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PREFACE 

The availability of modern digital computers has stimulated the use of computer 
simulation techniques in many engineering fields. In electrical engineering the 
computer simulation of dynamic processes is very attractive since it enables 
observation of electric quantities which can not be measured in live power system for 
strictly technical reasons. Thus the simulation results help to analyse the effects which 
occur in transient (abnormal) state of power system operation and also provide the 
valuable data for testing of new design concepts.  

In case of computer simulation the continuous models have to be transformed into 
the discrete ones. The transformation is not unique since differentiation and 
integration may have many different numerical representations. Thus the selection of 
the numerical method has the essential impact on the discrete model properties. The 
basic difference between continuous and discrete models is observed in frequency 
domain: the frequency spectrum of signals in discrete models is the periodic function 
of frequency and the period depends on simulation time step applied. Another problem 
is related to numerical instability of discrete models which manifests itself in 
undamped oscillations even though the corresponding continuous models are stable. 
The arithmetic roundup affecting digital calculation accuracy may also contribute to 
the discrete models instability.  

In this book all the aforementioned topics are concerned for discrete linear and 
nonlinear models of basic power system devices like: overhead transmission lines, 
cable feeders, transformers and electric machines. The relevant examples are 
presented with special reference to ATP-EMTP software package application.  

We hope that the book will come in useful for both undergraduate and postgraduate 
students of electrical engineering when studying subjects related to digital simulation 
of power systems. 

 
 
Wroclaw, September 2010     Authors 





 

1. DISCRETE MODELS OF LINEAR ELECTRICAL 
NETWORK 

1.1. Introduction 

The simulation of power networks is aimed at detailed analysis of many problems and 
the most important of them are:  

 determination of power and currents flow in normal operating conditions of 
the network, 

 examination of system stability in normal and abnormal operating conditions, 
 determination of transients during disturbances that may occur in the network, 
 determination of frequency characteristics in selected nodes of the network. 

The network model is derived from differential equations that relate currents and 
voltages in network nodes according to Kirchhoff’s law. The simulation models are 
usually based upon equivalent network diagrams derived under simplified 
assumptions (which sometimes can be significant) that are applied to the network 
elements representation. In this respect models can be divided into two basic groups: 
1. Lumped parameter models. 3D properties of elements are neglected and 

sophisticated electromagnetic relations that include space geometry of the network 
are not taken into account. 

2. Distributed parameter models. Some geometrical parameters are used in the model 
describing equations (usually the line length). 
In classic theory relations between currents and voltages on the network elements 

are continuous functions of time. In digital simulations the numerical approach must 
be applied. Two ways are applied for this purpose: 

– transformation of continuous differential relations into discrete (difference) 
ones, 

– state variable representation in continuous domain and its solution by use of 
numerical methods. 

Consequences of transformation from continuous to discrete time domain: 
– problem of accuracy - discrete representations are always certain (more or less 

accurate) approximation of continuous reality, 
– frequency characteristics become periodic according to Shannon’s theorem, 
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– problem of numerical stability - numerical instability may appear even though 
the continuous representation of the network is absolutely stable. 

1.2. Numerical solution of differential equations  

1.2.1. Basic algorithms 

In electric networks with lumped parameters the basic differential equation that 
describes dynamic relation between physical quantities observed in branches with 
linear elements (R, L, C) takes the form: 

 )()(
d

)(d tbwty
t
ty =+ λ  (1.1) 

where y(t), w(t) denotes electric quantities (current, voltage) and λ, b are the network 
parameters. In case of a single network component (inductor, capacitor) (1.1) 
simplifies into:  

 )(
d

)(d tbw
t
ty =  (1.2) 

Laplace transformation of (1.2) yields:  

 )()( sbWssY =  (1.3) 

To obtain discrete representation of (1.2) the continuous operator in s-domain must 
be replaced by the discrete operator z in z-domain (‘shifting operator’). The basic and 
accurate relation between those two domain is given by the fundamental formula:  

 sTez =  (1.4) 

where T - calculation step.  
Approximate rational relations between z and s can be obtained from expansions of 

(1.4) into power series. Let’s consider the following three most obvious cases:  

1. ......
!
)(...

!2
)(1

2

+++++==
n

TsTsTsez
n

Ts   (1.5) 

Neglecting terms of powers higher than 1 results in approximation: 

 Tsz +≅ 1  (1.6) 

and further: 

 
T

zs 1−≅  (1.7) 



1.2. Numerical solution of differential equations 9 

2. 
Ts

TsTsTsez nTs

−
=+++++≈=

1
1......)(...)(1 2  (1.8) 

Again, if the higher power terms are neglected, then: 

 
Ts

z
−

≅
1

1
 (1.9) 

and 

 
Tz

zs 1−≅  (1.10) 

3.  sTez =  (1.11) 

 ⎥
⎦

⎤
⎢
⎣

⎡
+

+
−+

+
−== ......

)1(3
)1(

1
12ln1

3

3

z
z

z
z

T
z

T
s  (1.12) 

Again, if terms of power higher than 1 are neglected then: 

 
)1(
)1(2

+
−≅

zT
zs  (1.13) 

The approximation (1.13) is the well known Bilinear Transformation or Tustin’s 
operator. 

Applying the derived approximations of s to differential equation (1.3) three 
different discrete algorithms for numerical calculation of w(k) integral can be 
obtained.  

Using the first approximation of s (1.7) in (1.3): 

 )()(1 zbWzY
T

z =−
 (1.14) 

and, in discrete time domain: 

 )()()1( kbw
T

kyky =−+
 (1.15) 

The obtained formula (1.15) is the Euler’s forward approximation of a continuous 
derivative. The corresponding integration algorithm takes the form: 

 )()()( 11 zbTWzzYzzY −− +=  (1.16) 

and 
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 )1()1()( −+−= kbTwkyky  (1.17) 

The algorithm (1.17) realizes iteration that within a single step T can be written as: 

 ττ d)()()(
1

1 ∫
−

+= −

k

k

t

t
kk wbTtyty  (1.18) 

The algorithm (1.17) is of explicit type since the current output in k-th calculation 
step depends only on past values of the input and output in (k–1) instant.  

Using the second approximation of s (1.6): 

 )()(1 zbWzY
zT

z =−
 (1.19) 

and 

 )()1()( kbw
T

kyky =−−
 (1.20) 

Now the obtained formula (1.20) is the Euler’s backward approximation of a 
continuous derivative. The resulting integration algorithm takes the form:  

 )()()( 1 zbTWzYzzY += −  (1.21) 

and 

 )()1()( kbTwkyky +−=  (1.22) 

This algorithm is of implicit type since the current output in k-th instant depends on 
present value of the input in the same instant.  

The algorithm (1.9) which realizes integration within a single step T, can now be 
written as:  

 ττ d)()()(
1

1 ∫
+

+= −

k

k

t

t
kk wbTtyty  (1.23) 

Using the third approximation of s (1.7) in (1.3) we get: 

 )()(
)1(
)1(2 zbWzY

zT
z =

+
−

 (1.24) 

 
( )

2
)()()()(

1
1 zWzzWTbzYzzY

−
− ++=  (1.25) 



1.2. Numerical solution of differential equations 11 

 
( )

2
)1()()1()( −++−= kwkwTbkyky  (1.26) 

This algorithm (1.26) realizes numerical integration based upon trapezoidal 
approximation of the input function w(k).  

Graphical representation of all derived integrating algorithms is shown in Fig.1.1. 

 

Fig.1.1. Numerical integration; 1 - Euler’s ‘step back’ (explicit) approximation.;2 - Euler’s 
‘step forward’ (implicit) approx.; 3 - trapezoidal approximation 

Examination of Fig.1.1 leads to the following conclusions: 
 Forward approximation of derivative results in ‘step backward’ (explicit) 

integrating algorithm and vice versa. The explicit algorithm tends to 
underestimate while the implicit one overestimates the integration result. 

 The algorithm based on trapezoidal approx. reduces the integration error since 
its output yTR(k) (1.10) is an average of outputs of both aforementioned 
algorithms yE(k) (1.8), yI(k) (1.10) at any instant k, i.e. 

 
2

)()()( kykyky IE
TR

+=  (1.27) 

In general, the numerical integration methods depend on approximations of 
continuous derivative (or integral) and can be divided into two groups, namely: 

– single step integration methods (self-starting), 
– multi-step methods. 
All algorithms considered belong to the first group. As an example of a multi-step 

numerical integrator the 2-nd order Gear algorithm can be shown:  
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3

)()2()1(4)( kTbwkykyky +−−−=  (1.28) 

The algorithm is not self-starting one and must be started by use of a single step 
algorithm but reveals stiff stability properties. 

1.2.2. Accuracy of operation and stability 

Accuracy of numerical integration for the algorithms considered can be estimated 
from homogenous form of the eqn.(1.1), i.e.: 

 0)(
d

)(d =+ ty
t
ty λ  (1.29) 

which yields the accurate solution: 

 tetyty λ−= )()( 0  (1.30) 

where y(t0) – initial condition at t0 ; λ >0 
Applying s approximations (1.7, 1.10, 1.13) to (1.29) the following numerical 

expressions are obtained [18]: 
– Explicit Euler’s method (‘step backward’) (1.7) 

 )1()1()( −−= kyTky λ  (1.31) 

– Implicit Euler’s method (‘step forward’) (1.10) 

 
T

kyky
λ+
−=

1
)1()(  (1.32) 

– Trapezoidal approximation (1.13) 

 )1(
2
2)( −

+
−= ky

T
Tky

λ
λ

 (1.33) 

Accurate result of integration at the instant tk=kT is: 

 T
aL ekyky λ−−= )1()(  (1.34) 

Thus the local integration error for one interval T=tk– tk-1 can be defined as: 

 )()( kykyaLL −=Δ  (1.35) 

This local error can easily be determined for each algorithm considered. Let’s take 
for example the method (1.7):  
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 )1)(1()1()1()1( TekykyTeky TT
L λλ λλ +−−=−−−−=Δ −−  (1.36) 

Expansion of the exponential term into power series yields:  

 
.....)

!3
)(

2
)()(1(

32

+−−=Δ TTkyL
λλ

 (1.37) 

Putting the constraint λT < 1 and using some mathematics, the local error can be 
estimated by the approximate formula: 

 
)2()2(

)(
1

1

T
T

p

p

L λ
λ

+
=Δ −

+

 (1.38) 

where p is the order of the algorithm(in this case p = 1). 
The global error ΔG is defined as the difference between accurate and approximate 

integration result in a longer time span i.e. from the first step (k = 1) to the arbitrary 
step k > 1 so that:  

 )(0 kyey Tk
G −=Δ − λ  (1.39) 

The respective integration results of (1.29) for the algorithms considered are (order 
of presentation as in previous case):  

– Explicit Euler’s method (‘step backward’) (1.7): 

 0)1()( yTky kλ−=  (1.40) 

– Implicit Euler’s method (‘step forward’) (1.10): 

 kT
yky

)1(
)( 0

λ+
=  (1.41) 

– Trapezoidal approximation (1.13): 

 02
2)( y

T
Tky

k

⎥⎦
⎤

⎢⎣
⎡

+
−=

λ
λ

 (1.42) 

Discussion of results 

 Algorithms (1.31) and (1.40). The integration method is convergent and the 
algorithms remain stable if:  

 11 <− Tλ  (1.43) 

Thus, the stability of the algorithms is ensured if: 
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λ
2<T  (1.44) 

 The remaining algorithms are stable regardless of the value of T. 
 If the algorithm is stable the global error tends to zero even though the local 

error may attain significant values. 
Illustration of the errors discussed is shown in Fig.1.2. The plots presented have 

been calculated for: y0 = 10; λ = 2; T = 0.987 [76]. 

–2
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0
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2

3
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1

2

3
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–10

–5

0

5

10

0 4 8 12 16 20k

31

2

ΔG

a) b)

10–4 10–3 10–2 10–1 100

 

Fig. 1.2. Local ΔL and global ΔG error values for the algorithms considered: 1 – trapezoidal 
approx.; 2 – Euler’s ‘step forward’ ; 3 – Euler’s ‘step backward’ 

1.3. Numerical models of network elements 

1.3.1. Resistance 

As the resistive elements do not have the energy storing capacity the discrete relation 
between current and voltage drop across resistance R can be obtained directly from the 
continuous relation and: 

 )()(1)( kGuku
R

ki ==  (1.45) 

1.3.2. Inductance 

The energy stored in magnetic field produced by current has the impact on voltage 
across the element so its continuous model is described by the equation:

 )(1
d

)(d tu
Lt

ti =  (1.46) 
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Using the transformation (1.6) or (1.9) the Euler’s implicit discrete model of the 
element is obtained: 

 
L
TGkGukiku

L
Tkiki =+−=+−= ),()1()()1()(  (1.47) 

Note that T/L has the conductance unit. 
For the trapezoidal transformation (1.7) or eqn.(1.10) the discrete model takes the 

form: 

 [ ])()1(
2

)1()( kuku
L

Tkiki +−+−=  (1.48) 

or 

 
L

TGkGukikGuki
2

),1()1()()( =−+−+=  (1.49) 

The eqn. (1.49) can be rearranged in the following way: 

 )1()1()()( −+−+= kGukikGuki  (1.50) 

or 

 )1()()( −+= kjkGuki  (1.51) 

where 

 )1()1()1( −+−=− kGukikj  (1.52) 

The calculations in step k employ the values calculated in step k–1 which are 
constant and can be considered as the constant current sources j(k–1). Thus the 
inductance can be represented by equivalent numerical model corresponding to (1.52) 
which is shown in Fig.1.3. 

a)

u(k)

i(k)

G j(k-1)
i(t)

u(t)

L

b)

 

Fig. 1.3. Discrete model of inductance; a) symbol; b) numerical model 
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1.3.3. Capacitance 

This element also reveals the energy storing capacity in form of electric charge and the 
relation between voltage and current in the element is given by the formula:  

 )(1
d

)(d ti
Ct

tu =  (1.53) 

Using the same transformations as for the inductance the discrete models of 
capacitance can be derived:  

 )()1()( ki
C
Tkuku +−=  (1.54) 

Introducing the conductance notation (1.54) takes the form: 

 
T
CGkGukGuki =−−= ),1()()(  (1.55) 

and 

 )1()1(),1()()( −−=−−+= kGukjkjkGuki  (1.56) 

Using the trapezoidal integration method the discrete model of capacitance takes 
the similar form: 

 ( ))()1(
2

)1()( kiki
C
Tkuku +−+−=  (1.57) 

The companion discrete model for capacitance can be derived as: 

 )1()()( −+= kjkGuki  (1.58) 

 
T
CGkGukikj 2),1()1()1( =−+−−=−  (1.59) 

The respective representation is shown in Fig.1.4: 

u(k)

i(k)

G j(k-1)
i(t)

u(t)

C

a) b)

 

Fig. 1.4. Discrete model of capacitance; a) symbol; b) numerical model 
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In the very similar way the parameters of circuit representations for any integration 
method used can be derived. In Table 1.1 the example of those parameters for three 
selected methods are shown.  

Table 1.1. Companion circuit parameters for selected numerical integration methods. 

Integration method Model of inductance L Model of capacitance C 
Euler’s implicit 

method 
)1()1( −=− kikj , 

L
TG =  )1()1( −−=− kGukj , 

T
CG =  

Trapezoidal 
approximation 

)1()1()1( −+−=− kGukikj , 
L

TG
2

= ( ))1()1()1( −+−−=− kGukikj , 
T
CG 2=  

Gear’s 2nd order 
( ))2()1(4

3
1)1( −−−=− kikikj , 

L
TG

3
2=  

⎟
⎠
⎞

⎜
⎝
⎛ −+−−=− )2(

3
1)1(2)1( kukuGkj

T
CG

2
3=  

Basic numerical algorithm: )1()()( −+= kjkGuki  

1.3.4. Complex RLC branches 

The equivalent discrete model of in series connected RLC branch can be obtained by 
series connection of basic models of each particular element in the branch as it is 
shown in Fig.1.5b.  

u(k)

GR

i(t)

uR(t)

L

a) b)

jC(k-1)C

c)

R

GL

GC

uL(t)

uC(t)

jL(k-1) j(k-1)G

i(k)

i(k)

uR(k)

uL(k)

uC(k)

u(t)

Fig. 1.5. Discrete model of RLC branch; a) the continuous model; b) discrete models  
of particular elements; c) the equivalent discrete model of the branch. 
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To derive the equivalent discrete model (Fig. 1.5c) of the overall circuit consider 
the basic equation for voltage across the branch (Fig. 1.5b): 

 )()()()( kukukuku CLR ++=  (1.60) 

in which the particular terms can be expressed by their basic models: 

 
( ) ( ).)1()(1)(,)1()(1)(

),(1)(

−−=−−=

=

kjki
G

kukjki
G

ku

ki
G

ku

C
C

CL
L

L

R
R

 (1.61) 

After substitution and appropriate rearrangement of (1.60) the equivalent model 
equation is obtained: 

 )1()()( −+= kjkGuki  (1.62) 

in which, for trapezoidal approximation:  

224
2

TRCTLC
CT

GGGGGG
GGGG

CLCRLR

CLR

++
=

++
=   

)1()1()1()1()1( −+−=
++

−+−=− kj
G
Gkj

G
G

GGGGGG
kjGGkjGGkj C

C
L

LCLCRLR

CLRLCR , 

and 
R

GR
1= , 

L
TGL 2

= , 
T
CGC

2= . 

If capacitance C is not present in a branch then C→∞ must be put into the above 
equations. For missing R or L, R = 0 or L = 0 must be used, respectively. For example, 
in case of the R L branch the respective relations are: 

 
RTL

TG
+

=
2

 )1()1(
1
1)1(

2
2)1( −+−

+
−=−

+
=− kGuki

RG
RGkj

RTL
Lkj

L

L
L  (1.63) 

1.3.5. Controlled sources 

Controlled sources are used very often in electronic and electric network models. 
Generally there are four basic types of such sources (Fig.1.6) [18, 70]:  

 Voltage controlled current sources xkuj = controlled by voltage xu applied to 
control terminals. 

 Current controlled current sources xkij =  controlled by current xi injected 
into control terminals. 

 Voltage controlled voltage sources xkuu = . 
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 Current controlled voltage sources xkiu = . 

j=kuxux

u=kix

ix

j=kix

ix

u=kuxux

a) b)

c) d)

 

Fig. 1.6. Diagrams of controlled sources; a) voltage controlled current source; 
b) current controlled current source; c) current controlled voltage source; 

d) voltage controlled voltage network. 

Models of controlled sources are very simple; however, their implementation in 
simulation programs may sometimes be cumbersome. 

1.3.6. Frequency properties of discrete models 

The frequency properties of discrete models are uniquely determined by the method 
used for approximation of derivatives that appear in the continuous model of a given 
element. Comparison of the continuous and the discrete models frequency properties 
provides very useful information on how to select the calculation period T in order to 
obtain the accurate enough transient component waveform of specified frequency fmax 
which is present in the frequency spectrum of continuous transient voltages or 
currents.  

As an example let’s consider the discrete model of inductance obtained by use of 
trapezoidal approximation. Using the already known relations (1.46, 1.13) we get: 
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Now using (1.4) and remembering that in frequency domain s=jω : 

 )j(
1
1

2
)j( j

j

ωω ω

ω
u

e
e

L
Ti T

T

−
+=  (1.66) 



20 1. DISCRETE MODELS OF LINEAR ELECTRICAL NETWORK 

Applying rudimentary trigonometry knowledge the magnitude of the equation 
(1.66) can be written in the following form: 
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Introducing the complex discrete admittances Yd(jω) and the continuous Yc(jω) we get: 
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where Yc(jω) = 1/jLω is the admittance of the continuous model of inductance. 
Thus, the ratio of the discrete admittance to the continuous one is given by: 
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and changes with frequency as it is shown in Fig. 1.7. 
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Fig. 1.7. Frequency response of discrete inductance model. 
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From eqn. (1.69) and from Fig. 1.7 one can notice that Yd(jω) reaches zero if 

∞→
2

tan Tω  This limit is reached when: 
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So if fmax is the frequency of the highest harmonic to be observed in current or 
voltage signals then the calculation step T should be small enough according to 
following condition: 

 
max2
1
f

T <<  (1.71) 

Practically, if required number of data samples within the period 
max

max f
T 1=  is N 

then (1.71) implies: 

 
max

1
Nf

T ≤  (1.72) 

in which N must not be less than 2 (usually N > 20). 

1.3.7. Distributed parameters model (long line model) 

Distinction between lumped and distributed models of electric elements is made on the 
basis of mutual relation between three basic parameters of the environment in which 
the electromagnetic wave is propagated. These parameters are: 

 specific electric conductivity γ 
 relative magnetic permeability μ 
 relative electric permittivity ε 

In case of lumped elements it is assumed that only one of the above listed 
parameters is dominant and the remaining ones can be neglected. Thus particular 
elements are deemed as lumped under following conditions: 

 μ = ε = 0 – lumped resistance  
 γ = ε = 0 – lumped inductance 
 γ = μ = 0 – lumped capacitance. 

Additionally in case of lumped parameters model of an electric network the 
electromagnetic field must be quasi-stationary; it means that in each point of the 
network the electromagnetic field is practically the same or the differences are 
negligibly small. In this respect the length of the electric conductor l is considered as 
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the distinctive parameter. As the boundary value the length lgr equal to ¼ of the 
electromagnetic wavelength propagated is assumed.  

Thus, if the frequency of the propagated wave is f, than the lgr can be estimated as: 

 
f

clgr 44
== λ , (1.73) 

where c is the velocity of light and 
f
c=λ  is the wavelength. 

If grll <<  then the length of the line can be neglected and can be modelled as the 
lumped parameter element. Otherwise ( grll ≈ ) the line should be considered as the 
long one. 

For example, if the transient harmonics of frequency 1000=f Hz (the 20th 
harmonic) may appear in the line during faults then )10004/(103)4/( 5 ⋅⋅== fclgr  = 
75 km. The lightning stroke may induce much higher harmonics in the line so in such 
case even a few kilometres long line should be represented by distributed parameters 
model.  

To derive the continuous model of the long line the equivalent xΔ  long segment of 
the line shown in Fig.1.8 can be used. As xΔ  is assumed to be sufficiently short the 
circuit parameters can be considered as the lumped ones. 

R'Δx L'Δx

G'Δx
C'Δx

u(x,t) u(x+Δx,t)

i(x,t) i(x+Δx,t)

x x+Δx  

Fig.1.8. Elementary segment of a long line 

The basic equations that describe the elementary line segment in Fig.1.8 are: 
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where: 'R , 'L , 'G , 'C  denote ‘unit/ length’ values of resistance, inductance and 
capacitance of the line, respectively. 
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Dividing both equations by xΔ  and taking the limes ( 0→Δx ) the following 
relations are obtained: 
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If the line is homogenous then (1.75) can be separated with respect to current and 
voltage (for simplicity: ),( txuu = , ),( txii = ): 
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and 
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Applying the same simplifying procedure to the second equation in (1.75) the 

respective relation for current can be obtained: 
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Both (1.75) and (1.76) are the second order hyperbolic partial differential equations 
known as telegraph equations [80]. 

a) Lossless (non-dissipating) long line  

This case is obtained under assumption that 0'=R  and 0'=G  and the resulting 
simplification of (1.77) and (1.78) is: 
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in which: 
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The general solution of (3.6) has been found by d’Alembert [24, 28]. For the 
following boundary conditions:  

)(),( 0 ttxu x ϕ== , )(),(

0
t

x
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x
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∂
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=
  

the solution of (1.79) takes the form: 
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The loci of points const)/( =− vxt  and const)/( =+ vxt  known as propagation 
characteristics of (1.81) [6, 39] show the propagation mechanism of ),( txϕ  waves in a 
long line.  
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Fig. 1.9. Propagation characteristics of a lossless long line 

The boundary conditions expressed in terms of voltage )(1 tu and current )(1 ti at 
the beginning of the lossless ( 0=R' ) line (1.75) yields:  
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and the solution (1.81) takes the form: 
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where 
'
'

C
LZ f =  is the wave (surge) impedance of the line. 

For lx =  (end of the line) solution of (1.82) is given by the equation: 
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where: vl /=τ is the line propagation time. 
Similarly, the wave equation for current can be obtained and: 
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Note that it was assumed that the current at the end of the line flows in reverse 
direction with respect to the current at the line beginning (see Fig.1.8) and that is why 
it bears the opposite sign. 

Subtracting (1.83) from (1.84) the model of the long lossless line is obtained: 

 )()()()( 1122 ττ −−−−= tituGtuGti ff  (1.85) 

where: 
f

f Z
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Fig.1.10. Assignment of variables in the lossless line 

When the boundary conditions are assigned to the beginning and to the end of the 
line, the solution concerns these two points only. The propagation characteristics also 
comprise of 2 points: 01 =x  and lx =2 . This simple model is called the Bergeron’s 
model [24, 49].  

The continuous model (1.85) of the lossless line can easily be converted into the 
discrete one. Assuming that wave propagation time is mT = τ then:  
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and  
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By analogy the discrete model for the current at the beginning of the line can be 
derived, so the respective input and output line currents are: 
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where 
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The equivalent circuits corresponding to (1.88) and (1.89) are shown in Fig. 1.11. 
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Fig.1.11. Equivalent circuit of the long line discrete model 

b) The long line model with dissipation losses 

The dissipation losses are uniquely attributed to heating of the line resistance which 
was neglected in derivation of the lossless line model. The inclusion of the resistance 
to the long line model is based upon assumption that its value is relatively small with 
respect to the line reactance. This assumption justifies the inclusion of the lumped 
resistance at both ends of the line as it is shown in Fig. 12. 

When the resistance is connected as shown in Fig.1.12a the equations (1.88), (1.89) 
refer to voltages at nodes 1’and 2’ for which the following relations are valid: 
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where: 'lRR =  
As the result the conductance fG  and history of calculation changes so that: 
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where: 
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Fig.1.12. Inclusion of resistance into the long line model 

More accurate model can be obtained when the resistance is connected into the line 
model as it is shown in Fig.1.12b. In this case all the line parameters connected to the 
middle node of the line can be eliminated and the resulting equations obtained are: 
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where: fffa GZh = ,  ffb GRh
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In general the dissipating long line models can be written in the compact matrix 
form so that: 
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and the matrixes { }ff G=G  and { }ff h=h . 
The form of the matrixes depends upon the considered representation of the 

dissipating long line (as in Fig. 1.12a or as in Fig. 1.12.b). 

1.4. Nodal method 

The method is frequently used for network node equations formulation mainly 
because its application is easy and the algorithms of nodal equations solution are well 
known and fast. Below, the fundamentals of nodal method are presented which refer 
to the admittance representation of network branches with current and voltage 
controlled sources. Extension of the method for networks containing voltage and 
current controlled voltage sources branches is known as the modified nodal method 
and will not considered here since the method is mainly applied to simulation of 
transients in electronic networks [8, 36].  

1.4.1. Derivation of basic nodal equations 

The equivalent diagram of the network branch typical for the nodal method is shown 
in Fig.1.13. The mathematical model of the branch is described by the following 
equation: 

 anmbalkaabbaaaa juuGuuGjuGuGi +−+−=++= )()(  (1.94) 

where bu  is the current source controlling voltage with the control coefficient baG , 
located in the other network branch It must be noted that aj  may refer to the 
independent current source as well as to the source related to the past values of current 
(history) in the branch. 

ua

ja

Gia

Gbaub

k l

 

Fig. 1.13. Equivalent diagram of the conductance branch typical for nodal method 

Let's consider a network comprising of gn  branches and 1+wn  nodes with one of 
the nodes being the reference one. Such a network can be described by equation (1.94) 
written in matrix form: 
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 g
T

gg juAGi +=  (1.95) 

where: 
– ( )gg nng ×

G  is the conductance matrix which contains branch conductances aG  (at 

the diagonal) and conductances of controlled current sources baG  (outside the 
diagonal); 

– 
gw nn ×A = {aij} is the incidence matrix which takes the following values : 1=ija  

– if the branch j  is connected to the node i  and is directed to that node, 
1−=ija  – if the branch is of opposite direction, 0=ija  – if the branch j  is not 

connected to the node i ; 
– u  is the vector of potentials in wn  independent network nodes (it is the vector 

of voltage difference between particular nodes and the reference node); 
– gj  is the vector of nodal current sources. 

Multiplication of (1.94) by the incidence matrix A  transforms the branch currents 
into the nodal ones. The sum of the branch currents in each node is always equal to 
zero (the first Kirchhoff’s law) so that: 

 0=gAi  (1.96) 

and, for the right side of (1.94): 
 iGu =  (1.97) 

where: T
gnn gg
AAGG =×  is the matrix of nodal conductance , gnw

Aji −=×1  is the 

vector of the nodal currents (positive sign is assigned to elements of the vector i  if the 
corresponding source is directed to the node). 

Due to the matrix A  definition particular elements of the vector i  are the sum of 
branch currents which are directed to a given node. 

Relation (1.97) is known as the equation of nodal potentials. For a given matrix G  
and for the known excitation vector i  solution of (1.97) yields the vector u  which 
determines voltages between the independent nodes and the reference one. To 
facilitate the network transient calculations some modifications are applied to (1.97). 
Two such modifications are of extreme importance in power system networks 
calculations since they enable: 

– inclusion of voltage sources connected to the reference node; 
– improvement of calculation in case of parameter changes in selected branches. 
If independent voltage sources connected in series with impedance appear in 

branches then they should be transformed into the equivalent current sources 
according to the Norton's theorem. In power networks the reference node is usually 
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assigned to earth In such case all voltage sources connected to earth are no longer 
independent. To avoid this the following procedure can be applied [24, 87]: 

• Select the set of nodes A (excluding the reference node) for which nodal 
voltages are not determined. 

• Nodes with determined voltages belong to the set B. The sum of both set makes 
the total set of all independent nodes in the network: BAw nnn += . 

• Vector of nodal voltages u  in (1.97) can now be presented as: 
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in which only the vector Au  is to be determined.  
• Now (1.97) can be written as: 
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where: AAG  is the conductance matrix of that part of the network which has no 
nodes connected to the branches with voltage sources, BBG  contains self and 
mutual conductances of nodes for which voltages are known, while ABG  and 

BAG  represent matrixes of mutual conductances of sets A and B; node current 
vector is divided similarly.  

• The unknown node voltage vector Au  can be determined from the equation: 

 BABAAAA uGiuG −=  (1.100) 

while the node current vector in the set B can be found from the lower part of 
(1.99): 

 BBBABAB uGuGi +=  (1.101) 

Elements of the vector Bi  are the sum of sources current flowing into the 
respective nodes in the set B, including branches obtained for the voltage sources.  

Another important issue related to calculation of transients is the possibility of an 
easy change of network configuration without necessity of matrix G  calculation. This 
problem appears, for instance, when switches in the network being analyzed change 
their positions. In such case any switch can be represented by the conductance branch 
for which the value of wylG  depends upon the switch position: maxwyl FG =  – the 

switch closed, 0wyl =G  – the switch open; maxF  – very big real value. Thus, when the 
switches change position the overall network configuration remains unchanged, only 
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the values of matrix G  elements change. That is why the nodes connected to the 
switch branches should be located in lower part of matrix G [22]. The example 
illustrating the nodal method application is shown in [76].  

In existing simulation programs the Gaussian elimination method is applied in 
versions which differ mainly in representation of elements with variable parameters 
(switches). It should be noted that the representation of a switch by the element of 
variable conductance may bring about some numerical problems when the conductance 
value is very small (closed switch) since the matrix may become singular.  

1.4.2. Simulation algorithm 

The detailed algorithm of transient simulation depends mainly upon how the 
numerical problems are solved. However, in general, all algorithms comprise of the 
three basic stages (Fig. 1.14):  

Yes

Data input
Set initial conditions

t=0

Set up matrix G
(the upper triangular part of the matrix)

Set up the lower part
of the triangular matrix G

Switch position change?

Determine vector of source currents
for independent  sources  and history

No

Calculate node voltages: reverse
substitution (Gauss method)

Determine output

t=t+T

t>tmax?

Output file

StopNo

Yes

 

Fig. 1.14. Basic structure of algorithms for transient calculation using the nodal method 
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• Data and initial conditions setup 
• Calculations  
• Results record 

The results of the algorithm operation can be illustrated by the following example. 

Example 1.1.  Simulate the transients generated in the network shown in Fig.1.15a 
which is the part of the 400 kV power system drawn for the positive 
sequence impedances. Assume that all current and voltage initial 
conditions for (t<0) are equal to zero.  

System parameters: sE = 330 kV, sZ = 0.5 + j10 Ω, 1Z = 4700 + j2800 Ω, 2Z = 415 + j200 Ω. 

Line: 'R = 0.0288 Ω/km, 'L =1.0287 mH/km, 'C =11.232 nF/km, length l =180 km. 
Calculation step: T = 5⋅10–5 s. 
Using the respective digital models for the system elements the equivalent network shown in 
Fig.1.15b is obtained. The switch W is closed (GW = 106 S). Simulation starts (t = 0) when the 
voltage ES is switched on. 
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Fig.1.15. Illustration of the simulation algorithm operation; a) analyzed system; b) equivalent 
network of the analyzed system 

Simulation is based on step by step solving of (1.100) and (1.101).The selected waveforms of 
currents and voltages in the network are shown in Fig. 1.16. 
The intensive transient state caused by charging of the line can be noticed in the first period of 
fundamental frequency. The oscillation period is equal to the propagation time necessary for 
the electromagnetic wave to travel along the line in both directions. Relatively slow decay of 
those oscillations can partly be attributed applied trapezoidal integration method which is 
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sensitive to rapid changes of reflected current and voltage waveforms. Problem of digital 
simulations is analyzed in further part of this Chapter (sect. 1.5).  
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Fig.1.16. The voltage a) and current b) at the beginning of the line 

1.4.3. Initial conditions 

To start simulations according to the algorithm discussed initial conditions for currents 
and voltages in LC branches and in long (distributed parameters) line have to be fixed 
first. In case of AC networks the initial conditions refer to the steady state of the 
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network before calculation of transients starts. Thus, the initial conditions are 
determined for complex network model with sinusoidal excitation sources and with all 
switches set to positions corresponding to the network normal operating conditions. 

If the network includes nonlinear elements then, initial conditions calculations are 
carried out for linear approximation of their nonlinear transition characteristics. In 
case of long lines which are modelled as elements of distributed parameters initial 
conditions are calculated using the simplified model in which the line is represented 
by a single Π cell as it is shown in Fig. 1.17.  
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Fig. 1.17. Equivalent circuit of along line for steady state calculations 

The values of admittances in the circuit shown in Fig. 1.17 can be determined from 
'unit per length' parameters of the line according to the following equations:  
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where l – line length. Complex parameter γ  is the line propagation constant. 
The steady state equation of the network in Fig. 1.17 takes the following form: 
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The admittances located in the matrix diagonal can be simplified so that: 

 lYYY LppL γcos
2
1 =+  (1.105) 

In case of the long and lossless line ( 0== G'R' ) the respective values of 
admittances in boundary conditions are: 
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The short line, for which the related functions ( xx /sinh , xx /tanh , xx /sin , 
0→x ) take the values close to 1, can be considered as an element of lumped 

parameters so that:  
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where lR'R =  similarly to the rest of the line parameters. 
The results of steady state calculations are in general complex numbers. If the real 

part of the obtained result is taken as the initial condition for transients calculation 
then all excitation current and voltage sources should be of cosine type.  

1.5.  Numerical stability of digital models  

Numerical models used for simulation of transient processes in power networks can be 
deemed as satisfactory if the simulation results are adequate to processes observed in 
real networks. There are two basic sources of errors that can make the simulation 
results inadequate, namely,  

 omission of the elements which are essential for the network operation 
 application of numerical methods that are inadequate to calculation of 

analyzed effects. 
The problems concerned may appear in some specific situations only. For example, 

the ideal switch that is represented by two limit values of conductance (0 and ∞) can 
be used as a circuit breaker if the values of the current to be broken are relatively low. 
Similar problems may occur due to application of inadequate numerical methods 
resulting in numerical instability. 

Numerical instability appears when the errors caused by numerical round up of 
calculation results sum up in each calculation step. 

Practically, the both considered types of errors are related very closely as the 
further analysis shows. 

1.5.1. Numerical oscillations in transient state simulations 

As the typical illustration of the problem let’s consider the following example. 

Example 1.2.  Simulate the transient effects that appear in the network shown in Fig. 
1.18 when the switch opens at topen =0.012s. Assume that the models of 
elements used are companion to trapezoidal approximation method. 
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R1
E Wi(k)

u(k)

L1

R2

C

 
The element parameters: 1R =1Ω, 1L =100mH, 2R =1000Ω, C =4.7μF, E =100cos(100πt). 

Fig.1.18. The simulated network 

The respective waveforms of the current flowing through the switch and the voltage drop 
across the inductance L1 are shown in Fig. 1.19. 

 

Fig. 1.19. The results of simulation; a) the current in the switch; b) the voltage across  
the inductance L1  

As one can see the network current drops to zero when the switch opens but the voltage across 
inductance oscillates with constant non-decaying amplitude of relatively small value since the 
value of the current at the breaking moment is also very small. A closer look at the oscillating 
voltage (Fig. 1.20) reveals that it changes its sign in each calculation step.  
The oscillations appear since the energy stored in the coil cannot be dissipated (the circuit is 
broken). Thus the observed error in simulation result can be credited to inadequate model 
applied. Such errors may appear in less obvious situations (some model parameters drastically 
change their values within one calculation step). 

To analyze the described numerical effect let’s consider the voltage drop across the 
inductance which, in case of numerical model derived for trapezoidal approximation, 
can be expressed as (derive this equation):  

 )1()1(1)(1)( −−−−−+= kuki
G
RGki

G
RGku

L

L

L

L  (1.108) 
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Fig.1.20. Oscillating inductance voltage 

When the switch opens at k-1 instant the current attains zero in two consecutive 
steps ( 0)1()( =−= kiki ). Thus, )1()( −−= kuku  for all further calculation steps. 

There are many methods that can be applied to damp such oscillations; they are 
known as critical damping adjustment methods (CDA) [56, 59].  

1.5.2. Suppression of oscillations by use of a damping resistance 

The most obvious way of oscillation suppression is the use of nonlinear model that 
matches reality. However, sometimes this approach may be very difficult or even 
impossible to apply. In such cases the use of linear resistance can bring the 
satisfactory effects. 

The analysis of the network in Fig. 1.19 immediately brings to the conclusion that 
the use of resistance connected in parallel with the coil should result in suppression of 
voltage oscillations. In such case the modified inductance model takes the form (Fig. 
1.21): 

 ( ) ( ))1()(1)1()1()(
2

)( −−+−+−+= kuku
R

kikuku
L

Tki  (1.109) 

 

Fig. 1.21. Modified inductance model 

In standard notation it is: 
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 )1()()( −+= kjkGuki  (1.110) 
where:  

LR
LTRG

2
2+= , )1(

2
2)1()1( −−+−=− ku

LR
LTRkikj . 

Voltage across the modified inductance is: 

 ( ) )1()1()(1)( −−−−= kukiki
G

ku α  (1.111) 

where:

T
L

R

T
L

R

2

2

+

−
=α   

The coefficient α is responsible for damping of oscillations. If ∞=R , 1=α . The 
lower the value of R the lower the value of α. The oscillations on inductance in the 
example circuit for different values of α are shown in Fig. 1.22.  

 

Fig.1.22. Oscillations on the inductor for different values of α. α=0.818 (a) and α=0.333 (b)  

The similar effects can be observed on capacitances in case of rapid decrease of the 
capacitance voltage. In such case the modified capacitance model takes the form as in 
Fig. 1.23. 
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Fig. 1.23. Series RC model. 

The respective relations are: 

 ( ) ( ))1()1(2)1()()(2)( −−−−−−−= kRiku
T
CkikRiku

T
Cki  (1.112) 

 ( ) )1()1()()( −−−−= kikukuGki α  (1.113) 

where: 
RCT

CG
2

2
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= ,    
R

C
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R
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+

−
=

2

2α . 

In this case the oscillations of current occur for 1=α  (R=0) at the moment when 
u(k)=u(k–1)=0. 

It must be noted that the damping resistor changes the frequency response of the 
model considered. For example, in case of inductance, the eqn. (1.66) now takes the 
form: 
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Fig.1.24. Frequency response for magnitude and argument of the relation cd YY / ;1 - α = 1,  
2 - α = 0.818,   3 - α = 0.333,   4 - α = 0. 
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ddT
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UYu
e
eGi =

−
+=  (1.114) 

and G and α are as in (1.110) and (1.111), respectively. 
The relation between the digital Yd and continuous Yc admittances for different 

values of α are shown in Fig. 1.24. 

1.5.3. Suppression of numerical oscillations by change of integration method 

The analysis carried out above shows that numerical oscillations are related directly to 
the method of continuous derivative approximation. 

Using the three different approximations considered, namely: 

– ( ))1()()( −−= kiki
T
Lku    implicit Euler's method,  

– ( ) )1()1()(2)( −−−−= kukiki
T
Lku  trapezoidal approximation, 

– ( ))2()1(4)(3
2

)( −+−−= kikiki
T
Lku  Gear's 2nd order.  

for the same network model (example) different intensity of numerical oscillations can 
be observed. It is shown in Fig. 1.25. 

 

Fig.1.25. Oscillations at the inductor (sample network); 1 – implicit Euler's method, 
2 – Gear's 2nd order 

The Euler's method reveals the best oscillation damping property since they are 
suppressed in one calculation step (critical damping). The Gear's method is slightly 
worse. On the other hand the trapezoidal method that is least stable offers simplicity 
and good accuracy of calculations in steady state (no rapid changes of the network 
parameters) [2].  
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Thus, in practice, the combination of Euler's and trapezoidal methods are applied in 
the following way: 

 if step there are no rapid changes of the network parameters in the current 
calculation the trapezoidal method is used; 

 otherwise the Euler's implicit method takes the calculations over for 2 
consecutive steps but of twice shorter duration (T/2) to avoid the model 
parameter change. 

1.5.4. The root matching technique 

Another approach to the numerical network representation that results in suppression 
of numerical oscillation is the use of the root matching technique [88, 89]. In this 
approach the network model is based on the continuous transfer function relating 
current and voltage in the network considered. In general such a transfer function has 
the form:  
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))...()(()(

21

21

pNpp
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−−−
−−−=  (1.115) 

Transformation to the discrete domain is obtained by replacement of continuous 
zeros and poles by their discrete counterparts: 

 Ts
i

iez =     i -  the number of respective zero and pole (1.116) 

so that: 
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This operation is called a matched Z transform [42]. 
The constant D is determined by comparison of steady state response for specified 

excitation which should be the same for the continuous and the discrete system. 
Since the calculations are carried out in off-line mode the input signals can be 

represented (sampled) in many different ways. Some of them are shown in Fig. 1.26. 

tktk-1 tk+1

u(t)

tktk-1 tk+1

u(t)a) b)

tktk-1 tk+1

u(t) c)

 

Fig.1.26. The ways of the continuous input signal representation (sampling). 



42 1. DISCRETE MODELS OF LINEAR ELECTRICAL NETWORK 

Thus the final discrete transfer function H(z) must be corrected accordingly by use 
of the sampling function Hs(z) related to the applied signal sampling operation: 

 )()()( zHzHzH sd=  (1.118) 

and 
 zzHs =)(  for Fig. 1.26a 

 1)( =zHs  for Fig. 1.26b 

 ( )1
2
1)( += zzH s  for Fig. 1.26c 

Thus the algorithm of the matched Z transform application can be summarized as 
follows: 

  determine the continuous transfer function H(s) of the network considered, 
 transform H(s) into H(z) replacing all continuous zeros and poles by use of 

(1.116), 
 determine the constant D so that L{ })(ty t→∞ = Z { })(ky k→∞ for specified input 

signal - y denotes the output variable (current or voltage). 

Example 1.3.  Using the root matching technique determine the digital model of the 
circuit shown Fig. 1.27a  

u(t)

i(t) R L
a)

τs
1 K

U(s) I(s)
b)

+ -

 

Fig.1.27. The network considered a) and its equivalent block diagram b) 

The network considered is described in continuous Laplace domain by the following equation:  

 ( ) )()( sIsLRsU +=  
and its transfer function is like below: 

 
τs

K

R
Ls

R
sU
sIsH

+
=

+
==

11

1

)(
)()(  

and can be represented by the block diagram like in Fig. 1.27b.  
The transfer function obtained has no finite zeros and only one pole LRsp //11 −=−= τ . 
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Assuming that the input signal (voltage) is sampled as in Fig. 1.27a and using the 
transformation (1.118) the resulting discrete transfer function is obtained: 

 ( ) ( )LTRLTR ez
Dzz

ez
DzH //)( −− −

=
−

=  

To determine D let's assume that u(t) is a unit step function u(t) = 1[t] for which U(s)=1/s, and: 

 ( )τss
Ksi
+

=
1

)( . 

The steady state response is now: 
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Similarly for u(k)=1(k) and Z{1(k)} =z/(z-1) : 

 ( ) )1(
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DzzI LTR  

and 
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By comparison of steady state responses we get: 

 ( )KeD LTR.1 −−= . 

So, finally:  

 ( )
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Now in few steps the numerical algorithm for calculation of i(k) can be written: 

 ( ) ( )LTRLTR ezUzezRI /1/ 1)(1)( −−− −=−  

 
)1()()( −+= kjkGuki , 

where:  

 ( )
R

eG
LTR /1 −−= , )1()1( / −=− − kiekj LTR . 

It can be noted that the past history of the algorithm depends upon the current only 
so the voltage oscillations on inductance due to the rapid change of current will not 
occur. In the similar way the numerical algorithms corresponding to the typical first 
and the higher order transfer functions and related to them electrical elements can be 
developed. 
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It also must be noted that the method considered can be applied to the transfer 
functions that have at least one zero or pole located outside the origin of the s plane. 
Thus the single L, C elements must be modelled using the trapezoidal method. 

The comparison of oscillation suppression properties for the root matching and the 
trapezoidal method is shown Fig. 1.28. The obtained current waveforms are evidently 
in favour of the root-matching algorithm.  

 

Fig. 1.28. The current I(k) waveform after closing of W; 1- accurate values; 2- trapezoidal 
method; 3 - the root matching method. 

Table 1.2. Parameters of digital models obtained by use of root matching method [88] 

Nr 
Element transmittance: 

)(/)()( sUsIsH =  Model parameters )1()()( −+= kjkGuki  

1 )1/()( τsKsH +=  )e1( /τTKG −−= , )1(e)1( / −=− − kikj T τ  

2 )1()( τsKsH +=  )e1/( /τTKG −−= , )1(e)1( / −−=− − kGukj T τ  

3 )1/()( τsKssH +=  TKG T /)e1( /τ−−= , )1()1(e)1( / −−−=− − kGukikj T τ  

4 )1/()1()( 21 ττ ssKsH ++=  
)e1/()e1( 21 // ττ TTKG −− −−= , 

)1(e)1(e)1( 12 // −−−=− −− kGukikj TT ττ  

5 )2/()( 222
nnn ssKsH ωξωω ++=

 
)1( BAKG +−= , )2()1()1( −−−=− kBikAikj  

6 )2/()( 222
nnn sssKsH ωξωω ++=

 
TBAKG /)1( +−= , )2()1()1()1( −−−−−=− kBikGukAikj  

7 )2()( 22
nnn sssKsH ωξωω ++=

 

( ))1(/ BAKTG +−= , 
)2()1()1()1( −+−−−=− kBGikAGukikj  

The coefficients A i B depend upon roots of the transmittance characteristic equation: 
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The root matching method lends itself very well to networks described by 
transmittances. The examples of digital models corresponding to typical 
transmittances are shown in Table 1.2 while the examples of electric circuits related to 
transmittances in Table 1.2 are shown in Table 1.3.  

Table 1.3. Examples of electric circuits of transmittances shown in Table 1.2 

Nr Diagram Parameters of digital model Model 
w Table 1.2 

1a u(t)

i(t) R L

 

RK /1= , RL /=τ  1 

1b 

u(t)

i(t)
R

C

 

RK = , RC=τ  1, 
inverse 

2a 
u(t)

i(t)
R

L

 

LK = , RL /=τ  3 

2b 
u(t)

i(t) RC

 

CK = , RC=τ  3, 
inverse 

3a 
u(t)

i(t) RCL

 

CK = , 
LCn
12 =ω , 

L
CR

2
=ξ  6 

3b 

u(t)

i(t)

R

C

L

 

RLK = , 
LCn
12 =ω , 

L
CR

2
=ξ  6, 

inverse 

3c 
u(t)

i(t)
R

LC

 

LK = , 
LCn
12 =ω , 

C
L

R2
1=ξ  6, 

inverse 

Term ‘inverse’ in the last column means, current and voltage in the transmittance )(/)()( sIsUsH =  in 
the corresponding numerical algorithm in Table 1.2, should be inversed. In such case G in the 
equivalent circuit denotes resistance and )1( −kj  corresponds to voltage. 
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Exercises 

1.1. Solution of differential equation: 

),()( tyf
t
ty =

d
d  

by use of the second order Adams–Bashforth’s numerical method is as follows: 

 ( ) ( )( )1),1(),(3
2

)1()( −−−+−= kk tkyftkyfTkyky . 

Using this method determine numerical models of: 
–inductance L, 
– capacitance C,  
– in series connected  R and the L. 

1.2. Using the trapezoidal integration method determine the numerical models of the following 
branches:  

u(t)

i(t)
R

C

u(t)

i(t)

R

C

L
a) b)

 

Fig. Z1.1 

1.3. Consider the single phase long line (1.93) and, assuming that the line is supplied by an 
ideal voltage source, derive the respective  numerical models for the line output being:  
a) short-circuited, b) open. 

1.4. Prove that the use of bilinear transformation:  

1
12

+
−=

z
z

T
s  

in transmittance )(sH  of the first order system is equivalent to application of trapezoidal 
integration method. 

1.5. Using the root matching technique determine the numerical models of the circuits shown 
in Fig.Z1.2. Assume the signal sampling like in Fig. 1.25a. 
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u(t)

i(t) L

u(t)

i(t) R1

R

C

R2

C

u(t)

i(t)
R

C

L

u(t)

i(t)
RC

L

a)

b)

c)

d)

 

Fig. Z1.2 

1.6. In steady state the circuits shown in Fig. Z1.3a, b are supplied by: )cos(100)( ϕω += ttu , 
ω = 100π, 3/π=ϕ  and the switches W are open. Simulate transients for switches being 
closed at the instant  tz = 0.02 s in the following steps:  
– determine the equivalent numerical model of the circuit considered like in Fig. Z1.3c, 
using the Euler explicit method (rectangular integration method). Hint: the switch can be 
represented as variable resistance R2 or R3). 
– determine the initial conditions (the values of j(0)); 
– simulation time: 0.1 s; 
Repeat the simulation for model derived by use of trapezoidal integration method.  

R1

u(t)

L R1

W

CR2

i(t)

R2

R3

i(t)

u(t)

a) b)

W

c)

u(k)

i(k)

G
j(k–1)

 
R1 = 10 Ω, R2 = 200 Ω, L = 0,1 H    R1 = 10 Ω, R2 =  R3 = 200 Ω, C = 4.7 μF 

Fig. Z1.3 

1.7. Simulate the transient overvoltages generated when the switch W in the d.c. circuit (Fig. 
Z1.4) opens. Calculate the initial conditions from the circuit node equation and for this 
purpose assume that the input is a low frequency a.c. voltage (instead of Uu =  use 

)π2cos( ftUu = , f = 5–10 Hz). 
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Ls
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Fig. Z1.4 

Solve the node equations using MATLAB or similar program. 
The circuit parameters: 
U = 24 V, Rs = 1 Ω, Ls = 64 mH, Rp = 0,5 Ω, R0 = 10 Ω, L0 = 95 mH, C0 = 0.5 μF, 
Cp = 0.2 μF. The switch opens at tw = 0. 

1.8. Determine the numerical model of the network shown in Fig. Z1.4 for trapezoidal 
integration method. Write the node equations for the numerical model obtained. Show the 
equations describing the nodal current vector in each calculation step. Simulate transients 
when the switch W opens (use MATLAB program). Assume the calculation step T = 1 μs. 
Calculate the initial conditions as in problem 1.7.  

 
 
 



 

2. NONLINEAR AND TIME-VARYING MODELS 

2.1. Solution of nonlinear equations 

Elements of electric networks are said to be nonlinear if their physical parameters R, L 
or C are not constant but depend on either currents flowing through or voltage drop 
across them. Additionally, if their parameters also change in time such elements are 
said to be the time varying ones. Generally, digital modelling of the nonlinear 
elements is much more sophisticated than modelling of the time varying ones. 

The numerical models of on nonlinear elements are described by nonlinear 
differentia equations which must be solved in each calculation step by simulation 
programs in the process of transients’ calculation. There are many methods by which 
the nonlinear equations can be solved but, excluding some rare cases, all that methods 
yield approximate solutions which are obtained by use of iterative procedures. Below 
the short description of the method for single variable nonlinear equation solution 
known as the Newton’s method is presented along with extension of the method to 
multivariable case  

2.1.1. Newton's method 

If a function is smooth enough it can be represents by a straight line tangent to the 
function (linear approximation of the higher order functions).  

If the variable 1x  is located in vicinity of the root α  of the function )(xf , then its 
value can be determined from the Taylor’s series [32, 83]: 

 ...))((
2
1))(()()( 2

11111 +−+−+= xxf''xxf'xff ααα  (2.1) 

Limiting the above series to the first two terms determination of the root can be 
obtained by solution of the following equation: 

 0))(()( 11 =−+ xz'fxf α  (2.2) 

Using (2.2) the iteration formula can be derived under assumption that α is the 
better approximation of the solution sought (subsequent n-th solution) than the one 
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obtained for z  in previous n-1 iteration. Generalizing, the following formula can be 
obtained:  

 ( )
( )1

1
1

−

−
− −= n

n
nn

x'f
xfxx  (2.3) 

Formula (2.3) is known as the Newton’s method of nonlinear equation solution [31, 
32, 83] and is advantageous to the other methods used for the purpose since, in 
particular: 

– the method is strongly convergent, 
– it covers the wide class of functions for which the iteration process is 

convergent as compared to the methods using direct iteration. 
Application of the method discussed can be explained by the following example: 

Example 2.4.  Using the Newton’s method determine the current flowing in the circuit 
shown in Fig. 2.1a. 
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Fig 2.1. Example of the nonlinear network: a) the diagram 
and b) graphical method of the working point estimation  

The nonlinear resistor represents a varistor whose v-i characteristic is given by the following 
equation: 
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⎛
=  (2.4) 

For which: 001.0=ik A, 48=refu V, 29=q , 50=R Ω. Supply voltage 60=u V. 
Let’s discuss the Newton’s method for current and voltage equations which describe the circuit 
shown in Fig.2.1a. Note that in Newton’s method the function considered must take the form: 
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 0)( =xf  (2.5) 

so (2.4) can be written in the following voltage form: 
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The resulting iterative algorithm is: 
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The result of calculations is shown in Fig. 2.2a. The iteration process is convergent. For the 
current equation we get: 
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Fig. 2.2. Iteration process according to the Newton’s method: a) for the voltage equation  
 and b) for the current equation  

The calculation process is shown in Fig. 2.2b. Again, the iteration process is convergent. 
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The Newton’s method is very effective tool in numerical solution of nonlinear 
equations and is widely applied to iterative algorithms designs which are used in 
simulation programs.  

2.1.2. Newton–Raphson's method 

In general any set of nonlinear equations can be written as follows: 
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in which at least one function is nonlinear. 
Solution of this set is obtained by determination of vector [ ]T

mxxx ...21=x  for 
which (2.5) is satisfied. The solution can be obtained by means of the method used for 
a single nonlinear equation extended to a multi-variable case. Thus the equation (2.1) 
can be now written as: 

 0...)(')()()( 000 =+−+≈ xxξxξ fff  (2.9) 

where the vector ξ  represents coordinates of the point in multivariable space for 
which (2.8) is satisfied. 

Matrix which determines the derivative )( 0x'f  is known as Jacobean (Jacoby’s 
matrix) and: 
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By analogy to (2.2) expansion of (2.9) leads to the following iterative procedure which 
ca be applied to solution of the set (2.8):  

 ( ) )()( 1111 −−−− −= nnnn ff xxJxx  (2.11) 

providing ( )[ ] 0)(det 1 ≠−nf xJ , and ( ) ( ) nff n
xx

xJxJ
=

= )()( . 
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The algorithm (2.11) is known as Newton–Raphson’s method  and is widely used 
for iterative solving of nonlinear equation sets. In computer programs the procedure 
(2.11) is realized according to the following sequence: 

– calculate )( 1−nf x , 

– calculate ( ) )()( 11 −− = nn 'ff xxJ , 

– solve the set on resulting linear equations: ( ) )()( 111 −−− = nnn ff xzxJ , 

– determine the subsequent approximation 11 −− −= nnn zxx . 
Conversion of the process is determined on the basis of vector 1−nz  norm related to 

the norm of 1−nx : 

 ε<
−

−

1

1

n

n

x

z
 (2.12) 

Due to the limited accuracy of function )( 1−nf x  and Jacobean ( ))( 1−nf xJ  
determination the overall accuracy of the algorithm is also limited. It is manifested by 
further increase of vector 1−nz  norm after reaching the minimum value. It is the 
indication that further calculations should be ended and the algorithm terminating 
calculations has the form: 

 1−> nn zz ρ  (2.13) 

where the value of the ρ  coefficient is close to one. 
In the similar way the other methods of the nonlinear equations solution can be 

extended to multi-variable case. In general each model of any electric network 
comprises of both linear and nonlinear elements. So, in overall model, the set of 
known linear elements must be complemented by the nonlinear models of resistances, 
inductances and capacitances. Below the general rules of the combined model setup 
are presented. Similarly to the linear models the nonlinear ones are expressed in 
current- conductance form which matches the nodal method. 

2.2. Models of non-linear elements 

The typical nonlinear i-v transition characteristics encountered in electric networks are 
shown in Fig. 2.3. The most typical one is show in Fig.2.3a: resistance (conductance) 
of such an element is positive and unique in the entire voltage domain. The 
characteristics in Fig. 2.3b, c reveal the intervals of negative resistance (conductance) 
while the case in Fig.2.3d, typical for nonlinear magnetic elements (hysteresis), is not 
a function but relation. 
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Fig. 2.3. Characteristics )(ufi =  of nonlinear electric elements : 
a) monotonic, b) type N, c) type S, d) with hysteresis  

2.2.1. Resistance 

Functional relation between current and voltage is valid for characteristics show in 
Fig. 2.3a,b,c The basic way of the respective numerical model formulation for such 
elements is shown in Fig. 2.4. 
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Fig. 2.4. The idea of iterative model formulation for nonlinear conductance 

The considered characteristic )(ufi =  is the continuous and smooth function. In 
the point of coordinates 11, −− nn iu  conductance of the element can be determined by 
the following relation: 
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−− ==

−− ===
nn uuuu
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u
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u
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d
d

d
d  (2.14) 

The straight line tangent to the function considered in the point 11, −− nn iu  (Fig. 2.4) 
is described by the equation: 

 11 −− += nn IuGi  (2.15) 
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The value of )( nn ufi =  can be estimated for small change of voltage to the value 
nu  according to (2.15):  

 11 −− += nnnn IuGi  (2.16) 

in which the value of the current 1−nI  in n–1 calculation step is: 

 1111 −−−− −= nnnn uGiI  (2.17) 

where: )( 11 −− = nn ufi . 
Relations (2.16) and (2.17) determine the iterative model of nonlinear conductance. 

The corresponding equivalent circuit is like in Fig. 2.5. 
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Fig. 2.5. Iterative model of conductance: a) conductance branch; b) equivalent diagram  

The method shown can be used for calculations in nonlinear networks if the 
mapping of nu  across conductance in subsequent calculation step, made on the basis 
of the current 1−ni  estimation, is correct. It can be illustrated by the following 
example.  

Example 2.5.  Apply model (2.16) to the circuit considered in Example 2.1.  

The principle of electric diagrams formulation for linier and nonlinear elements is the same as 
in previous case. So, in the circuit (Fig. 2.1a) the voltage source is converted into the 
equivalent current one and the nonlinear element is replaced by circuit show in Fig. 2.5b. The 
resulting diagram is show in Fig.2.6. It is a 2-node network with the reference node earthed. 
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Fig. 2.6. Equivalent diagram of the circuit in Fig. 2.1a 

Using the nodal method the following circuit equation can be obtained: 
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Calculations are carried out in the following way: 

1. Set initial conditions: 0
0

ww uu = , n = 0. 
2. Put n = n + 1. 
3. Calculate: 1−ni , 1−nG , 1−nI . 

4. Calculate n
wu  from (2.18): 

RG
IRuu n

n
n
w /1

/
1

1

+
−= −

−

. 

5. If ε>− −1n
w

n
w uu , go to 2. 

The algorithm is equivalent to the Newton’s method which was used in Example 2.4 [18] since 
in both cases the same results are obtained.  

In case of characteristic like in Fig. 2.3c the solution for the specified voltage may 
not be unique. Therefore resistance related to the function )(ifu =  should be 
considered instead of conductance (Fig. 2.7). Again, assuming that the function 

)(ifu =  is smooth and continuous, the value of u is obtained in n-th approximation 
from the equation of the straight line which is tangent to the curve in n–1-th point so 
that: 

 ( ) 1111 −−−− +=+= nnnn UiRUiiRu  (2.19) 

in which: 1111 −−−− −= nnnn iRuU , 
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Fig. 2.7. The idea of iterative model formulation for nonlinear conductance 

Using (2.19) the following approximation for subsequent iteration is obtained: 
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 11 −− += nnnn UiRu  (2.20) 

which can be transformed into (like in (2.16)):  

 11 −− += nnnn IuGi  (2.21) 

where: 
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ifR
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d
d

, 1111 −−−− −= nnnn uGiI . 

As it can be seen the nonlinear conductance model expressed in current-
conductance form is independent of the nonlinear characteristic shape The difference 
only concerns the way in which the equivalent conductance is calculated.  

2.2.2. Inductance 

Basic mathematical model of inductance is determined by the equation: 

 
t
ttu

d
d )()( ψ=  (2.22) 

where: ψ  is a magnetic flux. 
Alternative form of (2.22) is: 

 
t
tiiLtu

d
d )()()( =  (2.23) 

where: 
i
iiL

d
d )()( ψ=  and )()()( tiiLt =ψ . 

If )(iψ  is nonlinear then inductance is a function of current then )(iLL = . 
In order to obtain the digital model of inductance  related to (2.23) the numerical 

model (1.31)can be used: 

 )1()()( −+= kjkGuki  (2.24) 

in which, for trapezoidal method: )1()1()1( −+−=− kGukikj , 
L

TG
2

= . 

In this case, however, the conductance G  is not constant: 

 ( ) ( ))(2
)(

kiL
TkiG =  (2.25) 

and the equation (2.24) should be written as: 
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In k-th calculation step inductance ( ))1( −kiL  is known along with history of the 
process which is determined by the current ).1( −kj  The first term of (2.26) is the 

model of nonlinear resistance ( ) ( )
T

kiLkiR )(2)( =  so that: 

 ( ) )1()(
)(

1)( −+= kjku
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ki  (2.27) 

where: ( ) )1(
)1(

1)1()1( −
−

+−=− ku
kiR

kikj , ( ) ( )
T
kiLkiR )1(2)1( −=− . 

To solve this equation the iterative method (2.21) can be applied and the value of 
)1( −kj   in the k-th calculation step is: 

 ( ) )1()()()()( 11 −++= −− kjkIkukiGki nnnn  (2.28) 

where: ( ) )()()()( 1111 kukiGkikI nnnn −−−− −= , ( ) ( ))(2
)( 1

1

kiL
TkiG n

n
−

− =  (for trapezoidal 

integration method). 
It can be noted that modelling of nonlinear inductance comprises of two calculation 

processes: digital integration which is denoted by calculation step number k and 
iterative approximation of solution carried out in each calculation step which is 
denoted in (2.28) by index n. As the initial value of the current in current calculation 
step the value calculated in the previous step can be taken i.e.: )1()(0 −= kiki . 
Equation (2.28) represents the iterative model of nonlinear inductance in which the 
selected method of numerical integration is arbitrary. 

The equivalent circuit of the nonlinear inductance is shown in Fig. 2.8.  
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Fig. 2.8. Digital iterative model of the nonlinear inductance a) symbol of nonlinear inductance, 
b) the equivalent diagram of the digital model  
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2.2.3. Capacitance 

In the similar manner the numerical model of a nonlinear capacitance can be derived. 
Starting from the fundamental equations: 

 
t
tqti

d
d )()( =  (2.29) 

where q is the electric charge: )()()( tuuCtq = , and:  

 )(
)(

1)( ti
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where: 
u
uquC

d
d )()( = , 

the numerical model for trapezoidal integration method (1.37) takes the form: 

 ( ) ( )
( ) )1(

)1(
)()()()( −

−
+= kj

kuG
kuGkukuGki  (2.31) 

in which: ( ) ( )
T

kuCkuG )(2)( = , ( ) )1()1()1()1( −−+−=− kukuGkikj . 

Since the conductance is now a function of voltage solution of this equation can be 
obtained by use of the iterative method (2.16) and in such case: 

 ( ) )()()( 11 kIukuGki nnnn −− +=  (2.32) 

where: ( ) 1111 )()()( −−−− −= nnnn ukuGkikI . 
It should be noted that solution of (2.31) calls for application of the iterative 

method like it was done for solution of (2.27) (in his case voltage and current must be 
mutually altered). The equivalent diagram of the nonlinear capacitance model is 
shown in Fig. 2.9.  
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Fig. 2.9 Equivalent diagram: a) nonlinear capacitance  
and b) digital iterative model  
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2.3. Models of non-linear and time-varying elements 

2.3.1. Non-linear and time-varying scheme 

Any electric network becomes nonlinear if at least one of the network elements is 
nonlinear. In such case the network can be analyzed by use of Newton–Raphson’s 
algorithm rather than by direct use of the nodal method. In this approach the network 
equations should be written in form of (2.8) and the resulting calculation algorithms 
become very complex. 

The nodal method can be applied if the network is represented by discussed above 
linear and nonlinear models.  The method, in case of linear network, leads to the 
general equation (1.97) which for the nonlinear network can be written as: 

 nnn iuG =−1  (2.33) 

The set of matrix 1−nG  elements comprises of linear conductances (constant values 
from linear network models) and the variable ones which are updated in each 
calculation step by iterative procedures. The elements of vector ni  are: independent 
current sources (I(k) – constant with respect to the iteration step n), equivalent current 
sources of linear network models L, C ( jL(k – 1), ( jC(k – 1) and equivalent current 
sources related with nonlinear network models: )(),(),( 111 kIkIkI n

L
n
G

n
R

−−−  so that in 
general form:  

 ( ))(),(),(),(),1(),1(),( 1111 kIkIkIkIkjkjkIf n
C

n
L

n
G

n
RCL

n −−−−−−=i  (2.34) 

If some network elements are time-varying then fundamental equation of the nodal 
method takes more general form: 

 )1,()()(1 −=− kkkk nnn iuG  (2.35) 

The double index indicates that vector in the right side of the equation comprises of 
independent sources determined in k-th calculation step and in the previous ones 
(history of calculations). 

Solution of (2.35) is cumbersome; matrix )(1 kn−G  cannot be factorized since it 
contains variable elements. Thus the method considered is ineffective in application to 
vast nonlinear and time-varying networks.  

2.3.2. Compensation method 

The compensation method is directly related to the Thevenin theorem concerning 
representation of selected fragment of electric network by equivalent voltage source 
and the source impedance [23, 52].  
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a) Network with one non-linear element 

The idea of the method considered is presented for the network with a single nonlinear 
element (Fig. 2.10). 
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Fig. 2.10 Compensation method: a) linear network with removed branch km  
and b) the equivalent circuit  

The linear part of the network, excluding the branch km (Fig. 2.10a), is transformed 
into the equivalent circuit according to the Thevenin theorem (Fig. 2.10b). The 
equations describing the equivalent network are easy to derive: 
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In case of nonlinear inductance or capacitance the equivalent circuit model is 
complemented by the current or voltage sources which come from the numerical 
models of the nonlinear element used. The nonlinear element can also be represented 
by the model with voltage dependent conductance kmG . If the function determining 
resistance kmR  (conductance kmG ) is given explicitly then the above equations can be 
solved by use of Newton’s method. Sometimes the nonlinear characteristic is given in 
a piece-wise form (Fig. 2.11). In such case the solution is linear for the segment which 
is intersected by the linear characteristic of the equivalent circuit.  

In order to solve (2.36) the parameters of the equivalent circuit TE  and TR  have to 
be determined first. TE  can be calculated by means of the nodal method applied to the 
circuit in which the branch km has been removed (that implies that 0=kmG  in the 
conductance matrix G ) [23]. Let’s denote this matrix by 0

kmG . The voltage source TE  
can be obtained by solution of the following equation:  

 iuG =00
km  (2.37) 
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in which: 00
mkT uuE −= , and 0

ku , 0
mu  are elements of vector 0u  related to nodes k and 

m, respectively ; i is the vector of nodal currents in the equivalent circuit. 
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Fig. 2.11. The meth of the nonlinear equation solution for piece- wise approximation  
of the nonlinear characteristic 

Resistance RT is calculated by subtraction of vector r elements k and m and the 
vector r is obtained by subtraction of columns k and m in matrix ( ) 10 −

kmG  [23]. The 
vector r  can also be determined by solution of the following equation: 

 prG =0
km  (2.38) 

where the vector p  elements are:  
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and the condition ml =  is important only when voltage in m-th node is not defined 
(or is not the reference node). 

Finally the vector of node voltages in the nonlinear network is determined by 
solution of the following equation [23]:  

 kmiruu −= 0  (2.39) 

Calculations according to the compensation method are carried out in each 
calculation step in the following order:  
1. Calculation vector 0u  and voltage TE  according to (2.37).  

2. Calculation vector r  and resistance TR  according to (2.38).  
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3. Calculation the current kmi  solving the nonlinear equation (2.36).  
4. Calculation the corrected vector of node voltages according to (2.39).  

The second step of the algorithm is repeated only if the configuration of the linear 
part of the network has been changed. The only difference in numerical calculations 
for linear and nonlinear network concerns the step 3 (calculation of kmi  in the 
nonlinear branch). That is why the compensation method is advantageous to the 
Newton-Raphson’s one. 

b) General non-linear network 

The presented algorithm can also be applied with certain limitations to networks 
comprising of more than one nonlinear element. Let’s assume that the number of 
nonlinear elements in the network is M. In the first step of the algorithm vector 0u  is 

determined according to (2.37) for the matrix 0
kmG  in which all elements related to M 

branches connected to nodes 1k  – 1m , 2k  – 2m , ..., Mk  – Mm are removed. As a result 
the following set of voltage sources 00

iii mkT uuE −=  , Mi ...,,2,1= is obtained. 
In the second step vectors ir  are calculated according to (2.38) and calculation 

have to be repeated for each pair of nodes for different vectors ip .in the right side of 
(2.38). Most complex calculations are carried out in the third step since the set of 
nonlinear equations has to be solved for all nonlinear elements in the network. The 
significant simplification of those calculations can be obtained if the characteristics on 
nonlinear elements are given in linear piecewise approximation form. 

The final form of the node voltage vector is obtained in the fourth step of the 
algorithm but (2.39) must be updated for all nonlinear branches: 

 
MM mkMmkmk iii rrruu −−−−= ...

2211 21
0  (2.40) 

Matrix 0
kmG  should be non-singular in all stages of calculation process. Otherwise 

the network with removed nonlinear branches cannot be solved. Problem may also 
appear if nonlinear elements are located in adjacent branches. However, this problem 
can be solved by separation of adjacent nonlinear branches by one calculation step 
delay using the long line element).  

Another problem which may appear in modelling of nonlinear networks is related 
to unwanted oscillations caused by dummy hysteresis (Fig. 2.12) especially in 
nonlinear inductances [23]. To limit this negative effect the calculation step should be 
sufficiently small.  
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Fig. 2.12 Dummy hysteresis (shadowed area) 

2.3.3. Piecewise approximation method 

Effective calculation methods used for linear networks can be applied to the nonlinear 
ones if characteristics of nonlinear elements can be represented by their linear 
piecewise approximations. In general case a nonlinear characteristic can be 
approximated by an arbitrary number if the straight line segments thus making the 
network linear in intervals. The basic problem which appears in this approach 
concerns calculations in points located on the boundary of two adjacent segments of 
the approximated nonlinear characteristic since the solution obtained in a given 
calculation step may go off the characteristic. The problem mainly concerns vast 
networks comprising of many nonlinear elements [18, 23, 85].  

In EMTP program the nonlinear elements are of monotonic type (magnetizing 
characteristic, nonlinear characteristic of MOV and others) so further simplifications 
increasing calculation effectiveness can be applied. The basic limitations which have 
to be controlled by the program user are:  

– the calculation step as well as the characteristic approximating segments 
should be selected in such way that the solutions obtained in consecutive steps 
do not lay outside the adjacent segments of the characteristic ('off 
characteristic' solution). Warning is displayed if it happens so - Fig. 2.13.  

– the ‘off characteristic’ solutions have to be neglected (solution k′'′ in Fig. 2.13).  
Thus the approximated characteristic should not comprise of too many segments if 

the calculation step value is to be reasonable [29]. Change of conductance in nonlinear 
elements and new factorization of matrix G  is carried out in the consecutive 
calculation step [52].  
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Fig. 2.13. Illustration of solutions which can be obtained in two consecutive steps for piecewise 

approximated characteristic 

Such simplification (small number of linear segments in piecewise approximation 
of the nonlinear characteristic) does not significantly affect the accuracy of 
calculations thus making the piecewise approximation very attractive in design of 
simulation programs. It is illustrated by waveforms in Fig. 2.14 – i2(k) and i3(k) are 
practically identical even though the current i2(k) was calculated for accurate nonlinear 
magnetizing characteristic and i3(k) (dotted line)for the approximated one comprising 
of 2 segments only. 
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Fig. 2.14. Results of transients simulation in CT: the primary current i1(k); the secondary  
current for accurate magnetizing characteristic (i2(k)); the secondary current for two-segmented 

piecewise approximation of the characteristic (i3(k)) 
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Exercises 

2.1. Using the Newton’s method determine the current i in the nonlinear circuit shown in Fig. 
Z2.1. Resistance Rw is described by the function: i = 10(uw)3 . The supply voltage: u 
=100 V, R = 5 Ω. 

u

i R

Rwuw

 
Fig. Z2.1 

2.2. In the circuit shown in Fig. Z2.2 the input voltage is applied at the instant t = 0 with the 
zero initial conditions. Using the nodal method formulate the dynamic equations of the 
circuit taking the trapezoidal integration model of inductance. Show the algorithm for 
solution of the derived equations. Implement the algorithm in MATLAB environment. 
Data: L =100 mH, the rest like in problem 2.1. 
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i R

Rwuw

L 1

 

Fig. Z2.2 

2.3. Consider the network shown in Fig. Z2.3a. The piecewise approximation of the nonlinear 
resistance characteristic is like in Fig. Z2.3b. Show the way of the current i calculation. 
and determine the value of this current for R1 = 1 Ω and u1 = 20 V. 

 

Fig. Z2.3 



 

3. STATE-VARIABLES METHOD 

3.1. Introduction 

This method is based on the mathematical model of a network in which vector of input 
variables )(tf  (sources) is related with the output variable vector )(ty  (selected 
currents and voltages) by the fundamental equations [21, 36, 70, 80]: 

 
)()()(
)()()(

ttt
ttt

DfCxy
BfAxx

+=
+=&

 (3.1) 

where: nn×A , rn×B , nm×C , rm×D  - matrixes of parameters, )(tx  - state vector. 

lumped circuit
x1, x2, ..., xn

f1

f2

f3

fr

y1

y2

y3

ym

 

Fig. 3.1. Network state variable representation 

In general the matrices of parameters can change in time (time-variant network) or 
can be functions of the state variables (non-linear network). 

The first equation in (3.1) is called the state equation and the second one is the 
output equation. The state variables in (3.1) are related with energy preserving 
elements (inductances, capacitances) for which: 

 ( ) )()( titCu
t CC =

d
d  (3.2) 

and 

 ( ) )()( tutLi
t LL =

d
d  (3.3) 
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so the voltages on capacitances and currents flowing through inductances are always 
selected as state variables. Thus any network can be represented as it is shown in Fig. 
3.2. Parameters L, C can be nonlinear. 

static network

iS

uS

C L

iLiC

uC uL

 

Fig. 3.2. Network represented by state variables 

The energy preserving elements (Fig. 3.2) can be described by the following 
general equations: 

 
( )
( )tt

tt

SSLCLL

SSLCCC

,,,,)(
,,,,)(

iuiugu
iuiugi

=
=

 (3.4) 

which lead to the state equation. 
The number of state variable doesn't always have to be equal to the sum of 

capacitors and inductors in the network since all loop and node equations should be 
linearly independent. That is why, in some network configurations, one voltage across 
capacitor in circuit loop or one coil current in the node can be eliminated from the 
state variable equation as it is shown in Fig. 3.3.  

L1

iL1

L2

iL2

L3

iL3

iS

b)
uS

C1
uC1 C2

C3

uC2

uC3

a)

 

Fig. 3.3. Example of independent loop CE (a) and independent node LJ (b) 
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For the circuit loop in Fig. 3.3a there is: 

 0)()()()( 321 =+++ tutututu CCCS  (3.5) 

To make the circuit loop equations independent one of the prospective state 
variables in (3.5) should be eliminated. 

The same concerns the node in Fig. 3.3b for which: 

 0)()()()( 321 =+++ titititi LLLS  (3.6) 

a) iL1

u1 i2
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iL7

R1

i1

C

R2

L1 L2

R1

u1
R2L1

C1

C2

C3
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R3R2 C3

u1

C1

R4

C2

C4
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Fig. 3.4. Examples of independent nodes LJ a) and circuit loops CE b) 

In case of linear, time invariant lumped networks the number of indispensable state 
variables n can be determined from the equation [18, 80]: 

 ( )LJCELC nnnn +−=  (3.7) 

where: 
 nLC - the number of all condensers and coils in the network 
 nCE - the number of independent circuit loops CE in the network 
 nLJ - the number of independent circuit nodes LJ in the network 

Examples of independent nodes LJ and loops CE are shown in Fig. 3.4. 
Reduction of state variable number according to (3.7) results in the presence of 

input sources derivatives in the input vector [18].  

3.2. Derivation of state-variables equations 

State space representation  of an electric network is obtained by application of 
Kirchhoff’s rules to the network diagram for state variables assigned to reactive 
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elements (condensers, coils) in the number selected according to (3.7). It is illustrated 
by the following example:  

Example 3.1.  Determine the state space representation of the circuit shown in Fig. 3.5. 
Assign state variables to energy preserving elements. 

The circuit contains 3 LC ( LCn = 3) components but CEn = 1 since one loop (e, C1, C2) is 
linearly dependent and LJn = 0. Thus the number of independent equations in overall state 
equation is n = 2. The selected state variables are the current Li  and the voltage 2Cu . As the 
output variables the currents Li , ic1 and ic2 are selected. 
The respective circuit equations are: 

02 =−− RL iij , 01
1

1 =−+ ii
t

uC R
R

d
d , 

021 =−− CR uue , 022 =− R
L iR
t
iL

d
d ,  0111 =− RuiR . 

Eliminating all variables, save for selected state variables Li , 2Cu  and excitation sources e and 
j, we get: 
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Fig. 3.5. The circuit diagram of considered network 
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The output variables (aside of iL) are: 
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In matrix notation: 
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Elimination of source variable derivatives from the state equation can be obtained by 
substitution: 

e
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Cuu Ce
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1
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−= . 

As a result the state equation takes the form (3.1)in which: 
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In general, the derivatives of excitation signals can be eliminated from the state equation (but 
not from the output one) by use of suitable substitution.  

In general form the state equations are: 
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d
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where LJCE nnp +≤≤0 . 
Applying subsequent substitutions: 

 )()()( 1

1

t
t

tt p

p

p fBxz −

−

−=
d
d  (3.10) 

(like in Example 3.1) the derivatives can be eliminated from the state equation (3.8). 
The output equation in general form may contain derivatives of excitation sources. 

State variable equations can be formulated for a given network diagram 
automatically by use of dedicate computer programs [18].  

3.3. Solution of state-variables equations 

The intrinsic feature of the state variables approach is that the transients in all nodes 
and branches of the network considered can uniquely and entirely be determined by 
solution of the state equation (3.1). In case of linear networks the accurate solution of 
the state equation is possible and relatively simple.  

By analogy to the method of the first order linear differential equation solution first 
the solution of homogenous differential equation written in vector (multivariable) 
notation:  

 )()( tt Axx =&  (3.11) 

has to be determined and this solution, as it can easily be checked by simple 
substitution to (3.11), is given by the equation: 

 )(e)( tt tkx A=  (3.12) 

where: )(tk  is a certain functional vector which should also satisfy the non-
homogenous solution (3.1). 

To substitute (3.12) into (3.1) the derivative of (3.12) should be determined first: 

 )(e)(e)( ttt tt kkAx AA && +=  (3.13) 

After substitution we get: 

 )()(e)(e)(e tttt ttt BfkAkkA AAA +=+ &  (3.14) 

and, noting that [18]: 

 ttt

t
AAA AA e

d
dee ==  (3.15) 

we get finally:  
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 )(e)( tt tBfk A−=&  (3.16) 

Solution of the above equation can be obtained by integration, so that: 

 )()()( 0

0

tt
t

t

kBfk A += ∫ − τττ de  (3.17) 

Substituting the result to (3.12), we get:  
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Now the initial value of the state equation solution can be determined. By substitution 
of ,0tt = into (3.18) we get: )(e)( 00 tt kx Aτ= , and finally: 

 )(e)( 00 tt xk Aτ−=  (3.19) 

Thus the final solution of the state equation (3.1) is given by the formula: 

 ∫ −− +=
t

t

ttt tt
0

0 )()()( 0
)( xBfx AAA edee τττ  (3.20) 

Having the state variables determined the solution of the output equation (3.9) is 
obtained as a linear combination on of respective state variables and excitation sources 
according to the output equation form.  

The solution (3.20) is valid for the continuous time domain. To get the solution in 
discrete form integration (3.20) should be carried out by use of one of the numerical 
integration methods [32, 83].  

To calculate the exponential function in (3.20) the expansion into power series can 
be used: 

 ( ) ( ) ...
!

1...
!2

1e 2 +++++= mt t
m

tt AAA1A  (3.21) 

Unfortunately, to get the sufficient accuracy of calculation remarkable number of 
terms in the series has to be calculated (slowly convergent series). However, there are 
some other much more effective approximations of tAe , for instance, the Pade 
approximation [18].  
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Exercises 

3.1. Formulate the state variable equations (in minimal form) for the given (Fig Z3.1) electric 
circuits. Assign outputs to voltage drops across resistors 

R1

u

R2

CL

R1

R2CuCu

Li1 i3

i2

i1 i2

iL

R2C2u

Li1 i3

i2

C1 R1

u

R2

CL2

i1
i2

iL2

L1

a) b)

c) d)

 

Fig. Z3.1 

3.2. Determine the initial conditions ( 0=t ) for state equations in problem 3.1 assuming the 
following inputs: 
a) u =10 V, 
b) ( )ϕω += tu sin10  V, ω = 100π, 0=ϕ . 

3.3. Determine the state variable model for the network with CT in Example 2.6. Carry out 
transient simulation for conditions as specified in the Example. Use the R–K IV algorithm 
for digital integration [83]. 
Note: After reduction the network is described by a single differential equation. 

 



 

4. OVER-HEAD LINE MODELS 

4.1. Single-phase Line Model 

The fundamentals of a distributed parameter line modelling are shown in sect. 1.3.6. 
In this Chapter various detailed problems related to a single phase power line 
modelling are presented including the basic information on application of geometrical 
parameters to the line modelling. The frequency dependent model of the line is 
considered in detail. The discussed approach to modelling is then extended to the 
multi-phase line case. 

4.1.1. Line Parameters 

In general the electric parameters of overhead lines and cable feeders depend on 
geometrical dimensions, physical properties of design materials and surrounding 
environment. The parameters can be calculated from fundamental equations [3, 14, 
24]. The equations are used by special parameters calculating procedures provided by 
most of professional transient simulation programs. However, to apply those 
procedures the program user needs many, sometimes very detailed, data of the line or 
cable modelled. It is illustrated by the following example:  

Example 4.1.  Using the geometrical parameters and the respective material constants 
determine the electric parameters of the overhead 400 kV line. Use the 
LINE CONSTANTS procedure available in ATP–EMTP [7]. 

The geometrical dimensions of the line are shown in Fig. 4.1. The midspan data are shown 
under the bar. The relevant entries are formatted as shown below: 
 
BEGIN NEW DATA CASE 
C Line 400 kV 
LINE CONSTANTS 
METRIC 
C   Data for LINE CONSTANTS 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
  1 .231   .0564 4            3.15   -10.3    24.5    12.0    40.0   0.0       2 
  2 .231   .0564 4            3.15     0.0    24.5    12.0    40.0   0.0       2 
  3 .231   .0564 4            3.15    10.3    24.5    12.0    40.0   0.0       2 
  0  0.5   .2388 4           1.565   -6.87    31.0    23.5 
  0  0.5   .2388 4           1.565    6.87    31.0    23.5 
BLANK CARD ENDING CONDUCTOR CARDS OF  "LINE CONSTANTS"  CASE 
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C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C      >< Freq   >< FCar   > <ICPR> <IZPR> =< DIST > <PP>==< >< >< ><><> 
   100.0      50.0                1   1    0   180.0                 0 
BLANK CARD ENDING FREQUENCY CARDS 
BLANK CARD ENDING  "LINE CONSTANTS" 
BEGIN NEW DATA CASE 
BLANK 
 

Due to the program requirements (data format) it is assumed that the line length is 180 km.  

24.5 m
12.0 m

31.0 m
23.5 m

6.87 m

10.3 m
40 cm

Phase conductors:
D = 3.15 cm
R' = 0.0564 /km
T/D = 0.231

Grounding conductors:
D = 1.565 cm
R' = 0.2388 /km
T/D = 0.5

Soil resistivity:
= 100 m

 

Fig. 4.1. Geometrical data of the line considered 

The results obtained refer to positive and zero sequence symmetrical components. The 
parameter T/D is discussed in Example 4.2.  
The respective line parameters calculation results for the fundamental frequency 501 =f  Hz 
are as follows: 

1576.00 =R'  Ω/km 2966.20 =L'  mH/km 772900.00 =C'  μF/km 
0291.01 =R'  Ω/km 1.0296=1L'  mH/km 1C' =0.01123 μF/km. 

Similarly the wave travelling speed and the surge impedance values are: 
235968=0v  km/s 293798=1v  km/s 548.3=cZ0  Ω 8.021 3=cZ  Ω. 
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Parameters for zero and positive symmetrical components differ since the physical parameters 
of the earthing conductor and phase conductors are different. The transverse line conductivity 
G'  is usually neglected in such calculations.  

4.1.2. Frequency-dependent Model 

The frequency dependence of the conductor electric parameters is the result of the skin 
effect which is caused by pushing of the electromagnetic field outside the conductor 
when the frequency of the current grows. As a result the effective current conducting 
cross-section of the wire decreases and the wire resistance grows. Decreasing current 
reduces the magnetic flux ψ around the conductor thus decreasing the conductor 
inductance L ( iL /ψ= ) [24].  

The frequency dependant parameters depend upon many factors and the most 
important of them are: the distance between phase and earth conductors and the 
applied model of the earth which is also the current conductor. The phase conductors 
in the overhead line can be bundled thus comprising of many wires in various 
geometrical arrangements being spaced by few tens of centimetres. Also the models of 
the earth used in calculations may differ significantly since the earth is non-
homogenous conducting environment. Thus the calculation of frequency dependent 
parameters becomes a complex task. 

The next example shows how the input data are prepared for subroutine of 
frequency dependent parameters calculation which is available in ATP–EMTP.  

Example 4.2.  Determine the frequency dependent parameters of 400 kV line from 
Example 4.1. Coefficient DT/  (Thickness/Diameter) is necessary for 
calculation of the skin effect (Fig. 4.1) since the conductor is represented 
by a pipe of external diameter D and thickness T. For the homogenous 
wire T/D = 0.5. 

Again the LINE CONSTANTS procedure is used and the input data are arranged as follows:  
 
BEGIN NEW DATA CASE 
C Line 400 kV 
C  
LINE CONSTANTS 
METRIC 
FREQUENCY 
C   Data for LINE CONSTANTS 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
  1 .231   .0564 4            3.15   -10.3    24.5    12.0    40.0   0.0       2 
  2 .231   .0564 4            3.15     0.0    24.5    12.0    40.0   0.0       2 
  3 .231   .0564 4            3.15    10.3    24.5    12.0    40.0   0.0       2 
  0  0.5   .2388 4           1.565   -6.87    31.0    23.5 
  0  0.5   .2388 4           1.565    6.87    31.0    23.5 
BLANK CARD ENDING CONDUCTOR CARDS OF LINE CONSTANTS CASE 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
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   100.0       0.1         1                                 5  5 
BLANK CARD ENDING FREQUENCY CARDS 
BLANK CARD ENDING  "LINE CONSTANTS" 
BEGIN NEW DATA CASE 
BLANK 
 

The parameters versus frequency characteristics obtained are shown in Fig. 4.2. The plots show 
that the zero sequence parameters ( 0R'  – Fig. 4.2a and 0L'  – Fig. 4.2b) change more 
intensively with frequency than the positive sequence ones ( 1R'  – Fig. 4.2a and 1L'  – Fig. 
4.2b). 

L'0
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L'1
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L'0

L'1

f, Hz0.1 1 10 100 1000
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2.5
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0.6
0.7
0.8
0.9
1.0

b)
R'
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R'0 R'1

f, Hz0.1 1 10 100 1000
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0.01

0.1

1.0

 

Fig. 4.2. Frequency characteristics of the 400 kV line:  
a) resistance and b) inductance  

The difference can be attributed to the fact that the skin effect in return (earthing) wire which is 
of much greater diameter than the phase wires is much more effective.  
The transverse parameters (capacitances and conductances) are practically frequency 
independent. However for the sake of calculation stability usually the small value of one of 
those parameters is used for instance G'= 003 μS/km [3].  

Application of frequency dependent parameters to the line model setup is not 
simple since equations (1.75) are functions of time. Thus the frequency dependent 
model must be based on Fourier transform.  

The Fourier transform of (1.75) can be determined by use of the following 
fundamental relations:  
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The function  ), ωj(xU  is complex. For fixed frequency ), ωj(xU  is the voltage 
phasor as used in steady state analysis of electric networks.  

Formulas (4.1) (4.2) can also be applied to the current equations in (1.75). Thus the 
line equations (1.75) in frequency domain are now:  

( )
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d
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d
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and using the substitution: 
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finally: 
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The first of the above equations describe the longitudinal line model. Impedance 
)( ωjZ'  is frequency-dependent since )(ωR'R' =  and )(ωL'L' = . The second 

equation describes the line model for transverse parameters. Usually the components 
of the admittance )( ωjY'  are frequency independent. 

The equation (4.4) can also be split into the current and voltage parts. 
Differentiating the first equation in (4.4) with respect to x  and applying the result to 
the second one we get:  

 ),()()(),
2 ωωωω jjj

d
j(d2

xUY'Z'
x
xU =  (4.5) 

Using notation )()(2 ωωγ jj Y'Z'=  the final form of (4.5) is: 

 ),(), 2
2 ωγω j

d
j(d2

xU
x
xU =  (4.6) 

The general solution of (4.6) is as below [77]:  

 )sinh()cosh()j,( 11 xBxAxU γγω +=  (4.7) 

where: 1A  1B  – constants calculated from boundary conditions and  
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 βαωωγ jjj +== )()( Z'Y'  (4.8) 

Out of the two the square root values only the one for which 0≥α is valid. The 
parameter γ  [1/km] is known as the line propagation velocity constant; α  is the line 
attenuation constant (Np/km)1 and β  is the phase propagation constant (rad/km).  

Substituting (4.7) into the second equation in (4.4) we get:  

 ( ))cosh()sinh(1)j,( 11 xBxA
Z

xI
f

γγω +−=  (4.9) 

where:  
γ

ω
ω
ωω )(

)(
)()( j

j
jj Z'

Y'
Z'ZZ ff ===  (4.10) 

is the complex surge impedance of the line.  
Constants 1A  1B  can be determined from the boundary conditions: at beginning of 

the line 0=x  (subscript 1) and at the end lx =  (subscript 2) and in such case (4.7) 
(4.9) are as follows:  

 101101 )sinh()cosh()j,()j( AxBxAxUU xx =+== == γγωω  (4.11) 

   
)sinh()cosh()sinh()cosh()j,()j( 11112 lBlAxBxAxUU lxlx γγγγωω +=+== ==

 (4.12) 

 ( )
f

x
f

x Z
BxBxA

Z
xII 1

01101 )cosh()sinh(1)j,()j( −=+−==
==

γγωω  (4.13) 
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γγωω
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+−== ==

 (4.14) 

Assuming that the voltage and current at the end of the line are known and )j(1 ωU  
)j(1 ωI  are to be determined then the respective solution, for the line output currents 

flowing in directions as shown in Fig. 4.3, is:  
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 (4.15) 

 

                                                      
1 Np (neper) is the unit of attenuation.1 Np = 8.686 dB.  
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Equation (4.15) describes the l km long line segment model for steady state with 
input-output nodes denoted by 1and 2 respectively. The model can be represented by 
Π- cell (Fig. 4.3) having the following parameters:  

 
)(j)(
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2 ωωω
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ωωω
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wp

www

CG
l
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+==
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 (4.16) 
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Fig. 4.3. Π-cell representation of the long line in steady-state 

The model can easily be extended to the multiphase line case. For this purpose the 
single phase line parameters should be replaced by the respective matrices of 
multiphase line ones.  

Writing (4.15) for the first line end and assuming that the second end (subscript 2) 
is located in distance x  the equation for voltage at any point in the line can be 
obtained:  

 )sinh()j()j()cosh()(j)j,( 11 xIZxUxU f γωωγωω −=  (4.17) 

Changing the hyperbolic functions into the exponential ones we get:  

       )(
),(

1)(),()()(),( ω
ω

ωωωωω γγ j
j

jjejejj ba
x

b
x

a U
xA

UxAUUxU +=+= −  (4.18) 

where:  ( ))()()(
2
1)( 11 ωωωω jjjj IZUU fa +=  ( ))()()(

2
1)( 11 ωωωω jjjj IZUU fb −=  

xxA γω −= ej ),( .  
)( ωjaU  and )( ωjbU  represent complex amplitudes of the primary ( )j( ωaU ) and 

the reflected ( )j( ωbU ) waves which are distributed along the line according to the 
propagation constantγ  given by )j,( ωxA . Since the harmonic components of 
distorted voltage signal are suppressed and shifted according to the propagation 
constant then for a given distance x  the function can be considered as the filter 



82 4. OVER-HEAD LINE MODELS 

transmittance of frequency response determined by xxA αω −= e)j,(  and the phase 
response given by ( ) xxA βω je)j,(arg −= . In case of the overall line ( lx = ) we get:  

 llAA γωω −== ejj ),()(  lA αω −= ej )(  ( ) lA βω jej −=)(arg  (4.19) 

The next example explains the discussed line characteristics.  

Example 4.3.  Analyse the considered frequency characteristics for the 400 kV line from 
Example 4.1.  

The example of imaginary component distribution for wave of frequency 2000=pf  Hz in the 
300=l  km long 400 kV line is shown in Fig. 4.4. Two standing waves for positive and zero 

sequence voltage components are presented for comparison. The waveforms correspond to the 
following functions:: 

( ))j()j,(Re)( 111 pap UxAxU ωω=  ( ))j()j,(Re)( 000 pap UxAxU ωω=   

and: )j(
1

11e)j,( pp
pxA βαω +−=  )j(

0
00e)j,( pp

pxA βαω +−=  1)()( 01 == papa UU ωω jj ; subscript p  

refers to the selected frequency while respective components are denoted by 0 and 1. The line 
parameters for frequency 2000=pf Hz (Example 4.1) are given in Table 4.1.  

xe 1α−

xe 0α−

 

Fig. 4.4. Distribution of the wave along the line 

Table 4.1. 400 kV line parameters for frequency 2 kHz 

Parameter Positive sequence component Zero sequence component 
R'  Ω/km 0.09619 2.0075 

L'  mH/km 1.0194 1.968 
C'  μF 0.01123 0.00779 

α  Np/km 1.596⋅10–4 0.0020 
β  rad/km 0.0425 0.0491 
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The wavelength can be determined by examination of arguments of functions )j,(1 pxA ω  

and ),(0 pxA ωj . The resulting general relation is: 
β

λ π2= , which for the considered example 

yields: 097.1280 =λ  km and 776.1471 =λ  km.  
According to the known relation the wave propagation velocity is:  

β
ωλ == fv  and: 5

0 10562.2 ⋅=v  km/s 5
1 10955.2 ⋅=v  km/s. 

The wave propagation velocity depends mainly on the line parameters. The attenuation of the 
phase-phase loop is much lower than for phase –earth one (zero sequence component).  

Multiplying the current equation in (4.15) by fZ  and subtracting it from the first 
(voltage) one we get: 

 ( ) l
ff IZUIZU γωωωωωω −+=− e)j()j()j()j()j()j( 2211  (4.20) 

or in alternative voltage and current notations:  

 ( ) )j()j()j()j()j()j()j( 2211 ωωωωωωω AIZUIZU ff ++=  (4.21) 

 ( ) )j()j()j(/)j()j(/)j()j( 2211 ωωωωωωω AIZUZUI ff +−=  (4.22) 

where: A(jω) is like in (4.19). 
If (4.20) is applied to the lossless line with frequency independent parameters then 

we have:  

C'L'ZZ ff /)( ==ωj  L'C'ωγ j=  ωτγ jee −− =l   

After inverse Fourier transformation of (4.20) we get: 

)()()()( 2211 ττ −+−=− tiZtutiZtu ff  

and: { } ωτωτ je)j()( −=− XtxF . 
being is the same as (1.83) which describes the lossless line in time domain. Thus 
(4.21) can be considered as an operator equation in the line model. Parameters Zf (jω) 
and A(jω) are now the filter transmittances revealing the respective frequency 
responses. The complex propagation function A(jω) can be deemed as a product of 
lumped parameter transmittance P(jω) and the delay line so that:  

 fPA ωτωω je)j()j( −=  (4.23) 

where: fτ  is the propagation time of the fastest wave component. 
The delay fτ  can be determined from the equation:  
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 ( ) ( ) ( ) lPAPf βωωωωτ +=−= )(arg)(arg)(arg jjj  (4.24) 

and P(jω) comes from (4.19) and (4.23):  

 lAP αωω −== e)j()j(  (4.25) 

The filters based on the above equations represent the frequency dependent line 
model with parameters expressed by functions Zf (jω) and A(jω) in (4.21) (4.22). The 
frequency properties of those functions are illustrated by the following example.  

Example 4.4.  Examine the frequency characteristics of positive and zero sequence 
components for 400 kV line discussed in Example 4.1. Assume that the 
line is 180 km long.  

Like in Example 4.1 calculations have been carried out by use of the LINE CONSTANTS 
auxiliary program in ATP–EMTP for the frequency range 0.001 Hz–1 MHz. The frequency 
response of the propagation function A(jω) is shown in Fig. 4.5. The continuous line (1) 
denotes the positive sequence component and the dotted line (2) – refers to the zero sequence 
one. The phase displacement of the function ( ) βω lA −=)j(arg  is nearly linear since v/ωβ =  
and the propagation velocity v  is practically constant in the considered frequency range so the 
coefficient βl  (the total phase displacement between the line input and output) is proportional 
to the wave length.  

 

Fig. 4.5. Frequency characteristic of the propagation function A(jω):  
a) frequency response b) phase response  

For the lossless line there is L'C'v ωωβαγ jjj ==+= /  that implies L'C'A ωω jej −=)(  and 
the function A(jω) represents the signal distortion caused by the frequency dependent line 
parameters.  
The phase characteristic comprises of two parts. The first part is related to the phase response 
of the filter and the second one reflects the phase displacement fωτ caused by wave 
propagation time (delay) (4.23).  
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The propagation time fτ  should have the least value which corresponds to the highest 
frequency in the considered frequency range [58]. The phase response { } =)j(arg ωP lf βωτ −  
of the function P(jω) for positive sequence (curve 1) and zero sequence (2) component of the 
line considered are shown in Fig. 4.6. 
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Fig. 4.6. Phase response of P(jω) for 400 kV line:  
1 – positive sequence component 2 – zero sequence component  

The values of propagation time τf for both components have been estimated for the frequency 
fgr for which = )( ωjP  drops below 0.01 (Fig. 4.5a) according to the relation: ( ) ==

= grfff vl /τ  

( )
grff

l
=

ωβ / . The respective frequency response of wave impedance is shown in Fig. 4.7. Thus 

the equivalent wave impedance can be considered as the lumped element of adequate 
frequency response.  
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Fig. 4.7. Frequency characteristics of the line surge impedance a) frequency response  
 b) phase characteristic; 1 – for positive sequence  2 – for zero sequence 
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The respective filter transmittances in Laplace sense corresponding to line 
parameters Zf(s) 

sfZ
=

=
ω

ω
j

j )(  and
s

PsP
=

= ωω
j

j )()(  can be determined by rules of 

minimum-phase system design known from the control system theory [21, 24] if the 
frequency response )( ωjfZ  and )( ωjP  are known (they can be determined as in 

Example 4.1). If the transmittance considered can be expressed in the factor form 
which, for instance, in case of wave impedance is:  
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 (4.26) 

then zeroes and poles of such a transmittance can be determined by use of the Bode 
plot (logarithmic) method [58].  

Then the transmittance can be implemented by chain of parallel RC cells. The 
conditions of such implementation is that poles and zeros alternate on the real axis of 
the s plane and one pole is located closest to the origin as it is shown in Example 4.5.  

Example 4.5.  Design the chain of parallel RC cells which approximate the wave 
impedance of 400 kV line for zero sequence component Zf0(jω). The line 
parameters are as in Example 4.1.  

The frequency response of the wave impedance considered is shown in Fig. 4.7 plot 2. The 
following transmittance is obtained (calculated in MATLAB) [66] for the fifth order 
approximation:  

))()()()((
))()()()(()(

54321

54321
0 bsbsbsbsbs

zszszszszsksZ Zf −−−−−
−−−−−=  

where: 
15.446=Zk  37112 −=1z  1266.4 −=2z   18.708 −=3z  4.469 −=4z  088.15 −=z  

   33789 −=1b  1165.5 −=2b   14.013 −=3b   3.929 −=4b  0.9057 −=5b . 
The implementation requirements are met so after partial fraction decomposition of )(0 sZ f  we 
get: 
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0 )(

bs
K

bs
K

bs
K

bs
K

bs
KksZ Zf −

+
−

+
−

+
−

+
−

+=  where: 
ibsifi bssZK

=
−= ))((0 . 

and also: 
6

1 10478.1 ⋅=K  4
2 10935.4 ⋅=K  2.23353 =K  0.3964 =K  86.1555 =K . 

Now using the Foster’s method the required RC circuit is obtained (Fig. 4.8) for which the 
respective parameters are [66]:  

ZkR =0  iii bKR /−=  ii KC /1=  i = 1 ... 5. 
After relevant substitution we get: 
R0 = 44615 Ω R1 = 43738 Ω R2 = 42345 Ω R3 = 16665 Ω R4 = 10078 Ω R5 =17210 Ω 
C1 = 06766 μF C2 = 2026 μF C3 = 4282 μF C4 = 2525 μF C5 = 6416 μF. 
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Fig. 4.8. The RC chain representing transmittance )(0 ωjfZ  

Comparison of wave impedance frequency response obtained from calculations and from the 
RC model is shown in Fig. 4.9.  

|Z
f0

(jω
)|,

 Ω

10–2 100 102 104 f, Hz

1

2

ar
g(

Z f0
(jω

))
, °

10–2 100 102 104 f, Hz

1

2

a) b)

400

500

600

700
800

900
1000

–12

–10

–8

–6

–4

–2

0

 

Fig. 4.9. Frequency response of zero sequence wave impedance Zf0 (jω): a) magnitude; 
 b) phase 1 – calculations 2 – frequency response of the RC model 

The numerical model of the equivalent RC circuit can be derived using the model 
setup rules for lumped element circuit. A single i-th RC cell in the chain is described 
by the following continuous differential equation:  

 )(1)(1)( ti
C

tu
CRt

tu
fZ

i
i

ii

i +−=
d

d  (4.27) 

and the known solution of the equation is: 

 ττταα dee ∫ −−−− +=
t

t
Z

t

i
i

tt
i f

iiii i
C

tutu
0

0 )(1)()( )(
0

)(  (4.28) 

where: iii CR/1=α  0t  denotes calculation starting time.  
Using the trapezoidal integration method we get ( Ttt =− 0  – calculation step):  
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and after rearrangement:  
 )1()()( −+= kvkiRku iZeii f

 (4.29) 

where: 
22

i

i
ei

TK
C
TR ==    ( ))1()1(e)( −+−=− − kiRkuikv

f

i
Zeii

T
i

α . 

Series connection of m RC cells along with resistance R0 results in the following 
numerical model:  

 )1()()( −+= kvkiRku
fff ZZZ  (4.30) 

where: ∑
=

+=
m

f

k

i
eiZ RRR

1
0   ( )∑

=

− −+−=−
m

f

i

f

k

i
Zeii

T
Z kiRkukv

1

)1()1(e)1( α . 

Writing (4.30) in alternative current form we get: 
 )1()()( −+= kjkuGki

ff ZfZ  (4.31) 

where: 
fZf RG /1=  )1()1( −−=− kvGkj

ff ZfZ . 

In case of propagation function A(jω) the model can be applied to approximation of 
P(jω) (4.23) as it is illustrated by the following example.  

Example 4.6.  Design the numerical model of function P0(jω) (zero sequence 
component) for 400 kV line considered in Example 4.4. 

The frequency response of P0(jω) is shown in Fig. 4.5a plot 2. Again applying the fifth order 
approximation we get:  

))()()()((
))()()(()(

54321

4321
0 bsbsbsbsbs

zszszszsksP P −−−−−
−−−−=  

where: 
 0465.0=Pk  29424 −=1z      659.99 −=2z  12.89 −=3z  0.1915 −=4z  
 9842.8 −=1b  3089.5 −=2b    4.5693 −=b  12.58 −=4b  0.1908 −=5b . 
Partial fraction decomposition leads to the equation: 
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where: 
ibsii bssPK

=
−= ))((0 , 

and: 
6.23721 −=K  3.31062 =K  41.923 =K  2916.04 =K  4

5 100.6 −⋅=K . 
The approximation of the logarithmic frequency response used [34] yields the negative 1K  so 
the in RC circuit model cannot be applied.  However calculations can be carried out according 
to (4.27)–(4.30) for ii b−=α . (4.31) can be written in changed form for the current excitation 

)(kiPw  (the input current): 
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)1()()( −+= kjkiki PPwP  

where: ∑
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−=−=−
5

1
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i

PiPPP kikvGkj  and by analogy to (4.30): 
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After simplification the equation for the current )(kiPi is: 
)1()()( −+= kjkiLki PiPwiPi  i = 1 ... 5  

where: )1()1()1()1( −−+−=− kikLkiekj PwiPi
Tb

Pi
i  iPi KGTL

2
= .  

Comparison of respective frequency responses is shown in Fig. 4.10.  

Relatively big difference in phase characteristics (Fig. 4.10b) can be attributed to 
large error in estimation of the original characteristic for high frequency. If )(sP  is the 
correct representation of P(jω) then fτ  can be determined from (4.24). Referring 
calculations to the fundamental frequency ω1 and using (4.8) we get:  

 ( ) ( )( ))()(arg)(arg1
111
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ωωω
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τ jjj Y'Z'lPf +=  (4.32) 
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Fig. 4.10. Frequency response of zero sequence surge impedance P0 (jω)): a) magnitude; 
b) phase 1 – calculations 2 – frequency response of the fifth order model  

Both functions Zf (jω) and A(jω) can now be represented by the equivalent lumped 
parameter circuits described by the respective transmittances )(sZ f  )(sP  and time 
delay fτ . The equation (4.22) takes the following form in time domain:  

 )()()( 111 mkjkiki
fZ −+=  (4.33) 
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where: 
fZi1  corresponds to (4.31) for node 1; )(1 mkj −  is the current 'seen' from the 

other end of the line; m  is the discrete time delay calculated from fτ .  
Taking into account (4.31) the value of excitation in node 2 of the line is given by 

the following sum of currents:  

 )1()()()()()( 222222 −++=+= kjkikuGkikiki
ff ZfZPw  (4.34) 

Introducing the delay m  and including )(sP  we get (see Example4.6):  

 )1()()( 221 −−+−=− mkjmkimkj PPw  (4.35) 

where: ∑
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mk  denotes the number of poles ib  in )(sP  while Pk  and iK  come from the partial 
fraction decomposition. 

Relations (4.31)–(4.35) describe the digital model of the line with frequency 
dependent parameters. (Fig. 4.11).  

The currents )(1 mkj −  )(2 mkj −  ‘seen’ from the other side of the line should be 
calculated from (4.34) (4.35).  
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Fig. 4.11. The equivalent circuit of the line with frequency dependent parameters.  

The currents )1(1 −kj
fZ  )1(2 −kj

fZ  along with the conductance fG  represent the 

wave impedance Zf (jω) according to (4.31). 
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4.2. Multi-phase Line Model 

4.2.1. Lumped Parameter Model 

The generalized model of multi-phase line was developed by Carson [14]. In the 
model the multi-conductor arrangement of phase wires along with equivalent 
arrangement of identical and symmetrical with respect to earth surface return wires 
(Fig. 4.12) is considered.  

Parameters of the equivalent line circuit can be determined under assumption that 
the sum of currents in all conductors (Fig. 4.122 ) is equal to zero. The equivalent 
circuit of the considered line segment is shown in Fig. 4.13. Vector of voltage drop 
across that segment is given by the following equation:  
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where: 
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Fig.. 4.12. Conductor arrangement for equivalent overhead line 

In analysis of three-phase lines the simplified line model is applied in which M 
return conductors is replaced by one equivalent wire.  

 

Fig 4.13. The equivalent circuit of the multiphase line  

In more detailed notation (4.36) takes the form:  
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where: 
kkDkkk LRRZ ωj++=  kmDkm LRZ ωj+= . 

The equation (4.37) can be written in compact form as: 
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Basing on (4.38) the following equations can be written: 
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The second equation yields: 
 fCDN IZZI 1−−=  (4.40) 

Substituting (4.40) to the first equation in (4.39) we get: 

 ff IZΔU =  (4.41) 

where: 
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is the parameter matrix of the equivalent three-phase line (Fig. 4.14). 
The following relations are valid for transposed line in frequency domain:  

SCCBBAA ZZZZ ===  MBCACAB ZZZZ === . 
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Fig. 4.14. Simplified circuit of three-phase line 

In time domain voltage drop across the considered line segment is given by: 
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Using the generalized line model (Fig 4.12) the equivalent transverse line model 
can be derived under general assumption that all conductors are isolated one from 
each other entirely. The electric charges q  in physical conductors and in the 
equivalent ones located under the earth (mirror reflection) are equal and opposite so it 
can be assumed that the voltage between k-th conductor and the earth surface is equal 
to the half of the voltage between the conductor and its mirror reflection under the 
earth [36]. If so then: 
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 (4.44) 

where: 12
2

0
0 10854.81 −×==

cμ
ε  F/m – electric permeability, iq  – charge in i-th 

conductor (C/m), c – light velocity (m/s). 
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Similar equations can be written for each isolated phase conductor while the other 
conductors are earthed and connected to the zero reference potential. Using the 
matrix-vector notation the equations take the form: 
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where: 
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0επ
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kmP  is known as Maxwell coefficient.  
Similarly to (4.37) the equation (4.45) can be simplified and:  
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from which: 

 ( ) fCDBAf qPPPPU 1−−=  (4.48) 

or alternatively 

 ( ) fffCDBAf UCUPPPPq =−=
−− 11  (4.49) 

where: 
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11PPPPC  (F/m) (4.50) 

is the capacitance matrix of the equivalent three-phase system. 
Conductance is an active element of the transverse line model. Confining 

considerations to linear case the corresponding model will be described by the 
following equation:  
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 ffG UGI = , 
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In power line models conductance is not taken into account as being negligibly 
small with respect to line susceptance. Thus the line model looks like it is shown in 
Fig. 4.15.  
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Fig. 4.15. The equivalent circuit of the three-phase line 

The current flowing through the transverse elements at any side of the three-phase 
line model can be determined by the following equation: 

 ffY UYI = , fff CGY ωj+=  (S/m) (4.52) 

in frequency domain or by: 

 )()()( t
t

tt ffffY UCUGI
d
d+=  (4.53) 

in time domain. 
It should be noted that the respective capacitances in the line model are divided 

into two equal parts connected to each end of the line. The values of phase-to-phase 
capacitances are negative while the respective phase-to- ground capacitance values 
are:  

.
,
,
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and if the line is transposed then:  
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SCCBBAA CCCC ===  MBCACAB CCCC === . 

In the model of transposed line the parameters in all phases can be assumed as 
being equal and then the line parameters for symmetrical components can be used.  
The respective relations can be obtained after transformation of phase coordinates into 
the symmetrical ones by use of the fundamental formula:  

 sf SUU =  (4.54) 

for voltages (the same formula holds for currents) where: 
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sU  – symmetrical voltage(current) component vector.  

Applying transformation (4.54) to (4.41) the relation between phase fZ and 

symmetrical sZ  component impedance matrices is obtained and:  

 SZSZ fs
1−=  (4.56) 

If the three-phase system is transposed then the matrix of symmetrical impedance 
components is diagonal: 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2

1

0

Z
Z

Z

sZ  (4.57) 

In case of power line: 21 ZZ = ,  
and (4.56) shows that for the transposed line the following relations hold:  

MS ZZZ 20 +=  MS ZZZ −=1  

3
2 10 ZZZ S

+=  
3

10 ZZZ M
−= . 

It should be born in mind that transformation into symmetrical components refers 
to complex vectors of currents and voltages which represent fixed frequency harmonic 
functions of time in steady state. Therefore the transformation is not applied directly to 
transient analysis of electric networks. However all the relations shown are important 
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for the model setup since line and cable parameters are very frequently available in 
symmetrical component form.  

4.2.2. Distributed Parameters Model  

Derivations of the multi-phase distributed parameter line model and of the single 
phase one are very much alike. In case of n phases (1.75) takes the form:  
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where: 
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R  (Ω/km) – matrix of ‘per unit’ line resistance (similarly to 

'G  'L  'C ). 
In general, parameters in (4.58) are frequency dependent but for the sake of model 

simplicity this effect can be neglected.  

a) Constant Parameters Model 

In case of lossless multiphase line (4.58) can be written as (by analogy to (1.79)):  
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 (4.59) 

The matrices: 

''u CLA =  ''i LCA =  

are complete and symmetrical. Therefore:  

 ( )T
ui AA =  (4.60) 
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Subscripts i and u indicate either current or voltage matrix in (4.59).  
The line model will be simplified significantly if the matrices in (4.59) are diagonal 

since in such case the multiphase system gets uncoupled and the model of n-phase line 
splits into n single phase ones.  

Diagonalization of matrix iA  is described by the equation:  

 iiii TATA 1
mod

−=  (4.61) 

where: iT  is the square eigenvalue matrix in which the k-th column ks  (the 
eigenvector2 of iA ) is the function of k-th eigenvalue kλ  of the matrix iA  so that the 
following equation is satisfied [21]: 

 ( ) 0=− kki s1A λ  (4.62) 

Relation (4.61) is known as similarity transformation in which the eigenvalues of 
iA  and modiA  are the same. For the voltage equation in (4.59) we get similarly:  

 uuuu TATA 1
mod

−=  (4.63) 

The respective inverse transformations yield:  
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Substitution of (4.64) to (4.59) results in multiphase line equation for modal 
components:  
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where: 
fii ITITI 11

mod
−− ==  fuu UTUTU 11

mod
−− == ; 

subscript f indicates phase components. 
Further, using (4.60) and (4.64) we can write: 

 ( ) ( ) T
i

T
i

T
i

T
iiiuuu TATTATTAT mod

11
mod

1
mod

−−− ==  (4.66) 

and: 

                                                      
2 Eigenvalues of the square matrix A are equal to the roots of the equation: det(A–λ1) = 0; 

Eigenvector x is related to the eigenvalue λ by equation: Ax = λx [21, 83]. 
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 ( ) modmod
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11

mod iiu
T
i

T
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T
iuu ADADTTATTA === −−−  (4.67) 

where: 

 1TTD du
T

i ==  0≠d  (4.68) 

is the diagonal matrix of identical elements and modmod i
T
i AA = .  

In many cases it can be assumed that d = 1 and as implication: 1−= u
T
i TT .  

If matrix iA  ( uA ) is real (like in (4.59) the eigenvalue matrices iT  ( uT ) are also 
real. Moreover if the parameter matrix is symmetrical then the following relation 
holds: 

 1TT =i
T
i  and: T

ii TT =−1  (4.69) 

The same applies to matrix Tu. Matrix which satisfies (4.69) is said to be orthogonal3. 
In such case for d = 1 both matrices are equal: 

 TTT == ui  (4.70) 

The condition is also satisfied for transposed lines. 
If the current and voltage transformation matrices satisfy (4.69) then current and 

voltage wave propagation velocities are identical and  
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kk
k C'L'

v 1=  – wave propagation velocity for the k-th mode, 

kL'  kC'  – parameters of the k-th mode. 
Similar relations are valid for wave impedance (1.82).  

To include resistance into the line model the line equation in frequency domain can 
be used (for steady state – see (4.5)):  

                                                      
3 In case of complex form the orthogonal matrix is called the unitary one. 
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where: 
LRZ ωj+='  CGY ωj+='  (conductance G  usually neglected),  

vectors U  and I  are function of distance x and by analogy to (4.4):  
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For complex model (4.72) eigenvalue matrices uT  and iT  are, generally, also 
complex and:  
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where: ''u YZA =  ''u ZYA = .  
Using the diagonal matrices of parameters (4.72) takes the form: 
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 (4.75) 

Interpretation of parameters located in the matrix diagonal is the same as for (4.6):  
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where: kkkkk Y'Z' βαωωγ jjj +== )()(  is the propagation constant for the k-th mode.  
Comparison of (4.71) and (4.76) yields βk = ω/vk. Substitution of (4.74) to (4.4) 

leads to the following relations:  

 
ui

iu

'

'

TYTY

TZTZ
1

mod

1
mod

−

−

=

=
 (4.77) 



102 4. OVER-HEAD LINE MODELS 

The matrices uT  and iT  in (4.77) are usually complex what makes further 
calculations cumbersome. To avoid this drawback the matrices are approximated by 
the respective real ones. This is usually obtained by rotation of the complex matrix to 
minimize the imaginary parts of complex elements. The respective algorithm of such 
approximation is shown in [24]:  
1. Determine the matrix uuw TT =  (the matrix is complex) assuming that the 

admittance matrix 'Y  comprises of reactance ( imaginary elements) only.  
2. Calculate uw

T
uww ' TYTY =mod  using (4.77) for 1−= iw

T
uw TT  (d = 1 in (4.68)).  

3. Since the matrix uwT   is complex the real parts appear in elements of modwY . Such 
elements can be written as: k

kC αω jej mod . To get the normalized (rotated) form of 
the matrix uwT → uT  the columns should be multiplied by the complex 

operator 2/kαje . As a result the imaginary elements of the new matrix modY  become 
very small and can be neglected.  
It must be stressed that the line model in frequency domain (4.72) is meant for 

determination of the model parameters and the eigenvalue matrices only while the 
modelling algorithm remains the same as for the lossless line and can be 
complemented by the lumped resistance model if necessary (in EMTP the total line 
resistance is divided into four parts– see Fig. 4.10b). The diagram of the model 
considered is shown in Fig. 4.16.  

The model is realized for each mode according to the algorithm discussed in sect. 
1.3.6. The phase vectors of currents and voltages at both sides of the line are 
transformed into the modal ones in each calculation step. Then after processing by 
(1.91) and (1.92) the original phase voltages and currents are recovered.  

 

Fig 4.16. Multiphase line in modal arrangement  
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The following example illustrates how the diagonal matrices are calculated in 
ATP–EMTP.  

Example 4.7.  Calculate the line parameters of the line in Example 4.1 for phase and 
modal components assuming that the line is untransposed. Use the LINE 
CONSTANTS supporting program available in ATP–EMTP.  

The line cross section (Fig. 4.1) indicates that the parameters of the middle phase (capacitance 
and inductance ) (B) differ from the parameters of other phases. The input file for parameter 
calculating subroutine in ATP–EMTP is also different as compared to the file used in Example 
4.1 (the bold typed control line) The control lines read as follows:  
col. 34: 1 – calculate capacitances for the equivalent three-phase system. 
col. 38: 1 – calculate impedances for the equivalent system  
col. 44: 1 – capacitance in (F) units not as ω C (S) – like before;  
col. 70: 1 – line is untransposed – the current eigenvalue matrix iT .must be calculated  
 
BEGIN NEW DATA CASE 
C Line 400 kV 
LINE CONSTANTS 
METRIC 
C   Data for LINE CONSTANTS 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
  1 .231   .0564 4            3.15   -10.3    24.5    12.0    40.0   0.0       2 
  2 .231   .0564 4            3.15     0.0    24.5    12.0    40.0   0.0       2 
  3 .231   .0564 4            3.15    10.3    24.5    12.0    40.0   0.0       2 
  0  0.5   .2388 4           1.565   -6.87    31.0    23.5 
  0  0.5   .2388 4           1.565    6.87    31.0    23.5 
BLANK CARD ENDING CONDUCTOR CARDS OF  "LINE CONSTANTS"  CASE 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C      >< Freq   >< FCar   > <ICPR> <IZPR> =< DIST > <PP>==< >< >< ><><> 
   100.0      50.0               1   1     1   180.0                 1   
BLANK CARD ENDING FREQUENCY CARDS 
BLANK CARD ENDING  "LINE CONSTANTS" 
BEGIN NEW DATA CASE 
BLANK  
 

The relevant fragment of the output file is shown in the next page. Here comes the short 
comment of results: 
Capacitance matrix refers to the phase-to- earth capacitances fC  (F) (4.50). The lower part of 
these matrices is given only since the matrix is symmetrical. The same refers to the impedance 
matrix ff LR ωj+  (Ω). 
Further the modal parameters are printed: resistance, reactance, wave impedance propagation 
velocity v : in lossless actual line α (attenuation). All three modal components are of different 
values. The current eigenvector matrix iT  is complex but in this case the normalized 
imaginary form is given. 
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It can be verified that iT  is not orthogonal: 1TT ≠i
T
i  so equation (4.70) does not hold. 

Assuming d = 1 calculation of: ( ) 1−
= T

iu TT  yields:  
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⎣
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=
017084001e3.76012805011865482e7.07106781  011013300e5.80217429
014204246e8.48391748  151006496e2.24877083 019739805e5.73790282
017084046e3.76012805011865468e7.07106781 011013298e5.80217429

uT . 

Let’s follow – using MATLAB - calculation of the eigenvalue matrices uT  iT  The matrix 
''u YZA =  is:

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−−−−−−
−−−−−−−−−
−−−−−−−−−

=
5j0.0197E + 50.1353E5j0.0085E + 50.0195E5j0.0100E + 50.0205E
5j0.0095E +5E 0.02185j0.0192E + 50.1310E5j0.0095E +5E 0.0218
5j0.0100E + 50.0205E50.0085E j+ 50.0195E5j0.0197E + 50.1353E

'' YZ . 

The function eig() calculates eigenvalues and eigenvectors of '' YZ :  
[TuV]=eig(ZY) 
where: Tu is the desired matrix uT  and V (= V ) is the diagonal eigenvalue matrix:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅⋅−
⋅⋅−

⋅⋅−
=

−−

−−

−−

55

55

55

10j0.0108 + 100.1118
10j0.0097 + 100.1148

10j0.0383 + 100.1751
V . 

Columns ks  k = 1 2 ... n of the eigenvector matrix [ ]nu sssT L21=  are obtained by 
solution of the following equations (4.62):  
( ) 0=− kki s1A λ  
where: kλ  k = 1 2 ... n are the subsequent eigenvalues of '' YZ . 
MATLAB returns the following result: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−−

−−−
=

j0.0105 + 0.3754j0.0003 + 0.70710.0179 j 0.5792
j0.0280  0.8469j0.0000 + 0.0000j0.0195  0.5727
j0.0105 + 0.3754j0.0003  0.70710.0179 j 0.5792

uT . 

which is different from that obtained in ATP–EMTP (different sign in the last column). 
Now the modal admittance matrix modY  can be calculated: 

5
mod 10−⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−
++

+
==

j0.3769 + 0.0000j0.0000 0.0000j0.0001 + 0.0011
j0.0000 0.0000j0.3270 + 0.0000j0.0000 0.0000
0.0001 j+ 0.0011j0.0000 0.0000j0.2429 + 0.0000

u
T
u ' TYTY  (S/km). 

The matrix is not diagonal and not entirely reactive due to the calculation errors and needs to 
be normalized [24]. Further we skip this stage assuming that the matrix is diagonal and 
reactive:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅
⋅

⋅
=

−

−

−

5

5

5

10j0.3769 
10j0.3270

10j0.2429 

modY  (S/km).
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Fragment of output file L400_PAR_PH.LIS. 
… 
Capacitance matrix,  in units of  [farads/kmeter ]  for the system of equivalent phase conductors. 
Rows and columns proceed in the same order as the sorted input. 

 

   1  9.962258E-09 

 

   2 -1.526980E-09  1.026383E-08 

 

   3 -4.467067E-10 -1.526980E-09  9.962258E-09 

 

Impedance matrix,  in units of  [ohms/kmeter ]  for the system of equivalent phase conductors. 
Rows and columns proceed in the same order as the sorted input. 

 

   1  7.161787E-02 
      4.594878E-01 

 

   2  4.331943E-02  7.258155E-02 
      1.448813E-01  4.494188E-01 

 

   3  4.185105E-02  4.331943E-02  7.161787E-02 
      1.082764E-01  1.448813E-01  4.594878E-01 

 

Modal parameters at frequency  FREQ = 5.00000000E+01 Hz 
 Mode    Resistance     Reactance   Susceptance   The surge impedance in units of [ohms]     Lossless  and  actual     Attenuation 
           ohms/km       ohms/km        s/km          real          imag       lossless     velocity in [km/sec]       nepers/km 
    1  1.570727E-01  7.187872E-01  2.435554E-06  5.464474E+02 -5.900984E+01  5.432519E+02  2.374383E+05  2.360498E+05  1.437217E-04 
    2  2.976682E-02  3.512114E-01  3.270073E-06  3.280156E+02 -1.387556E+01  3.277220E+02  2.931480E+05  2.928856E+05  4.537410E-05 
    3  2.846724E-02  2.958356E-01  3.778321E-06  2.801410E+02 -1.344745E+01  2.798181E+02  2.971497E+05  2.968071E+05  5.080878E-05 
 
Eigenvector matrix  [Ti]  for current transformation:  I-phase = [Ti]*I-mode.   First the real part, row by row: 
 5.991431833176021E-01 -7.071067811865462E-01 -4.052167378310909E-01 
 5.310884029689407E-01 -2.670468863295909E-15  8.195113121629626E-01 
 5.991431833176025E-01  7.071067811865489E-01 -4.052167378310873E-01 
Finally,  the imaginary part,  row by row: 
 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00 
 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00 
 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00 
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The modal impedance matrix can be calculated using the eigenvalue matrix V and the 
relation modmodYZV = :  

mod
mod

k

k
k Y

Z λ=  where subscript k indicates the mode number kλ  is the k-th element of the 

matrix V. Thus we get: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

j0.2966 + 0.0285 
j0.3512 + 0.0298

j0.7206 + 0.1575 

modZ  (Ω/km). 

The modal wave impedance (4.10) is:  

mod

mod
mod

k

k
fk Y

ZZ =  and further: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

j13.48  280.85 
j13.88  328.02

j59.16  547.83 

modfZ  (Ω). 

The matrix modfZ  elements should be real since they are physical parameters of the actual line. 
so their imaginary parts can be neglected as coming from the calculation errors. [24].  
Now the wave impedance matrix in phase coordinates can be determined using (4.77):  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
== −

387.58  92.5559.56
92.55381.5592.56
59.5692.56387.58 

1
mod ifuf TZTZ  (Ω) 

The eigenvalue matrix T  can be calculated using algorithms available in many 
software packages [66]. The eigenvalue matrices are always real for transposed lines 
and the relations (4.69) (4.70) hold. Then one of the known from the three-phase 
circuit theory transformations can be applied for the purpose.  

In Clarke transformation4 (also known as 0αβ transformation) the following 
matrices are applied [19]:   

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−=

312
312
022

2
1T  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−=−

330
112
111

3
11T  (4.78) 

which after normalization to (4.69) yield the following transformation pair:  

                                                      
4 Edith Clarke (1883–1959). 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−=

2
3

2
11

2
3

2
11

021

3
1T  

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−=−

2
3

2
30

2
1

2
12

111

3
11T  (4.79) 

The parameters of line models derived for (0αβ) modal coordinates and for 
symmetrical components are the same. If, for instance, matrices (4.79) are used for 
transformation of transposed line resistance matrix then the result according to (4.77) 
and (4.69) is:  

 

TTR
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= −

SMM

MSM

MMS

RRR
RRR
RRR

R
R

R
1

1

1

0

0αβ  (4.80) 

and similarly for the other parameters. Moreover the components αβ are orthogonal in 
steady state. The αβ coordinates make the base for definition of the space vector [76]:  

 

( )*

212
3 fffff

s
+=+= βα j  (4.81) 

which relates the modal coordinates (via (4.79))with the phase ones (ABC):  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

C

B

A

f
f
f

f
f
f

1
0

T

β

α  

and also with the symmetrical components: positive– 
1

f  i and negative – 
2

f ; 

superscript * denotes the complex conjugate function.  
The space vector plays an important role in analysis of three-phase AC circuits [24, 

76].  

b) Frequency-dependent Line Model 

There are many algorithms applied to modelling of multiphase circuits with frequency 
dependent distributed parameters.  

All of them employ two basic methods of transients representation in the long line:  
– calculation of transients by use of the Bergeron’s model (see sect. 1.3.7 that 

refers to the lossless line),  
– application of the line model in frequency domain and return to the time 

domain by use of the inverse Fourier transform.  
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In case of multiphase line the mutual coupling between particular phases have to be 
taken into account. To solve this problem one of the following techniques is used:  
1. By diagonalization of the multiphase line parameters the line model splits into 

many uncoupled single line modal models (the aforementioned approach).  
2. The line model is derived for phase coordinates with full parameter matrices under 

assumption that the line is untransposed [3 24 58 87].  
Below the approach to frequency dependent model of the multiphase line setup as 

used in ATP–EMTP is discussed. Application of this approach to a single-phase line is 
shown sect. 4.1.2.  

The multi-phase line model is as shown in Fig. 4.18) and the constant resistances in 
particular models for modal coordinates are replaced by filters of frequency responses 
Zf (jω) and A(jω) – like in (4.20) and (4.21) – which are represented by in series 
connected linear RC cells of transmittances )(sZ f  and )(sA  respectively.  

The models for particular modal components are as shown in Fig. 4.10. The 
following example shows how the line parameters are calculated.  

Example 4.8.  Calculate phase and modal parameters of the line in Example 4.1 Assume 
that the line is untransposed and the line parameters are frequency 
dependent. Use the JMARTI SETUP procedure available in ATP–EMTP 
[3]. 

Model of the frequency dependent long line offered by ATP–EMTP is known as JMARTI [24 
58]. The input data for the model are calculated by MARTI SETUP support along with LINE 
CONSTANTS procedure (Example 4.7) which calculates the basic line parameters. The 
respective input file is shown below.  
 
BEGIN NEW DATA CASE 
JMARTI SETUP 1.0          {Note use of PDT0 = 1 to allow reduction of order 
$ERASE 
C Line 400 kV 
BRANCH   PA    KA    PB    KB    PC    KC 
LINE CONSTANTS 
METRIC 
C   Data for LINE CONSTANTS 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
  1 .231   .0564 4            3.15   -10.3    24.5    12.0    40.0   0.0       2 
  2 .231   .0564 4            3.15     0.0    24.5    12.0    40.0   0.0       2 
  3 .231   .0564 4            3.15    10.3    24.5    12.0    40.0   0.0       2 
  0  0.5   .2388 4           1.565   -6.87    31.0    23.5 
  0  0.5   .2388 4           1.565    6.87    31.0    23.5 
BLANK CARD ENDING CONDUCTOR CARDS OF  "LINE CONSTANTS"  CASE 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C      >< Freq   >< FCar   > <ICPR> <IZPR> =< DIST > <PP>==< >< >< ><><> 
   100.0    5000.0                             180.0     1           1 
   100.0      50.0                             180.0     1           1 
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   100.0       .01                             180.0     1   3  4    1 
BLANK CARD ENDING FREQUENCY CARDS 
BLANK CARD ENDING "LINE CONSTANTS" 
DEFAULT 
$PUNCH 
BLANK card ending JMARTI SETUP data cases 
BEGIN NEW DATA CASE 
BLANK 
 

The file is very much alike to that in Example 4.7. The notable differences are: 
– Template JMARTI SETUP indicates the procedure type. 
– Declaration of nodes for both sides of the line (BRANCH). 
– Declaration of frequencies (5000, 50 and 0.01 Hz) for which the frequency response is 

to be calculated.  
– The numbers 3 (col. 62) and 4 (col. 65) in the last line. The former indicates that the 

frequency response is to be limited to 3 decades on the logarithmic frequency scale and 
the latter means that the frequency response will be approximated in 4 points within 
each decade (the numbers should be much greater, say 9, 10; here the small values are 
used to reduce the output file size).  

– Line: $PUNCH means request for the output file *.PCH printout. 
The output file obtained is as below: 
 
-1 PA    KA                   2.  1.00              -2 3 
       9       7.3615544019279970000E+02 
   5.16160970375891200E+03  -4.62836678876982000E+03   2.34908920073601300E+02 
   2.21428884708777900E+02   4.37807446832278400E+02   3.04928174781558700E+02 
   2.24591087014093900E+02   4.55263702130293400E+02   1.02771805987124600E+03 
   2.54324867047940400E-01   2.58267247958202700E-01   4.75266615734256900E-01 
   7.43821799922729000E-01   1.32805685385736000E+00   1.97949231121861500E+00 
   2.90622851912841100E+00   6.69971775060332200E+00   1.50030074511141000E+01 
       1       1.0175027775544130000E-03 
   4.96285426218186400E+02 
   4.96823791675659200E+02 
-2 PB    KB                   2.  1.00              -2 3 
       9       3.4134523824302410000E+02 
   5.30870510194876300E+02   2.02556181590067800E+01   2.68086180404834000E+02 
   3.50337060561525300E+02   6.29292421363313800E+02   4.27034282349728200E+02 
   2.48049348808883800E+03  -1.24353670385984700E+03   3.20930281998335600E+02 
   1.97752951677736800E-01   2.77134426872770100E-01   5.53515928524456700E-01 
   1.06867294826728000E+00   2.21360731622174100E+00   3.74655773786376000E+00 
   8.95197627537033100E+00   9.97585888710791700E+00   1.65795393675722400E+01 
       1       6.2796878107565830000E-04 
   4.68508344800458900E+02 
   4.69023674409433600E+02 
-3 PC    KC                   2.  1.00              -2 3 
      12       2.9404800772668510000E+02 
   4.05546694218969000E+02   5.42993557914113500E+01  -1.04056571557813800E+02 
   1.28675981115441400E+02   3.02482667071249200E+02   3.59727123238581600E+02 
   3.84565069398721800E+02   7.79608344392276500E+02   2.12278761695224800E+03 
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  -1.19401802383945500E+03   1.92613893168671900E+02   2.99694164961513600E+02 
   1.75763316432903900E-01   2.65010489469351300E-01   2.77287520425178000E-01 
   2.19898614965812600E-01   5.56134028988414100E-01   1.08558003958717100E+00 
   2.02757957168211700E+00   4.44555679851210300E+00   9.65825030962793800E+00 
   1.10764943326363400E+01   1.13569798059043500E+01   1.81281850219694700E+01 
       1       6.2206229083791410000E-04 
   4.22175997238486200E+02 
   4.22644824279796200E+02 
  0.58407538 -0.70710678 -0.41958805 
  0.00000000  0.00000000  0.00000000 
  0.56365939  0.00000000  0.80491722 
  0.00000000  0.00000000  0.00000000 
  0.58407538  0.70710678 -0.41958805 
  0.00000000  0.00000000  0.00000000 
 

The file comprises of three parts which refer to the modal components of the line model and 
are numbered –1 … – 2 ... –3 ... respectively. 
In the subsequent line in each part the order of )(sZ f  transmittance (9 for the first and the 

second mode and 12 for the third one) and the limit value of the respective impedance for 
infinite frequency is printed.  
The subsequent three lines show zeroes of the approximating function (9 in total) and in the 
next three lines the poles of that function are shown.  
Further the information about parameters of )(sA  transmittance which approximates the 
propagation function for the first mode is shown including the order of the transmittance (1 in 
this case) and the wave propagation time for infinite frequency.  
The next 2 lines show zeroes and poles of )(sA  respectively (in this case it is the first order 
function). 
In the last part of the output file the eigenvector matrix Ti is printed.  
 

The essential simplification of the line model discussed in the example shown is 
that the transformation between phase and modal coordinates is assumed to be 
frequency independent. In fact if the line parameters depend upon frequency then the 
eigenvector matrix )(ωii TT =  becomes frequency dependent too (4.74). This 
dependence is particularly strong for cable feeder models [62]. The solution to the 
problem is based on representation of the eigenvector matrix elements by respective 
transmittances as it as applied in case of wave impedance and propagation function. 
Such approximation is possible after normalization of the diagonalization matrix. 
[62].  

The most adequate is the model based on direct solution of (4.72). In application to 
multi-phase line the equations yield:  
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where by analogy to (4.19): l'' ZYA −= ej )( ω  and the wave impedance matrix(4.10) is:  

( ) 1)( −= ''f YZZ ωj . 
The subscripts 1, 2 refer to the respective line ends.  
The parameters of the frequency model obtained (matrices )( ωjfZ  and )( ωjA ) must 
be determined for the specified frequencies so that they can be approximated in the 
considered frequency range [71]. The model excitation functions (input – output) 
should be transformed into frequency domain [72].  

Exercises 

4.1. Check that the equivalent long line Π circuit shown in Fig 4.3 and the equations (4.16) 
correspond to the line model described by equations (4.15).  

4.2. In Example 4.3 the 400 kV line is analysed for the fortieth harmonic (at fundamental 
50 Hz) for which the respective wavelength is 776.1471 =λ  km. Determine the steady 
state output current for the metallic short-circuit at the end of the line if the positive 
sequence line input voltage is: 

( )ttu 11 40cos400
3
2)( ω=  kV. 

Repeat calculations for two values of the line length: a) l = λ1 b) l = 0.75 λ1. 
Hint: Write the input voltage as a phasor and use (4.15) assuming that the output voltage 
is equal to zero. Note that voltage U1 waveform in Fig. 4.4 shows the envelope of the 
steady state AC voltage.  

4.3. In three-phase transposed line models the parameter matrices comprise of two different 
elements – those located in the matrix diagonal and those located aside. The matrices can 
be transformed in many different ways including the symmetrical component 
transformation. In practice only the matrices with real elements are used, like (4.79), or the 
Karrenbauer’s transformation [29, 78]:  
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Check that in all cases the obtained diagonal matrices for modal components are the same.  
 
 





 

5. TRANSFORMER MODEL 

5.1. Introduction 

The transformer is a device in which the electric power is conveyed between two 
electric circuits by means of magnetic induction. The magnetic circuit of the 
transformer comprises the ferromagnetic core with nonlinear characteristic of 
magnetic induction B versus inducing magnetic field H, whose characteristic feature is 
the hysteresis loop. In such a circuit, aside of losses related to heat dissipation in 
windings resistance, the magnetic losses caused by the core hysteresis loop 
(magnetization of the transformer core) and the losses due to eddy currents which heat 
the transformer core are observed.  

The electric and magnetic circuits of power transformers may have various designs 
depending on purpose which the transformer unit is applied for. Thus we have: the 
single phase transformers (usually used as measuring CTs and VTs or the auxiliary 
transformers) and three-phase two- and multi-winding ones. The windings in three 
phase transformers can be connected in Δ or Y arrangement so that many various 
groups of connections are possible.  

The windings at both sides of the transformer can be separated or connected – the 
latter arrangement is characteristic for autotransformers.  

Making the transformer model the frequency range in which the transformer works 
must be taken into account. From this point of view the low and the high frequency 
models are considered. For the latter the turn-to turn and turn-to ground capacitances 
as well as the frequency dependence of the transformer parameters (the skin effect) 
must be taken into account when formulating the model equations.  

Another classification is related to the structure of the transformer models. Here the 
two approaches are applied. In the first one the windings create the ideal transformer 
in required connection arrangement and the magnetizing branch is connected to one of 
the windings. In the second the transformer model is represented as multi- terminal 
circuit.  

In this Chapter the various aspects of power transformers computer modelling are 
presented.  
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5.2. Single-phase Transformer 

5.2.1. Equivalent Scheme 

The basic diagram of the single phase two-winding transformer  is shown in Fig 5.1 
where the main magnetic flux φM along with the stray fluxes φ1 and φ2 related to 
transformer windings of turn numbers N1 and N2, respectively, are marked. The fluxes 
induced by the currents in the windings ( 1i , 2i ) have the same direction so they add 
since the winding direction is also the same. The beginnings of the respective 
windings are marked with asterisks. In this respect the common rule is applied: if the 
current flows towards the asterisk in one of the winding then it must flow out of the 
asterisk in the second one (Fig. 5.1).  

Let’s recall the basic equations of the transformer equations.  

φμ

φ1 φ2 u2

i1 i2

N1 N2

*

*
 

Fig. 5.1. The single phase two-winding transformer  

The voltages at both sides of the ideal transformer for which the stray fluxes and 
winding resistances are neglected, i.e.: 021 == φφ  and 021 == RR , are described by 
the following equations:  
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from which the transformer turn ratio is obtained and: ϑ==
2

1

2

1
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u
u   

The magnetic force related to the winding currents is given by [8]: 

 μφmRiNiNF =+= 2211  (5.2) 
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where Rm is the reluctance of the magnetic circuit. In an ideal transformer the 
reluctance is infinite due to the infinite value of magnetic permeability assumed. In 
such case we have:  

 ϑ==−

2

1

1

2

N
N

i
i  (5.3) 

and this means that in the ideal transformer the current and voltage transformations 
remain in inversely proportional relation.  

If the winding resistances and the stray fluxes are taken into account the 
transformer terminal voltage equations are:  
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where: ( )1111 φφψψψ +=+= MMM N  – for electromagnetic flux (Wb) coupled with 
the first winding and, similarly: ( )2222 φφψψψ +=+= MMM N  for the second one. 

Moreover, noting that:  

 Li=ψ  (5.5) 

L – inductance (H), and splitting in (5.4) terms related to the main and mutual flux 
Mφ we get: 
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After further manipulations we get finally: 
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The equation (5.7)  can also be written in the following form:  

 
t
ti'L'ti'R'tu'

t
tiLtiRtu

d
d

d
d )()()()()()( 2

2222
1

1111 −−++=  (5.8) 
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are the quantities and parameters at the secondary side of the transformer ‘seen’ from 
the primary side. The equivalent transformer circuit corresponding to (5.8) is shown in 
Fig. 5.2a while the circuit in Fig. 5.2b corresponds to (5.7).  

In the next step towards the real transformer model formulation the reluctance in 
(5.2) is assumed to be finite and greater than zero: 0>mR  (magnetic permeability is 
finite). In such case:  
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where: 
1N

R
i m μ
μ

φ
=  is the magnetizing current inducing the flux in the transformer core.  

The magnetizing current is related to voltage via flux (5.4) i.e.:  
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where: 
mR

NL
2

1=μ  (compare with (5.5)). 
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Fig. 5.2. The equivalent circuits of the single phase two-winding transformer:  
a) calculated for the common voltage, b) with ideal transformer  

and c), d) with magnetizing branch  

The eddy currents and the hysteresis losses are represented by the resistance .FeR  
(Fig. 5.2c and 5.2d).  
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5.2.2. Two-winding Transformer 

a) The Equivalent Circuit 

The equivalent diagram of the transformer considered (Fig 5.2) can be represented as 
the two-port circuit. Neglecting the resistance FeR  the following relation between 
currents and voltages at the transformer terminals is valid (Fig. 5.2d):  
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The respective digital model can be obtained by analogy to a single RL branch. 
Solving (5.12) for the derivative of current vector we get the equation:  

 )()()( 11 ttt
t

RiLuLi −− −=
d
d  (5.13) 

which can be represented by use of one of the known digital models. 
In some cases problems with determination of matrix 1−L may appear since the 

inductance of magnetizing branch is much greater than the stray inductance of 
transformer windings: 21, LLL >>μ  and, for 1=ϑ , all matrix L  elements are nearly 
identical. Thus very high accuracy of those parameters is required.  

Matrix L  becomes singular if the magnetizing current is neglected (or is negligibly 
small - ∞=μL ) In order to avoid numerical problems the inverse matrix 1−L 5 for 
nodes 1 and 2 can be determined directly, by analogy to the admittance matrix in 
nodal method [11, 24]: 
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To relate the transformer parameters with the transformer ‘plate data’ solution of 
(5.12) for fundamental frequency in steady state is used: 

 IZU =  (5.15) 

                                                      
5 In ATP–EMTP it is called AR notation in distinction to RL notation which refers to the 

inductance representation like in (5.12) [11, 24]. 
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where: ⎥
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or, in admittance form:  

 IUY =  (5.16) 

where: 1−= ZY . 
Due to the problems of inverse matrix L  calculation for coupled RL circuits which 

are encountered in computer programs the circuit parameters are represented by 
matrices R  and 1−L  instead of impedance and admittance ones. In such case only 
reactance (susceptance) appears in (5.15) and (5.16) and the resistance is processed 
separately. (The simplification is justified if the resistance is much smaller than the 
reactance) [24]. Neglecting resistance in (5.16) we get:  
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The equation is represented by the Π circuit as in Fig 5.3. with parameters ((5.14) 
and (5.17)): 
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Fig. 5.3. The equivalent Π circuit of the transformer  

The values of those parameters can be determined from the ‘plate data’ of the 
transformer: 
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The transverse (magnetizing) branch parameters (referred to the primary side1): 
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where: 1rS  – nominal power for the side 1, (MVA), 

1rU  – nominal voltage –side 1, (kV), 

CuPΔ  – active(dissipation) losses at both sides, (kW), 

FePΔ  – active losses in the core, (kW), 

0i  – the idle current, (%) referred to the nominal one. 
In more general approach the two-winding transformer is represented by the five-

terminal element. The fifth terminal is earth. This terminal is necessary in case of multi-
winding or multiphase transformers since any winding can be connected to earth.  

The extended representation of the transformer with the earth terminal is shown in 
Fig. 5.4. The circuit is said to have the primary form [11, 24]. The resulting 
conductance matrix is singular and the circuit can be solved if one of the two-terminal 
circuit nodes is earthed.  
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Fig. 5.4. Illustration of extended transformer representation 

By analogy, (5.17) can be extended to the following form: 
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The corresponding equivalent circuit is shown in Fig. 5.5. Terminals 1–2 refer to 
the primary winding and 3–4 – to the secondary one. Also in this case the circuit can 
not be solved without additional earthing which is realized by admittances marked 
with dotted line. The admittance values have to be added to the respective elements 
located in the diagonal of the conductance matrix in (5.18). This way the winding-to-
earth capacitances or other resistive earthing can be included into the transformer 
model [6].  
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Fig 5.5. 5-terminal equivalent circuit of the two winding transformer  

The resistance representing the losses in the core is not included into the 
transformer model discussed. Also, the magnetizing inductance is usually neglected 
( ∞=μL ) and the transverse branches of the circuit in Fig. 5.2 are connected to one of 
the  two sides of the circuit in Fig. 5.5. In ATP–EMTP the discussed transformer 
model is realized by BCTRAN procedure [7].  

b) Structural Model 

In another approach to the transformer model setup the circuit in Fig. 5.2d is split into 
two equal parts as shown in Fig. 5.6. 
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Fig. 5.6. The equivalent circuit of the structural transformer model 
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The first part which includes the transverse (magnetizing) branch is represented by 
the  Γ-type circuit described by the equation: 
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while the equation of the second one with connected ideal transformer is [24]: 
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The resistance FeR is included into the model. 
The presented approach can easily be extended for the multi-winding transformer 

model  in which (5.19) refers to the primary side (High Side) while the particular 
secondary (Low Side) windings are represented by (5.20). In the model the additional 
node S appears (Fig. 5.6).  

The discussed equations describe linear and continuous transformer model. The 
digital model can be obtained using one of the derivative numerical approximation 
methods. The following example illustrates the transformer parameters calculation.  

Example 5.1.  A three phase transformer 400/15.75 kV comprises of the three single 
phase units. Determine the digital model of the single phase unit and 
simulate the short-circuit at the HS  

Parameters of the three phase transformer: 
Nominal power rS  = 250 MVA, the short-circuit voltage Ku  = 12%, the active losses 

CuPΔ  = 500 kW, losses in the core FePΔ  = 240 kW, the idle current 0i = 0,7%, nominal turn 

ratio of the single unit rϑ = 400/ 3 /15,75 kV/kV. 
We assume that the magnetizing branch is connected the HS winding. and the transformer 
parameters have to be determined for both HS and LS. The HS parameters can be calculated 
from the following equations:  
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35.3892.14.38 2222 =−=−= HHH RZX Ω. 
The coefficients ½ indicate that the longitudinal transformer parameters are divided into two 
equal parts for both sides of the transformer. The same parameters as ‘seen’ from’ the LS are: 

0089.0/ 2 == ϑHL RR Ω, 

178.0/ 2 == ϑHL XX Ω. 
The transverse (magnetizing) branch parameters at the HS:  
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To simulate the short-circuit let’s assume that the supply source of source impedance 
069.0j008.0 +=SZ Ω is connected to the LS of the transformer and short-circuit via 

resistance 5.0=FR Ω is incepted at the HS. In normal operating conditions the transformer is 
loaded by impedance 450j610 +=oZ Ω (Fig. 5.7).  
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Fig. 5.7. The analysed circuit diagram 

The short-circuit current waveform at the LS of the transformer is shown in Fig. 5.8. The short-
circuit occurs at the time instant Ft  = 25 ms when the instantaneous value of the supply 
voltage is equal to zero. In such case the large decaying DC. component appears in the short-
circuit current.  
The circuit modelled by use of ATPDraw program is shown in Fig. 5.9. The linear transformer 
model is applied for which inductance μL  is determined by only one point on the linear 

magnetizing characteristic μψ i− : ψ =15971 Vs, μi =1 A (another point is located at the 
origin 0,0). The absolute values of that point coordinates are not essentially important - the 
important thing is that the value of the inductance μL  (5.5) obtained satisfies the relation: 

μμ ωLX = .  
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Fig. 5.8. The current waveform at the LS of the transformer 
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Fig. 5.9. ATPDraw diagram of the circuit model  

The magnetizing branch in ATP-EMTP model is always connected to the primary (HS) side of 
the transformer (P in Fig. 5.9).  

5.2.3. Three-winding Transformer 

The three winding transformer circuit is usually presented as it is shown in Fig. 5.10. 
The magnetizing branch model can be assigned to any of the three transformer 
windings. All windings are magnetically coupled by the transformer core.  

The subscript digits in Fig. 5.10 refer to the winding numbers. (P, S, T (tertiary) or 
H, L, M (medium) notations are also used).  

Parameters of the equivalent circuit  are determined experimentally from idle run 
and from short-circuit tests of the transformer. Power and highest winding voltage are 
usually the base values.  
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Fig. 5.10. The equivalent circuit diagram of the three winding transformer  

The equivalent transformer circuit for longitudinal parameters is shown in Fig. 
5.11a. The respective impedances are determined from the equations  
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where: KHLu , KHTu , KLTu  are the respective short-circuit voltages (%); rHU , rLU , rTU  
are the nominal voltages across the respective windings (kV); rS  is the base nominal 
power (MVA) (usually at the HS).  
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Fig. 5.11. The equivalent circuit of the three winding transformer a) in Δ arrangement and b) in 
Y arrangement  

Similarly, knowing the power dissipated in the transformer windings their 
resistances can be calculated from the equations:  
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Using (5.21) and (5.22) the reactance of the respective windings can be 
determined. Note that LTZ  and LTR  refer to the low side (LS) voltage. The respective 
HS values can be obtained from:  

 LTHT ZZ 2ϑ=  (5.23) 

and in the same way for resistances.  
The parameters of the circuit in Fig. 5.10 can be determined by transformation of 

the diagram in Fig. 5.11a into Y arrangement (Fig. 5.11b): 
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and all impedance values refer to the HS.  
The transverse (magnetizing) branch parameters are determined like for the two-

winding transformer from the transformer idle run test results:  
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for the branch connected to the HS of the transformer.  

5.2.4. Autotransformer Model 

Taking into account the equivalent circuit diagrams the autotransformer and the 
transformer are very much alike. In this case the LS winding is the part of the HS one 
(Fig. 5.12a) thus reducing the autotransformer unit size and production cost. Both 
windings have galvanic connection. The magnetizing branch model can be connected to 
any side of the equivalent circuit.  
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Fig. 5.12. The equivalent circuit diagram of the autotransformer: a) winding configuration and 
b) the equivalent circuit  
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5.2.5. Model of Magnetic Circuit 

In the presented considerations it was assumed that the magnetic circuit and active 
losses in the core are linear and, as a consequence, the branch parameters are constant. 
In fact such assumption can be applied in very low number of cases. That is why the 
EMTP offers more adequate models of the effects observed in the transformer 
magnetic core. Further the basic models of nonlinear inductance are presented.  

Magnetizing Characteristic 

The magnetizing characteristic of ferromagnetic material is determined by the relation 
between magnetic field intensity H (A/m) and the magnetic induction B (T): H = f 
(B)6. The relation is nonlinear with hysteresis loop (Fig. 5.13a). The loop size is 
determined by the maximal magnetic remnant induction rB and the magnetic coercion 

cH .  
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Fig. 5.13. The magnetizing characteristic with hysteresis loop: a) limit loop and b) inner loops 

At slow and symmetrical changes of the magnetic field the magnetizing 
characteristic takes the shape of many inner loops whose width is determined by the 
magnitude of the magnetic field H (Fig. 5.13b). The inner loop vertices determine the 
magnetizing characteristic of the magnetic core material (curve 1) [20]. In many cases 
the hysteresis loop can be neglected and then the magnetizing characteristic is 
represented by the function which is equal to the mean value of the limit hysteresis 
loop (curve 2).  

To relate the magnetizing characteristic with the electric quantities in the 
transformer windings let’s recall some basic equations. The electric current i  flowing 
through the coil of cN  turns wound around the core of the mean length l  induces the 
magnetic field of intensity H (A/m) and:  

                                                      
6 1 T = 1 Wb/m2 = 1 Vs/m2. 
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 i
l

NH c=  (5.26) 

in which the stray flux is neglected and i is called the magnetizing current. The 
magnetizing current and magnetic field intensity can be functions of time: )(tii = , 

)(tHH = . 
The corresponding magnetic induction B = f(H) is uniquely identified by the 

magnetic flux ψ  (Wb) in the cN  turn coil whose mean value can be calculated from 
the equation7:  
 φψ cc NSBN ==  (5.27) 

where S  (m2) is the core cross-section.  
The magnetic flux is related to the voltage drop across the coil (5.4) so:  
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ut d  (5.28) 

The similar relation holds for the magnetic inductance B (with coil parameters like in 
(5.27)).  

In case of alternate voltage the magnetizing flux strongly depends upon the voltage 
initial value. The steady state flux for the sinusoidal voltage of frequency ω  is (5.28):  

 U
ω
1=Ψ  (5.29) 

The properties of the core magnetic material are characterized by the magnetic 
permeability μ  (H/m): 
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which is related to the inductance L  by the coil the core size:  

 μψ
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2

==
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d  (5.31) 

In practice it is much easier to use the characteristic ψ = f(iμ) (instead of B = f(H)) 
where the subscript μ indicates that the magnetizing current induces the magnetic field 
H.  

There are many representations of the core magnetizing characteristic used for 
choke and transformer models. Some of them are shown in Fig. 5.14. 

                                                      
7 1 Wb = 1 Vs. 
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In simplest case the piecewise approximation of the magnetizing characteristic 
comprises of three segments for which (Fig. 5.14a): Lμ = 0 (the segment lies on ψ 
axis) and Lμ = L (two segments for positive and negative values of the magnetizing 
current). The greater number of segments (Fig. 5.14b) results in the better 
approximation of the characteristic. The ideal one is the continuous characteristic (Fig. 
5.14c).  

0 iμ

ψ

0

ψ

0

ψ

0

ψ

a) b)

c) d)

iμ

iμ

iμ  

Fig. 5.14. Some representations of the core magnetizing characteristic  

The magnetizing characteristic can be approximated by a continuous function and 
resulting model is called a true type one. The approximation is obtained by use of odd 
functions, for instance:  

 ...)( 5
5

3
31 +++= μμμμψ iaiaiai , (5.32) 

and good result is obtained of the first two terms of the series (a1 ≠ 0 and a2 ≠ 0). 
Inclusion of losses due to the hysteresis and more accurate approximation of losses 

in the core can be obtained for the characteristic with the hysteresis loop (Fig. 5.14d), 
which can also have the piecewise approximation. The function like in (2.41) can be 
used for this purpose:  

 ( )( ) μμμψ iaIiaai c 321 arctg)( +±⋅=  (5.33) 

where Ic denotes the magnetizing current corresponding to coercion Hc. If Ic > 0, then 
the function enables the coarse approximation of the hysteresis loop including the 
inner loops (the sign depends upon the sign of ψ/dt).  
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Accurate approximation of effects in the ferromagnetic core in transient state is 
difficult [15, 85] and it is important that the model includes the initial conditions for 
induction (B0) or the flux (ψ0).  

The initial value of the flux determines the point on the inner loop (Fig. 5.15a).  

0

ψ

iμ

a)

ψ0

ψr

b)

0

ψ

iμ

ψ0

 

Fig. 5.15. Initial condition in the model: a) with hysteresis  
 and b) without hysteresis  

In the model without hysteresis the initial conditions can not be set directly (the 
magnetizing characteristic passes through the origin – Fig. 5.15b). The problem can be 
solved by introduction of the voltage source which is active in the first calculation 
step. The following example shows how the problem is solved in ATP–EMTP.  

Example 5.2.  Using the ATPDraw interface set up the protection CT model in which 
the magnetizing characteristic is represented by 98 (pseudo-nonlinear) 
element with the option of setting the flux initial value. 

Let’s consider the 5P208 type CT of the following parameters: 
nominal power: nS  = 20 VA ( nnn ZIS obc

2
2= ), 

nominal load impedance: nZobc  = 20 Ω, ϕcos  = 0.5, 
current ratio: 500:1 ( nn II 21 : ) A/A, winding turn ratio: 500:1 ( 12 : NN ), 
the core cross-section: S = 28.8cm2 = 2.88⋅10–3 m2, the length of magnetic loop: l = 0.675 m,  
the secondary resistance winding: R2 = 4.5 Ω.  
The magnetizing characteristic is shown in Fig. 5.16. The characteristic has been obtained 
experimentally (by measurement) for sinusoidal excitation and the respective values are the 
peak ones. It must be noted that such a characteristic is not accurate for large values of 
inductance since the corresponding magnetic field intensity H is calculated for r.m.s. values of 
current which is strongly distorted; the professional computer programs use the special 
correcting procedures [24]. 

                                                      
8 Protection CT of composite error 5% at rated accuracy limit primary current and Standard 

Accuracy Limit Factor 20 [46, 47].  
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In ATP–EMTP the magnetizing characteristic of the 98 element is represented by the function 
)(if=ψ  (for peak values). Transformation of this characteristic can be effected by use of 

(5.26) and (5.27): H
N
li

2

=μ ,  .2SBN=ψ  

100 101 102 103 10410–2

10–1

100

H, A/m

B, T

 

Fig. 5.16. CT’s magnetizing characteristic  

Substituting the values taken from Fig. 5.16 the following data (Table 5.1) are obtained which 
can be used for type 98 element set up. 

Table 5.1. CT’s magnetizing characteristic: )( μψ if=  

μi , A ψ , Vs 

0.0143 0.1440 
0.0382 1.4400 
0.0573 2.0160 
0.0955 2.3184 
0.1909 2.4912 
0.7637 2.6928 
3.8184 2.8368 

28.6378 2.9664 
 
The calculation step T =10–5 s has been selected and the respective ATPDraw diagram is 
shown in Fig. 5.17. The dotted line denotes the CT’s elements; the other ones are: the source 
impedance ( SZ _ ) and the load impedance ( obcZ _ ).  
The nominal CT’s load is j17.310obc +=nZ  Ω and the excitation source allows obtaining the 
over-current ratio equal to 20.  
The CT’s magnetizing branch comprises of element 98 connected in series with the DC. 
voltage (source 11) which is used for setting of the inductance .ψ initial value.  
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Fig. 5.17. The circuit with the CT model  

The secondary current 2i  waveform along with the magnetizing current μi  and the flux ψ  
waveforms are shown in Fig. 5.18 for two values of the remnant flux: 0ψ  = 2 Vs (Fig. 5.18a) 
and 0ψ  = 0 (Fig. 5.18b).  

 

Fig. 5.18. The result of CT’s switch-on: a) for remnant flux 0ψ  = 2 Vs  
and b) for zero remnant flux  

Basing on (5.28) the external voltage source is switched on at ton = 0 (TSTART = 0) and 
switched off after one calculation step at toff = ton + T (TSTOP= ε+T , where ε  is the fraction 
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of T– the declared time interval of the voltage source activation must be slightly longer than T; 
otherwise the source will not be switched on. The peak value of U  is calculated from (5.28) 
written in discrete form for one calculation step: UT=ψ  from which: TU r /ψ=  where: rψ  – 
the initial value of the remnant flux. 

5.3. Three-phase Transformer 

5.3.1. Two-winding Transformer 

The properties of the three-phase transformer depend on arrangement of the windings 
connection which is called the winding connection group and on the transformer core 
design. In majority of applications the transformer windings are connected in Δ or in 
Y arrangement.  

The transformer windings are assumed to be symmetrical that implies the identical 
winding equivalent parameters. Moreover, in the low frequency range (up to. 
2000 Hz) the transformer capacitances (phase-to-phase and phase-to-ground) as well 
as the skin effect can be neglected.  

Just like for the single phase transformer the three-phase unit can be considered as 
a multi-terminal element or as the circuit corresponding to the transformer design with 
distinguished primary and secondary side. Further, the multi-terminal approach to the 
transformer winding connection will be presented.  

The transformer winding connections are normalized according to respective 
standards and, generally, different winding connection groups are applied to different 
power networks [36, 91]. Some of them are shown in Table 5.2.  

Knowing the transformer winding arrangement  the transformer model can easily be 
developed. The equivalent circuit of the transformer in Yd11 connection is shown in 
Fig. 5.19a. The equivalent circuits of the respective winding pairs are the same as for 
the single-phase transformer. Due to the LS winding connection the LS voltage vectors 
lead the HS voltage vectors by 30˚. The Y side voltage is equal to the phase one while 
the Δ side voltage is the phase-to-phase one. Thus, the winding turn ratio is 3  times 
greater.  

The transverse (magnetizing) branch can be connected to any side of the 
transformer. In ATP–EMTP the magnetizing branch is always connected to the 
primary side of the transformer model.  

The considered representation of the three phase transformer is acceptable if the 
magnetic circuit configuration allows splitting of the transformer into three separate 
phase units. It can be done for units with magnetic core as shown in Fig. 5.20b.  

The magnetic core design in the three phase transformer determines the 
transformer properties, in particular, the equivalent representation for the zero 
sequence component. This component produces the magnetic flux which has the same 
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sign in all transformer columns. In case of the three column unit (Fig. 5.20a) this flux 
loop closes only via external environment (oil, air) which has very high reluctance.  

 

Table 5.2 Selected winding connections of the two-winding transformers  

Ite
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RY LY RΔLΔNY : NΔ

RFe Lμ

iL1H

iL2H

iL3H

iL1L

iL2L

iL3L

L1H

L2H

L3H

L1L

L2L

L3L

N

u1Δu1Y

u2Δu2Y

u3Δu3Y

U1Y

U2YU3Y

U1Δ U2Δ

U3Δ

UL1L

UL2L

UL3L

uL1H

uL2H

uL3H

uL1L

uL2L

uL3L

b)

a)

 

Fig. 5.19. The equivalent circuit of the Yd11 transformer 

The magnetizing characteristic of such magnetic loop is more flat as compared to 
the ferromagnetic core characteristic and the nonlinearity effect is reduced. In effect 
the magnetizing inductance for zero sequence component μ0L  is much lower. The four 
and five column transformers (Fig. 5.20b) are devoid of this effect since the zero 
sequence flux loop closes via additional columns.  

Similarly to the single phase transformer the magnetizing circuit can be represented 
by the nonlinear magnetizing branch as shown in Fig. 5.20 [87]. In case of the three 
column transformer the effect of the zero sequence flux loop can be modelled by 
additional circuit as shown in Fig. 5.21.  
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Fig. 5.20. The three phase transformer cores: a) three column, b) five column  

Due to the different magnetic loops for the positive and zero sequence flux 
components the three column transformer impedance for the latter is 3 – 5 times 
greater [8].  

Using two extra ideal transformer of 1:1 turn ratio (Fig. 5.21) the triple value of the 
zero sequence voltage 3u0Hμ at transformer HS is obtained. The triple nonlinear 
inductance represents the magnetic circuit for the zero sequence flux component.  
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i0H
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Fig. 5.21. The equivalent circuit of the Yy0 transformer with the three column core 

In ATP–EMTP the input data format for this model is determined by 
TRANSFORMER THREE PHASE (TRAYYH_3 in ATPDraw interface). The relevant 
details are illustrated by the following example.  
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Example 5.3.  Using the ATPDraw graphical interface set up the model of the 
110/20 kV power system fragment with 40 MVA Yn0y0 three column 
transformer (Y/Y with earthed HS and unearthed LS - Fig. 5.22). 

Zs

Za Zb

Es 110kV 15km20kV
Tr

 

Fig. 5.22. The diagram of the modelled power system fragment  

The transformer parameters: 
nominal power: nS  = 40 MV⋅A; 
nominal voltage: 115/22 kV. 
the following parameters have been measured at the transformer LS:  
For the positive sequence component: 
 loses in the core: pPFeΔ  = 32 kW; 
 magnetizing current: pIμ  = 11.4 A; 
 magnetizing voltage pUμ  = 19.0 kV; 
 load loses in windings: CuPΔ  = 205 kW; 
 short-circuit current: NHz II =  = 200.8 A; 
 short-circuit voltage: zU  = 12.07 kV; 
For the zero sequence component: 
 loses in the core: pP 0FeΔ  = 168.1 kW; 
 magnetizing current: pI 0μ  = 280 A ; 
 magnetizing voltage: pU 0μ  = 1.636 kV (voltage at the short-circuited LS terminals); 
 load loses in windings: pP 0CuΔ  = 12.5 kW; 
 short-circuit current: pzI 0  = 95 A; 
source impedance: sZ1  = 0.15+j2.5 Ω, sZ0  = 0.26+j3.4 Ω; 
loading power: aS _obc  = 25.4+j15.8 VA, bS _obc  = 4.5+j2.2 MVA. 
The magnetizing characteristic for LS is shown in Table 5.3). 
The 20 kV overhead line: 
The line length l = 15 km; 1R  = 0.36 Ω/km; 1X  = 0.38 Ω/km; 0R  = 0.60 Ω/km; 

0X  = 1.55 Ω/km; 1C  = 10.5 nF/km; 0C  = 4.2 nF/km. 
The data are necessary to set up the transformer model (TRAYYH_3 in ATPDraw). The 
following calculations are automatically carried out by the program:  
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Subscript p indicates that the measurements were not taken in nominal conditions so, assuming 
that the circuit is linear, the nominal values are recovered.  

Table 5.2. The magnetizing characteristic )( μψ if= for LS (22kV)  

μi , A ψ , Vs 

18.62 57.20 
38.95 64.56 
367.6 75.27 
1121.0 77.97 
3587.0 80.43 

 
The same for the zero sequence: 
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The measured magnetizing current pIμ  and magnetizing voltage pUμ  determine the linear part 
of the magnetizing characteristic )( μψ if= . The respective values are: 

12.1624.112 === pIi μμ A, ( ) ( ) 38.493314/2190003/2 === ωψ μpU  Vs. 

The values are used for calculation of the magnetizing branch reactance:  

μ
μ

ωψ
i

X = , 

which, in turn, is used for calculation of the initial steady state of the network. 
The transformer impedance can be determined from measurement data obtained in the short-
circuit conditions:  
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32008.0
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66.34695.17.34 2222 =−=−= TTT RZX Ω. 
and the respective winding parameters are:  

8475.02/ == TH RR Ω, 35.172/ == TH XX Ω,  
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As the losses in iron for positive and zero components are different they can not be represented 
by the resistor connected in parallel with the inductance Lμ (Fig. 5.21). The losses can be 
represented by the external three phase element of mutually coupled resistors connected to the 
transformer terminals. The resistance matrix of that element can be determined from the 
symmetrical components relation:  

3
2 10 FeFe

Fe
RRR S

+
= , 

3
10 FeFe
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RRR M

−
= ,  
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Thus: 8.7536
3
11281248
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3
1128148

Fe −=−=MR Ω. 

These resistances are calculated with respect to the L-side and form the following matrix: 
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Using the ATPDraw interface the coupled resistors in form of the type 51, 52, 53 elements are 
connected to the transformer model by default [7].  
The constant zero sequence inductance L0μ is represented by the reluctance at the LS of the 
transformer:  
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The inductance L0μ can be estimated from the equation: 
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primary and the secondary side of the transformer, respectively (Fig. 5.21).  
Substituting the necessary data we get:  
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The neutral point earthing resistance RNg. is determined as the difference between power losses 
for zero and positive sequence components measured in the transformer winding:  
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the nominal current). Thus:  
27.2970.20527.502 =−=Δ NgP kW. 

The earthing resistance value is:  
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In ATPDraw interface the resistance is included by default. 
The load impedance is calculated from the equation: 

*
0

2

S
UZ N

O =  (the asterisk denotes the conjugate value). Further:  
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The load impedance is represented by the RLCY3 element while the line is modelled by use of 
the three phase Π circuit with the following matrices R, X, C:  

3
2 10 RRRS

+= , 
3

10 RRRM
−= , where: 0.96.0150 =⋅=R Ω, 4.536.0151 =⋅=R Ω. From that:  

6.6=SR Ω, 2.1=MR Ω.  

Similarly, the line reactance is:  
25.2355.1150 =⋅=X Ω, 5738.0151 =⋅=X Ω, 55.11=SX Ω, 85.5=MX Ω.  

The line capacitances are represented by the respective susceptances ( fCCB π2== ω , 
50=f Hz): 
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0 =⋅⋅⋅= −B μS, 48.49105.1015π100 3
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The ATPDraw model of the system considered is shown in Fig. 5.23. The primary side current 
waveforms calculated for the transformer switch-on in ‘no load’ conditions are presented in 
Fig. 5.24. The highest voltage in phase L1 results in very small value of the magnetizing 
current in this phase. The currents in other phases are biased in the same direction (positive or 
negative half-waves) so the content of the second harmonic is very large in these currents. 
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Fig. 5.23. ATPDraw model of the system considered 
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Fig. 5.24. The current waveforms during switch-on of the unloaded transformer  

Large zero sequence current HI03  flows through the earthed neutral point at the transformer 
primary side. 

5.3.2. Multi-winding Transformer 

Three winding transformers are applied in power systems very frequently. The third 
winding, if connected in Δ arrangement (mostly in autotransformers), effectively 
reduces the transformer zero sequence impedance in networks operating with the 
earthed neutral point. Transformers with grater than three number of windings are 
used rarely.  

Some examples of winding arrangement in three winding transformers are shown 
in Fig. 5.25. The tertiary winding is denoted by T. 

T

H L

Yy0d11
T1

H T2

Yd11d11

 

Fig. 5.25. Examples of winding arrangement in three winding transformers  
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The three phase three winding transformer model can be obtained by connection of 
three single winding three phase transformer models (s. 123). If one of the windings is 
in Δ arrangement then the impact of the zero sequence component flux can be 
neglected9. The example 5.4 shows how the three winding transformer model is 
realized in ATP–EMTP.  

Example 5.4.  Using the ATPDraw interface set up the model of the 220/110/10 kV 
power system fragment with Yn0yn0d11 160 MVA transformer (Fig. 
5.26). The load at MV side (10 kV) is So = 32 + j18 MV⋅A. and the 
secondary winding load is S2 = 105 + j28 MV⋅A. The other system 
parameters are as below. 

The transformer parameters: 
nominal power: rTrLrH SSS // = 160/160 /50 MV⋅A; 
nominal voltage: 230/120/10,5 kV; 
short-circuit voltage: %10=KHLu , %5.33=KHTu , %8.20=KLTu  (referred to HS); 
idle current: %5.00 =i ; 
losses in the core: %25.0Fe =ΔP ; 
winding resistance: 320/80/2.4 mΩ; 
source impedance: sHZ1 =0.35+j3.77 Ω, sHZ0 =1.16+j10.42 Ω; sLZ1 =0.18+j1.55 Ω, 

sLZ0 =0.56+j2.75 Ω. 
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Tr
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Fig. 5.26. The system diagram 

The magnetizing characteristic (the relative values) is as in Table 5.4. 

The turn ratio calculation: 

9.21
5,10

230 ===
rT

rH
HT U

Uϑ , 92.1
120
230 ===

rL

rH
HL U

Uϑ . 

                                                      
9 The zero sequence voltage at the Y side which induces the flux is small since the Δ 

winding enhances the zero sequence current flow at the YN side. 
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Table 5.3. The transformer magnetizing characteristic  

0/ μμ ii  0/ψψ  

1.0 1.0 
1.4259 1.2285 
4.0846 1.5015 
74.517 1.7745 
322.0 1.911 

 
The transformer short-circuit impedance: 
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The calculations refer to the HS. The winding impedances (Fig. 5.25) are (for the HS): 
( )LTHTHLH ZZZZ −+= 5,0 = ( ) 52.3777.6876.11006.335.0 =−+  Ω, 

( )HTLTHLL ZZZZ' −+= 5,0 = ( ) 46.476.11077.6806.335.0 −=−+  Ω, 

( )HLLTHTT ZZZZ' −+= 5,0 = ( ) 23.7306.3377.6876.1105.0 =−+  Ω, 

and: 21.192.1/46.4/ 22 −=−== HLLL Z'Z ϑ  Ω, 153.09.21/23.73/ 22 === HTTT Z'Z ϑ  Ω. 
Knowing the resistance values the winding reactance can be calculated: 

22
HHH RZX −=  

Assuming the magnetizing characteristic is determined for the HS the relative values (Table 
5.4) must be multiplied by the nominal ones: 

77.597
16.314

3/2300002
23
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0 =⋅=

⋅
=

f
U rH

π
ψ  Vs,  

84.2005.0
2303

1600002100/2 00 =⋅
⋅

⋅== iIi rHμ  A, 

As a result the magnetizing characteristic for the 3/230  kV winding as in Table 5.4 is 
obtained. Resistance representing the losses in the core at the HS: 
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Table 5.4. The magnetizing characteristic for the 3/230  kV winding: )( μψ if=  

μi , A ψ , Vs 

2.84 597.8 
4.05 734.4 
11.6 897.6 

211.6 1060.7 
914.50 1142.3 
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The load impedance for MV (10 kV) network (Δ arrangement): 

47.1j62.2
18j32

5.10 22
+=

+
==

o

rT
o S

UZ Ω. 

In case of the three winding transformer the reactance of one winding is negative what may 
bring about the numerical stability problems. That is why the magnetizing branch should be 
connected to one of the transformer terminals but to the neutral point (Fig. 5.19). In our case 
this is HS winding [17]. The considered model diagram is shown in Fig. 5.27. The transverse 
branches are represented by TYPE-98 (pseudo-nonlinear reactor) elements which in 
ATPDraw are denoted as NLININD.  
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Fig. 5.27. The considered transformer model  
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The power system model is shown in Fig. 5.28. To stabilize the model the unearthed 10 kV 
winding is connected to the earth via 10 nF capacitors (corresponding susceptance 10.87 μS) in 
each phase. Being equivalent to few tens of meters of cable feeder the capacitors do not 
essentially change the system operating conditions.  

I

SAT

Y Y

I

I
I

I
 

Fig. 5.28. The ATPDraw model of the analysed system 
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Fig. 5.29. Current waveforms at the HS of the transformer  

The magnetizing branches are connected to the earthing resistor 0.1=NR  Ω at the HS of the 
transformer.  
The L1–G fault at the 110 kV bus-bar was simulated via fault resistance 5.0=zR Ω. For this 
purpose the splitter was used. The respective current waveforms are shown in Fig. 5.29.  
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The multi winding transformer model can be applied to modelling of winding 
internal faults. In such case the faulty winding is divided into two parts and fault 
model is connected to the winding fault location. Using the ATPDraw interface 
transformer models the faulty winding division must be done in all three phases. Thus 
modelling the internal winding fault in two winding transformer the three phase one 
must be used in which two in series connected windings make one winding of the two 
winding transformer.  

5.3.3. Z (zig-zag)-connected Transformer 

The HV/MV transformers usually operate in Yd arrangement with adequate phase 
shift. In order to get the possibility of MV side neutral point earthing (for instance, via 
Peterson coil or resistor) the special earthing transformers are used. In such 
transformers the earthing windings are connected in Z arrangement (zig-zag – Table 
5.2) in order to minimize the transformer zero sequence impedance value. The 
windings connection can provide positive or negative phase shift (Fig. 5.30). In 
general, Z connected windings may have different number of turns and the resulting 
relations are [40, 41]:  

– turn ratio:  

 ( )α
αϑ

−
===

3/sin
sin
πz

y

z

y
z U

U
N
N

 (5.34) 
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Fig. 5.30. Zig-zag connections  
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– voltage vector relation in the first phase:  

 3/πj
1

1 e1 p
z

L
z

UU
ϑ+

=  (5.35) 

 3/πj

3/πj
1

e1
e

p
z

p
zL

ky
UU

ϑ
ϑ

+
=  (5.36) 

where p denotes the sign which for positive phase shift (Fig. 5.30a) is also positive 
(p = 1, index k = 2). For negative phase shift (Fig. 5.30b) p = –1, index k = 3.  

In the equivalent circuit the winding resistance is proportional to the turn number 
and the reactance of in series connected winding is proportional to the squared turn 
number. Thus, ( yz RRR += , yz XXX += ):  
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, (5.37) 
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= , 2
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ϑ
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+
=  (5.38) 

The magnetizing current is measured for unloaded transformer and can be 
determined for any winding. In case of the first phase the magnetizing current is 
related to the first core column and can be determined from the 
equation μμ XUI L j/1= . The losses in core iron can be neglected. Using the first part 
of the winding the magnetizing current is:  

 
z

z
z X

UII
μ

μμ j
1==  (5.39) 

The second winding on the same column refers to the phase L3 and the related 
magnetizing current is:  

 3/21 πje
j z

y

y
y I

X
U

I μ
μ

μ ==  (5.40) 

Equations (5.39) and (5.40) are valid for the transformer with positive phase shift 
(Fig. 5.30a). For negative phase shift the sign of power in (5.40) must be changed. 
Multiplying (5.40) by zϑ  and subtracting (5.39) from (5.40) we get: 

 ( )
y

y
z

z

z
zz X

U
X

UI
μμ

μ ϑϑ
jj

e πj 113/21 −=−  (5.41) 
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where: zzy XX μμ ϑ 2= . Applying this relation along with (5.35), (5.36) and (5.38) to 
(5.41) we get the final formulas [40]: 

 21 zz
z

X
X

ϑϑ
μ

μ ++
= , 2

2

1 zz

z
y

X
X

ϑϑ
ϑμ

μ ++
=  (5.42) 

which enable to calculate the magnetizing branch reactance from the measured 
reactance μX .  

In similar way the magnetizing reactance for zero sequence component can be 
determined. The zero sequence currents in windings on the same column flow in the 
same direction and bear the opposite signs so, by analogy to (5.39) and (5.40), 
equation (5.41) takes the form:  

 ( )
0

0

0

0
0 1

y

y
z

z

z
z X

U
X
UI

μμ
ϑϑ

jj
−=−  (5.43) 

where: 0zU , 0yU  – the zero sequence voltage on the respective windings; 0zX μ , 0yX μ  
– the respective zero sequence magnetizing reactances.  

Equations analogous to (5.35), (5.36) and (5.38) applied to (5.43) yield:  

 ( )2
0

0
0 1

2

z
z I

UX
ϑμ −

= , ( )2

2

0

0
0 1

2

z

z
y I

UX
ϑ
ϑ

μ −
=  (5.44) 

where: 0U , 0I  – the r.m.s. values of the zero sequence voltage and current at the 
transformer Z terminals.  

Note that for 1=zϑ  (both windings have the same number of turns) the zero 
sequence magnetizing reactance tends to infinity (no magnetizing branch). The 
transformer impedance, as ‘seen’ from point n (Fig. 5.30), is very small (equal to the 
winding resistance and the stray reactance only).  

The phase shift 6/π±=α  of the earthing transformer can be adjusted in ‘hour’ 
steps (0, 6, 5, 11,…) depending on how the third winding is connected.  

Changing the ratio zϑ  the phase shift α  of any arbitrary value can be obtained. 
This property is applied in design of three winding Zdy transformers which supply 

the electronic power converters. In such application the transformer is supplied from 
the Z winding side and the phase shift value between Δ and Y windings is selected to 
minimize ripples in the 12-pulse converter d.c. output current. [40]. The winding 
connection diagram of such a transformer along with the vector diagram are shown in 
Fig. 5.31. In ATPDraw interface such a transformer is modelled by use of 
SATTRAFO block and the input data can be calculated from equations presented in 
this paragraph. 
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Fig. 5.31. Transformer ZNd11y: a) wiring diagram, b) voltage vector diagram  

Exercises  

5.1. Show the winding connection diagrams for the two winding transformers in the following 
connection groups:  
a) Yd5  b) Zy5  c) Zy11  d) Dz6  e) Dd6  f) Yy6  g) Dd0  h) Dy11 

5.2. In Example 5.3 the modelling procedure for the three column Yy0 transformer is shown. 
The presented magnetizing characteristic (Table 5.3) refers to the LS (22 kV) of the 
transformer. Rescale that characteristic for the HS (115 kV) of the transformer. 

5.3. The LS winding of the Yy0 transformer in Example 5.3 has been rearranged into Δ 
connection thus making the new Yd1 unit. Calculate the LS nominal voltage of the new 
transformer for which the original magnetizing characteristic doesn’t have to be re-scaled. 
Set up the ATPDraw model of the new transformer using the original transformer data. 
Carry out the relevant comparison tests. 
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5.4.  Below the results of the magnetizing characteristic measurement for the LS winding of 
the Yd1 transformer are shown. The transformer parameters are: 

3.6=rS  MVA,  11/115=rU  kV,  =Δ CuP kW,  =Δ FeP kW,  8.00 =i %. 
Measurement results: 

I, A U, kV 
1.53 11.0 
2.86 12.1 
9.55 13.2 
28.6 13.7 
107.9 14.3 

Determine the characteristic )( μψ if=  which can be used in ATP–EMTP (peak values). 

Note: In ATP–EMTP such calculations can be carried out using SATURA subroutine. As 
the input data the relative values of the original characteristic (as above) must be entered 
(voltage and current referred to the nominal values for the winding considered)– see file 
satur1.dat. 

5.5. Set up and examine the transformer Zy5 20/0,5kV model of the following parameters: 
rHS =630kV⋅A, rLS =100 kV⋅A, ku = 4.5%, CuPΔ =1.5% (referred to rLS ). The short-

circuit power at the 20 kV busbar zS = 6000 MV⋅A. The neutral point at the SN side is 
earthed via resistor and at the LS is earthed solidly. Determine by experiment the earthing 
resistance value for which the short-circuit current at the 20 kV busbar for the phase–to-
ground fault is equal to 100 A r.m.s. 

 
 
 





 

6. MODELLING OF ELECTRIC MACHINES 

In this Chapter rotating electric machines are analysed. It is assumed that the Reader 
knows the basic theory of electric machines design and operation. Electric machines, 
due to the magnetic coupling between the stator and the rotor windings, are similar to 
the transformer. However, since the rotor winding is in continuous motion with 
respect to the stator ones the analysis of the electric machine is more complex.  

The presented here analysis is limited to the synchronous and the AC induction 
(asynchronous) electric machines operating as electric motors or as power generators.  

6.1. Synchronous Machines 

The basic functional diagram of an electric machine is shown Fig. 6.1. The electric 
machine design details may differ significantly depending mainly on the applied 
rotating velocity of the machine rotor. This velocity is related to the power network 
frequency f1 by the following equation:   

 601
npf =  (Hz), (6.1) 

where: n – the rotating velocity of the rotor, (1/min), p – the number of pole pairs. 
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Fig. 6.1. The functional diagram of a three phase rotating electric machine; p = 1 
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The factor n/60 (Hz) in (6.1) is the rotating velocity of the electric machine shaft. 
Multiplication of the machine pole pair number results in adequate increase of the 
electric and magnetic quantities related to the rotating magnetic field produced by the 
machine rotor. For example, if the angular speed of the magnetic field in the machine 
γe changes p times faster than the angular speed of the rotor γr then:  

 re pγγ =  (6.2) 

In case of cylindrical rotor with a single pair of poles (as in turbo generators) the 
rotor speed is equal to 3000 rotates/min (for the network fundamental frequency of 
50 Hz). The power generators driven by the water turbines (hydro generators) usually 
rotate with the lower speed so they must have the greater number pole pairs.  

6.1.1. Model in 0dq Coordinates 

a) Electric Part 

The machine shown in Fig. 6.1 can be represented by the equivalent diagram 
comprising of four separate circuits as shown in Fig. 6.2. The three-phase circuit 
represents the stator windings. If the stator windings are connected in star arrangement 
the neutral point can be earthed directly or via impedance The excitation winding is 
represented by the circuit of the equivalent parameters fr , fL  and is supplied by the 
external d.c. voltage fu .   

 

Fig. 6.2. The equivalent circuits of the synchronous machine  
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The other two circuits represent the damping windings located at the machine 
rotor. The damping windings are meant for suppression of the rotor oscillatory swings 
which occur in transient states. These equivalent (and in fact dummy) circuits are 
located in the main rotor ( Dr , DL ) axis and in the vertical one ( Qr , QL ). In case of 
relatively low power units (up to a few MVA) the excitation flux is generated by 
permanent magnet rotors thus improving the machine reliability and efficiency.  

The stator windings can be connected in star or in delta arrangement. The three 
following circuits are related with the machine stator: the excitation circuit driven by 
the external source to produce the magnetic field and the two equivalent D and Q 
circuits. The current and voltage directions (arrows) are shown in Fig. 6.2 for the 
stator and rotor windings. 

All the circuits are mutually coupled (the equivalent damping circuits are short-
circuited) and represent sort of a transformer which can be described by the following 
equations [10, 24]:  

 td
dψRiu −−=  (6.3) 

where: 
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and, assuming that the circuit is linear, the particular fluxes are proportional to the 
values of currents:  
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 (6.4) 

or, in compact form: 
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in which the quantities related to the rotor and stator are separated. However, since the 
rotor turns, reluctances for particular magnetic fluxes change. In effect the inductances 
in the machine equations depend on the rotor angle position γ (Fig. 6.3):  

 iLψ )(γ=  (6.6) 

and: 

 0
0

γτωγγ +== ∫
t

e d  (6.7) 

where: )(te ωωω ==  – electric angular velocity, γ0 – the initial value of γe. 
It should be noted that the rotor angular velocity depends on the pole pair number 

and, by analogy to (6.2):  

 
p

e
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The equation (6.8) is characteristic for synchronous machines in which the rotor and 
stator magnetic field rotation velocities are the same in the steady state. The rotor 
synchronous rotation velocity is p times lesser. 

Analysis of the diagram in Fig. 6.3 leads to the following equations for the stator 
inductance matrix LS elements:  
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⎛ ++−==

6
π52cos γMSACCA LMLL , 

where: LM, LS, MS are the constant inductances; γ  is the angle between the rotor main 
axis d and the magnetic field axis of A taken as the reference.  

In dq coordinates the axis d leads the axis q and such arrangement is in accordance 
with the adopted standards of synchronous machine analysis [10, 24]. 

Inductance LM appears in model of machines with salient poles; for machines with 
cylindrical rotors LM = 0.  
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Fig. 6.3. the equivalent diagram of synchronous machine 

The stator and rotor mutual inductances can be determined in the similar way: 
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3
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The self- and mutual inductances of the rotor do not depend upon its angular 
position and the inductances of vertically laid windings are equal to zero:  

RDffD MLL == ,  0== QffQ LL , 
0== QDDQ LL . 

The parameter matrix in (6.4) and (6.5) is symmetrical ( T
rssr LL = ). 

The machine model described by (6.3)–(6.7) is called the natural one or the 
machine model in phase coordinates. The model parameters are time-varying what is 
clearly noticeable after substitution of (6.6) into (6.3):  
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Numerical solution of (6.9) is cumbersome and sometimes essential for the natural 
machine model feasibility.  

Simplification of the problem is obtained by replacement of coordinates attached to 
the machine stator by the coordinates attached to the revolving rotor. The coordinates  
are determined by mutually vertical axes d–q. This approach is known as the Park’s 
transformation. The third coordinate is related to the zero sequence component and is 
taken into account if the stator windings neutral point is earthed. The stator currents 
and voltages are transformed into 0dq coordinates in the following way:   
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The same relation can be written for the magnetic flux. 
Matrix )(γP  contains coefficients which project the stator phase quantities onto d–

q axes of the revolving rotor. The zero sequence components are like in standard 
symmetrical component transformation:  
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The constant normalizing coefficient has been introduced to make the matrices 
orthogonal: 
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and to simplify the inverse transformation: 
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since now the normalizing coefficients used for both transformations are the same. 
Substitution of (6.13) into (6.3) with reference to (6.4) and (6.5) leads to the 

following equation: 
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and further: 
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where matrix: 
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is the rotation matrix [30].  
Note that resistance matrix R being diagonal remains unchanged after 

transformation. Moreover, it can be assumed that resistances in all phases are 
identical: 

sCBA rrrr === . 

To facilitate calculations (6.15) is represented using the machine resistance and 
inductance R L parameters. Substituting (6.13) into (6.5) we get:  
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The inductance matrix in (6.17): 
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is constant and time invariant and: 

SS MLL 20 −= , MSSd LkMLL 2
1++= , MSSq LkMLL 2

1−+= , 2/31 =k . 
Moreover, the normalized form of matrix P(γ) makes the inductance matrix 

symmetrical thus facilitating the respective numerical calculation procedures.  
Finally, (6.17) can be written in the following compact form:  

 EEE iLψ =  (6.19) 
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Relations between electric quantities in 0dq model of electric machine are 
presented graphically in Fig. 6.4.  
In similar compact form (6.15) can be written:  
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or:  
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Fig. 6.4. Graphical representation of synchronous machine for 0dq coordinates 

Equations (6.20) – in flux notation or (6.21) – in voltage notation, along with (6.10) 
and (6.13), define the electric part of the synchronous machine for 0dq coordinates 
(Fig. 6.4). The angular velocity ω  in (6.21) refers to magnetic field changes and is 
related to the rotor angular velocity according to (6.8) which describes the coupling 
between electrical and mechanical part of the machine model.   

The presented model can be modified according to actual needs (simplification of 
calculations, better representation of electromagnetic effects). In order to obtain the 
identical coefficients of mutual inductance the transformation ratios between windings 
in d axis can be modified [24]:  

adRDf LMMM === 2/32/3 . 
The modification is effective for correct turn numbers in particular windings. The 

first equation ( Df MM = ) can easily be satisfied since the damping winding is 
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dummy. The second one is true for corrected turn number of the excitation winding 
which can be calculated from the following relations:  

 f
m

fm i
kk

i
1

1= ,  fmfm kk ψψ 1= , fmfm ukku 1= , (6.22) 

where: 
R

f
m M

M
k = . 

The modification also requires the adequate rescaling of the excitation current 
value what can be done outside of the model.  

Due to the modification the equivalent voltages in the coupled magnetic circuits 
(Fig. 6.4) are the same so the circuits can be directly connected. As a result the 
equivalent circuits as shown in Fig. 6.5 are obtained. Splitting (6.21) into three parts 
respectively related to 0dq coordinates we get:  
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Fig. 6.5. The equivalent circuit diagram of the synchronous machine for 0dq coordinates 
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where: 
QmQmqqq iMiL +=ψ , ( )Dmfmmddd iiMiL ++=ψ , fmm MkkM 2

1= , fmfm LkkL 22
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The coefficient km in (6.22) can be determined by measurements for idle (no load) 
run of the machine [24] when id = iq = iD = 0 and fmmq iMu ω= . Then, using (6.22), we 
can write:  
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11

3
ω

= , (6.26) 

where: UG – the nominal voltage of the generator (r.m.s. phase-to-phase value for 
stator windings in delta arrangement or r.m.s. phase-to-ground value for stator 
windings in star arrangement), if 0 – the excitation current for machine idle run.  

It is assumed that the machine model parameters in q axis can be modified by use 
of the same coefficient km.  

More accurate modelling of the machine operation in transient states can be 
achieved if the greater number of the dummy short-circuited windings is included into 
the machine model in both (d and q) axes. Having different parameters the windings 
can model the effects in the machine iron that have different time constants [4, 8, 57].  

The parameters rfm i Mm in (6.26) as well as the other ones are determined 
according to the specified standards [64]. The machine parameters measurements can 
be carried out both in short-circuit and in idle run conditions. Usually the following 
machine parameters are deemed to be the basic ones [24, 64]:  

sR  – stator winding resistance; 

lX  – stator winding stray reactance; 

0X  – zero sequence reactance of the machine; 
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dX' , qX'  – transient reactance: series and transverse, respectively; 

dX'' , qX''  – sub-transient reactance: series and transverse, respectively; 

d'τ , q'τ  – transient time constants: series and transverse, respectively;  

d''τ , q''τ  – sub-transient time constant: series and transverse, respectively.  
The reactances in the list above refer to the nominal frequency, for example, 

lNl LX 1ω=  while the time constants determine the transient d.c. components decay 
rate:  

R
X

R
L

N1ω
τ == . 

Parameters which refer to the open generator circuits (idle run) are denoted by extra 
‘o’ in the subscript, for example: do'τ  denotes the time constant in d axis for the idly 
running generator.  

The further details concerning the machine model parameters determination can be 
found in [4, 24, 64].  

b) Saturation Consideration 

Accurate modelling of magnetic circuit saturation effect in rotating machines is a 
complex problem which requires the cumbersome analysis of the machine magnetic 
core design by use of advanced numerical methods like Finite Element Method [123]. 
Therefore the commonly applied methods of transient state analysis in electric 
machines are based on the following simplifying assumptions [24, 60]:  

– the overall magnetic flux produced by a given winding comprises of the basic 
and the stray flux only; the saturation intensity of the magnetic material 
depends upon the value of the overall magnetic flux; 

– the stray flux does not get saturated; 
– the mutual inductance of the rotor is sinusoidal; 
– the hysteresis and the eddy currents effects are negligible.  
The magnetizing characteristic of the idly running generator (open stator circuit 

while the excitation current is changed at nominal rotation velocity) is necessary for 
inclusion of the saturation effect into the machine model (see Fig. 6.6 [53]). The 
characteristic can be continuous or piecewise approximated.  

Calculation of saturation effect impact is carried out by iteration process in which 
the new points on magnetizing characteristics are calculated for all generators present 
in the analysed network. The process is illustrated in Fig. 6.6. The reference base for 
inductance calculation is the linear part of the magnetizing characteristic whose slope 
ml = tan(αl). Let’s assume that the machine working point A1 has been determined in 
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the current calculation step. The point is located on the linear characteristic whose 
slope m2 = tan(α2). In the next calculation step the new operating point A2 located on 
the same linear characteristic is determined along with the new value of the 
magnetizing current im2. Using this new excitation current value the corrected flux B2 
is calculated from the nonlinear magnetizing characteristic.   

The resulting inductance correction ratio is: χ2 = m2/ml. According to the 
simplifying assumptions correction concerns the main flux only, for example:  

 fdlnasd MkLL 12_ χ+= , (6.27) 

where: Ldl – stray inductance along d axis or:  

 

Fig. 6.6. Idle run magnetizing characteristic of the generator  

 RnasR MM 2_ χ=  (6.28) 

for the mutual inductance f–D (Fig. 6.4). 
The algorithm can be modified according to the numerical methods being used for 

calculations [24, 53, 60].  

c) Mechanical Model 

The basic dynamic equation of the machine rotor mechanical balance is as follows:  

 et
rr TT
t

D
t

J −=+
d

d
d

d
2

2 γγ , (6.29) 
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where: J – inertia torque of the rotating mass, (kg⋅m2)10; D – damping factor, 
(N⋅m/(rad/s)); tT , eT  – turbine (mechanical) and generator (electromechanical) 
torque, respectively, (N⋅m).   

The angle γr is related to rω by (6.7). In case of power generator – tT > eT  – turbine 
energy is transmitted to power system. 

Electromagnetic torque of the machine can be determined from (6.9). For )(tii = , 
)(tγγ =  and for ),( γLiLL = , where iL – the current in inductance which is an element 

of matrix L11 we get:   
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Multiplying (6.30) by vector iT the instantaneous machine power is obtained:  

 eLRG PPPP −−−=  (6.31) 

where: 

uiT
GP =  – output power,  (6.32) 

RiiT
RP =  – power loss in windings,    (6.33) 
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EL – energy of electromagnetic field, 
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d  – electromagnetic power.  (6.35) 

The electromagnetic torque in the air slot between stator and rotor is given by the 
equation:  

 iLi ⎟⎟
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⎛=
γd

dT
e

pT
2

 (6.36) 

where i  is the vector of phase currents in stator and rotor and L  is like in (6.6). 
Using 0dq coordinates (6.36) reduces to [9]:  

 ( )dqqde iipT ψψ −=  (6.37) 

                                                      
10 Inertia torque is also expressed in (N⋅m⋅s2); 1 kg⋅m2 = 1 N⋅m⋅s2. 
11 Important for nonlinear magnetic circuits where inductance is a function of current. 
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The remarks concerning the physical interpretation of discussed relations are:  
• Signs of particular powers in (6.31) correspond to current and voltage notation 

in Fig. 6.5.  
• The magnetizing power PL is produced by each magnetic field change while Pe 

is related to the rotor rotation (changing angle γ).  
• The zero sequence component (6.37) does not affect the electromagnetic 

torque.  
Sometimes, instead of inertia torque, the inertia constant H  is used and:  
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where: 
62 10

2
1 −×= rNN JE ω  (MW⋅s) – energy of rotating mass12; 

rNω  – nominal (synchronous ) rotor angle velocity (1/s); 

NS  – nominal apparent power (MVA).  
Thus:  
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where 
π2

60 rN
Nn ω=  – nominal rotating velocity (rot/min). 

Equation (6.29) and definition (6.38) show that for nominal driving torque Tt = TtN, 
(N⋅m) at D = 0 machine will attain the nominal rotation velocity after time τm = 2H (s) 
(parameter τm is sometimes called the mechanical time constant [57] or the running in 
time. The inertia torque J in (6.29) can be expressed by parameters which are easier to 
obtain:  

 6
2 10×⋅=
rN

Nm SJ
ω

τ = 6
2 102 ×⋅

rN

NSH
ω

= 6
2 10378.182 ×⋅⋅

N

N

n
SH  (6.40) 

and the dynamic equation of the machine can be rewritten as: 
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where: rNf  – nominal rotor frequency (Hz); tP , gP  – turbine and generator power 
(MW), respectively.  

                                                      
12 1 W⋅s = 1 N⋅m = 1 J. 
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The time constant τm takes the values from the range 1–20 s depending on the size 
and the nominal power of the machine.  

If the rotating system contains several masses linked by resilient couplings then the 
mechanical torque conveyed is proportional to the angle displacement between 
particular elements (Fig. 6.7). In such a multi-section arrangement couplings convey 
the resilience torque sT  to adjacent elements so the torque signs have to be 
differentiated accordingly. In general case we have [24]:   

 ( ) isiiiiis TKT ,1,11, −=−= −−− γγ  (6.42) 

where: iiK ,1−  – the resilience coefficient between rotating masses i–1, i.  
The damping in particular elements also has to be differentiated as the 'self-' and 

the mutual one. The latter represents losses caused by the resilient link swings and can 
be expressed by the following equation:  
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d

d
d
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where: iiD ,1− , 1, +iiD  – damping coefficients in couplings between respective masses. 
In the system shown in Fig 6.7 sections 1–3 generate the driving torque (in 

direction of the system rotation) while sections 4–5 are those driven ones.  
Using (6.42) and (6.43) the multi-mass system equation takes the form:   
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Fig. 6.7. Diagram of the multi-stage rotating system 
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, (6.44) 

where: 
J – diagonal matrix of inertia torque (J1, J2, ..., Jn) for particular elements;  
γ – vector of angles (γ1, γ2, ..., γn) for particular elements; 
K – matrix of the resilience coefficients: 
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Tt – vector of turbine driving torques;  
Te – vector of electric driving torques  
Since (6.44) refers to the generator so the rotor angle γ = γ4 in Fig. 6.7. Parameters 

required in (6.44) are usually difficult to obtain so the model can be applied to special 
cases only.  

In EMTP the mechanical part model of synchronous machine is combined with the 
electrical part model by default so user should only enter the necessary data.  

d) Calculation Algorithms 

In complex power system simulation models the generator equations should be solved 
along with the equations of the other system elements. However, due to the specific 
form of the generator equations the direct representation of the system equations (for 
instance, the use of the nodal voltage method) becomes difficult. Therefore, in 
practice, the generator models and the models of the other system elements are 
processed as separated subsystems. To ensure the electric balance between particular 
subsystems (voltages and currents in common nodes and branches must be the same) 
the adequate numerical methods of simultaneous calculations for all subsystems have 
to be applied. For this purpose one of the following methods is used:   
1. Direct iteration method of the system balance calculation in each simulation step. 

Solving the generator equations for specified initial conditions (calculated in 
previous iteration step) the new current values at the generator output terminals are 
determined which, in turn, are used for calculation of voltages in the other 
subsystems which become the corrected generator output voltages. The calculation 
process is continued until the assumed convergence of results is obtained [57]. 

2. Representation of the network by the equivalent voltage (Thévenin’s theorem) or 
current (Norton’s theorem) source. The equivalent circuit is connected to the 
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generator and solved along with the machine equations. This approach is called the 
compensation method 13 [12, 24].  

3. Representation of electric machines by the equivalent voltage or current sources 
connected to the system model. The method is known as prediction method [12, 24, 
60]. Common calculations ensure balance between both subsystems but some 
machine quantities must be predicted.  
The direct iteration method is accurate and stable but due to iterations applied in 

each simulation step makes the calculations time-consuming. 
The compensation method is also accurate but the subsystem with generators must 

not contain any true type nonlinear element. In ATP–EMTP this method is used by the 
model of Universal Machine (UM) [7, 12].  

The prediction method is applied in EMTP to simulation of complex networks 
(Type 59 model) [24].  

6.1.2. Model in Phase Coordinates 

The basic drawback of the synchronous machine representation in 0dq coordinates is 
the lack of direct transformation between 0dq and phase coordinates since 
transformation coefficients depend upon solution which is unknown and use of 
extrapolations may result in instability of the network model [12].   

The generator model in phase coordinates is as follows:  
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where the notation is like in (6.3)–(6.7) and usually Lr(γ) = Lr.  
On the basis of (6.3) the digital model of the generator is developed and is directly 

connected to the network model. Both models are solved together. Calculations are 
carried out according to the following algorithm [12, 13]:  
1. Predict the rotor angular velocity ω and the rotor angle position γ. Determine the 

equivalent parameters of the generator. 
2. Calculate the rotor currents and the electric torque using (6.36). Solving the 

equations of the mechanical model the new values of ω  and γ  are obtained. 
3. Check the solution convergence with respect to ω. In case of unacceptable 

discrepancy return to p. 2. 
In EMTP the method is applied in Type-58 generator model [13]. The method is 

stable and the nonlinear elements in the network model are acceptable [53, 60].  

                                                      
13 Compare with p. 2.3.2. 
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6.2. Induction Machines 

6.2.1. General Notes 

The name induction machine refers to the wide group of rotating electric machines  in 
which electromagnetic (generators) or electrodynamic (motors) force is produced by 
magnetic fields induced in stator and rotor. The rotor magnetic field is produced by 
the current induced in the rotor windings (or short-circuited cages) when the rotor 
moves in the stator magnetic field. Contrary to synchronous machines the rotor and 
stator magnetic field frequencies are different and that is why the induction machines 
are also called the asynchronous ones.  

Taking into account the design features induction machines of the following types 
are used in practice:  

1. Cage (or squirrel-cage) rotor electric machines in which the rotor winding is 
made of cooper or aluminium rods connected at their ends (Fig. 6.8). In case of the 
cage machine the alternate stator magnetic field induces electric current in the rotor 
cage and the resulting rotor magnetic flux produces the rotation torque.  

 

Fig. 6.8. Squirrel-cage induction machine model 

Stator and rotor magnetic fields rotate in the same direction so the current in rotor 
cage can be induced when the stator and rotor rotation velocities are different. The 
difference is defined as the slip s and:  
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where: 1n  – synchronous rotation velocity (angular velocity 1ω ), en  – rotor filed 
rotation velocity (rotor field angular velocity eω ). 

In the machine with pole pairs number p > 1:  

 re pωω =  (6.47) 

where rω  - rotor angular velocity and: 
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The current in symmetrical rotor winding has the frequency: 
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where rn = n  – rotation velocity (rot/min). 
The value of slip depends upon machine operating state. At the beginning of machine 
starting s =1 and decreases gradually to the value 0>s  which depends on machine 
load. In case of induction power generator 0<s .  

To facilitate the machine starting (to get the greater torque for reduced inrush 
current) the machine rotors are modified by application of multi-cage and deep bar 
rotor designs (Fig. 6.9).  

Such designs take advantage of the skin effect properties to increase the rotor 
resistance during machine inrush when the machine slip is big.  

a) b) c)

 

Fig. 6.9. Examples of rotor design: a) normal, b) deep, 
c) double cage  

2. Wound-rotor machines in which standard windings (in star or delta 
arrangement) are connected to slip rings (Fig. 6.10).  
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stator rotor

 

Fig. 6.10. Slip ring machine model. 

Such design essentially facilitates the machine inrush process since the external 
variable resistances can be connected in series with the rotor windings. The value of 
the start controlling resistances, being large at the beginning of machine starting, is 
gradually reduced to zero when machine rotation speed increases [6, 10].  

3. Doubly-fed induction machine design is similar to the wound-rotor machine 
one; here the slip rings are used for connection of external excitation source of 
specified frequency so the machine rotation speed (in motor) or the output voltage 
frequency (in generator) can be controlled [9]. In some conditions the doubly-fed 
machines behave like the synchronous ones. Mutual reaction of rotor and stator 
magnetic fields of frequencies rsf  and rf , respectively, fixes the ‘synchronous’ 
rotation speed at the value determined by slip according to (6.46).  

6.2.2. Mathematical Model 

Induction and synchronous machine models are very much alike. The voltage equation 
in phase coordinates for a single three phase rotor winding is like in (6.3):  
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where the extra ‘r’ subscript indicates the rotor winding. 
The rotor winding voltages can be different from zero in doubly-fed machines. 

Magnetic fluxes produced by stator (s) and rotor windings (r) can be determined by 
the following equation:  
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where the inductance matrices comprise of the following sub-matrices: 
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slL , rlrL  – stator and rotor stray inductance, respectively, 

srL  – magnitude of mutual inductance between stator and rotor windings, 

sN , rN  – number of turns in stator and rotor, respectively, 
γ = γe – electric angle between stator and rotor coordinates. 
To simplify the machine equivalent model the rotor circuit voltages can be 

transformed to the level of the stator windings ones. The relevant transformation 
formulas are [10]:  
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The next step towards the induction machine model simplification is the 
transformation of the stator and rotor phase coordinates into the 0dq ones: 
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where the angular velocity in the matrix Ω (6.16) is the rotor electric velocity: 
ω = pωr; )(0 sdqψ , )(0 rdqψ  denote the stator (s) and rotor (r) magnetic fluxes in 0dq 
coordinates – like in (6.17):  
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in which matrix C represents relation between phase (ABC) and 0dq rotor coordinates. 
Elements of vector u0dq(r) are different from zero for the slip-ring machines (Fig. 

6.10); in cage machines the rotor circuits are short-circuited. The transformation 
matrix )(γP  is like in (6.11); γ  is the electric angle and can be calculated from (6.7) 
for ω = pωr so, that:  

 erp
t

ωωγ ==
d
d  (6.55) 

Matrix C–1 transforms the three phase quantities in the rotor winding into 0dq 
coordinates and is related to the matrix )(γP  by the following equation:  
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Matrix C is known as the transformation matrix between three phase and 0αβ  
coordinates in normalized form (4.81). Matrix E(γ) represents the angular 
displacement (rotation) of stator coordinates with respect to the rotor ones - axis d 
leads the axis q – like in the synchronous machine model (Fig. 6.3). Transformation of 
three phase stator and rotor quantities into 0dq coordinates is given by the equations:  

 
)(

1
)(

)(
11

)(
1

)( )(

rABCrodq

sABCsABCsodq

iCi

iCEiPi

⋅=

⋅⋅=⋅=
−

−−− γ
 (6.57) 

for currents and, by strict analogy, for other quantities.  
Substituting (6.57) to (6.54) we get: 
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where: 
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Taking into account the assumed symmetry of stator and rotor windings the 
equality of the model parameters can be verified:  

 mqsrdsr LLL == , mslsqsds LLLLL +=== , mrlrqrdr LLLLL +===  (6.59) 

where: slL , rlL  – stray inductances of the stator and rotor windings unified to the 
common level. 

Resistance matrices in 6.53) can be determined using the transformation matrices 
)(γP  and C. Symmetry of the stator and rotor windings implies that: 
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where: )(sAR = )(sBR = )(sCR = sR , )(rAR = )(rBR = )(rCR = rR . 
Equations (6.53) and (6.54) describe the induction machine model in 0dq 

coordinates attached to rotor. The machine equations for particular coordinates are 
simple (diagonal parameter matrices) since d i q coordinates are mutually vertical.  

Let’s consider in more detail the voltage equations of the equivalent stator and 
rotor circuits for d coordinate:  
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Subtraction of (6.61) results in the voltage equation of the equivalent machine 
circuit along d axis:  
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In the similar way the voltage equation along q axis can be derived: 
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and also for zero sequence component: 
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The respective equivalent circuit diagrams  are shown Fig. 6.11 in which:  

 drdsdm iii −= , qrqsqm iii −=  (6.65) 
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Fig. 6.11. Equivalent circuit diagram of induction machine:  
a) for d axis, b) for q axis and c) for zero sequence components 

Connection of the discussed model to the model of the external network requires 
inverse transformation of calculated quantities into phase coordinates as ‘seen’ at the 
real machine terminals in each simulation step.  

In case of slip-ring machines the starting resistance has to be included into the 
overall rotor resistance. The model equations have to be modified for other than 
considered number of rotor windings [10, 30].  
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6.2.3. Electro-mechanical Model 

The basic dynamic equation of the rotor mechanical balance is as follows: (compare 
with (6.29)): 

 mer
r TTD

t
J −=+ ω

ω
d

d
 (6.66) 

where: J – inertia torque of rotating system, (kg⋅m2); D – damping coefficient, 
(N⋅m/(rad/s)); Tm – mechanical torque, (N⋅m); ωr – rotor angular velocity, (rad/s); Te – 
electromagnetic torque, (N⋅m) (in the air slot). 

The electromechanical torque can be determined using (6.36), where: i  denotes 
vector of stator and rotor phase currents while L  is the complete inductance matrix 
like in (6.51). In the 0dq model the moment can be calculated using the stator and 
rotor quantities:  

 ( ) ( )drqrqrdrdsqsqsdse iipiipT ψψψψ −=−=  (6.67) 

or, after relevant transformation to 0dq coordinates, from (6.37). Power transmitted 
from stator to rotor in induction motor (or in reverse direction in generator) is related 
to the electromechanical torque by the following equation:  
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The rotor angular position can be determined from the equation:  
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mT > eT  for power generator and mT < eT  if the machine is used as the electric 
motor. 

If the electric motor drives a machine via resilient coupling or elastic shaft then the 
torque Tw conveyed to the machine being driven is:  
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t

mrwmrwww TKttKtTT +−=−== ∫ ττωτωγγ d  (6.70) 

where: γr, γm – angular position of rotor and a lumped mass of the machine driven, 
respectively; Kw – the resilience coefficient of the shaft; Tw0 = Tw(0).  

In such case the compact mechanical system described by (6.66) can be split into 
two rotating mechanical devices linked by the shaft (Fig. 6.12). Dynamics of the 
particular devices are then described by the two following equations:  
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where Tw is like in (6.66). 
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Fig. 6.12. Mechanical system with two rotating masses  

In this arrangement the mechanical model of the driving system ‘motor–load’ with 
elastic link is described by (6.71)–(6.72) and can be extended to the grater number of 
elements as it is shown for the synchronous generator (6.44). Assuming that the link is 
stiff (Kw → ∞) the single mass model is obtained which is described by (6.66) where: 
D = Dr + Dm, J = Jr + Jm, ω = ωr = ωm.  

As the model of the electric part of the machine is represented by the adequate 
electric circuit the same representation can be applied to the mechanical part14. Note 
that (6.71)–(6.72) have the same form as the equations of the equivalent electric 
circuits:  
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The electric equivalence of (6.70) is obtained in the following way:  
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The analogy between variables and constants in mechanical and the equivalent 
electrical circuit equations is as shown below: 

                                                      
14 This approach is applied in ATP–EMTP 
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inertia torque  J  (kg⋅m2)  ↔  capacitance C  (F); 
damping coefficient D  (N⋅m/(rad/s)) ↔  conductance 1/R (1/Ω); 
rotation torque  T  (N⋅m)  ↔  current  i (A); 
angular velocity ω  (rad/s)  ↔  voltage  u (V); 
resilience coefficient K  (N⋅m/rad)  ↔ 1/inductance 1/L (1/H); 
angular displacement γ   (rad)   ↔ magnetic flux ψ (V⋅s). 

Thus, the equations (6.73)–(6.75) can be modelled by the electric circuit shown in 
Fig. 6.13. The current source Te represents the electric torque which in mechanical 
model of the machine is described by (6.37) while Tm is the DC current source which 
corresponds to the constant load torque (1 A = 1 N⋅m). The values of voltage in the 
electric circuit correspond to rotation velocities ωr,  ωm,  according to analogy: 
1 V↔1 rad/s.  

1/Dr Tm
Te 1/DmJr Jm

Tw
1/Kw

ωr ωm

 

Fig. 6.13. The equivalent electric circuit of the mechanical part of the machine 

Example 6.5.  Set up the model of the slip-ring induction motor including the equivalent 
supply network. Examine transients in the motor windings for a single 
phase break in the supplying network for nominal load conditions.  

The motor parameters: UN = 6 kV, 50 Hz, PN = 420 KM15, n = 1458 rot/min (at the nominal 
load) cosϕ = 0.84, sN = 2.8%, η = 97% (power efficiency); the initial torque Tm = 0.95 p.u.; 
inrush current Ir = 6 p.u.; H = 1.1 s.  
The pole pairs number can be calculated from the equation:  
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np . 

In case of electric motors the load torque, the damping coefficient or the inertial torque can be 
estimated from the motor plate data [33]:  

n
P
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PPTm

kW)(3.9549KM)(5.7023 ⋅=⋅==
ω

=2024 N⋅m, n  – nominal rotation speed (rot/min). 

                                                      
15 1 KM = 0.73549875 kW for g = 9.80665 m/s2. 



6.2. Induction Machines 179 

To calculate the detailed motor parameters the Windsyn program can be applied [33]. Using 
this program for the motor considered we get (notation as in ATPDraw):  
LMUD = LMUQ = 0.913927 H (magnetizing inductance for d and q axes), 
Lsd = Lsq = Lrd = Lrq = 0.031485 H (stator and rotor inductance for d and q axes), 
Rsd = Rsq = 0.613031 Ω (stator resistance for d and q axes), 
Rrd = Rrq = 2.33505 Ω (rotor resistance for d and q axes). 
J = 30.06 kgm2, D = 1/2.91 N⋅m/(rad/s). 
The ATPDraw model of the system considered is shown in Fig. 6.14. The capacitor 
30.06⋅106 μF in the model of the mechanical part represents J, and the voltage drop across the 
capacitor corresponds to the angular velocity. If the initial rotation velocity is nominal then the 
initial capacitor voltage is:  

π100
2

)028.01()1()0( 1
−=−= ω

p
su =152.7 V. 

The parallel resistor of the value 1/D represents the mechanical damping.  
Since the motor parameters are determined for the nominal load the current source representing 
the machine load can be neglected. The current source of very small value is used in the model 
to meet the calculation procedure requirements only. 
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Fig. 6.14. The ATPDraw model of the considered system  

The block MODEL (implemented by use of MODELS) is applied to calculation of the motor 
current symmetrical components.  
The rotor current in phase A is shown in Fig. 6.155. The beginning of the waveform refers to 
the normal operating conditions of the motor (Fig. 6.15a). The rotor current is sinusoidal and 
has the frequency (1,4 Hz ) determined by the slip (ωs–ωrN ) value.  
When the break in phase A occurs at tp = 3 s the stator electromagnetic field gets distorted due 
to the supply asymmetry and comprises of two components which rotate in mutually reverse 
directions. It is the well known effect which is manifested by sudden increase of the r.m.s. 
value of the rotor current (Fig. 6.15a). The component of double fundamental frequency 
appears in the rotor current (Fig. 6.15b) and the remarkable increase of the negative sequence 
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current at the motor terminals is observed (Fig. 6.16b). Practically, the machine slows down 
(Fig. 6.16a), gets abnormally heated and weaker and can get damaged if not switched off on 
time. 
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Fig. 6.15. The rotor current waveform: a) in full simulation time span b) right after the phase 
break occurrence  
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Fig. 6.16. Rotor angular velocity change (a) and the stator current positive I1 and negative I2 
symmetrical components (b)  

6.2.4. Numerical Models 

The induction machine models, just like the synchronous ones, can be represented in 
0dq coordinates (6.53)–(6.54) or in the natural (phase) ones. The same concerns the 
common solution of the machine and the network equations – the compensation and 
the prediction method can also be applied for the purpose.  

In ATP–EMTP the induction machine models represented in 0dq coordinates are 
implemented in universal machine model. The Type-56 model is the implementation 
of the machine model in phase coordinates.  
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6.3. Universal Machine 

The Universal Machine term (UM) refers to the general model of the rotating electric 
machine. The UM concept combines many electric machines which have similar or 
identical mathematical models. Such an approach results in significant reduction of 
computer program blocks meant for implementation of numerous machine types. The 
attached to UM auxiliary programs unify the representation of mechanical devices 
which cooperate with electric machines and also facilitate the external control of UM. 
[54].  

In ATP–EMTP the block UM contains models of twelve machine types, namely, 
[7]: 

• Synchronous: 
1.  3-phase armature, 
2.  2-phase armature; 

• Induction: 
3.  3-phase armature, cage rotor, 
4.  3-phase armature, 3-phase field, 
5.  2-phase armature, cage rotor; 

• Single-phase a.c.: 
6. – 1-phase field, 
7. – 2-phase field; 

• Direct Current: 
8. – separate excitation, 
9. – series compound field, 

10. – series field, 
11. – parallel compound field, 
12. – parallel field (self-excitation).  

The number of item position in the list is also the UM type code, e.g.: UM-3 means 
3-phase cage rotor induction machine. 

Despite of unified mathematical model the particular implementations may differ in 
input data format representation and in the initial conditions determination procedures. 
In ATP–EMTP the UM model connection to the electric network model can be based on 
compensation or prediction method – the choice is up to the user [7, 24].  
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Excersises  

6.1 Basing on the induction machine model operating in steady state (Fig. 6.11)) calculate the 
equivalent circuit parameters for the cage induction motor. Use the following data:  
Nominal power   1.8 MW 
Nominal voltage   6 kV 
Pole pairs number  4 
Power factor   0.9 
Nominal slip   1% 
Neglect losses. 

6.2 Power in stator and rotor for vector model of electric machine are given by: 
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for stator and for rotor: 
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Using the relevant model equations estimate how the active rotor power depends on the 
stator one. Neglect losses.  
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