Wiener and Poisson processes. After the identification 

of the jump times, e.g. by means of one of the so-called threshold methods, which are not 

linked with the continuous part of the model, the parameters from the continuous terms 

may be estimated similarly as for the Itô diffusion. But it is not obvious if the financial data 

after an extraction of jumps are already normally distributed. Therefore results of several 

normality tests will be presented here for chosen data from the Polish stock exchange 

market. 
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1. Preliminaries 

Let ),,( PF  denote the complete probabilistic space and let an Itô 

process with jumps 0= { , =[ , ] }tX X t J t T R  , whose almost all 

trajectories are right-hand side continuous left-hand side limits on J  

(RCLL, càdlàg), be given by the scalar stochastic differential equation in the 

integral form:  
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where ss
tt XXX lim== -t , W  is a standarized Wiener process, N  is 

a homogeneous Poisson process with intensity   and both driving 

processes are said to be independent. Additionally it should be taken into 

account that all equations and inequalities in this paper hold a.s., i.e. with 

probability 1, which for the sake of simplicity will not be written down 

explicitly each time. It is well known (see (Sobczyk, 1991)) that by certain 

technical assumptions Eqn.(1) has an a.s. (almost surely) unique RCLL-

solution. The equation above is also called the jump-diffusion equation and 

its solution – the jump-diffusion process, and generally it cannot be solved 

analitycally. Therefore, different numerical methods are developed for 

approximations of its solution (e.g. see (Gardoń, 2004; Gardoń, 2006)). 

The Black-Scholes model describes the behavior of stock prices by 

means of the special case of Eqn.(1), where the drift axxta =),(  and the 

volatility bxxtb =),(  coefficients are linear, whereas the jump size 

coefficient 0),( xtc  vanishes identically (see (Karatzas, Shreve, 1998)), i.e.  
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whose solution is called an (ordinary) Itô diffusion and has a.s. continuous 

trajectories. Such a process varies continuously in time. Unfortunately, in 

practice a stock price may be observed only at chosen (say K ) time points, 

so the model needs to be discretized. Let 

0=)( nn  be a nondecreasing 

sequence of stopping times divergent to  , then by  
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will be denoted a (random) δ-division of the time interval J . The number 

  is called the diameter of the division. This is a very flexible definition 

allowing a random choice of the observation times, but most often the 

partition is purely deterministic.  

2. The model 

The Black-Scholes model requires that the relative price changes:  

Kn
X

X

X

X

X

XX
Z

n

n

n

n

n

nn
n ,1,=,ln==

111

1 


 













 



The normality of financial data after an extraction of jumps… 

 

 

95 

are realizations of normally distributed random variables. But it is well 

known that this assumption is not valid in practice because of heavy tails of 

the empirical data distribution (e.g. see (Cont, Tankov, 2004; Johannes, 

2004). In other words, relatively large price changes are more probable than 

follows from the normal distribution assumption. For this reason even more 

researchers try to model high-frequency financial data by means of 

alternative stochastic processes. The most popular approach is to treat large 

price changes as trajectory discontinuities caused by a Poisson process 

added to the diffusion (e.g. see (Barndorff-Nielsen, Shephard, 2006; 

Glasserman, Merener, 2003)). In the case of the bond price process, Das 

(2002) showed that the role of jumps is relevant in incorporating newly 

released information in interest rate levels, whereas the statistical and 

economic role of jumps in bond price modeling is further discussed in 

Johannes (2004). The contribution of the jump component to derivatives 

pricing is presented, e.g. in Andersen, Bollerslev, Diebold (2007). This 

manner is more convenient than other models, based on, e.g. α-stable 

processes because the mathematical tools are very well developed for both 

the Wiener and Poisson processes. It conducts to a model characterized by 

the following equation:  
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where the jump size coefficient tC  is constant in the simplest case, i.e. 

cCt  , but it may be easy generalized and tC  can denote a strictly 

stationary process independent from both driving processes (see (Mancini, 

2009)). We recall that such a process has the same distribution for each 

instant Jt  (e.g. Gaussian white noise). In practice this means that the 

jump sizes are realizations of a random variable of the given distribution. 

It is left to estimate coefficients a , b , c  and the Poissonian jump rate 

  from the data. Since the jump diffusion may be divided into two disjoint 

parts: the continuous part (ordinary Itô diffusion) and the jump part 

(discontinuities caused by the Poisson process), the drift a  and the volatility 

b  may be evaluated similarly as in the Black-Scholes model after exclusion 

of the jumps. However the so-called no arbitrage assumption (see (Karatzas, 

Shreve, 1998)), which excludes the possibility of earning, without any risk 

more than follows from the risk-free interest rate (say  ) existing on a 

market, insists to take =a  as the drift. On the contrary, for the ordinary 
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diffusion the volatility may be estimated in the maximal likelihood sense by 

the standard deviation of normalized returns:  
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which follows immediately from the fact that in the continouos part the 

relative price changes )( nZ  are normally distributed and b  is the 

infinitesimal variance of the normalized return.  

3. Estimators 

Jumps could be recognized in several ways. One of them is the 

nonparametric estimation, proposed previously in Johannes (2004), for 

which the limiting theory has been fully provided in Bandi, Nguyen (2003). 

A kind of nonparametric estimation is the so-called threshold method 

developed by Mancini (2004, 2009). This method consists in the 

construction of a so-called threshold function, which for each subinterval 

defines an upper limit for the process change. If the intervals between two 

observations are getting small, it is possible to distinguish in which intervals 

the jumps occurred. This is based on the fact that the diffusive part tends to 

zero at a known rate, namely the modulus of continuity of the Brownian 

motion paths. This allows identifying asymptotically the jump component 

and remove it from X  in a very effective way. Precisely, under several 

technical assumptions, jumps should be recognized in the following way:  
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from the iterated logarithm low for the standard Brownian motion:  
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For this reason, the threshold function should satisfy the evaluation:  

 tttr ln2>)(   

and usually (see (Mancini, 2009)):  
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Using this bound, the jumps can be extracted and the set of the data should 

be divided into two parts: the data representing “continuous” price changes 

and the data representing “discontinuous” price changes. In the second set 

increments are caused also by the continuous part of the jump-diffusion, but 

since the diameter of the partition tends to be infinitesimal, these 

“continuous” price changes are neglected because they are infinitesimal in 

comparison to the jump sizes. Using this data we can estimate in the 

maximal likelihood sense:  
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The generalization of the jump coefficient to the strictly stationary 

stochastic process C  does not make any additional problem since we have a 

set of jump realisations of the same distribution. To identify this distribution 

one can use, e.g. a kernel density estimator. 

On the other hand, using the data from the first set, the volatility may be 

estimated as mentioned in the previous section:  

 ,
)(

1)(

)(

1
=

^
2

1=
0

2

1=
0





















n

c

n
K

ntTn

c

n
K

ntT

Z

NNK

Z

NNK
b


 (2) 

where 0}={=
n
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c

n ZZ
 . Mancini has also proposed another estimator for the 

volatility b  (see (Mancini, 2009)) based on the quadratic variation of the 

process X :  
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which is also consistent. Moreover, for this estimator the speed of 

convergence with probability 1 is known and equal 1
2 . Besides, the com-

plete results for estimation of the continuous and jump part with quasi MLE 

method one can find in Ogihara, Yoshida (2011) and Shimizu, Yoshida 

(2006). 

Unfortunately, it turns out that the proposed method does not identify 

jumps properly, especially in the cases when the stock prices vary strongly 

(see (Gardoń, 2010)). In such cases either only a few or almost all data are 

recognized as jumps. The possible cause of such a situation may be the fact 

that, as it was mentioned before, the construction of the threshold 

)(>)( 2

n
n

rX   is based on the iterated logarithm law for the standardized 

Brownian motion. But the continuous part of the process X  is a geometrical 

Brownian motion for which only the inequality below holds (see (Karatzas, 

Shreve, 1998)):  
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where the left-hand side is bounded by a finite random variable M  instead 

of the constant 1. From the theoretical point of view, all is correct because 

Mancini‟s proposition is a limit theorem and constants do not play any 

essential role when   becomes infinitesimal. But in practice the frequency 

of observation is bounded from below. Mostly it is a day, a minute or 

a second. Therefore, the threshold condition should be modified in order to 

work properly with the real data (see (Gardoń, 2010)):  
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The method based on the threshold above identifies jumps more efficiently 

than the original criterion; however, it requires the knowledge of  b̂  before 

the extraction of jumps. Nonetheless this problem has been also solved in 

the cited article by means of an iterative procedure.  
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4. The normality of a continuous part 

The main question we try to answer is if the relative price changes nZ , 

after such an extraction of jumps, are already normally distributed or if there 

are also other problems with the normality, not only heavy tails of the 

empirical distribution. But in order to check the normality the data needs 

firstly to be well prepared. Time spans between consequtive observations 

are not equidistance because of possible jumps (such observations will be 

excluded from the continuous part of the data) and trading breaks as nights, 

weekends or holidays, or when the market is closed. Thus, the relative price 

changes could not be treated as a realization of a sequence of independent, 

identically distributed random variables although they are indeed 

independent; the only problem is the distributions identity. 

For an infinitesimal time step we have:  
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Now the standardized relative price changes )( *

nZ  build the iid ~N  0,1  –

sequence which the normality tests can be conducted for. We have done 

them for the real financial data from GPW
1
 in Warsaw, Poland. As an asset 

we have chosen The Polish Stock Exchange Index WIG,
2
 whose price 

process is presented in Figure 1, whereas the distribution of the standardized 

relative price changes before the extraction of jumps versus the standard 

normal curve is shown in Figure 2. The high frequency data from over 10 

years consists of over one million ( 6455091= K ) each trading minute 

closing prices from 17 November 2000 to 16 August 2011. The choice of a 

stock exchange index was not random. Due to the idea of Lapunov‟s Central 

Limit Theorem, the phenomena affected by a large number of components 

with a similar influence on a joint result should be approximately normally 

distributed. Hence, a stock exchange index, as a kind of an average, should 

be the best potential candidate for the normality. Its value is affected by 

prices of almost 400 assets, though their similar influence could be 

                                                 
1
 GPW (Giełda Papierów Wartościowych) – stock exchange market. 

2
 WIG (Warszawski Indeks Giełdowy) – literally: “Warsaw Stock Exchange Index”. 
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questionable. However, due to the construction of the index no component 

may exceed the level of 10% of influence and no market sector may exceed the 

level of 30% of influence on the joint value. 

Looking at the figures there are two immediatelly visible problems with 

the normality of this empirical data. The first one, which should be solved by an 

identification and extraction of jumps, is heavy tails. The second one is the 

enormous number of small negative tics. It turned out that this was caused by 

such trading minutes during which the price did not change at all. Theoretically, 

if the price was to behave as a certain modification of the Brownian motion it 

should not be constant in any time interval. But in practice we observe only 

closing prices at the end of each given time interval, the price does not change 

strictly continuously in time, only if a trading offer occurs and at last the price 

is rounded. Since 1 October 2002 the WIG value has been rounded to 0.01 

point and earlier it was rounded even to integer. For this reason, we have 

decided to omit such “null tics” and this has helped in a visible way which one 

can see in Figure 3. 
 

 

Fig. 1. The price process X  (each trading minute closing price) of the Polish Stock 

Exchange Index (WIG) from 17 November 2000 to 16 August 2011 (3925 days) 

Source: author‟s own study. 
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Fig. 2. The distribution of the standardized relative price changes of the Polish Stock 

Exchange Index (WIG) from 17 November 2000 to 16 August 2011  

( = 1 095 645K    tics) versus the standard normal curve 

Source: author‟s own study. 

 

Fig. 3. The distribution of the standardized relative price changes of the Polish Stock 

Exchange Index (WIG) from 17 November 2000 to 16 August 2011 without “null tics” 

versus the standard normal curve 

Source: author‟s own study. 
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Table 1. The number of jumps recognized with respect  

to the given time unit and the given frequency 

NT Frequency (min) 1 5 15 30 60 1440 

U 15 minutes 39 722 11 050 4 689 3 062 1 942 421 

N 1 hour 28 927 8 006 3 459 2 191 1 358 282 

I 1 day 14 222 3 873 1 638 992 605 128 

T 1 week 9 186 2 526 1 082 609 383 90 

Source: author‟s own study. 

Table 2. The estimated value of the volatility b 

with respect to the given time unit and the given frequency. 

b̂  Frequency (min) 1–60 1440 

U 15 minutes 0.011–0.013      0.0008 

N 1 hour 0.025–0.027      0.018 

I 1 day 0.0140–0.0142      0.105 

T 1 week 0.0386–0.0396      0.0292 

Source: author‟s own study. 

 

Fig. 4. The distribution of the standardized daily returns (time unit 1 week) of the Polish 

Stock Exchange Index (WIG) versus the standard normal curve 

Source: author‟s own study. 
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Fig. 5. The distribution symmetry of the standardized high frequency returns  

(unit: 15 minutes, frequency: 5 minutes) of the Polish Stock Exchange Index (WIG) 

Source: author‟s own study. 

The following parameters are fixed in the model: for the sake of 

simplicity the start time 0=0t , the end time T = 3924.42 days (which is 

equivalent to 5'651'165 minutes) and the riskless interest rate ρ = 4.5% 

yearly (which is equivalent to 1.23 ∙ 10
–4 

daily, 8.56 ∙ 10
–8

 per minute).      

For the threshold function r  we have chosen 
1

= 0,1 (0, ]
2

   and  

2
= = 7.3576

e



 which yields:  

.3576.7==)( 9.01 tttr  
 

The choice of the unit could not be random. Firstly, since the background on 

which this application is based is a limit theorem and the division is not 

equidistance, the unit must be chosen in such a way that for both minimal 

and maximal time spans between two consecutive partition points the 

threshold function )(tr  is similar as the iterated logarithm bound tt ln2 . 

Further, we have observed that the number of jumps found and thus the 
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realizations of *

nZ  apart from jump times, depend on both the data frequency 

and the time unit assumed. For different time units and different observation 

frequences (1440 minutes are equivalent to 1 day), we obtained different 

numbers of jumps which one can see in Table 1. Consequently they have 

given different estimates for the volatility b , which can be found in Table 2. 

The normality tests (chi-squared, Lilieforse and Shapiro-Wilk) were 

conducted for all the combinations of unit and frequency mentioned in those 

tables. The best choice of their combination, in the sense of the maximal    

p-value, was the time unit 1 week and the data frequency 1 day (1440 

minutes). The histogram of the empirical returns distribution in that instance 

is shown in Figure 4. But unfortunately, even in this best case, all normality 

tests have suggested the rejection of the normality null hypothesis. The chi-

squared test statistic empirical value with 9 degrees of freedom has been 

equal to 50.3, which corresponds with the empirical significance level 
510< p ...  

5. Conclusions 

Even in the case of the best possible candidate for the normality of the 

returns distribution, namely a stock exchange index, independently from the 

chosen time unit and observation frequency, all normality tests insist 

strongly on rejecting the null hypothesis. The empirical distribution after an 

exclusion of jumps seems sometimes virtually similar to the normal one, 

though the very large sample size requires much greater goodness of fit in 

the statistical sense to the distribution assumed. It turns out that heavy tails 

of the empirical distribution are not the only problem. This distribution 

seems to be also too slender for normality; in other words, it has a positive 

kurtosis or the sample is more concentrated about the central point of the 

distribution than in the normal case. 

Our experiments have shown additionally another aspect of returns 

distribution. It is a very popular statement (e.g. see (Peiró, 1999)) that the 

financial data is left-hand side skewed. But our research contradicts this 

opinion. After the elimination of those sample times for which the price 

process did not change and for which a jump has been detected, the 

empirical distribution is pretty symmetrical (see Figure 5), at least in the 

case of the aforementioned index. This means that the absolute decreases 

could appear statistically greater than the absolute increases because the 

price process falls from higher levels and rises from lower ones, but 

percentage decreases and increases seem to be similar.  
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