
INFORMATYKA EKONOMICZNA  BUSINESS INFORMATICS  1(23) · 2012

ISSN 1507-3858

Cezary Hołub
Wrocław University of Economics
e-mail: cezary.holub@op.pl

THE IMPORTANCE OF AOP IN SOA ARCHITECTURE1

Abstract: Service oriented architecture (SOA) represents a model to build distributed appli-
cations by loosely integrating a number of web services. Aspect-oriented programming (AOP)
is a programming paradigm that increases modularity by enabling the improved separation of
concerns. Due to the large variety of potential users and the dynamic loosely coupling nature,
web services are subject to frequent evolution, which is often required to be done rapidly, and
multiple versions may co-exist. In reality it is often the case that existing web services do not
perfectly match user requirements in target systems. To achieve the smooth integration and
high reusability of web services, mechanisms to support automated evolution of web services
in either functional or non- functional aspects are highly in demand. The aim of the paper is
underlining the usability of AOP for SOA via theoretical divagation and practical examples in
code. We will try to demonstrate the advantages when using the aspect approach in SOA. This
article also briefly presented the same concepts of AOP and SOA.

Key words: AOP, SOA, Aspect-Oriented Programming, Service-Oriented Architecture,
software architecture.

1. Introduction

All software systems, from standalone applications to complex distributed systems,
evolve over time. Software engineering is facing a big challenge in maintaining
reliable and efficient but constantly evolving systems. There is a paradigm shift from
object oriented systems to service oriented systems. As more businesses are adopting
cutting edge information technologies to provide cost effective dynamic services
to their customers, the area of web services is becoming highly attractive and lots
of research efforts are being applied to develop new software mechanisms. The
underlying architecture of web services is based on the concept of Service Oriented
Architecture (SOA). The main purpose of the development of SOA was to create
systems which can provide inter-system communication and data exchange. This is
achieved by integrating existing software to support processes that run on various
software applications and to create a repository of reusable components that can be
used in business processes in order to solve real business problems. The core idea

1  This paper is an extended version of [Hołub 2012].

Informatyka Ekonomiczna 1(23)_2012.indb 21 2012-03-26 10:22:45

22	 Cezary Hołub

of SOA is to decouple functional units and expose them as independent services to
other programs and thereby foster reuse. One of the biggest hurdles to achieving
true service orientation is separating the needs of the service from the needs of the
application. While services should only be concerned with the business functionality
that they are exposing, it is not unusual for application specific features to “leak” into
the service layer.

We can now overcome the difficulties that have prevented widespread adoption
of aspects in practical implementations and enable architects to factor out cross-
cutting concerns from the services they are designing. Cross-cutting concerns are
requirements that are usually not of primary but of secondary interest. In other
words, there is a second dimension in solving problems while building a program.
But programming languages and the chosen design criteria are one dimensional. For
example a program accesses a database. Let this be a primary requirement and, now,
add logging as a secondary requirement. This means that every access to the database
is supposed to be written to a file. The logging cross cuts whatever is done by this
program because the database accesses are usually scattered all over the source
code. As a consequence, implementing cross-cutting concerns with programming
languages has been cumbersome.

One major tenet of software development practices has been the concept
of separation of concerns. This tenet states that concerns or behaviors should be
separated into well-defined code modules so that changes to these concerns are
able to be made in one place. Therefore, AOP introduced a concept to collect these
concerns, here called aspects, statements at a single place. Through that, a separation
of concerns is achieved and changing an aspect only results in changes to a single
file. But the statements need to be propagated back to the places they belong to.
This distribution is done by a code weaver which inserts the aspect’s source code at
certain join points before the source code is compiled. For example, every access to
a database is supposed to be logged. Therefore, calls of particular methods have to
be monitored. Hence, all these methods are join points and the code weaver inserts
a logging mechanism before these methods are called. In other words, the cross-
cutting concern is realized as an aspect logging mechanism and is woven at compile
time. The objective we are going to address is cross-cutting concerns in a SOA
environment and we refer to these concerns as aspects as AOP does.

The current state of art we can find in [Sonchaiwanich et al. 2010; Krueger,
Mathew, Meisinger 2006; Induruwana 2005].

2. Architectural and service aspects of SOA

Numerous vendors, application providers, system integrators, architects, authors,
analysts firms, and standards bodies provide definitions of SOA. The definitions of
SOA are diverse. Most are complementary and do not conflict with each other. SOA
has a variety of definitions because the definition is often tuned to a specific audience,

Informatyka Ekonomiczna 1(23)_2012.indb 22 2012-03-26 10:22:46

The importance of AOP in SOA architecture	 23

as explaining SOA to a CEO is different from explaining SOA to a programmer. The
term service orientation is often used synonymously with SOA, but just like SOA
it has a wide range of interpretations. Service orientation is broader and represents
a way of thinking about services in the context of business and IT [Holley, Arsanjani
2011].

We can say that service-oriented architecture (SOA) is an architectural style that
modularizes information systems into services. You then orchestrate collections of
these services to bring business processes to life. In a successful SOA, you can readily
recombine these services in various ways to implement new or improved business
processes. SOA is a logical evolutionary descendant of the software modularization
techniques that began more than 50 years ago with the introduction of structured
programming. SOA’s novelty is that it gives you increased flexibility in the choice of
implementation technologies and locations for the service providers and consumers.
The abstracted service interfaces also enable providers and consumers to evolve
independently as long as the interfaces remain stable. The benefits of a SOA derive
primarily from a single characteristic: the stability of the service interface. This
stability, relative to the overall rate of systems changes, isolates service consumers
from changes in service implementations. This isolation limits the scope of changes
and thus reduces the cost of subsequent changes. You derive a much larger benefit
when you are able to reuse services exactly as they are. Reuse avoids the cost of
re-implementing or modifying the functionality encapsulated in the service [Brown
2008].

Figure 1 shows the architectural style of SOA. In this scenario, a service consumer
invokes or uses a service. The service consumer uses the service description to
obtain necessary information about the provider service (e.g. account service) to be
consumed. The service description provides the binding information so the consumer
can connect to the service, and the description identifies the various operations (e.g.
open or close an account) available from the provider service. A broker can be used
to find the service using a registry that houses information about the service and its
location [Holley, Arsanjani 2011].

In Figure 1, it is difficult to determine how the architecture style of SOA enables
the strategic benefits of SOA, such as lowering the lifetime cost of an application
or bringing faster time to market or making applications resilient to change. SOA as
an architectural style often makes the SOA project solely an IT endeavor, where the
strategic business benefits of SOA no longer become the focus or measured outcomes.
The benefits of process flexibility, time-to-market savings, lower costs, and others
can be achieved with SOA, but only if we holistically adopt all stakeholder views
of SOA and its application and pursue SOA adoption accordingly. When pundits,
architects, consultants, or executives define SOA as a pure technology play or as
solely an architectural style, they relegate it to the realm of IT science projects,
overhyped technologies, and a marketing strategy rather than a novel approach to
building flexible business solutions [Holley, Arsanjani 2011].

Informatyka Ekonomiczna 1(23)_2012.indb 23 2012-03-26 10:22:46

24	 Cezary Hołub

Figure 1. SOA as an architecture style

Source: [Holley, Arsanjani 2011].

Figure 2. Levels of abstraction in SOA

Source: [Holley, Arsanjani 2011]

The most basic construct or building block of SOA is a service. Software
engineering over the years has evolved from procedural to structured programming
to object-oriented programming to component-based development and now to

Informatyka Ekonomiczna 1(23)_2012.indb 24 2012-03-26 10:22:46

The importance of AOP in SOA architecture	 25

service oriented. Figure 2 illustrates the different levels of abstraction from objects
to services. Each evolution of abstraction builds on the previous, and SOA embraces
the best practices of object and component development [Holley, Arsanjani 2011].

The architectural overview of SOA is on Figure 1, that illustration shows the
fundamental constructs of SOA, such as the service consumer and the service provider
and their relationship. The consumer invokes a service, the business functionality,
by contract. The provider of the service defines the contract as a service description.
An intermediary, such as a broker, uses a registry to find or search for published
services. The service consumer, service provider, service description, service broker,
and a registry are all part of the core of SOA. The following guiding principles
define the ground rules for the development, maintenance, and usage of the SOA
[http://wikipedia.org]:

Standardized Service Contract–– – Services adhere to a communications
agreement, as defined collectively by one or more service-description docu-
ments.
Service Loose Coupling–– – Services maintain a relationship that minimizes
dependencies and only requires that they maintain an awareness of each other.
Service Abstraction–– – Beyond descriptions in the service contract, services hide
logic from the outside world.
Service Reusability–– – Logic is divided into services with the intention of
promoting reuse.
Service Autonomy–– – Services have control over the logic they encapsulate.
Service Granularity–– – A design consideration to provide optimal scope and the
right granular level of the business functionality in a service operation.
Service Statelessness–– – Services minimize resource consumption by deferring
the management of state information when necessary.
Service Discoverability–– – Services are supplemented with communicative meta
data by which they can be effectively discovered and interpreted.
Service Composability–– – Services are effective composition participants,
regardless of the size and complexity of the composition.
SOA realizes its business and IT benefits by utilizing an analysis and design

methodology when creating services. This methodology ensures that services remain
consistent with the architectural vision and roadmap, and that they adhere to the
principles of service-orientation. Arguments supporting the business and management
aspects from SOA are outlined in various publications.

3. Genesis and a general idea of AOP

In computing, aspect-oriented programming (AOP) is a programming paradigm
which aims to increase modularity by allowing the separation of cross-cutting
concerns. AOP forms a basis for aspect-oriented software development. AOP includes

Informatyka Ekonomiczna 1(23)_2012.indb 25 2012-03-26 10:22:46

26	 Cezary Hołub

programming methods and tools that support the modularization of concerns at the
level of the source code, while “aspect-oriented software development” refers to
a whole engineering discipline [http://wikipedia.org].

On the basis of procedural and object-oriented programming, already providing
large modular projects, created and developed all the time aspect programming
methodology. The goal is to improve the separation issues (separation of concerns),
or separation of certain aspects of functionality (e.g. synchronization of access to
resources, tracking progress of the program) into separate, independent modules.
It is desirable at the same time to reflect a more modular system, the way we think
about the problem rather than the method imposed by the tools. In complex systems,
object-oriented programming does not allow for the modularization of all aspects of
the system. Some problems will always cross the borders (called crosscutting) of the
other modules. The idea of aspect programming is to provide mechanisms to a more
complete modularization of the system – it is to simplify code, increase the speed of
its creation, make it easier to understand, develop, maintain and reuse. Modularized
intersecting issues (called crosscutting concerns) are called aspects [Colyer et al.
2009].

In general opinion, the main creator of the AOP shall be deemed to Professor
Gregor Kiczales from the University of Vancouver. He finished his work in the
nineties and it has become the basis for the emergence of this method and the
formulation of its principles. For the first time he used the term AOP in 1996 during
his tenure at Xerox Corporation. This method met with great interest and initiated
several studies on its use in various fields, as well as some conference appearances.
The article “Aspect-Oriented Programming” written by Gregor Kiczales is
considered to be the first publication about aspect programming [http://www.parc.
com/research/projects/aspectj/downloads/ECOOP1997-AOP.pdf].

The key concepts associated with aspect programming are [Jacobson 2004]:
Aspect –– – a modularization of a concern that cuts across multiple classes/units/
objects/components/services (Figure 3).
Concern–– – this is a question or problem that must be resolved to achieve the
objective
functional,•	
non-functional – concerns that crosscut are referred to as crosscutting concerns •	
in AOP terminology and aspect can be used to encapsulate them.
Cross-cutting concern–– – this is a problem whose representation is dispersed
along the representation of other issues in decomposition of hierarchical system.
The existence of the relationship between cutting issues may be dependent on the
choice of the dominant criterion for decomposition. On this ground have grown
both modularization and object-oriented methods (Figure 3.)
Join point–– – a point during the execution of a program, such as the execution of
a method or the handling of an exception.

Informatyka Ekonomiczna 1(23)_2012.indb 26 2012-03-26 10:22:46

The importance of AOP in SOA architecture	 27

Advice–– – action taken by an aspect at a particular join point.
Pointcut –– – a predicate that matches join points. Advice is associated with
a pointcut expression and runs at any join point matched by the pointcut (for
example, the execution of a method with a certain name).
Weaving–– – linking aspects with other application types or objects to create an
advised object. This can be done at compile time (using the AspectJ compiler,
for example), load time, or at runtime. Spring AOP, like other pure Java AOP
frameworks, performs weaving at runtime. In another words weaving is the
process of composing a core functionality model with aspects and creating the
final working system.

Services

A
spects Components

Objects

Figure 3. A layered organization of Objects, Components, Services and Aspects

Source: own preparation.

The main difference between object oriented programming (OOP) and aspect
programming is not a different purpose (in both cases the grouping of similar
concepts and different separation), but the other selection tools. In the case of
object-oriented programming fundamentals these are: the concept of class, the
encapsulation and inheritance. Typically, they allow the grouping of concepts used
by one criterion, which is sufficient in most applications. The advantage of object-
oriented programming is a strong and stable position on the market, and support in
a wide range of popular programming languages. AOP therefore is not in conflict
with the objectives or the object-oriented programming tools. We can say that the
AOP approach is a superset of object-oriented. An example of such a situation is also
part of the bank system (shown in Figure 4). The object/class Bank holds a collection
of bank products (classes): Accounts, Credits, Deposits, Report. It is easy to see that
each method of these classes needs common properties which are not connected with
functional object division e.g. transact methods invocation. A trial of implementing
such a feature by invoking in all classes source code which realized it, might result
in disorder and reduce code maintenance.

Informatyka Ekonomiczna 1(23)_2012.indb 27 2012-03-26 10:22:46

28	 Cezary Hołub

BankBank

Account

doPa)yment(
doTransfer()

Credit

doPayment()
doRepayment()

count()

Deposit

createDeposite()
closeDeposite()

doReport()

 Transactions

Report

Bank Product

Figure 4. Part of bank system with using AOP approach, Transaction is an aspect

Source: own preparation.

One of the solutions for the practical use of the idea of aspect programming is
AspectJ programming language. AspectJ is a language description of the aspects in
the form of a superstructure built on Java. The first public version of the language
was published in 2001, and that date is considered as the beginning of its existence.
It is a versatile AOP extension of Java, which means that each Java program is also
valid AspectJ language program. It does not modify any of the construction of the
language, and adds new – especially the notion of aspect. Aspect is a special kind of
class, which along with this class allows modularizing program.

4. Usability of AOP in SOA

As web services are geographically distributed and heterogeneous by nature, they
are very volatile systems and are exposed to exceptions such as software or machine
failure. This may lead to the unavailability of services. In such cases a replacement
is needed to keep the high level of service intact at all times. Keeping replacements
ready at all times is an infeasible scenario. One alternative was to make these services
dynamic so that services are selected by a distinct module on the basis of their
characteristics and availability. Further research has been conducted on the dynamic
selection and integration of web services. This raised the issue of nonfunctional
concerns. Nonfunctional concerns are constraints that cut across various sections of
a business process. These research efforts led to the development of aspect oriented
programming (or development). It has the benefits of modeling, encapsulating, and
extraction of concerns. With the use of Aspect Oriented Programming techniques,

Informatyka Ekonomiczna 1(23)_2012.indb 28 2012-03-26 10:22:47

The importance of AOP in SOA architecture	 29

aspects could be applied to SOA to handle crosscutting concerns. The application
of AOP with SOA in the development of web services is a current active area of
research and has resulted in various middleware systems being developed to handle
aspects with SOA [Wang, Bandara, Pahl 2010; Krueger, Mathew, Meisinger 2006].

There are some concerns, however, that have traditionally been difficult to
isolate to classes. These concerns are referred to as cross-cutting, in that they are
spread across several code modules. Some classic examples of these concerns are
logging and security, which are traditionally spread throughout the application code.
Figure 5 illustrates this concept. The figure shows logging and security as packages
that cross-cut all layers in an N-tier system.

Application Tier

Logging

Security

Business Logic Tier

Data Access

Figure 5. Cross-cutting concerns in a layered Architecture in N(3)-Tier system

Source: own preparation.

The ideal aspect is “orthogonal” to the target functionality, meaning that
nothing the aspect does will affect the rest of the system. For example, caching and
authorizing are powerful aspects, but you would not want your caching aspect to
operate before your authorization aspect. Aspects in typical implementations have
visibility problems. Aspects can be deployed throughout an application. In many
cases when looking at a code one cannot infer whether aspects will be involved in
its execution. Since aspects are applied orthogonally, they cannot be aware of their
execution context. Different contexts would have widely different needs, but the
aspect cannot know that. To solve the orthogonality problem, we deploy aspects in
ordered sets. This allows for the scope and interaction of all participating aspects to
be understood and validated ahead of time (Figure 6).

By relaxing the orthogonality constraint, we can use a wide variety of aspects
including: instrumentation, authorization, caching, validation, exception handling,
impersonation, transaction management, etc. This suite of behaviors represents
a great deal of code that simply does not need to be written.

Web services is the most important technology available nowadays to implement
Service oriented architectures (sometimes web services and SOA are equal terms).
Web services architecture is almost “aspects-ready”:

Informatyka Ekonomiczna 1(23)_2012.indb 29 2012-03-26 10:22:47

30	 Cezary Hołub

Automated generation of stubs and skeletons (excellent points for advice),––
Separate standards to define non-functional properties (typical crosscutting ––
concerns),
Intermediate nodes that can operate on SOAP headers (also potential points for ––
advice).

Figure 6. Aspects deployed in ordered sets

Source: [Enabling Aspects…].

We can use AOP to deal with crosscutting concerns existing in SOA like:
validation, exception management, caching, logging, instrumentation, authentication
and authorization. In the listing below we can see entangled2 code to invoke a web
service. This code can be divided into aspects (concerns):

In this example we will describe the realization of ideas and benefits of using
aspect oriented approach combined with SOA security. When mission-critical logic
functionalities are exposed as Web services in the SOA enabled system, greater
security risks are also introduced to the enterprise entities. The system and resources
such as services and data need to be protected from threats such as unauthorized
access that may be imposed on the system. Using Aspect-oriented programming
(AOP) as the software architecture pattern for SOA security implementation permits
a practical means to “remove security logic and policy from application code
completely” [Patel, McRoberts, Crenshaw 2009].

In order to pass user’s credentials through a SOA composite web service,
a security code is required to be included in the web service implementation.
We developed an identity propagation framework to encapsulate the process of

2  The implementation of a crosscutting concerns with non-AOP results in code tangling. Such that
the code for a particular concern becomes intermixed with the code for another concern.

Informatyka Ekonomiczna 1(23)_2012.indb 30 2012-03-26 10:22:47

The importance of AOP in SOA architecture	 31

Figure 7. Example code with aspects (concerns)

Source: own preparation.

passing user credentials between services. The framework configures inbound and
outbound SOAP handlers around a web service to transparently manage a SAML
(Security Assertion Markup Language) security token, which is transmitted to
subsequently invoked services. The rationale for such identity credential propagation
framework has been well-articulated in a previous publication [Patel, McRoberts,
Crenshaw 2009]. Figure 8 demonstrates this framework in detail:

In our case study, the application of this framework established a division in
roles between application developers and security subject matter experts. Software
developers were no longer tasked with implementing entire security policies
in application code. Instead, their responsibility was reduced to implementing
a smaller portion of security code to invoke the identity-propagation framework.
The responsibility of managing the security policies was shifted to a specialized
development team focused on managing the framework. This shift in responsibilities
is important because application developers typically lack understanding of concerns
outside of core business logic. While the division of roles was present, application
developers still required some knowledge of the security framework, and could
potentially affect its operation. This principle is illustrated in Fig. 9. Ensuring that the

Informatyka Ekonomiczna 1(23)_2012.indb 31 2012-03-26 10:22:47

32	 Cezary Hołub

Figure 8. An identity credential propagation framework

Source: [Sonchaiwanich et al. 2010].

Figure 9. Invoking a security framework from the application code

Source: [Sonchaiwanich et al. 2010].

framework invocation code is implemented correctly requires involvement or review
by the security framework developers. This does not fulfill the goal of independent
verification for the application code and security code [Sonchaiwanich et al. 2010].

Informatyka Ekonomiczna 1(23)_2012.indb 32 2012-03-26 10:22:47

The importance of AOP in SOA architecture	 33

Figure 10 shows the code required to invoke the security framework. The
@HandlerChain annotation configures an inbound SOAP handler to pre-process in-
coming requests. An outbound SOAP handler is configured by calling setHandler-
Resolver, which is required to be called on any subsequently invoked (outbound)
services. Though the statements are seemingly simple, they are entry points into the
framework and credentials would not be passed without them. Correct implemen-
tation of this code was the responsibility of application developers, as it was in-line
with application code.

Figure 10. Security handler code implemented within application business logic

Source: [Sonchaiwanich et al. 2010].

Figure 11. Security handler code encapsulated in an aspect

Source: [Sonchaiwanich et al. 2010].

Informatyka Ekonomiczna 1(23)_2012.indb 33 2012-03-26 10:22:48

34	 Cezary Hołub

While this approach helped in separating the application code from security code,
we recognized this approach did not achieve the full separation of developer roles.
We addressed this issue by applying AOP to complete the separation of application
and security code. The code written to invoke the security framework was refactored
into aspects as shown in Figure 11.

These aspects were then re-introduced into the core application through
a process called weaving. The isolation of this code to aspects allowed application
development to occur independently of security development. In addition, the
application developers are unaware of the use of the framework, and are unable to
affect the process of identity propagation. As shown in Figure 12, under this scheme
responsibilities are truly divided and totally independent of one another.

Figure 12. Invoking the security handler code from an aspect

Source: [Sonchaiwanich et al. 2010].

5. Conclusions

Despite the increasing popularity of SOA, the current state of art is that the service
consumer has to use the web services as they are because of the lack of adequate
web service evolution mechanisms. Aspect-oriented programming (AOP) provides
an effective approach to manage the separation of business (mission) logic from the
security concerns in software design and development to achieve business agility
and software modularity in a SOA. In most cases, web services (SOA) are subject
to frequent evolution requirements and multiple versions need to co-exist due to the
large diversity of potential users. The evolution may occur to both functional and non
functional aspects of a web service and requires to be done rapidly at low cost. The
proposed approach applies aspect-oriented adaptation to the underlying components
of a web service to meet the evolution requirements of the web service so that the

Informatyka Ekonomiczna 1(23)_2012.indb 34 2012-03-26 10:22:48

The importance of AOP in SOA architecture	 35

web service can be smoothly integrated into the target application. Automation
and aspect-oriented deep level adaptation are the benefits of this approach. Such
an approach enables web service developers to adapt their published web services
to meet the integration requirement of specific web service applications. Our case
studies have shown that the approach and tool are promising in their ability and
capability to meet the evolution requirements of web services.

We illustrated how an IT system using AOP can successfully separate the none
functional concerns, (e.g. security logic) from the business implementation in
composite SOA services and applications. Ultimately the approach of combining
AOP and SOA can reduces the costs on SOA application development, integration,
certification, accreditation, and deployment, as well as helping to achieve business
agility. A good starting point for future divagation in this area is to analyze “costs”
in real existing IT systems made with AOP and SOA. There is an increasing role of
AOP in SOA via deeper adaptability, higher automation and therefore smooth web
service composition and wider reusability. In consequence, the target web service
oriented systems will have better quality and more suitable functionality.

References

Brown P.C., Implementing SOA: Total Architecture in Practice, Addison-Wesley Professional, Boston
2008.

Charfi A., Mezini M., Aspect-oriented Web service composition with AO4BPEL, [in:] The European
Conference on Web Services, Erfurt 2004.

Colyer A. et al., Eclipse AspectJ: Aspect-Oriented Programming with AspectJ and the Eclipse AspectJ
Development Tools, Addison-Wesley Professional, Boston 2009.

Courbis C., Finkelstein A., Weaving aspects into Web service orchestrations, [in:] 3rd International
Conference on Web Services, Orlando 2005.

Enabling Aspects to Enhance Service-Oriented Architecture, http://msdn.microsoft.com/en-us/library/
bb245663.aspx.

Ermagan V., Krueger I., Menarini M., Aspect oriented modeling approach to define routing in en-
terprise service bus architectures, [in:] 30th International Conference on Software Engineering,
Leipzig 2008.

Ganser A., Hurtz S., Lichter H., A server side SOA meta model for assigning aspect services, [in:] 11th
International Conference on Model Driven Engineering Languages and Systems, Toulouse 2008.

Hewitt E., Java SOA Cookbook, O’Reilly, Sebastopol, USA 2009.
Holley K., Arsanjani A., 100 SOA Questions Asked and Answered, Prentice Hall, Boston 2011.
Hołub C., AOP and SOA, are they fit?, IADIS International Conference e-Society, Berlin 2012.
Induruwana C., Using an Aspect Oriented Layer in SOA for Enterprise Application Integration, [in:]

3rd International Conference on Service-Oriented Computing, Amsterdam 2005.
Irmert F., Meyerhoefer M., Weiten M., Towards runtime adaptation in a SOA environment, [in:] 21st

European Conference on Object-Oriented Programming, Berlin 2007.
Jacobson I., Aspect-Oriented Software Development with Use Cases, Addison-Wesley Professional,

Boston 2004.
Josuttis N.M., SOA in Practice, O’Reilly, Sebastopol, USA, 2009.

Informatyka Ekonomiczna 1(23)_2012.indb 35 2012-03-26 10:22:48

36	 Cezary Hołub

Kongdenfha W., Motahari-Nezhad H., Benatallah B., An aspect-oriented approach for service adapta-
tion, [in:] IEEE Transactions on Services Computing, Sydney 2009).

Krueger I., Mathew R., Meisinger M., Efficient exploration of Service-Oriented Architectures using
Aspects, [in:] 28th international Conference on Software Engineering, Shanghai 2006.

Laddad R., AspectJ in Action Practical Aspect-Oriented Programming, Manning, Greenwich, USA,
2003.

Lawler J. P., Howell-Barber H., Service-Oriented Architecture – SOA Strategy, Methodology, and
Technology, Auerbach Publications, Boca Raton, USA, 2008.

Maciel R., David J., Oei M. Bastos A., Menezes L., Supporting awareness in groupware through an as-
pect-oriented middleware service, Journal of Universal Computer Science 2009, Vol. 15, No. 9.

Mcheick H., Mili H., Sadou S., El-Kharraz M., A comparison of aspect oriented software development
techniques for distributed applications, [in:] 13th International Conference on Software Eng. and
its Applications, Paris 2000.

Miles R., AspectJ Cookbook, O’Reilly, USA, 2005.
Patel A., McRoberts M., Crenshaw M., Identity propagation in N-tier systems, [in:] 28th International

Conference MILCOM, Boston 2009.
Pulvermueller E., Klaeren H., Speck A., Aspects in distributed environments, [in:] Proceedings of

GCSE, Erfurt 1999.
Rosen M., Lublinsky B., Smith K.T., Balcer M.J., Applied SOA Service-Oriented Architecture and

Design Strategies, Wiley Publishing, Indianapolis 2008.
Sonchaiwanich E., Zhao J., Dowin C., McRoberts M., Using AOP to separate SOA security concerns

from application implementation, [in:] Military Communication Conference – MILCOM 2010,
San Jose 2010.

Svirskas A., Courbis C., Molva R., Bedzinskas J., Compliance proofs for collaborative interactions us-
ing Aspect-Oriented Approach, [in:] 4th IEEE International Conference on Services Computing,
Salt Lake City 2007.

Wang M., Bandara K., Pahl C., Distributed aspect-oriented service composition for business compli-
ance governance with public service processes, [in:] 5th International Conference on Internet and
Web Applications and Services, Barcelona 2010.

Websites

http://wikipedia.org.
http://www.parc.com/research/projects/aspectj/downloads/ECOOP1997-AOP.pdf.

ZNACZENIE AOP W ARCHITEKTURZE SOA

Streszczenie: SOA to koncepcja tworzenia systemów informatycznych, w której główny na-
cisk kładzie się na definiowanie usług, które spełnią wymagania użytkownika. Pojęcie SOA
obejmuje zestaw metod organizacyjnych i technicznych mający na celu lepsze powiązanie
biznesowej strony organizacji z jej zasobami informatycznymi. Programowanie zoriento-
wane aspektowo (AOP) to paradygmat programowania, który zwiększa modularność opro-
gramowania umożliwiając lepszą separację zagadnień. Ze względu na dużą różnorodność
potencjalnych użytkowników i dynamiczne, luźno powiązane systemy, usługi sieciowe (ang.
web services) podlegają ewolucji. Zmiany trzeba robić bardzo szybko, a różne wersje muszą
współistnieć obok siebie. W rzeczywistości często jest tak, że istniejące usługi sieciowe nie
odpowiadają w pełni wymaganiom użytkowników w systemach docelowych. Aby osiągnąć

Informatyka Ekonomiczna 1(23)_2012.indb 36 2012-03-26 10:22:48

The importance of AOP in SOA architecture	 37

płynną integrację, wysoką spójność i używalność usług sieciowych, bardzo pożądane jest
posiadanie w miarę automatycznego mechanizmu rozwoju usług sieciowych. Mechanizm ten
powinien wspierać wymagania funkcjonalne niefunkcjonalne systemu. Celem artykułu jest
podkreślenie użyteczności AOP dla SOA, poprzez teoretyczne rozważania i przykłady prak-
tyczne, z użyciem fragmentów kodów źródłowych aplikacji. Postaramy się wykazać zalety
zastosowania aspektowości w architekturze SOA. Ten artykuł również pokrótce przedstawi
same pojęcia AOP i SOA.

Słowa kluczowe: AOP, SOA, programowanie zorientowane aspektowo, architektura zorien-
towana na usługi, architektura oprogramowania.

Informatyka Ekonomiczna 1(23)_2012.indb 37 2012-03-26 10:22:48

