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PREFACE

The availability of modern digital computers has stimulated the use of computer
simulation techniques in many engineering fields. In electrical engineering the
computer simulation of dynamic processes is very attractive since it enables
observation of electric quantities which can not be measured in live power system for
strictly technical reasons. Thus the simulation results help to analyse the effects which
occur in transient (abnormal) state of power system operation and also provide the
valuable data for testing of new design concepts.

In case of computer simulation the continuous models have to be transformed into
the discrete ones. The transformation is not unique since differentiation and
integration may have many different numerical representations. Thus the selection of
the numerical method has the essential impact on the discrete model properties. The
basic difference between continuous and discrete models is observed in frequency
domain: the frequency spectrum of signals in discrete models is the periodic function
of frequency and the period depends on simulation time step applied. Another problem
is related to numerical instability of discrete models which manifests itself in
undamped oscillations even though the corresponding continuous models are stable.
The arithmetic roundup affecting digital calculation accuracy may also contribute to
the discrete models instability.

In this book all the aforementioned topics are concerned for discrete linear and
nonlinear models of basic power system devices like: overhead transmission lines,
cable feeders, transformers and electric machines. The relevant examples are
presented with special reference to ATP-EMTP software package application.

We hope that the book will come in useful for both undergraduate and postgraduate
students of electrical engineering when studying subjects related to digital simulation
of power systems.

Wroclaw, September 2010 Authors






1. DISCRETE MODELS OF LINEAR ELECTRICAL
NETWORK

1.1. Introduction

The simulation of power networks is aimed at detailed analysis of many problems and
the most important of them are:

= determination of power and currents flow in normal operating conditions of

the network,

= examination of system stability in normal and abnormal operating conditions,

= determination of transients during disturbances that may occur in the network,

= determination of frequency characteristics in selected nodes of the network.

The network model is derived from differential equations that relate currents and

voltages in network nodes according to Kirchhoff’s law. The simulation models are
usually based upon equivalent network diagrams derived under simplified
assumptions (which sometimes can be significant) that are applied to the network
elements representation. In this respect models can be divided into two basic groups:

1. Lumped parameter models. 3D properties of elements are neglected and
sophisticated electromagnetic relations that include space geometry of the network
are not taken into account.

2. Distributed parameter models. Some geometrical parameters are used in the model
describing equations (usually the line length).

In classic theory relations between currents and voltages on the network elements
are continuous functions of time. In digital simulations the numerical approach must
be applied. Two ways are applied for this purpose:

— transformation of continuous differential relations into discrete (difference)

ones,

— state variable representation in continuous domain and its solution by use of

numerical methods.

Consequences of transformation from continuous to discrete time domain:

— problem of accuracy - discrete representations are always certain (more or less

accurate) approximation of continuous reality,

— frequency characteristics become periodic according to Shannon’s theorem,
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— problem of numerical stability - numerical instability may appear even though
the continuous representation of the network is absolutely stable.

1.2. Numerical solution of differential equations
1.2.1. Basic algorithms
In electric networks with lumped parameters the basic differential equation that

describes dynamic relation between physical quantities observed in branches with
linear elements (R, L, C) takes the form:

dy(t
YO 4 Jo(e) = bwie) (1.1)
dt
where y(f), w(f) denotes electric quantities (current, voltage) and A, b are the network

parameters. In case of a single network component (inductor, capacitor) (1.1)
simplifies into:

dy(?)
—= =bw(t 1.2
& w(r) (1.2)
Laplace transformation of (1.2) yields:
sY(s)=bW(s) (1.3)

To obtain discrete representation of (1.2) the continuous operator in s-domain must
be replaced by the discrete operator z in z-domain (‘shifting operator’). The basic and
accurate relation between those two domain is given by the fundamental formula:

z=e' (1.4)

where T - calculation step.
Approximate rational relations between z and s can be obtained from expansions of
(1.4) into power series. Let’s consider the following three most obvious cases:

(s +..+ (75)" +
2!

1. z=el =1+ Ts+— 4. +——+... (1.5)
n!
Neglecting terms of powers higher than 1 results in approximation:
z=1+Ts (1.6)
and further:
s=271 (1.7)

ﬂ
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1
2. z=e" =14 Ts+(T5)* + ...+ (Ts)" +.oo.=—— (1.8)
1-Ts
Again, if the higher power terms are neglected, then:
=1 (1.9)
T 1-Ts '
and
g=271 (1.10)
= .
3. z=e" (1.11)
1 20 z-1 (z-1)°
s=—Inz=— + 3+ ...... (112)
T T z+1 3(z+1)
Again, if terms of power higher than 1 are neglected then:
2(z—-1
sz 2z (1.13)
T(z+1)

The approximation (1.13) is the well known Bilinear Transformation or Tustin’s
operator.

Applying the derived approximations of s to differential equation (1.3) three
different discrete algorithms for numerical calculation of w(k) integral can be
obtained.

Using the first approximation of s (1.7) in (1.3):

z—1

Y(2)=bW(2) (1.14)

and, in discrete time domain:

7 (1.15)

The obtained formula (1.15) is the Euler’s forward approximation of a continuous
derivative. The corresponding integration algorithm takes the form:

Y(z)=z"Y(2)+z'bTW (z2) (1.16)

and
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y(k) = y(k = 1)+ bTw(k —1) (1.17)

The algorithm (1.17) realizes iteration that within a single step 7 can be written as:

W(t) = ¥t ) +bT [wi)dz (1.18)

=

The algorithm (1.17) is of explicit type since the current output in k-th calculation
step depends only on past values of the input and output in (k1) instant.
Using the second approximation of s (1.6):

z

_Tl Y(z)=bW(z) (1.19)

and
LGRS P

Now the obtained formula (1.20) is the Euler’s backward approximation of a
continuous derivative. The resulting integration algorithm takes the form:

(1.20)

Y(z)=z"'Y(2) + bTW(z) (1.21)
and
y(k)=y(k-1)+bTw(k) (1.22)

This algorithm is of implicit type since the current output in k-th instant depends on
present value of the input in the same instant.

The algorithm (1.9) which realizes integration within a single step 7, can now be
written as:

(b)) = y(t,) + BT [wir)dz (1.23)

Using the third approximation of s (1.7) in (1.3) we get:

2(z-1) B
—T(z N Y(z)=bW(2) (1.24)

Thw (2)+ ='W (2))

=zY(z
Y(2)=z"Y(2)+ 2

(1.25)
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. Th(w(k) + w(k —1))
2

This algorithm (1.26) realizes numerical integration based upon trapezoidal
approximation of the input function w(k).
Graphical representation of all derived integrating algorithms is shown in Fig.1.1.

(k)= y(k—1) (1.26)

w0 .
N
A0 NN

A

liy ty-3 to i Ik feer !

-«

Fig.1.1. Numerical integration; 1 - Euler’s ‘step back’ (explicit) approximation.;2 - Euler’s
‘step forward’ (implicit) approx.; 3 - trapezoidal approximation

Examination of Fig.1.1 leads to the following conclusions:

= Forward approximation of derivative results in ‘step backward’ (explicit)
integrating algorithm and vice versa. The explicit algorithm tends to
underestimate while the implicit one overestimates the integration result.

= The algorithm based on trapezoidal approx. reduces the integration error since
its output y(k) (1.10) is an average of outputs of both aforementioned

algorithms y (k) (1.8), y(k) (1.10) at any instant £, i.e.

= 2e) 3, ()
2

In general, the numerical integration methods depend on approximations of
continuous derivative (or integral) and can be divided into two groups, namely:

— single step integration methods (self-starting),

—  multi-step methods.

All algorithms considered belong to the first group. As an example of a multi-step
numerical integrator the 2-nd order Gear algorithm can be shown:

Ve (k (1.27)
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4y(k —1) - y(k —2) + Tbw(k)
3

The algorithm is not self-starting one and must be started by use of a single step
algorithm but reveals stiff stability properties.

(k)=

(1.28)

1.2.2. Accuracy of operation and stability

Accuracy of numerical integration for the algorithms considered can be estimated
from homogenous form of the eqn.(1.1), i.e.:

%Mym -0 (1.29)

which yields the accurate solution:

y(t) = y(t)e™ (1.30)

where y(y) — initial condition at ¢, ; 1 >0

Applying s approximations (1.7, 1.10, 1.13) to (1.29) the following numerical
expressions are obtained [18]:

— Explicit Euler’s method (‘step backward’) (1.7)

y(k)=1-AT)y(k-1) (1.31)
— Implicit Euler’s method (‘step forward”) (1.10)
y(k=1)
k)y=——= 1.32
YO =T 7 (1.32)
— Trapezoidal approximation (1.13)
2-AT
k)= k-1 1.33
vk =——r k=1 (1.33)
Accurate result of integration at the instant z,=kT is:
Var (k)= y(k=De*" (134)

Thus the local integration error for one interval 7=¢,— ¢, | can be defined as:
AL zyaL(k)_y(k) (1.35)

This local error can easily be determined for each algorithm considered. Let’s take
for example the method (1.7):
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A, =y(k-De™*" —(1=AT)y(k=1)= y(k=1)(e* =1+ AT)  (1.36)
Expansion of the exponential term into power series yields:

(AT)* (AT)’
A, = ylk—D(FE =
yE= I 2 3! (1.37)

Putting the constraint A7 < 1 and using some mathematics, the local error can be
estimated by the approximate formula:

(ﬂT)pH

(2)7(2+A7) (9

L:

where p is the order of the algorithm(in this case p = 1).
The global error A is defined as the difference between accurate and approximate

integration result in a longer time span i.e. from the first step (k = 1) to the arbitrary
step k> 1 so that:

Ag = ype ™ = y(k) (1.39)

The respective integration results of (1.29) for the algorithms considered are (order
of presentation as in previous case):
—  Explicit Euler’s method (‘step backward”) (1.7):

y(k)=(1=AT)" y, (1.40)
— Implicit Euler’s method (‘step forward”) (1.10):

D= (1.41)
— Trapezoidal approximation (1.13):
217"
y(k)={2+/1T} Yo (1.42)

Discussion of results

= Algorithms (1.31) and (1.40). The integration method is convergent and the
algorithms remain stable if:

- AT|<1 (1.43)

Thus, the stability of the algorithms is ensured if:
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2
T<= 1.44
</1 (1.44)

= The remaining algorithms are stable regardless of the value of 7.
= If the algorithm is stable the global error tends to zero even though the local

error may attain significant values.
[lustration of the errors discussed is shown in Fig.1.2. The plots presented have

been calculated for: yy=10; 1 =2; T=0.987 [76].

a) b)
A, | A,
3 } L
3, 004, X
2 f A i /
/ SHAf by \ by
oo
1 / | AEEARNE! N
) okt VL
0 L \fﬁ"\’; ‘/r‘\/"\/""\l\\’ V7
N I (1 \
0 ~ _5k2 \\l’ i \)l \\4/ \'/ / Y Vo
2/\ I | \
104 107 102 107! s T L 1‘6k‘ 20
T,s

Fig. 1.2. Local 4L, and global 4G error values for the algorithms considered: 1 — trapezoidal
approx.; 2 — Euler’s ‘step forward’ ; 3 — Euler’s ‘step backward’

1.3. Numerical models of network elements

1.3.1. Resistance

As the resistive elements do not have the energy storing capacity the discrete relation
between current and voltage drop across resistance R can be obtained directly from the

continuous relation and:

i(k) = %u(k) = Gu(k) (1.45)

1.3.2. Inductance

The energy stored in magnetic field produced by current has the impact on voltage
across the element so its continuous model is described by the equation:

di() _ 1
TR (1.46)
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Using the transformation (1.6) or (1.9) the Euler’s implicit discrete model of the
element is obtained:

T T
i(k)=i(k—1)+zu(k)=i(k—l)+Gu(k), G=z (1.47)
Note that 7/L has the conductance unit.
For the trapezoidal transformation (1.7) or eqn.(1.10) the discrete model takes the
form:

i(ky=i(k—1)+ % [k 1) +u(k)] (1.48)

or
i(k)=Gu(k)+i(k-1)+ Gu(k-1), G=£ (1.49)

The eqn. (1.49) can be rearranged in the following way:

i(k) =Gu(k)+i(k—1)+Gu(k-1) (1.50)

or
i(k) = Gu(k)+ j(k—-1) (1.51)

where

Jjk=D) =i(k—1)+Gu(k-1) (1.52)

The calculations in step k& employ the values calculated in step &1 which are
constant and can be considered as the constant current sources j(k—1). Thus the
inductance can be represented by equivalent numerical model corresponding to (1.52)
which is shown in Fig.1.3.

a) b ik

- L
. ‘l(t)rW\ . u(k) ¢ @)k
u(?) °

Fig. 1.3. Discrete model of inductance; a) symbol; b) numerical model
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1.3.3. Capacitance
This element also reveals the energy storing capacity in form of electric charge and the
relation between voltage and current in the element is given by the formula:
du(r) 1.
=—i(1) 1.53
d C (1.33)

Using the same transformations as for the inductance the discrete models of
capacitance can be derived:

u(k)=u(k—l)+%i(k) (1.54)
Introducing the conductance notation (1.54) takes the form:
i(k)=Gu(k)-Guk-1), G =% (1.55)
and
i(k)=Gu(k)+ jk-1), jk—-1)=-Gu(k-1) (1.56)

Using the trapezoidal integration method the discrete model of capacitance takes
the similar form:

T
u(k)=u(k—1)+i(i(k—l)+i(k)) (1.57)
The companion discrete model for capacitance can be derived as:
i(k)=Gu(k)+ j(k-1) (1.58)
. . 2C
Jjk=1)=—i(k =)+ Gu(k-1), G=7 (1.59)

The respective representation is shown in Fig.1.4:

a) i) b)

[o

0 | 0 u(k) G @ (k1)
u(?) o

Fig. 1.4. Discrete model of capacitance; a) symbol; b) numerical model
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In the very similar way the parameters of circuit representations for any integration
method used can be derived. In Table 1.1 the example of those parameters for three
selected methods are shown.

Table 1.1. Companion circuit parameters for selected numerical integration methods.

Integration method Model of inductance L Model of capacitance C
Euler’s implicit k=D =i(k-1), G _Ir jle=1)==Gu(k-1), g=C
method L r
Trapezoidal jk=D)=itk=)+Guk-1), gL j(k—l):—(i(k—1)+Gu(k—1)), ¢=2¢
approximation 2L ’

j(k—l)=%(4i(k—1)—i(k—2)): Jlk 1) = —G(Zu(k 1)+ éu(k - 2)J

> nd
Gear’s 2™ order or ¢
_2r Go

3L Tor

Basic numerical algorithm: i(k) = Gu(k)+ j(k—1)

1.3.4. Complex RLC branches

The equivalent discrete model of in series connected RLC branch can be obtained by
series connection of basic models of each particular element in the branch as it is
shown in Fig.1.5b.

N a) o b)
. i(7) ,
up(?) H R ug (k)
A A
uty| w0 L u, (k)
A A
uc(f) —[ ¢ uc(k)

Fig. 1.5. Discrete model of RLC branch; a) the continuous model; b) discrete models
of particular elements; c) the equivalent discrete model of the branch.
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To derive the equivalent discrete model (Fig. 1.5¢) of the overall circuit consider
the basic equation for voltage across the branch (Fig. 1.5b):

u(k) =uy (k) +u (k) +u.(k) (1.60)

in which the particular terms can be expressed by their basic models:

uk(k>=GiRi<k>,
. . (1.61)
uL<k)=G—(i(k)—jL(k—1)), uc<k)=G—(i(k)—jC(k—1)).

L C

After substitution and appropriate rearrangement of (1.60) the equivalent model
equation is obtained:

ith) =Guk)+ j(k-1) (1.62)
in which, for trapezoidal approximation:

GxG,G,. 2CT
GG + GG, +G,G, T 4LC+2RCT+T°

GG j, (k=1)+GrG,j-(k-1) G . G .
rGcJi( ) rGLic( )=—]L(k—l)+—jc(k—1),

Jlk=1)=
GxG, + GG +G,G,. G, G,
1 T 2C
and G,=—, G =—, G. ===
R TR 2L T T

If capacitance C is not present in a branch then C—ee must be put into the above
equations. For missing R or L, R = 0 or L = 0 must be used, respectively. For example,
in case of the R L branch the respective relations are:

2L L

Jk=)=——— L(_)

ik —1)+ Gu(k -1 1.63
T2L+RT 2L+RT’ +RGL( )+ Gulk-1) (1.63)

1.3.5. Controlled sources

Controlled sources are used very often in electronic and electric network models.
Generally there are four basic types of such sources (Fig.1.6) [18, 70]:
= Voltage controlled current sources j = ku_controlled by voltage u _applied to
control terminals.
= Current controlled current sources j = ki, controlled by current i_injected
into control terminals.
= Voltage controlled voltage sources u = ku .
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= Current controlled voltage sources u = ki_ .

a) i
o—— o—»———
Uy
o—— o——
i ¢) d)
oO—— o
Uy u=ku,
o— o—

Fig. 1.6. Diagrams of controlled sources; a) voltage controlled current source;
b) current controlled current source; ¢) current controlled voltage source;
d) voltage controlled voltage network.

Models of controlled sources are very simple; however, their implementation in
simulation programs may sometimes be cumbersome.

1.3.6. Frequency properties of discrete models

The frequency properties of discrete models are uniquely determined by the method
used for approximation of derivatives that appear in the continuous model of a given
element. Comparison of the continuous and the discrete models frequency properties
provides very useful information on how to select the calculation period 7 in order to
obtain the accurate enough transient component waveform of specified frequency fix
which is present in the frequency spectrum of continuous transient voltages or
currents.

As an example let’s consider the discrete model of inductance obtained by use of
trapezoidal approximation. Using the already known relations (1.46, 1.13) we get:

2(z-) . . 1

—T(z ) i(z)= 7 u(z) (1.64)
T z+1 B

z(z)——zL z—lu( ) (1.65)

Now using (1.4) and remembering that in frequency domain s=jw:

. T T 41 .
l(Jw)=Zeij_1u(Jw) (1.66)
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Applying rudimentary trigonometry knowledge the magnitude of the equation
(1.66) can be written in the following form:

T

i(j) = —2 = lu(jo) (1.67)
Ltan7

Introducing the complex discrete admittances Yy4(jw) and the continuous Y.(jw) we get:
T Tw Tw

iGo 5

ol ol

u(ja))| Ltanw—T Lwtan— tan—
2 2 2

Y, (jw)|= | Y.(jo)|  (1.68)

where Y.(jw) = 1/jLw is the admittance of the continuous model of inductance.
Thus, the ratio of the discrete admittance to the continuous one is given by:

Tw

LA
(o) @

2

(1.69)

and changes with frequency as it is shown in Fig. 1.7.

Fig. 1.7. Frequency response of discrete inductance model.
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From eqn. (1.69) and from Fig. 1.7 one can notice that Yy(jw) reaches zero if

tan®L _, oo This limit is reached when:
2

roZ_oz 1
o 27 2f

So if fiax 1S the frequency of the highest harmonic to be observed in current or
voltage signals then the calculation step T should be small enough according to
following condition:

T

= (1.70)

NN
o)
~N

T << ! (1.71)
2fmax
Practically, if required number of data samples within the period 7, = isN
then (1.71) implies:
T < ! (1.72)
B meax ‘

in which N must not be less than 2 (usually N > 20).
1.3.7. Distributed parameters model (long line model)

Distinction between lumped and distributed models of electric elements is made on the
basis of mutual relation between three basic parameters of the environment in which
the electromagnetic wave is propagated. These parameters are:

= specific electric conductivity ¥

= relative magnetic permeability u

= relative electric permittivity €

In case of lumped elements it is assumed that only one of the above listed
parameters is dominant and the remaining ones can be neglected. Thus particular
elements are deemed as lumped under following conditions:

= u=¢£=0-lumped resistance
= y=¢£=0-lumped inductance
=  y=u=0-lumped capacitance.

Additionally in case of lumped parameters model of an electric network the
electromagnetic field must be quasi-stationary; it means that in each point of the
network the electromagnetic field is practically the same or the differences are
negligibly small. In this respect the length of the electric conductor / is considered as
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the distinctive parameter. As the boundary value the length I, equal to ' of the
electromagnetic wavelength propagated is assumed.
Thus, if the frequency of the propagated wave is f, than the /, can be estimated as:

A ¢
] =2 =" 1.73
Y (1.73)

where c is the velocity of light and A = € isthe wavelength.

If /<<, then the length of the line can be neglected and can be modelled as the
lumped parameter element. Otherwise (/ =/, ) the line should be considered as the

long one.
For example, if the transient harmonics of frequency f =1000Hz (the 20"

harmonic) may appear in the line during faults then /,, =c/(4f) = 3-10° /(4-1000) =
75 km. The lightning stroke may induce much higher harmonics in the line so in such
case even a few kilometres long line should be represented by distributed parameters
model.

To derive the continuous model of the long line the equivalent Ax long segment of
the line shown in Fig.1.8 can be used. As Ax is assumed to be sufficiently short the
circuit parameters can be considered as the lumped ones.

ity R LA oy v

u(x,?) u(x+Ax,1)

O
x+Ax

=0

Fig.1.8. Elementary segment of a long line

The basic equations that describe the elementary line segment in Fig.1.8 are:
u(x,t) = R'Ax -i(x, 1) +L'Ax¥ +u(x+Ax, 1),

i(x,t) = G'Ax -u(x + Ax, £) + C' Ax

Ou(x + Ax, 1) (1.74)

ot

where: R', L', G', C' denote ‘unit/ length’ values of resistance, inductance and
capacitance of the line, respectively.

+i(x + A, 1),
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Dividing both equations by Ax and taking the limes (Ax — 0) the following
relations are obtained:

_ du(x,1) C Ri(r)+ L 0i(x,1) ,
a.ax ; ot (1.75)
_ l(x:-[) — G’u(x,t) +C' u(xat) .
ox ot

If the line is homogenous then (1.75) can be separated with respect to current and
voltage (for simplicity: u = u(x,t), i =i(x,t)):

2 )
—aLzz—R'G'u—R’C’a—u+L' o (1.76)
ox ot 0x0t
and
au2 1 1 1 1 |l ] au 1 IE)LI2
ax—2=RGu+(RC+GL)$+LC¥ (1.77)

Applying the same simplifying procedure to the second equation in (1.75) the
respective relation for current can be obtained:

i’ i i’
— =R'Gi+(RC+G'L)=—+L'C'— 1.78
ox’ i+ )at or? (1.78)

Both (1.75) and (1.76) are the second order hyperbolic partial differential equations
known as telegraph equations [80].

a) Lossless (non-dissipating) long line

This case is obtained under assumption that R'=0 and G'=0 and the resulting
simplification of (1.77) and (1.78) is:

Wl 1ot
2 2 2 T
ox®  v° ot (1.79)
W 1o
ox? v’ or?
in which:
vz; (1.80)
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The general solution of (3.6) has been found by d’Alembert [24, 28]. For the
following boundary conditions:
ou(x,t)
ox

=y (1)

x=0

u(xt) = 0(0),

the solution of (1.79) takes the form:
1 V ptx/iv
u(x,t) = E(W +x/V)+ @t —x/v))+ EI V(@)da (1.81)
t-x/v

The loci of points (f —x/v) =const and (¢+ x/v)=const known as propagation
characteristics of (1.81) [6, 39] show the propagation mechanism of ¢(x,¢) waves in a
long line.

t+x/v=const t-x/v=const

X X, X.

1 p 2 X
Fig. 1.9. Propagation characteristics of a lossless long line

The boundary conditions expressed in terms of voltage u,(¢)and current i (¢) at
the beginning of the lossless (R'=0) line (1.75) yields:

ou(0,1) __p 0i(0,1) __p di, (1)
ox ot dt

and the solution (1.81) takes the form:

P =u(0,0)=u,(1), Y()=

1 1 tHx/v
u(x,t) = E(ul(t+ x/v)+u(t —x/v))—EZfo/vdzi(t) (1.82)

L' . .
where Z, = el is the wave (surge) impedance of the line.

For x =1 (end of the line) solution of (1.82) is given by the equation:
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u, (t) :%(ul(t+z’)+u1(t—r))—%Zf(il(t+T)—il(t—z')) (1.83)

where: 7 =1[/v is the line propagation time.
Similarly, the wave equation for current can be obtained and:

i (1) =—%(i](t+2')+i](t—z'))+%(ul(t+Z')—u](t—2')) (1.84)
f

Note that it was assumed that the current at the end of the line flows in reverse
direction with respect to the current at the line beginning (see Fig.1.8) and that is why
it bears the opposite sign.

Subtracting (1.83) from (1.84) the model of the long lossless line is obtained:

iy(t) = G yuy (1) = G juy (t = 7) = iy (t = 7) (1.85)

where: Gf =L.
T Z

S

Fig.1.10. Assignment of variables in the lossless line

When the boundary conditions are assigned to the beginning and to the end of the
line, the solution concerns these two points only. The propagation characteristics also
comprise of 2 points: x; =0 andx, =/. This simple model is called the Bergeron’s
model [24, 49].

The continuous model (1.85) of the lossless line can easily be converted into the
discrete one. Assuming that wave propagation time is m7 = 7 then:

T /
—=— 1.86
T T ( )

m =

and

iy (k) = G uy (k) = G yu, (k = m) i, (k — m) (1.87)
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By analogy the discrete model for the current at the beginning of the line can be
derived, so the respective input and output line currents are:

i (k) =G puy (k) + j, (k —m),

. . (1.88)
i (k) = Gfuz(k)+]2(k_m):

where
Jil(k—M)=—Gfuz(k—m)—l:z(k—m} (1.89)
Jo(k—m)==G qu,(k —m)—i(k —m),

The equivalent circuits corresponding to (1.88) and (1.89) are shown in Fig. 1.11.

) . i i) 2
Jo(k-m)
() G; ® @ G; (k)
J, (k=)

Fig.1.11. Equivalent circuit of the long line discrete model

b) The long line model with dissipation losses

The dissipation losses are uniquely attributed to heating of the line resistance which
was neglected in derivation of the lossless line model. The inclusion of the resistance
to the long line model is based upon assumption that its value is relatively small with
respect to the line reactance. This assumption justifies the inclusion of the lumped
resistance at both ends of the line as it is shown in Fig. 12.

When the resistance is connected as shown in Fig.1.12a the equations (1.88), (1.89)
refer to voltages at nodes 1’and 2’ for which the following relations are valid:

' (k) =, (k) - §il (k).
. (1.90)
s (0 =1, ()= oK)

where: R =R’
As the result the conductance G, and history of calculation changes so that:
Stk =m)==G juy(k—m)—hi,(k—m),

. . (1.91)
Jo(k—m) = =G qu,(k —m)—hiy(k —m),
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where:
G- L ., _2%4-R
7 Z,+RI2TT 27, +R

Liw R2 T 2 R2 w2
o————_ }—o0— —o—{ }—=—o0

u, (k) u',(k) u'y(k) u(k)

| i(k) R/A R/A R/A R/A i,(k) 5

u, (k) u,(k)

Fig.1.12. Inclusion of resistance into the long line model

More accurate model can be obtained when the resistance is connected into the line
model as it is shown in Fig.1.12b. In this case all the line parameters connected to the
middle node of the line can be eliminated and the resulting equations obtained are:

i\(k) = G yuy (k) + hy, jy(k —m) + hy, j, (k —m),

. . . (1.92)
i (k) = Gfuz(k) + hfalz(k —-m)+ hfh]l(k —m),

1

Zf+R/4

In general the dissipating long line models can be written in the compact matrix

form so that:
i(k)y| |Gy w (k)] [he by T Jjik—m)
L(k)} - { G, :|Ll2(k)} + { hy b, }Lz e m)} (1.93)

R
where: hfa =Z2,G,, hﬂ, :ZGf’ and G, =
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and the matrixes G ;= {G f} and h ;= {hf}.

The form of the matrixes depends upon the considered representation of the
dissipating long line (as in Fig. 1.12a or as in Fig. 1.12.b).

1.4. Nodal method

The method is frequently used for network node equations formulation mainly
because its application is easy and the algorithms of nodal equations solution are well
known and fast. Below, the fundamentals of nodal method are presented which refer
to the admittance representation of network branches with current and voltage
controlled sources. Extension of the method for networks containing voltage and
current controlled voltage sources branches is known as the modified nodal method
and will not considered here since the method is mainly applied to simulation of
transients in electronic networks [8, 36].

1.4.1. Derivation of basic nodal equations

The equivalent diagram of the network branch typical for the nodal method is shown
in Fig.1.13. The mathematical model of the branch is described by the following
equation:

i, =Gu, +Gpuy+j, =G, (u, —uy)+ Gy, (u, —u,)+ j, (1.94)
where u;, is the current source controlling voltage with the control coefficient G,,,

located in the other network branch It must be noted that j, may refer to the

independent current source as well as to the source related to the past values of current
(history) in the branch.

A

ull
G
()

©CF

B

9

Ja

Gty
Fig. 1.13. Equivalent diagram of the conductance branch typical for nodal method

Let's consider a network comprising of n, branches and n,, +1 nodes with one of

the nodes being the reference one. Such a network can be described by equation (1.94)
written in matrix form:
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. T .
i,=G,A"u+j, (1.95)
where:
- Gg(n ) is the conductance matrix which contains branch conductances G, (at

the diagonal) and conductances of controlled current sources G,, (outside the
diagonal);
- A, = {ay} is the incidence matrix which takes the following values : a; =1

n,

— if the branch j is connected to the node i and is directed to that node,
a, =—1 —if the branch is of opposite direction, a; =0 — if the branch ; is not
connected to the node i ;
— u is the vector of potentials in 7, independent network nodes (it is the vector
of voltage difference between particular nodes and the reference node);
— ], 1s the vector of nodal current sources.
Multiplication of (1.94) by the incidence matrix A transforms the branch currents
into the nodal ones. The sum of the branch currents in each node is always equal to
zero (the first Kirchhoff’s law) so that:

Ai, =0 (1.96)
and, for the right side of (1.94):

Gu=i (1.97)
where: G, ,, =AG gAT is the matrix of nodal conductance , i, ., =—Aj, is the

vector of the nodal currents (positive sign is assigned to elements of the vector i if the
corresponding source is directed to the node).

Due to the matrix A definition particular elements of the vector i are the sum of
branch currents which are directed to a given node.

Relation (1.97) is known as the equation of nodal potentials. For a given matrix G
and for the known excitation vector i solution of (1.97) yields the vector u which
determines voltages between the independent nodes and the reference one. To
facilitate the network transient calculations some modifications are applied to (1.97).
Two such modifications are of extreme importance in power system networks
calculations since they enable:

— inclusion of voltage sources connected to the reference node;

— improvement of calculation in case of parameter changes in selected branches.

If independent voltage sources connected in series with impedance appear in
branches then they should be transformed into the equivalent current sources
according to the Norton's theorem. In power networks the reference node is usually
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assigned to earth In such case all voltage sources connected to earth are no longer
independent. To avoid this the following procedure can be applied [24, 87]:
e Select the set of nodes 4 (excluding the reference node) for which nodal
voltages are not determined.
e Nodes with determined voltages belong to the set B. The sum of both set makes
the total set of all independent nodes in the network: n, =n, +n,.

e Vector of nodal voltages u in (1.97) can now be presented as:

u= {“—A} (1.98)
uB

in which only the vector u, is to be determined.
e Now (1.97) can be written as:

EUE
Gy Gy uy ip

where: G, is the conductance matrix of that part of the network which has no
nodes connected to the branches with voltage sources, G,, contains self and
mutual conductances of nodes for which voltages are known, while G ,; and
G ,, represent matrixes of mutual conductances of sets 4 and B; node current

vector is divided similarly.
e The unknown node voltage vector u, can be determined from the equation:

G,u,=i,-G ,u, (1.100)

while the node current vector in the set B can be found from the lower part of
(1.99):

i,=G u,+G,u, (1.101)

Elements of the vector i, are the sum of sources current flowing into the
respective nodes in the set B, including branches obtained for the voltage sources.

Another important issue related to calculation of transients is the possibility of an
easy change of network configuration without necessity of matrix G calculation. This
problem appears, for instance, when switches in the network being analyzed change
their positions. In such case any switch can be represented by the conductance branch
for which the value of G, depends upon the switch position: G, =F,, - the

switch closed, G, =0 — the switch open; F,, — very big real value. Thus, when the

switches change position the overall network configuration remains unchanged, only
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the values of matrix G elements change. That is why the nodes connected to the
switch branches should be located in lower part of matrix G [22]. The example
illustrating the nodal method application is shown in [76].

In existing simulation programs the Gaussian elimination method is applied in
versions which differ mainly in representation of elements with variable parameters
(switches). It should be noted that the representation of a switch by the element of
variable conductance may bring about some numerical problems when the conductance
value is very small (closed switch) since the matrix may become singular.

1.4.2. Simulation algorithm
The detailed algorithm of transient simulation depends mainly upon how the

numerical problems are solved. However, in general, all algorithms comprise of the
three basic stages (Fig. 1.14):

Data input
Set initial conditions
)
Set up matrix G
(the upper triangular part of the matrix)

=0

L]

Switch position change?

Yes

No Set up the lower part

of the triangular matrix G

Determine vector of source currents
for independent sources and history

!

Calculate node voltages: reverse
substitution (Gauss method)

Determine output Output file

>t max?
v

Fig. 1.14. Basic structure of algorithms for transient calculation using the nodal method
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e Data and initial conditions setup
e Calculations
e Results record
The results of the algorithm operation can be illustrated by the following example.

Example 1.1. Simulate the transients generated in the network shown in Fig.1.15a
which is the part of the 400 kV power system drawn for the positive
sequence impedances. Assume that all current and voltage initial
conditions for (¢<0) are equal to zero.

System parameters: £, =330kV, Z =0.5+j10Q, Z,=4700 +j2800 Q, Z,=415 +j200 Q.

Line: R =0.0288 Q/km, L =1.0287 mH/km, C'=11.232 nF/km, length /=180 km.
Calculation step: T'=5-10"s.

Using the respective digital models for the system elements the equivalent network shown in
Fig.1.15b is obtained. The switch W is closed (Gy = 10°S). Simulation starts ( = 0) when the
voltage Es is switched on.

a)
w "
’J| ine |

E; Z

Z] ZZ

Fig.1.15. Illustration of the simulation algorithm operation; a) analyzed system; b) equivalent
network of the analyzed system

Simulation is based on step by step solving of (1.100) and (1.101).The selected waveforms of
currents and voltages in the network are shown in Fig. 1.16.

The intensive transient state caused by charging of the line can be noticed in the first period of
fundamental frequency. The oscillation period is equal to the propagation time necessary for
the electromagnetic wave to travel along the line in both directions. Relatively slow decay of
those oscillations can partly be attributed applied trapezoidal integration method which is
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sensitive to rapid changes of reflected current and voltage waveforms. Problem of digital
simulations is analyzed in further part of this Chapter (sect. 1.5).

a)
Uj. kV-

400 -

A AAAA
YNV VIV

b)

1000 —

"l ATy M AN
VY

—1000 —

—-1500 i
0.00 0.02 0.04 0.06 0.08 ts

Fig.1.16. The voltage a) and current b) at the beginning of the line
1.4.3. Initial conditions
To start simulations according to the algorithm discussed initial conditions for currents

and voltages in LC branches and in long (distributed parameters) line have to be fixed
first. In case of AC networks the initial conditions refer to the steady state of the
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network before calculation of transients starts. Thus, the initial conditions are
determined for complex network model with sinusoidal excitation sources and with all
switches set to positions corresponding to the network normal operating conditions.

If the network includes nonlinear elements then, initial conditions calculations are
carried out for linear approximation of their nonlinear transition characteristics. In
case of long lines which are modelled as elements of distributed parameters initial
conditions are calculated using the simplified model in which the line is represented
by a single II cell as it is shown in Fig. 1.17.

11 Y, 1,2
o 1 ]
1 1
EZW EZW

Fig. 1.17. Equivalent circuit of along line for steady state calculations

The values of admittances in the circuit shown in Fig. 1.17 can be determined from
'unit per length' parameters of the line according to the following equations:

Y, =ZL , where: Z, =1(R'+ij')Si“1}71, y=JR'+joL\G'+jaC)  (1.102)
ZL
1 / tanhﬂ
Ezpp =5(G +Ja)c)T (1.103)
2

where / — line length. Complex parameter ¥ is the line propagation constant.
The steady state equation of the network in Fig. 1.17 takes the following form:

1
Loyt Lo Tu [h
| v 1=l (1.104)
_ZL ZL +5pr =2 =2
The admittances located in the matrix diagonal can be simplified so that:
XL+%XW=XLCOS}/I (1.105)

In case of the long and lossless line (R'=G’'=0) the respective values of
admittances in boundary conditions are:
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wl
tan| —A/L'C’
sinfwi/2°C) 1, _ joct an( 2 )
T~ > A=prp

Z, =jwl'l (1.106)

The short line, for which the related functions (sinhx/x, tanhx/x, sinx/x,
x — 0) take the values close to 1, can be considered as an element of lumped
parameters so that:

1

=———-.,Y =G+joC 1.107
=L R+Ja)L =pp .] ( )

where R =/R' similarly to the rest of the line parameters.

The results of steady state calculations are in general complex numbers. If the real
part of the obtained result is taken as the initial condition for transients calculation
then all excitation current and voltage sources should be of cosine type.

1.5. Numerical stability of digital models

Numerical models used for simulation of transient processes in power networks can be
deemed as satisfactory if the simulation results are adequate to processes observed in
real networks. There are two basic sources of errors that can make the simulation
results inadequate, namely,
= omission of the elements which are essential for the network operation
= application of numerical methods that are inadequate to calculation of
analyzed effects.

The problems concerned may appear in some specific situations only. For example,
the ideal switch that is represented by two limit values of conductance (0 and o) can
be used as a circuit breaker if the values of the current to be broken are relatively low.
Similar problems may occur due to application of inadequate numerical methods
resulting in numerical instability.

Numerical instability appears when the errors caused by numerical round up of
calculation results sum up in each calculation step.

Practically, the both considered types of errors are related very closely as the
further analysis shows.

1.5.1. Numerical oscillations in transient state simulations

As the typical illustration of the problem let’s consider the following example.

Example 1.2. Simulate the transient effects that appear in the network shown in Fig.
1.18 when the switch opens at f,,., =0.012s. Assume that the models of
elements used are companion to trapezoidal approximation method.
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C
E
R, Ly iy W

[ C u(k) R,

The element parameters: R} =1Q, L, =100mH, R, =1000Q, C =4.7uF, E =100cos(100mt).

Fig.1.18. The simulated network

The respective waveforms of the current flowing through the switch and the voltage drop
across the inductance L, are shown in Fig. 1.19.

a) b)
itk) A u(k) V.
0.10 15
0.05 \ 10
0.00 >
0.05 0
_0110 \ / 2
—0. -10
—0.15 ~15
~0.20 ~— 20 N
0 4 8 12 16 20 0 4 8 2 16 20
. ms f. ms

Fig. 1.19. The results of simulation; a) the current in the switch; b) the voltage across
the inductance L,

As one can see the network current drops to zero when the switch opens but the voltage across
inductance oscillates with constant non-decaying amplitude of relatively small value since the
value of the current at the breaking moment is also very small. A closer look at the oscillating
voltage (Fig. 1.20) reveals that it changes its sign in each calculation step.

The oscillations appear since the energy stored in the coil cannot be dissipated (the circuit is
broken). Thus the observed error in simulation result can be credited to inadequate model
applied. Such errors may appear in less obvious situations (some model parameters drastically
change their values within one calculation step).

To analyze the described numerical effect let’s consider the voltage drop across the
inductance which, in case of numerical model derived for trapezoidal approximation,
can be expressed as (derive this equation):

u(k) = 1+§GL i(k)— 1_§GL i(k=1)—u(k-1) (1.108)

L L
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u(k), V
151 | |
104

o
10 VAL
A T

=20 ; ‘
11.0 11.5 120 125 13.0 135 4 ms

Fig.1.20. Oscillating inductance voltage

When the switch opens at k-1 instant the current attains zero in two consecutive
steps (i(k) =i(k—1)=0). Thus, u(k)=—u(k —1) for all further calculation steps.

There are many methods that can be applied to damp such oscillations; they are
known as critical damping adjustment methods (CDA) [56, 59].

1.5.2. Suppression of oscillations by use of a damping resistance

The most obvious way of oscillation suppression is the use of nonlinear model that
matches reality. However, sometimes this approach may be very difficult or even
impossible to apply. In such cases the use of linear resistance can bring the
satisfactory effects.

The analysis of the network in Fig. 1.19 immediately brings to the conclusion that
the use of resistance connected in parallel with the coil should result in suppression of
voltage oscillations. In such case the modified inductance model takes the form (Fig.
1.21):

i(k):%(u(k)+u(k—1))+i(k—1)+%(u(k)—u(k—l)) (1.109)
; a) i(k) b)
i(k)m_
—1_ R u(k) ¢ Q)i
u(k)

Fig. 1.21. Modified inductance model

In standard notation it is:
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i(k) = Gu(k) + j(k —1) (1.110)

where:

_TR+2L TR 2L
R

G , jlk=1)=i(k—1)+
g Sk D=itke=D)

u(k—1).

Voltage across the modified inductance is:

M@=éﬂ@4%—m—m%—D (1.111)
2L
R_i
where: o = 27;
R+—
T

The coefficient a is responsible for damping of oscillations. If R =, ¢ =1. The
lower the value of R the lower the value of a. The oscillations on inductance in the
example circuit for different values of o are shown in Fig. 1.22.

a) b)

u(k), Vv l u(k),Z/
i 2 )
oL AAA, S
. \I\/\/V S \”I

\ V -6 \';

-10 g
—15 -10
12.0 13.0 14.0 t, Ms 12.0 13.0 14.0 tr, MS

Fig.1.22. Oscillations on the inductor for different values of a. =0.818 (a) and @=0.333 (b)

The similar effects can be observed on capacitances in case of rapid decrease of the
capacitance voltage. In such case the modified capacitance model takes the form as in
Fig. 1.23.
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a) i(fc) b)

=
o

_C
ik)
] ' b u(k) G @ Jj(k-1)

[og

|

Fig. 1.23. Series RC model.

The respective relations are:

i(k)= %(u(k) —Ri(k))—i(k 1) —%(u(k ~1)-Ri(k 1)) (1.112)
i(k) = Glu(k) —u(k —1)) - ci(k — 1) (1.113)
T _
where: G=L, o= 2C .
T +2RC T _»
2C

In this case the oscillations of current occur for & =1 (R=0) at the moment when
u(k)=u(k—1)=0.

It must be noted that the damping resistor changes the frequency response of the
model considered. For example, in case of inductance, the eqn. (1.66) now takes the
form:

a) b)
Y ) Y,
pill = "‘rg( Y j
2N 4 /2 ¢ ’741
12 — -
4 <y ’
1 N |
0.8 t Py
0.4 ¢ e //\3 Lo
L g - - - /
0.2 e o
00 01 02 03 04 05ar % 01 02 03 04 05af
2 27

Fig.1.24. Frequency response for magnitude and argument of the relation ¥, /Y ;1 - =1,
2-a=0818, 3-a=0333, 4-a=0.
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joT

L. e +o . .
i(jow) =GWM(JCU)=Z(:QCJ(JCU) (1.114)

and G and a are as in (1.110) and (1.111), respectively.
The relation between the digital Y, and continuous Y. admittances for different
values of a are shown in Fig. 1.24.

1.5.3. Suppression of numerical oscillations by change of integration method

The analysis carried out above shows that numerical oscillations are related directly to
the method of continuous derivative approximation.
Using the three different approximations considered, namely:

— u(k)= % (i(k) —i(k 1)) implicit Euler's method,

- u(k)= 27L (i(k)—i(k—1))—u(k—1)  trapezoidal approximation,
- u(k)= % (3i(k) — 4i(k —1)+i(k—2)) Gear's 2" order.

for the same network model (example) different intensity of numerical oscillations can
be observed. It is shown in Fig. 1.25.

u(k), V
4

2941 ¢

810 125 130 135 140 145 1, ms

Fig.1.25. Oscillations at the inductor (sample network); 1 — implicit Euler's method,
2 — Gear's 2" order

The Euler's method reveals the best oscillation damping property since they are
suppressed in one calculation step (critical damping). The Gear's method is slightly
worse. On the other hand the trapezoidal method that is least stable offers simplicity
and good accuracy of calculations in steady state (no rapid changes of the network
parameters) [2].
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Thus, in practice, the combination of Euler's and trapezoidal methods are applied in
the following way:
= if step there are no rapid changes of the network parameters in the current
calculation the trapezoidal method is used;
= otherwise the Euler's implicit method takes the calculations over for 2
consecutive steps but of twice shorter duration (7/2) to avoid the model
parameter change.

1.5.4. The root matching technique

Another approach to the numerical network representation that results in suppression
of numerical oscillation is the use of the root matching technique [88, 89]. In this
approach the network model is based on the continuous transfer function relating
current and voltage in the network considered. In general such a transfer function has
the form:

H(S)= (S_Szl)(S_SZZ)"‘(S_SzM) (1115)
(S _Spl)(s _Sp2)"’(s _SpN)
Transformation to the discrete domain is obtained by replacement of continuous
zeros and poles by their discrete counterparts:

s,T
z. =e’

; i - the number of respective zero and pole (1.116)

so that:
_D(z-e"")z-e"")..(z—e™")

(z—e"")z-e"").(z—e"T)

H,(2) (1.117)
This operation is called a matched Z transform [42].

The constant D is determined by comparison of steady state response for specified
excitation which should be the same for the continuous and the discrete system.

Since the calculations are carried out in off-line mode the input signals can be
represented (sampled) in many different ways. Some of them are shown in Fig. 1.26.

u(®)* a) u(?) b) u(f)r V)
/

I I

tk tk+1 Z‘k- 1 Z‘k tk+ 1 Z‘k- 1 tk k+1

tk—]

Fig.1.26. The ways of the continuous input signal representation (sampling).
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Thus the final discrete transfer function H(z) must be corrected accordingly by use
of the sampling function H,(z) related to the applied signal sampling operation:

H(z)=H,(2)H (2) (1.118)

and
H (z) =z for Fig. 1.26a

H (z) =1 for Fig. 1.26b
H (z)= %(z +1) for Fig. 1.26¢

Thus the algorithm of the matched Z transform application can be summarized as
follows:
= determine the continuous transfer function H(s) of the network considered,
= transform H(s) into H(z) replacing all continuous zeros and poles by use of
(1.116),
= determine the constant D so that £{y(r)},—...= Z{y(k)}i_.. for specified input

signal - y denotes the output variable (current or voltage).

Example 1.3. Using the root matching technique determine the digital model of the
circuit shown Fig. 1.27a

a) b)
ity R L U(s) ! 1(s)
— — » K —»
u(?) tE ST

Fig.1.27. The network considered a) and its equivalent block diagram b)

The network considered is described in continuous Laplace domain by the following equation:
U(s) = (R+sL)I(s)

and its transfer function is like below:

R _ K

14k 14sT
R

-1

and can be represented by the block diagram like in Fig. 1.27b.
The transfer function obtained has no finite zeros and only one pole s, =—1/7=-R/L.
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Assuming that the input signal (voltage) is sampled as in Fig. 1.27a and using the
transformation (1.118) the resulting discrete transfer function is obtained:

Dz

— D —
H(z)= (Z_e—TR/L)Z = (Z_e—TR/L)

To determine D let's assume that u(?) is a unit step function u(¢) = 1[#] for which U(s)=1/s, and:

i(s)=

s(l+s2’) '

The steady state response is now:

=K.

i), = lims/(s) = lim Cier

Similarly for u(k)=1(k) and Z{1(k)} =z/z-1) :

Dz?
I(2)=
(2) iz_e—TR/L jiz—l)

. : . Dz’ D
l(k)‘kﬁm = lzlirll(z -Di(2)= l}gll Lo RIL = l—e R

and

By comparison of steady state responses we get:

So, finally:

1) (1_e—TR/L)Z
D=0~ Rlz—e ™)

Now in few steps the numerical algorithm for calculation of i(k) can be written:
RIG)(1-e ™ ) =U(2)1-e ™)

i(k)=Gu(k)+ j(k-1),
where:

_ —TR/L)

Gz(l e

e jlk=D=e ™" ik -1).

It can be noted that the past history of the algorithm depends upon the current only
so the voltage oscillations on inductance due to the rapid change of current will not
occur. In the similar way the numerical algorithms corresponding to the typical first
and the higher order transfer functions and related to them electrical elements can be
developed.
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It also must be noted that the method considered can be applied to the transfer
functions that have at least one zero or pole located outside the origin of the s plane.
Thus the single L, C elements must be modelled using the trapezoidal method.

The comparison of oscillation suppression properties for the root matching and the
trapezoidal method is shown Fig. 1.28. The obtained current waveforms are evidently
in favour of the root-matching algorithm.

b)
i(k)
7.5 1
6.0 - =
T
3.0 |

1.5 4 71
/\.
0.0

a)

* b ik

W
E
R
’

4 8 12 16  #, ms

Fig. 1.28. The current /(k) waveform after closing of W; 1- accurate values; 2- trapezoidal
method; 3 - the root matching method.

Table 1.2. Parameters of digital models obtained by use of root matching method [88]

Element transmittance:

Nr H(s)=1(s)/ U(s) Model parameters i(k) = Gu(k) + j(k—1)

1 H(s)=K /(1+5s7) G=K(1-¢e"7), jlk-D)=e""i(k-1)

2 H(s)=K(l+5s7) G=K/(1-¢"7), jlk=1)=—e""Gu(k-1)

3 H(s)=Ks/(1+s7) G=K(1-e"")/T, jlk=1)=¢""i(k-1)-Gu(k 1)

G=K(1-e""")/1-eT"""),

4 H(s)=K(+s7,)/(1+s7,)
Jk=1)=e""=i(k=1) - Gu(k -1)

H(s)=Ka} I(s* +2éw,s + @)

5 G=K(-A+B), j(k—1)=Ai(k 1)~ Bi(k-2)
6 | HO=KaisIs" +2805+ @) | G k1 44 BYIT . jlk—1) = di(k —1)— Guk —1)— Bi(k —2)
S | H)=Kas(s +26o,s+ ) G=T/(K(1-4+B)),

jlk -1 =i(k—1)— AGu(k 1)+ BGi(k —2)
The coefficients 4 i B depend upon roots of the transmittance characteristic equation:

10 4= 26_5‘"'](6””““/524 +eTlE j , B=e T

E=1: A=2e"", B=¢?""

E<l:  A=2e" cos(a)"T 1-£2 ) , B=e20l
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The root matching method lends itself very well to networks described by

transmittances. The

examples

of digital

models

corresponding to typical

transmittances are shown in Table 1.2 while the examples of electric circuits related to
transmittances in Table 1.2 are shown in Table 1.3.

Table 1.3. Examples of electric circuits of transmittances shown in Table 1.2

. .. Model
Nr Diagram Parameters of digital model w Table 1.2
it R L
la K=1/R,t=L/R 1
u(t)
i
i(?) Il 1
1b © R ° K=R,7=RC RS
L — inverse
u(?)
L
e
2a ° — ° K=L,7=L/R 3
u(t)
o ;
2b I R ° K=C, 7=RC .
u(t) inverse
i) L C R 1 R lc
| o AT | k=Ci=— E=2 6
u(f) LC 2VL
L
i(f) ¢
3b ° l ° K:RL,a)j=L,§:£\/§ ) 6,
R LC 2\V1L inverse
- u(t)
L
U v 1 1 [L 6
3c K=L,w =—, (=— |= o
LC 2R\ C mverse
. u(?)
Term ‘inverse’ in the last column means, current and voltage in the transmittance H(s)=U(s)/I(s) in
the corresponding numerical algorithm in Table 1.2, should be inversed. In such case G in the
equivalent circuit denotes resistance and j(k —1) corresponds to voltage.
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Exercises

1.1.

1.2

1.3.

1.4.

1.5.

Solution of differential equation:
dy(¢ .
PO _ ryn)
dt
by use of the second order Adams—Bashforth’s numerical method is as follows:
T .
200 = 7k =)+ 3/ 1), 0) = (v =1)1,).

Using this method determine numerical models of:
—inductance L,

— capacitance C,

— in series connected R and the L.

. Using the trapezoidal integration method determine the numerical models of the following
branches:
a) b)
L
ﬁ Y
i(0) I i(0) ¢
O—»—] R ———oO [ - I O
T R
- u(t) 1
u(t)
Fig. Z1.1

Consider the single phase long line (1.93) and, assuming that the line is supplied by an
ideal voltage source, derive the respective numerical models for the line output being:
a) short-circuited, b) open.

Prove that the use of bilinear transformation:
2z-1

§s=—
T z+1

in transmittance H(s) of the first order system is equivalent to application of trapezoidal

integration method.
Using the root matching technique determine the numerical models of the circuits shown
in Fig.Z1.2. Assume the signal sampling like in Fig. 1.25a.
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a) c)

C c
i L Ije . i(t) P | -
. u() . u()
b) d)

C L
. R | . Y Y\
i(?) | Igz . i(f) c B

— —]
. u(t) - u(?)
Fig. Z1.2

1.6. In steady state the circuits shown in Fig. Z1.3a, b are supplied by: u() =100 cos(at + @),
w=100m, ¢ =n/3 and the switches W are open. Simulate transients for switches being

closed at the instant £, = 0.02 s in the following steps:

— determine the equivalent numerical model of the circuit considered like in Fig. Z1.3c,
using the Euler explicit method (rectangular integration method). Hint: the switch can be
represented as variable resistance R, or R3).

— determine the initial conditions (the values of j(0));

— simulation time: 0.1 s;

Repeat the simulation for model derived by use of trapezoidal integration method.

a) b) ©)
iy & L iy

u(t) u(?)
’ w \ R,
o o

R=10Q,R,=200Q,L=0,1H R =10Q,R,= R;=200Q, C=4.7uF

Fig. Z1.3

1.7. Simulate the transient overvoltages generated when the switch W in the d.c. circuit (Fig.
Z1.4) opens. Calculate the initial conditions from the circuit node equation and for this
purpose assume that the input is a low frequency a.c. voltage (instead of u=U use
u =Ucos(2nft), f =5-10 Hz).
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R, L, w R,
o | S | S
A
RO
" c, p— c p—
LU
o
Fig. Z1.4
Solve the node equations using MATLAB or similar program.
The circuit parameters:
U=24V, R=1Q, L;=64mH, R,=0,5Q, Ry=10Q, Ly=95mH, C;=0.5uF,
C, = 0.2 uF. The switch opens at ¢, = 0.
1.8. Determine the numerical model of the network shown in Fig. Z1.4 for trapezoidal

integration method. Write the node equations for the numerical model obtained. Show the
equations describing the nodal current vector in each calculation step. Simulate transients
when the switch W opens (use MATLAB program). Assume the calculation step 7= 1 us.
Calculate the initial conditions as in problem 1.7.



2. NONLINEAR AND TIME-VARYING MODELS

2.1.  Solution of nonlinear equations

Elements of electric networks are said to be nonlinear if their physical parameters R, L
or C are not constant but depend on either currents flowing through or voltage drop
across them. Additionally, if their parameters also change in time such elements are
said to be the time varying ones. Generally, digital modelling of the nonlinear
elements is much more sophisticated than modelling of the time varying ones.

The numerical models of on nonlinear elements are described by nonlinear
differentia equations which must be solved in each calculation step by simulation
programs in the process of transients’ calculation. There are many methods by which
the nonlinear equations can be solved but, excluding some rare cases, all that methods
yield approximate solutions which are obtained by use of iterative procedures. Below
the short description of the method for single variable nonlinear equation solution
known as the Newton’s method is presented along with extension of the method to
multivariable case

2.1.1. Newton's method

If a function is smooth enough it can be represents by a straight line tangent to the
function (linear approximation of the higher order functions).
If the variable x, is located in vicinity of the root ¢ of the function f(x), then its

value can be determined from the Taylor’s series [32, 83]:
1
S@)= f(x)+ f(x) (o —x)+ 51”’(361)(0!—361)2 +.. 2.1

Limiting the above series to the first two terms determination of the root can be
obtained by solution of the following equation:

SO+ fl(e)a=x)=0 (22)

Using (2.2) the iteration formula can be derived under assumption that ¢ is the
better approximation of the solution sought (subsequent n-th solution) than the one
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obtained for z in previous n-1 iteration. Generalizing, the following formula can be
obtained:

n n-1 f(xn_l )

X=X _f/ixn—li

Formula (2.3) is known as the Newton’s method of nonlinear equation solution [31,
32, 83] and is advantageous to the other methods used for the purpose since, in
particular:

— the method is strongly convergent,

(2.3)

— it covers the wide class of functions for which the iteration process is
convergent as compared to the methods using direct iteration.

Application of the method discussed can be explained by the following example:

Example 2.4. Using the Newton’s method determine the current flowing in the circuit
shown in Fig. 2.1a.

b)
i, A

12~
LpoeNg

i R 0.8 <.

0.6 N
0.4} N

02+ —_—

N
) A
0 10 20 30 40 50 60 u,, V

Fig 2.1. Example of the nonlinear network: a) the diagram
and b) graphical method of the working point estimation

The nonlinear resistor represents a varistor whose v-i characteristic is given by the following

equation:
q
i:@(”WJ 2.4)
U

For which: k, =0.001 A, u,,, =48V, ¢=29, R=50Q. Supply voltage u=60V.

Let’s discuss the Newton’s method for current and voltage equations which describe the circuit
shown in Fig.2.1a. Note that in Newton’s method the function considered must take the form:
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f(x)=0 (2.5)
s0 (2.4) can be written in the following voltage form:
q
f(uw) su-— Rk’(uAJ - uw (2‘6)
Mref

The resulting iterative algorithm is:

1) " .
where: f(ufvl)=u—Rki[uwl] —u", f'(uﬁ,1)=—ﬂkf(h1] -1.

u ref u ref U, of

n-1
n n—1 _ f(uw )
w w 'vi n-1 i’
f uw

The result of calculations is shown in Fig. 2.2a. The iteration process is convergent. For the
current equation we get:

1
il e
f@)=u-Ri-u,, [L—'] 2.7)
in—l
from which: " =i"" - f( _]) ,
fl l"’l
1 1
i) —u (e
where: (") =u-Ri" ~u || pehy=— DR
k; qli k,
a) b)
v : ' ~ i, A
s} ! A
\ : 0.8\
40p ‘ 4 A
\
30f | 06F
A, \ .
5 \Auw | \/Al
or \\ 1 04¢ \\
10} \ ﬂ , \
02+ \ :
0 e i L | \\ e
,101 5 3 4 p 0] 5 T ]

Fig. 2.2. Tteration process according to the Newton’s method: a) for the voltage equation
and b) for the current equation

The calculation process is shown in Fig. 2.2b. Again, the iteration process is convergent.
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The Newton’s method is very effective tool in numerical solution of nonlinear
equations and is widely applied to iterative algorithms designs which are used in
simulation programs.

2.1.2. Newton—Raphson's method

In general any set of nonlinear equations can be written as follows:

VICTECRREE )

(X, %y, X,
fx)= =0 (28
S (X555 1005 X,,)
in which at least one function is nonlinear.
Solution of this set is obtained by determination of vector x=[x, x, .. x,]" for

which (2.5) is satisfied. The solution can be obtained by means of the method used for
a single nonlinear equation extended to a multi-variable case. Thus the equation (2.1)
can be now written as:

f@=fx")+E-x")f"(x")+..=0 2.9)

where the vector & represents coordinates of the point in multivariable space for

which (2.8) is satisfied.
Matrix which determines the derivative f’(x’) is known as Jacobean (Jacoby’s

matrix) and:

I/

ox, Ox, ox,,

woo o
s)=r=-L0 50 a7 (2.10)

b, A U

| Ox,  ox, ox,, |

By analogy to (2.2) expansion of (2.9) leads to the following iterative procedure which
ca be applied to solution of the set (2.8):

X =x 3 () 2.11)
providing detlI (£ (x"™"))]% 0, and I(7(x")=I(F0) ..
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The algorithm (2.11) is known as Newton—Raphson’s method and is widely used
for iterative solving of nonlinear equation sets. In computer programs the procedure
(2.11) is realized according to the following sequence:

— calculate f(x""),

— calculate J(f(x”’l))= ',
— solve the set on resulting linear equations: J ( f (x”'l))z”'1 = f(x"",
1 n-1

— determine the subsequent approximation x" =x"" —z

Conversion of the process is determined on the basis of vector z"”" norm related to
the norm of x"':

<& (2.12)

Due to the limited accuracy of function f(x""') and Jacobean J (f (x”"))
determination the overall accuracy of the algorithm is also limited. It is manifested by
further increase of vector z"~' norm after reaching the minimum value. It is the
indication that further calculations should be ended and the algorithm terminating
calculations has the form:

Zn

> p"z”’l || (2.13)

where the value of the p coefficient is close to one.

In the similar way the other methods of the nonlinear equations solution can be
extended to multi-variable case. In general each model of any electric network
comprises of both linear and nonlinear elements. So, in overall model, the set of
known linear elements must be complemented by the nonlinear models of resistances,
inductances and capacitances. Below the general rules of the combined model setup
are presented. Similarly to the linear models the nonlinear ones are expressed in
current- conductance form which matches the nodal method.

2.2. Models of non-linear elements

The typical nonlinear i-v transition characteristics encountered in electric networks are
shown in Fig. 2.3. The most typical one is show in Fig.2.3a: resistance (conductance)
of such an element is positive and unique in the entire voltage domain. The
characteristics in Fig. 2.3b, c reveal the intervals of negative resistance (conductance)
while the case in Fig.2.3d, typical for nonlinear magnetic elements (hysteresis), is not
a function but relation.
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a) ) . ©) d)

ﬁ

0
0 u 0 u 0 u 0

Fig. 2.3. Characteristics i = f(#) of nonlinear electric elements :
a) monotonic, b) type N, c) type S, d) with hysteresis

2.2.1. Resistance

Functional relation between current and voltage is valid for characteristics show in
Fig. 2.3a,b,c The basic way of the respective numerical model formulation for such
elements is shown in Fig. 2.4.

Y

i=f(u)

" =G u+I1""

un—l un u

I n—1

Fig. 2.4. The idea of iterative model formulation for nonlinear conductance

The considered characteristic i = f(u) is the continuous and smooth function. In

n-1

the point of coordinates u"™', i""" conductance of the element can be determined by

the following relation:
di
du

_dw
- du

u=u

Glu)=G"" = (2.14)

n-1
u=u

The straight line tangent to the function considered in the point u"™', i"" (Fig. 2.4)
is described by the equation:

i=G" u+1"" (2.15)
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The value of i" = f(u") can be estimated for small change of voltage to the value
u" according to (2.15):
i"=G" "+ 1 (2.16)
in which the value of the current /"' in n—1 calculation step is:
"= =G (2.17)

where: " = f(u"™").

Relations (2.16) and (2.17) determine the iterative model of nonlinear conductance.
The corresponding equivalent circuit is like in Fig. 2.5.

a) b)
haild
. G
l
o # o u{ a1 ()
« ’ c

Fig. 2.5. Tterative model of conductance: a) conductance branch; b) equivalent diagram

The method shown can be used for calculations in nonlinear networks if the
mapping of u" across conductance in subsequent calculation step, made on the basis

of the current i"”' estimation, is correct. It can be illustrated by the following
example.
Example 2.5. Apply model (2.16) to the circuit considered in Example 2.1.

The principle of electric diagrams formulation for linier and nonlinear elements is the same as
in previous case. So, in the circuit (Fig. 2.1a) the voltage source is converted into the
equivalent current one and the nonlinear element is replaced by circuit show in Fig. 2.5b. The
resulting diagram is show in Fig.2.6. It is a 2-node network with the reference node earthed.

r ~

% % u,, G 1’"‘

Fig. 2.6. Equivalent diagram of the circuit in Fig. 2.1a

Using the nodal method the following circuit equation can be obtained:
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(G +1/R)u =u/R-1"" 2.18)

q
n—1
o e -l en— u, _
where: I"" =" = G"u, i =k{ u ] (see (2.3)and G"' =—
uref

Calculations are carried out in the following way:

1. Set initial conditions: u =u,,,n=0.
2.Putn=n+1.
3. Calculate: ", G"*, 1",

_ gn-l
4. Calculate " from (2.18): u” = /K="
G" +1/R

S5.If

u' —u"'|>e,goto?2.

The algorithm is equivalent to the Newton’s method which was used in Example 2.4 [18] since
in both cases the same results are obtained.

In case of characteristic like in Fig. 2.3c the solution for the specified voltage may
not be unique. Therefore resistance related to the function u = f(i) should be

considered instead of conductance (Fig. 2.7). Again, assuming that the function
u = f(i) is smooth and continuous, the value of u is obtained in n-th approximation

from the equation of the straight line which is tangent to the curve in #n—1-th point so
that:

w=R({)i+U" =R™i+U" (2.19)

in which: U""' ="' = R" """, R"" = —d];(_l) .
U | _n

u=f()

Un—l
! u=REi+U""

l'n—l I i
Fig. 2.7. The idea of iterative model formulation for nonlinear conductance

Using (2.19) the following approximation for subsequent iteration is obtained:
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u"=R""i"+U"" (2.20)
which can be transformed into (like in (2.16)):
i"=G" "+ I (2.21)
n-1 1 1 n-1 -n—1 n—-1 n-1
where: G" = —= —, [" =" -G
R" df (i)
di |_m

As it can be seen the nonlinear conductance model expressed in current-
conductance form is independent of the nonlinear characteristic shape The difference
only concerns the way in which the equivalent conductance is calculated.

2.2.2. Inductance

Basic mathematical model of inductance is determined by the equation:

dy ()
f)y=—"—= 2.22
u(r) & (2.22)
where: I/ is a magnetic flux.
Alternative form of (2.22) is:
u(t) = L(i)% (2.23)

where: L(i)= % and w(¢) = L()i(¢).
i

If (i) is nonlinear then inductance is a function of current then L = L(i).

In order to obtain the digital model of inductance related to (2.23) the numerical
model (1.31)can be used:

i(k) = Gu(k) + j(k - 1) (2.24)

in which, for trapezoidal method: j(k—-1)=i(k-1)+ Gu(k-1), G = % .

In this case, however, the conductance G is not constant:

T
2L(i(k))

and the equation (2.24) should be written as:

Gli(k)) = (2.25)
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i(k) = u(k) +i(k—1)+ u(k —1) (2.26)

_r _r
2L(i(k)) 2L(ik -1))

In k-th calculation step inductance L(i(k - 1)) is known along with history of the
process which is determined by the current j(k—1). The first term of (2.26) is the

model of nonlinear resistance R(i(k)) = M so that:
i(k)= (1 ))u(k)+](k 1) (2.27)

1 i(k -
———u(k-1), R(i(k-1))= M
R(i(k -1)) T
To solve this equation the iterative method (2.21) can be applied and the value of
j(k—1) in the k-th calculation step is:

where: j(k—=1)=i(k-1)+

" (k) = G(i" () Ju” () + 1" () + (ke —1) (2.28)

where: 1" (k) =i"" (k)= G(i" (k) Ju"" (k) , G(i“(k)):m (for trapezoidal

integration method).

It can be noted that modelling of nonlinear inductance comprises of two calculation
processes: digital integration which is denoted by calculation step number £ and
iterative approximation of solution carried out in each calculation step which is
denoted in (2.28) by index n. As the initial value of the current in current calculation

step the value calculated in the previous step can be taken ie.. i’(k)=i(k—1).

Equation (2.28) represents the iterative model of nonlinear inductance in which the
selected method of numerical integration is arbitrary.
The equivalent circuit of the nonlinear inductance is shown in Fig. 2.8.

a) b) i”(k)

L [
i(f) <,(k)
. (;)C ° w'(k) ) 1" (k) + k-1)
u

[og

Fig. 2.8. Digital iterative model of the nonlinear inductance a) symbol of nonlinear inductance,
b) the equivalent diagram of the digital model
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2.2.3. Capacitance

In the similar manner the numerical model of a nonlinear capacitance can be derived.
Starting from the fundamental equations:

i(f) = % (2.29)

where ¢ is the electric charge: gq(¢) = C(u)u(t), and:

du@@) _ 1 .
TR () (2.30)

where: C(u) = dg(u) ,
du
the numerical model for trapezoidal integration method (1.37) takes the form:

Glu(k)) .

i(k) = Glu(k)Ju(k) + TR (231)

, jk=1)=i(k—1)+Glu(k =1))u(k-1).

in which: Gu(k))= w

Since the conductance is now a function of voltage solution of this equation can be
obtained by use of the iterative method (2.16) and in such case:

" (k) = Glu" (k) )u” + 1" (k) (2.32)

where: 1" (k) =i"" (k) — Glu"™ (k) Ju"™" .

It should be noted that solution of (2.31) calls for application of the iterative
method like it was done for solution of (2.27) (in his case voltage and current must be
mutually altered). The equivalent diagram of the nonlinear capacitance model is
shown in Fig. 2.9.

a) b k)

o

l(t) —\(Ij n lg(k) In—l(k)
o . N o u (k) G”’l(k) @{j(k—l)}
u(t)

o, &

Fig. 2.9 Equivalent diagram: a) nonlinear capacitance
and b) digital iterative model
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2.3. Models of non-linear and time-varying elements
2.3.1. Non-linear and time-varying scheme

Any electric network becomes nonlinear if at least one of the network elements is
nonlinear. In such case the network can be analyzed by use of Newton—Raphson’s
algorithm rather than by direct use of the nodal method. In this approach the network
equations should be written in form of (2.8) and the resulting calculation algorithms
become very complex.

The nodal method can be applied if the network is represented by discussed above
linear and nonlinear models. The method, in case of linear network, leads to the
general equation (1.97) which for the nonlinear network can be written as:

G " =i" (2.33)

The set of matrix G"~' elements comprises of linear conductances (constant values
from linear network models) and the variable ones which are updated in each
calculation step by iterative procedures. The elements of vector i" are: independent
current sources (/(k) — constant with respect to the iteration step n), equivalent current
sources of linear network models L, C (j(k—1), (jc(k—1) and equivalent current
sources related with nonlinear network models: 7, '(k), 1" (k), I;”'(k) so that in

general form:
i = (1), (=1, jetk=1), 17 (), 157, 17 (), T () (2.34)

If some network elements are time-varying then fundamental equation of the nodal
method takes more general form:

G '(" (k) =i"(k,k=1) (2.35)

The double index indicates that vector in the right side of the equation comprises of
independent sources determined in k-th calculation step and in the previous ones
(history of calculations).

Solution of (2.35) is cumbersome; matrix G"'(k) cannot be factorized since it
contains variable elements. Thus the method considered is ineffective in application to
vast nonlinear and time-varying networks.

2.3.2. Compensation method
The compensation method is directly related to the Thevenin theorem concerning

representation of selected fragment of electric network by equivalent voltage source
and the source impedance [23, 52].
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a) Network with one non-linear element

The idea of the method considered is presented for the network with a single nonlinear
element (Fig. 2.10).

b)
| k RT ikm k
Linear network E, (g/ R, E; ( ; U E R,
L m
m

Fig. 2.10 Compensation method: a) linear network with removed branch km
and b) the equivalent circuit

a)

The linear part of the network, excluding the branch km (Fig. 2.10a), is transformed
into the equivalent circuit according to the Thevenin theorem (Fig. 2.10b). The
equations describing the equivalent network are easy to derive:

E;

=T, =E; Ry, 2.36
e = Er R (2.36)

L

where R,, = g(ikm, dcllkm , j
1

In case of nonlinear inductance or capacitance the equivalent circuit model is
complemented by the current or voltage sources which come from the numerical
models of the nonlinear element used. The nonlinear element can also be represented
by the model with voltage dependent conductance G, . If the function determining
resistance R,,, (conductance G,,,) is given explicitly then the above equations can be

solved by use of Newton’s method. Sometimes the nonlinear characteristic is given in
a piece-wise form (Fig. 2.11). In such case the solution is linear for the segment which
is intersected by the linear characteristic of the equivalent circuit.

In order to solve (2.36) the parameters of the equivalent circuit £, and R, have to

be determined first. £, can be calculated by means of the nodal method applied to the
circuit in which the branch 4m has been removed (that implies that G,, =0 in the
conductance matrix G ) [23]. Let’s denote this matrix by G}, . The voltage source E,
can be obtained by solution of the following equation:

G) v’ =i (2.37)

km
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in which: E, =u] —u’, and u;, u’ are elements of vector u’ related to nodes k and

m, respectively ; i is the vector of nodal currents in the equivalent circuit.

y
u/cm
EL
N
~
N e
N U = [ ()
N
N
N
AN
Ny, = Er - Ry,
N
AN
N
N
AN
N
N
~ >
0 bim

Fig. 2.11. The meth of the nonlinear equation solution for piece- wise approximation
of the nonlinear characteristic

Resistance Rt is calculated by subtraction of vector r elements k& and m and the

vector r is obtained by subtraction of columns £ and m in matrix (Ggm )_1 [23]. The
vector r can also be determined by solution of the following equation:

G, r=p (2.38)
where the vector p elements are:
1 if I=k
p=1-1 if I=m
0 otherwise

and the condition / =m is important only when voltage in m-th node is not defined
(or is not the reference node).

Finally the vector of node voltages in the nonlinear network is determined by
solution of the following equation [23]:

u=u’-ri, (2.39)

Calculations according to the compensation method are carried out in each
calculation step in the following order:
1. Calculation vector u’ and voltage E, according to (2.37).

2. Calculation vector r and resistance R, according to (2.38).



2.3. Models of non-linear and time-dependent elements 63

3. Calculation the current #,, solving the nonlinear equation (2.36).
4. Calculation the corrected vector of node voltages according to (2.39).

The second step of the algorithm is repeated only if the configuration of the linear
part of the network has been changed. The only difference in numerical calculations
for linear and nonlinear network concerns the step 3 (calculation of i, in the

nonlinear branch). That is why the compensation method is advantageous to the
Newton-Raphson’s one.

b) General non-linear network

The presented algorithm can also be applied with certain limitations to networks
comprising of more than one nonlinear element. Let’s assume that the number of
nonlinear elements in the network is M. In the first step of the algorithm vector u’ is

determined according to (2.37) for the matrix G}, in which all elements related to M
branches connected to nodes k, — m,, k, — m,, ..., k,, — m,,are removed. As a result
the following set of voltage sources E, =u; —u, , i=1,2,...,M is obtained.

In the second step vectors r; are calculated according to (2.38) and calculation
have to be repeated for each pair of nodes for different vectors p,.in the right side of

(2.38). Most complex calculations are carried out in the third step since the set of
nonlinear equations has to be solved for all nonlinear elements in the network. The
significant simplification of those calculations can be obtained if the characteristics on
nonlinear elements are given in linear piecewise approximation form.

The final form of the node voltage vector is obtained in the fourth step of the
algorithm but (2.39) must be updated for all nonlinear branches:

_ ()_ . _ . _ _ .
u=u -ni .~ —e oyl (2.40)

Matrix G! should be non-singular in all stages of calculation process. Otherwise

the network with removed nonlinear branches cannot be solved. Problem may also
appear if nonlinear elements are located in adjacent branches. However, this problem
can be solved by separation of adjacent nonlinear branches by one calculation step
delay using the long line element).

Another problem which may appear in modelling of nonlinear networks is related
to unwanted oscillations caused by dummy hysteresis (Fig. 2.12) especially in
nonlinear inductances [23]. To limit this negative effect the calculation step should be
sufficiently small.
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Yim

lkm

Fig. 2.12 Dummy hysteresis (shadowed area)
2.3.3. Piecewise approximation method

Effective calculation methods used for linear networks can be applied to the nonlinear
ones if characteristics of nonlinear elements can be represented by their linear
piecewise approximations. In general case a nonlinear characteristic can be
approximated by an arbitrary number if the straight line segments thus making the
network linear in intervals. The basic problem which appears in this approach
concerns calculations in points located on the boundary of two adjacent segments of
the approximated nonlinear characteristic since the solution obtained in a given
calculation step may go off the characteristic. The problem mainly concerns vast
networks comprising of many nonlinear elements [18, 23, 85].

In EMTP program the nonlinear elements are of monotonic type (magnetizing
characteristic, nonlinear characteristic of MOV and others) so further simplifications
increasing calculation effectiveness can be applied. The basic limitations which have
to be controlled by the program user are:

— the calculation step as well as the characteristic approximating segments
should be selected in such way that the solutions obtained in consecutive steps
do not lay outside the adjacent segments of the characteristic (‘off
characteristic' solution). Warning is displayed if it happens so - Fig. 2.13.

— the ‘off characteristic’ solutions have to be neglected (solution £’ in Fig. 2.13).

Thus the approximated characteristic should not comprise of too many segments if
the calculation step value is to be reasonable [29]. Change of conductance in nonlinear
elements and new factorization of matrix G is carried out in the consecutive
calculation step [52].
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A

acceptable solutions

'off characteristic'

solutions

0

i

Fig. 2.13. Tllustration of solutions which can be obtained in two consecutive steps for piecewise

approximated characteristic

Such simplification (small number of linear segments in piecewise approximation

of the nonlinear characteristic) does not significantly affect the accuracy of
calculations thus making the piecewise approximation very attractive in design of

simulation programs. It is illustrated by waveforms in Fig. 2.14 — iy(k) and i5(k) are
practically identical even though the current i;(k) was calculated for accurate nonlinear
magnetizing characteristic and i;(k) (dotted line)for the approximated one comprising

of 2 segments only.

i, A
150
100 ¢
501

0

(9 )

i3(?)

,50 L

-100

0

002 004 006 008 ¢

Fig. 2.14. Results of transients simulation in CT: the primary current #;(k); the secondary

S

current for accurate magnetizing characteristic (i>(k)); the secondary current for two-segmented

piecewise approximation of the characteristic (i3(k))
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Exercises

2.1. Using the Newton’s method determine the current 7 in the nonlinear circuit shown in Fig.
72.1. Resistance R,, is described by the function: i = 10(x,)* . The supply voltage: u
=100 V,R=5Q.

o

Fig. 72.1

2.2. In the circuit shown in Fig. Z2.2 the input voltage is applied at the instant =0 with the
zero initial conditions. Using the nodal method formulate the dynamic equations of the
circuit taking the trapezoidal integration model of inductance. Show the algorithm for
solution of the derived equations. Implement the algorithm in MATLAB environment.
Data: L =100 mH, the rest like in problem 2.1.

i R L 1

w w

o

Fig. 2.2

2.3. Consider the network shown in Fig. Z2.3a. The piecewise approximation of the nonlinear
resistance characteristic is like in Fig. Z2.3b. Show the way of the current i calculation.
and determine the value of this current for R, =1 Q and u#; =20 V.

a) b) % V A
14.0
I R1 120 ]
o—> | I
uy R,
o 010 16,0 i, A

Fig. Z2.3



3. STATE-VARIABLES METHOD

3.1. Introduction

This method is based on the mathematical model of a network in which vector of input
variables f(¢) (sources) is related with the output variable vector y(z) (selected

currents and voltages) by the fundamental equations [21, 36, 70, 80]:
X(¢) = Ax(¢) + Bf (¢)

3.1
y(?) = Cx(t) + Df (1)
where: A, B, C,..D,, -matrixes of parameters, X(¢) - state vector.
5 a4
- =
/5 )
R — . .  E——
f. lumped circuit
J3 V3
— > Xps Xgy ey X, >
A Vm
- -

Fig. 3.1. Network state variable representation

In general the matrices of parameters can change in time (time-variant network) or
can be functions of the state variables (non-linear network).

The first equation in (3.1) is called the state equation and the second one is the
output equation. The state variables in (3.1) are related with energy preserving
elements (inductances, capacitances) for which:

4 Cue)=i0 ) (3.2)

dr

and

11y 0) =, 0 (3.3)
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so the voltages on capacitances and currents flowing through inductances are always
selected as state variables. Thus any network can be represented as it is shown in Fig.
3.2. Parameters L, C can be nonlinear.

Ug

5

Us| == C static network L uy

Ls

Fig. 3.2. Network represented by state variables

The energy preserving elements (Fig. 3.2) can be described by the following
general equations:

i (?) =gc(UCaiL>“Saisat>

. . (3.4
u, ()= gl(ucﬂlL’uS’lsﬂt)

which lead to the state equation.

The number of state variable doesn't always have to be equal to the sum of
capacitors and inductors in the network since all loop and node equations should be
linearly independent. That is why, in some network configurations, one voltage across
capacitor in circuit loop or one coil current in the node can be eliminated from the
state variable equation as it is shown in Fig. 3.3.

a)

Ug

Rl
4

c3

Fig. 3.3. Example of independent loop CE (a) and independent node LJ (b)
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For the circuit loop in Fig. 3.3a there is:
ug(t) +uc (1) +ucy (1) +ucy (1) =0 (3.5)

To make the circuit loop equations independent one of the prospective state
variables in (3.5) should be eliminated.
The same concerns the node in Fig. 3.3b for which:

i(0) +1,, () +i, () +ip5(0) =0 (3.6)

Fig. 3.4. Examples of independent nodes LJ a) and circuit loops CE b)

In case of linear, time invariant lumped networks the number of indispensable state
variables n can be determined from the equation [18, 80]:

n=nc-— (nCE + nLJ) (3.7)

where:
n;c - the number of all condensers and coils in the network
ncg - the number of independent circuit loops CE in the network
nyy - the number of independent circuit nodes LJ in the network
Examples of independent nodes LJ and loops CE are shown in Fig. 3.4.
Reduction of state variable number according to (3.7) results in the presence of
input sources derivatives in the input vector [18].

3.2. Derivation of state-variables equations

State space representation of an electric network is obtained by application of
Kirchhoff’s rules to the network diagram for state variables assigned to reactive
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elements (condensers, coils) in the number selected according to (3.7). It is illustrated
by the following example:

Example 3.1. Determine the state space representation of the circuit shown in Fig. 3.5.
Assign state variables to energy preserving elements.

The circuit contains 3 LC (n,.=3) components but n.. =1 since one loop (e, C;, C;) is

linearly dependent and n,,=0. Thus the number of independent equations in overall state

equation is n = 2. The selected state variables are the current i, and the voltage u.,. As the

output variables the currents i, , i.; and i, are selected.

The respective circuit equations are:

du
=i, —ip, =0, C,—L+ip —i=0,
J T Tl ar RI
di, . .

e—up —Uc, =0, LE—RZIR2 =0, Rji —uy=0.

Eliminating all variables, save for selected state variables i, ,u., and excitation sources e and
Jj, we get:

Fig. 3.5. The circuit diagram of considered network
di, R,. R, . dug 1 1 . 1 C, de

J+

s

= I = Upy +
@« LT L) e R+ o x,
The output variables (aside of i) are:
. C, (O (o C! de
Iey = Uy — J= e+ -
R(C +C,) C,+C,” R(C+C,) C+C, dt
C, c, . C, CC, de
- Ug, + j+ e+ —.
R(C,+C,) C+C," R(C+C,)  C+C, dt
In matrix notation:

e+ —_—.
R(C, +C)  C+C, dt

lea =
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R, R
. _2 0 . -2 0 . .
i|: I i|: L I + L J + g CQ1 i J
de|u, 0 - 1 Ugy 1 1 e C +C. |dr|e
R(C+C) C+C R(C+C) e
d

=Ax+Bf+B, —f,
dr

1 0 0 0 0 0

i - _
o C i C C j c: |dlJ
iy |50 —F— +| = - 5 +|0 —
: RI(CI +C2) Ucy C +G, RI(C1 +C2) K C+C, |dt|e
o G G C,

RI(CI +C2)_ L C +C, RI(C1 +C2)2 | G +C2_
=CX+Df+Dlif.

dr

Elimination of source variable derivatives from the state equation can be obtained by
substitution:

u,=u —Le
© T o+e,
As a result the state equation takes the form (3.1)in which:
i —TZ 0 % 0 ; i
L .
X = , A= 1 , B= 1 C ’f:|: :|sy= ley |
u, 0 - 2 e .
R(C+C,) G+C, R(C+G) fe2
1 0 0 0 0 0
C C cC z
C= — |, D=|- 1 _ =2 | p =0 G
Rl (Cl +C2) Cl +C2 RI (Cl +C2) Cl + CZ
_L G sz 0 GG,
RI(C,+C2)_ | G +C, RI(C1+C2)2 | | G+G, |

In general, the derivatives of excitation signals can be eliminated from the state equation (but
not from the output one) by use of suitable substitution.

In general form the state equations are:

ﬂﬂ=Amﬂ+BH0+BQ%ﬁ0+W+BP£;HO (3.8)

_ d dar
YO =CX(O)+ DI+ Dy 1)+ .+ D, () (3.9)
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where 0< p<n.. +n,,.
Applying subsequent substitutions:

d p-1
z(z)=x(t)—Bpr(t) (3.10)
(like in Example 3.1) the derivatives can be eliminated from the state equation (3.8).
The output equation in general form may contain derivatives of excitation sources.
State variable equations can be formulated for a given network diagram
automatically by use of dedicate computer programs [18].

3.3.  Solution of state-variables equations

The intrinsic feature of the state variables approach is that the transients in all nodes
and branches of the network considered can uniquely and entirely be determined by
solution of the state equation (3.1). In case of linear networks the accurate solution of
the state equation is possible and relatively simple.

By analogy to the method of the first order linear differential equation solution first
the solution of homogenous differential equation written in vector (multivariable)
notation:

(1) = Ax(f) (3.11)

has to be determined and this solution, as it can easily be checked by simple
substitution to (3.11), is given by the equation:

x(t) = eK(?) (3.12)

where: k(z) is a certain functional vector which should also satisfy the non-

homogenous solution (3.1).
To substitute (3.12) into (3.1) the derivative of (3.12) should be determined first:

X(1) = AeMK (1) + eMk (1) (3.13)
After substitution we get:
AeMk (1) + e“K(1) = Ae™K(7) + Bf (1) (3.14)
and, noting that [18]:
Ae® =eA’A=ieA’ (3.15)
dr

we get finally:
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k(7)=e “Bf(¢) (3.16)

Solution of the above equation can be obtained by integration, so that:

k(?) = je'A’Bf(r)dT+ k(,) (3.17)

fy

Substituting the result to (3.12), we get:

X(1) = eA’(I e MBf(r)d7r+ k(to)J (3.18)

f

Now the initial value of the state equation solution can be determined. By substitution
of t =t,,into (3.18) we get: x(¢,) =e*k(¢,) , and finally:

K(t,) = e *"x(t,) (3.19)

Thus the final solution of the state equation (3.1) is given by the formula:

t
x(£) = e f e BR(7)d7 + e x(1,) (3.20)

ly

Having the state variables determined the solution of the output equation (3.9) is
obtained as a linear combination on of respective state variables and excitation sources
according to the output equation form.

The solution (3.20) is valid for the continuous time domain. To get the solution in
discrete form integration (3.20) should be carried out by use of one of the numerical
integration methods [32, 83].

To calculate the exponential function in (3.20) the expansion into power series can
be used:

e =1+At+l(At)2 +...+L(At)”’ +... (3.21)
2! m!

Unfortunately, to get the sufficient accuracy of calculation remarkable number of
terms in the series has to be calculated (slowly convergent series). However, there are
some other much more effective approximations of e*, for instance, the Pade
approximation [18].
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Exercises

3.1. Formulate the state variable equations (in minimal form) for the given (Fig Z3.1) electric
circuits. Assign outputs to voltage drops across resistors

a)
R, .
o— 1>
u u
(o,
©)

-
“l

Fig. Z3.1

3.2. Determine the initial conditions (¢ =0) for state equations in problem 3.1 assuming the
following inputs:
a)u=10V,
b) u=10sin(wt +¢) V, ®=100m, ¢ =0.

3.3. Determine the state variable model for the network with CT in Example 2.6. Carry out
transient simulation for conditions as specified in the Example. Use the R—K IV algorithm
for digital integration [83].
Note: After reduction the network is described by a single differential equation.
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4.1. Single-phase Line Model

The fundamentals of a distributed parameter line modelling are shown in sect. 1.3.6.
In this Chapter various detailed problems related to a single phase power line
modelling are presented including the basic information on application of geometrical
parameters to the line modelling. The frequency dependent model of the line is
considered in detail. The discussed approach to modelling is then extended to the
multi-phase line case.

4.1.1. Line Parameters

In general the electric parameters of overhead lines and cable feeders depend on
geometrical dimensions, physical properties of design materials and surrounding
environment. The parameters can be calculated from fundamental equations [3, 14,
24]. The equations are used by special parameters calculating procedures provided by
most of professional transient simulation programs. However, to apply those
procedures the program user needs many, sometimes very detailed, data of the line or
cable modelled. It is illustrated by the following example:

Example 4.1. Using the geometrical parameters and the respective material constants
determine the electric parameters of the overhead 400 kV line. Use the
LINE CONSTANTS procedure available in ATP-EMTP [7].

The geometrical dimensions of the line are shown in Fig. 4.1. The midspan data are shown
under the bar. The relevant entries are formatted as shown below:

BEGIN NEW DATA CASE

C Line 400 kv

LINE CONSTANTS

METRIC

C Data for LINE CONSTANTS

C 345678901234567890123456789012345678901234567890123456789012345678901234567890

1 .231 .0564 4 3.15 -10.3 24.5 12.0 40.0 0.0 2
2 .231 .0564 4 3.15 0.0 24.5 12.0 40.0 0.0 2
3 .231 .0564 4 3.15 10.3 24.5 12.0 40.0 0.0 2
0 0.5 .2388 4 1.565 -6.87 31.0 23.5
0 0.5 .2388 4 1.565 6.87 31.0 23.5

BLANK CARD ENDING CONDUCTOR CARDS OF "LINE CONSTANTS" CASE
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C 1 2 3 4 5 6 7 8
C 345678901234567890123456789012345678901234567890123456789012345678901234567890
C >< Freq >< FCar > <ICPR> <IZPR> =< DIST > <PP>==< >< >< ><><>

100.0 50.0 1 1 0 180.0 0

BLANK CARD ENDING FREQUENCY CARDS
BLANK CARD ENDING "LINE CONSTANTS"
BEGIN NEW DATA CASE

BLANK

Due to the program requirements (data format) it is assumed that the line length is 180 km.

, l :

$ «— 6.87m —>

i i400m A‘f—l e

e 103 m ——

Phase conductors:

31.0m D=3.15cm
23.5m R'=0.0564 Q/km
T/D =0.231
24.5m
12.0 m Grounding conductors:
D=1.565cm
R'=0.2388 Q/km
7/D=0.5

Soil resistivity:
p£=100 Om

7Y, 77 7

Fig. 4.1. Geometrical data of the line considered

The results obtained refer to positive and zero sequence symmetrical components. The
parameter 7/D is discussed in Example 4.2.

The respective line parameters calculation results for the fundamental frequency f, =50 Hz
are as follows:

R’, =0.1576 Q/km L'y =2.2966 mH/km C’, =0.007729 uF/km

R’ =0.0291 Q/km L' =1.0296 mH/km C',=0.01123 uF/km.

Similarly the wave travelling speed and the surge impedance values are:

v, =235968 km/s v, =293798 km/s Z, =548.3 Q Z,. =302.8 Q.
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Parameters for zero and positive symmetrical components differ since the physical parameters
of the earthing conductor and phase conductors are different. The transverse line conductivity
G' is usually neglected in such calculations.

4.1.2. Frequency-dependent Model

The frequency dependence of the conductor electric parameters is the result of the skin
effect which is caused by pushing of the electromagnetic field outside the conductor
when the frequency of the current grows. As a result the effective current conducting
cross-section of the wire decreases and the wire resistance grows. Decreasing current
reduces the magnetic flux y around the conductor thus decreasing the conductor
inductance L (L =y /i) [24].

The frequency dependant parameters depend upon many factors and the most
important of them are: the distance between phase and earth conductors and the
applied model of the earth which is also the current conductor. The phase conductors
in the overhead line can be bundled thus comprising of many wires in various
geometrical arrangements being spaced by few tens of centimetres. Also the models of
the earth used in calculations may differ significantly since the earth is non-
homogenous conducting environment. Thus the calculation of frequency dependent
parameters becomes a complex task.

The next example shows how the input data are prepared for subroutine of
frequency dependent parameters calculation which is available in ATP-EMTP.

Example 4.2. Determine the frequency dependent parameters of 400 kV line from
Example 4.1. Coefficient 7/D (Thickness/Diameter) is necessary for
calculation of the skin effect (Fig. 4.1) since the conductor is represented
by a pipe of external diameter D and thickness 7. For the homogenous
wire 7/D = 0.5.

Again the LINE CONSTANTS procedure is used and the input data are arranged as follows:

BEGIN NEW DATA CASE

C Line 400 kv

C

LINE CONSTANTS

METRIC

FREQUENCY

C Data for LINE CONSTANTS

C 345678901234567890123456789012345678901234567890123456789012345678901234567890

1 .231 .0564 4 3.15 -10.3 24.5 12.0 40.0 0.0 2
2 .231 .0564 4 3.15 0.0 24.5 12.0 40.0 0.0 2
3 .231 .0564 4 3.15 10.3 24.5 12.0 40.0 0.0 2
0 0.5 .2388 4 1.565 -6.87 31.0 23.5
0 0.5 .2388 4 1.565 6.87 31.0 23.5

BLANK CARD ENDING CONDUCTOR CARDS OF LINE CONSTANTS CASE
C 345678901234567890123456789012345678901234567890123456789012345678901234567890
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100.0 0.1 1 5 5
BLANK CARD ENDING FREQUENCY CARDS
BLANK CARD ENDING "LINE CONSTANTS"
BEGIN NEW DATA CASE
BLANK

The parameters versus frequency characteristics obtained are shown in Fig. 4.2. The plots show
that the zero sequence parameters (R', — Fig. 4.2a and L', — Fig. 4.2b) change more

intensively with frequency than the positive sequence ones (R', — Fig. 4.2a and L', — Fig.
4.2b).

a) R b)LIO L
Q/km A mH/km[~ L mH/km
, 5.0 VT — 1.0
/ 45 0 0.9
1.0 % 4.0 : 0.8
7 \
D m—— 5
0.1 - : g :
ot o 2.5 S 0.5
=~ 2.0 “m=el 104
0.01

1.5 0.3
0.1 1 10 100 1000 £ Hz 0.1 1 10 100 1000 £, Hz

Fig. 4.2. Frequency characteristics of the 400 kV line:
a) resistance and b) inductance

The difference can be attributed to the fact that the skin effect in return (earthing) wire which is
of much greater diameter than the phase wires is much more effective.

The transverse parameters (capacitances and conductances) are practically frequency
independent. However for the sake of calculation stability usually the small value of one of
those parameters is used for instance G'= 003 uS/km [3].

Application of frequency dependent parameters to the line model setup is not
simple since equations (1.75) are functions of time. Thus the frequency dependent
model must be based on Fourier transform.

The Fourier transform of (1.75) can be determined by use of the following
fundamental relations:

oo oo

[ 240D gmsorgy = L [y e =
ox dx

0 0

dU(x,jw)

v 4.1)

0

j %e-ﬂ“df =du(x,0e | + ja)ju(x, Nedt = joU(x,jo)  (4.2)
0
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The function U(x,jw) is complex. For fixed frequency U(x, jw) is the voltage
phasor as used in steady state analysis of electric networks.

Formulas (4.1) (4.2) can also be applied to the current equations in (1.75). Thus the
line equations (1.75) in frequency domain are now:

_AUCID) _ (R4 joL)I(x. jo)
dx
_WJG'H@C')U(XJ“’)

and using the substitution:
Z'(jo)=R'+joL’

. i (4.3)
Y(j®)=G'+ jaC’
finally:
dU(x,jw L. .
—ST” = Z(jo)(x.jo)
. (4.4)
di(x.jo)

™ =Y'(jo)U(x, jw)

The first of the above equations describe the longitudinal line model. Impedance
Z'(jw) 1is frequency-dependent since R'=R'(w) and L’'=L'(w). The second
equation describes the line model for transverse parameters. Usually the components
of the admittance Y'(jw) are frequency independent.

The equation (4.4) can also be split into the current and voltage parts.
Differentiating the first equation in (4.4) with respect to x and applying the result to
the second one we get:

U, jw)

P Z'(jo)Y'(jo)U (x, jw) (4.5)

Using notation y* = Z'(jw)Y'(jw) the final form of (4.5) is:

d*U(x,jow .
LDy jo) (4.6)
The general solution of (4.6) is as below [77]:
U(x, jw) = A,cosh(y x) + B;sinh(y x) 4.7)

where: 4, B, — constants calculated from boundary conditions and
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y=Y(o)Z'(jo)=a+jp (4.8)

Out of the two the square root values only the one for which & =0is valid. The
parameter ¥ [1/km] is known as the line propagation velocity constant; ¢ is the line

attenuation constant (Np/km)' and # is the phase propagation constant (rad/km).
Substituting (4.7) into the second equation in (4.4) we get:

I(x,jw) = —ZL(Alsinh(yx) + B,cosh(y x)) 4.9)
f

Z(jo) _Z(jw)

e S T R

(4.10)

is the complex surge impedance of the line.

Constants 4, B, can be determined from the boundary conditions: at beginning of
the line x =0 (subscript 1) and at the end x =/ (subscript 2) and in such case (4.7)
(4.9) are as follows:

U,(jo)=U(x, jo)| _, = Acosh(y x) + Bsinh(y x)| _ = 4, 4.11)

U,(jo)= U(x,ja))|x=l = Acosh(y x)+ Blsinh(}/x)|x=l = A,cosh(y!) + B;sinh(y/) (4.12)

L(jo)=1(x,jw) _, = (4sinh(y x) + Bicosh(y x)) _ = —5—1 (4.13)
S

1
Zf

. . 1 .
L(jo)=I(x,jo) _, = —— (4,sinh(y x) + Bcosh(y x))_,
| ! (4.14)

= (4,sinh(y7) + B,cosh(¥1))
.

Assuming that the voltage and current at the end of the line are known and U, (jw)
I,(jw) are to be determined then the respective solution, for the line output currents

flowing in directions as shown in Fig. 4.3, is:

(4.15)

{U] (i a))} ) cosh(.}/l) Z ;(jw)sinh(y1) { U, (jo) }
I, (jo) Z (o) sinh(y/) cosh(y7) ~-1L(jw)

" Np (neper) is the unit of attenuation.1 Np = 8.686 dB.
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Equation (4.15) describes the / km long line segment model for steady state with
input-output nodes denoted by land 2 respectively. The model can be represented by
I1- cell (Fig. 4.3) having the following parameters:

Z = Z'IM =R (0)+ oL, (w)
¢ h(yl/2) (4-16)
an .
v, =y D G () + joC, ()
yi/2
1 2
I, Z, 1
[e; O
vl || L g
2 2
O O

Fig. 4.3. I1-cell representation of the long line in steady-state

The model can easily be extended to the multiphase line case. For this purpose the
single phase line parameters should be replaced by the respective matrices of
multiphase line ones.

Writing (4.15) for the first line end and assuming that the second end (subscript 2)
is located in distance x the equation for voltage at any point in the line can be
obtained:

Ux,jw)=U,(jw)cosh(y x) - Z ;(jw) I, (jw)sinh(y x) (4.17)

Changing the hyperbolic functions into the exponential ones we get:

U, jo)=U,(jo)e ™ +U,(jo)e" = A(x,jo)U, (jo) +——U,(jo) (4.18)
A(x, jw)

where: U, (jo) =%(U1(ja))+2f(jw)11(jw)) U,(jo) =%(U1(jw)—Zf (i), (jo)

A(x,jo)y=e"".

U,(jw) and U,(jw) represent complex amplitudes of the primary (U,(jw)) and
the reflected (U,(jw)) waves which are distributed along the line according to the
propagation constanty given by A(x,jw). Since the harmonic components of

distorted voltage signal are suppressed and shifted according to the propagation
constant then for a given distance x the function can be considered as the filter
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ox

transmittance of frequency response determined by |A(x, J a))|=e’ and the phase

response given by arg(A(x, ja))) =¢ ™ In case of the overall line (x =/ ) we get:
A(jo)= A jo)=e7" |A(jo)|=e arg(4(jo))=e"" (4.19)
The next example explains the discussed line characteristics.

Example 4.3. Analyse the considered frequency characteristics for the 400 kV line from
Example 4.1.

The example of imaginary component distribution for wave of frequency f, =2000 Hz in the

/=300 km long 400 kV line is shown in Fig. 4.4. Two standing waves for positive and zero
sequence voltage components are presented for comparison. The waveforms correspond to the
following functions::

U,(x) =Re(4, (x, jo,)U,,(j0,)) Uy(x)=Re(4,(x,j,)U,.(jo,))

and: 4 (x,jw,)= e i A (x,jow,) = e (i) Ual(ja)p)| =

refers to the selected frequency while respective components are denoted by 0 and 1. The line
parameters for frequency f, =2000 Hz (Example 4.1) are given in Table 4.1.

Uao(jo, )| =1; subscript p

-1

0 50 100 150 200 250 x km

Fig. 4.4. Distribution of the wave along the line

Table 4.1. 400 kV line parameters for frequency 2 kHz

Parameter Positive sequence component | Zero sequence component
R’ Q/km 0.09619 2.0075
L' mH/km 1.0194 1.968
C' uF 0.01123 0.00779
a Np/km 1.596-107* 0.0020
B rad/km 0.0425 0.0491




4.1. Single Line 83

The wavelength can be determined by examination of arguments of functions 4 (x,jw,)
. . L 2 . .
and 4,(x,jw,) . The resulting general relation is: A= uiid , which for the considered example

yields: A, =128.097 km and 4, =147.776 km.

According to the known relation the wave propagation velocity is:

v=/1f=% and: v, = 2.562-10° km/s v, = 2.955-10° kms.

The wave propagation velocity depends mainly on the line parameters. The attenuation of the
phase-phase loop is much lower than for phase —earth one (zero sequence component).

Multiplying the current equation in (4.15) by Z, and subtracting it from the first

(voltage) one we get:

U,(j@)-Z,(jo)l,(jo) =(U,(jo) + Z, (o)L, (jo) e (4.20)

or in alternative voltage and current notations:
U,(jo)=Z,(jo)1,(jo) + (U, (j0) + Z,(jo) 1, (j) ) A(j@) (4.21)
L(jw) =U,(j)! Z,(jo) - (U,(j0)/ Z,(jo) + I, (j0)) AGjw) (422)

where: A(jw) is like in (4.19).
If (4.20) is applied to the lossless line with frequency independent parameters then
we have:

Z,(jo)=Z, =NL'/C" y=joJL'C" e ="
After inverse Fourier transformation of (4.20) we get:

(1)~ Z (1) = uy(t = 7) + Z iy (1 ~ 7)

and:  Flx(t-7)}= X(jw)e " .

being is the same as (1.83) which describes the lossless line in time domain. Thus
(4.21) can be considered as an operator equation in the line model. Parameters Z;(j w)
and A(jw) are now the filter transmittances revealing the respective frequency
responses. The complex propagation function A(jw) can be deemed as a product of
lumped parameter transmittance P(j@) and the delay line so that:

A(jw) = P(jw)e ™ (4.23)

where: 7, is the propagation time of the fastest wave component.

The delay 7, can be determined from the equation:
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ot , = arg(P(jw))-arg(A(jo)) = arg(P(jw))+ Bl (4.24)
and P(jw) comes from (4.19) and (4.23):
|P(jw)|=|A(jw)| = (4.25)

The filters based on the above equations represent the frequency dependent line
model with parameters expressed by functions Z;(jw) and A(jw) in (4.21) (4.22). The
frequency properties of those functions are illustrated by the following example.

Example 4.4. Examine the frequency characteristics of positive and zero sequence
components for 400 kV line discussed in Example 4.1. Assume that the
line is 180 km long.

Like in Example 4.1 calculations have been carried out by use of the LINE CONSTANTS
auxiliary program in ATP-EMTP for the frequency range 0.001 Hz—1 MHz. The frequency
response of the propagation function A(jw) is shown in Fig. 4.5. The continuous line (1)
denotes the positive sequence component and the dotted line (2) — refers to the zero sequence
one. The phase displacement of the function arg(A( ] w)) =—If is nearly linear since f=w/v
and the propagation velocity v is practically constant in the considered frequency range so the
coefficient /4 (the total phase displacement between the line input and output) is proportional

to the wave length.

a) b)
A 1\ — l
| (]a)ll = \ ﬁ \\
-
1
0.8 \\ \\/ i 102 \»\ <
\
0.6 \ \ . 7N
\ -10 NG
0.4 \ \\
\
02 27\ | 102 N
\ \ . N
0 -10
102 10 102 10* fHz 102 100 102 10* fHz

Fig. 4.5. Frequency characteristic of the propagation function A(jw):
a) frequency response b) phase response

For the lossless line there is y=a+jf=jw/v=jwJL'C’' that implies A(jw)= eV and
the function A(jw) represents the signal distortion caused by the frequency dependent line
parameters.

The phase characteristic comprises of two parts. The first part is related to the phase response
of the filter and the second one reflects the phase displacement @7, caused by wave

propagation time (delay) (4.23).
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The propagation time 7, should have the least value which corresponds to the highest
frequency in the considered frequency range [58]. The phase response arg{P( ] a))}= wr, -l

of the function P(jw) for positive sequence (curve 1) and zero sequence (2) component of the
line considered are shown in Fig. 4.6.

0 — !
AN . |
E o\
5 Vo
Nas) \
Q‘c?f)—rc/2 )\ ' \[/
5 22
/
\

102 10° 10> 10 fHz

Fig. 4.6. Phase response of P(jw) for 400 kV line:
1 — positive sequence component 2 — zero sequence component

The values of propagation time 7 for both components have been estimated for the frequency

Jer for which = |P( ] a))| drops below 0.01 (Fig. 4.5a) according to the relation: 7, = (l / vl oy T

(,b’l / w] P The respective frequency response of wave impedance is shown in Fig. 4.7. Thus

the equivalent wave impedance can be considered as the lumped element of adequate
frequency response.

a) b)

1000 = 0 < —
900 \\\ s \\\ e
800 2 . N

S 700 \ §710 \ L

§500 \ Sl %20

400 \. g \/

300 B A M
200 30

102 10 10 10* fHz 102 10° 10> 10 fHz

Fig. 4.7. Frequency characteristics of the line surge impedance a) frequency response
b) phase characteristic; 1 — for positive sequence 2 — for zero sequence
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The respective filter transmittances in Laplace sense corresponding to line

parameters Z(s) =Z ( ja))|4 and P(s) = P(j a))|j ~can be determined by rules of
4 jo=s w=s

minimum-phase system design known from the control system theory [21, 24] if the

frequency response |Zf § a))| and |P( ja))| are known (they can be determined as in

Example 4.1). If the transmittance considered can be expressed in the factor form
which, for instance, in case of wave impedance is:

L(s) _ ays" +ast T+ L+ a,  (s=z)(s-2).(s-z)
M(s) bys™ +bs" 7+ 4b, T (s—b)(s—by).(s—b,)

Z,(s)= (4.26)

then zeroes and poles of such a transmittance can be determined by use of the Bode
plot (logarithmic) method [58].

Then the transmittance can be implemented by chain of parallel RC cells. The
conditions of such implementation is that poles and zeros alternate on the real axis of
the s plane and one pole is located closest to the origin as it is shown in Example 4.5.

Example 4.5. Design the chain of parallel RC cells which approximate the wave
impedance of 400 kV line for zero sequence component Zy(jw). The line
parameters are as in Example 4.1.

The frequency response of the wave impedance considered is shown in Fig. 4.7 plot 2. The
following transmittance is obtained (calculated in MATLAB) [66] for the fifth order
approximation:

(s=z)(s—z,)(s _23)(5_ 24)(5_25)

Z.,(8)=k
e “ (s=b)(s—b,)(s —by)(s —b,)(s—by)

where:

k, =446.15 z, =-37112 z,=-12664 z, =—18.708 z, =—4.469 zs; =—1.088

b =-33789 b, =-1165.5 by =-14.013 b, =-3.929 by =—0.9057 .
The implementation requirements are met so after partial fraction decomposition of Z ,,(s) we

get:

Z,o(s)=k, + KK K KK e K, =Z,(s)s=b)| _ -
s=b s-b, s-b;, s-b, s—b : 5=b,

and also:

K, =1.478-10° K, =4.935-10* K,=23352 K,=396.0 K,=15586.

Now using the Foster’s method the required RC circuit is obtained (Fig. 4.8) for which the
respective parameters are [66]:

R,=k, RR=-K,/b, C;=1/K, i=1..5.

After relevant substitution we get:

Ry=44615 Q R, =43738 Q R, = 42345 Q R; = 16665 Q R, = 10078 Q Rs=17210 Q
C,=06766 UWF C, =2026 uF C; = 4282 uF C, = 2525 uF Cs = 6416 uF.



4.1. Single Line

87
R, R, R, R, R,
1| 1| 1| 1| 1|
] I I I I
C, C, C, C, C,

Fig. 4.8. The RC chain representing transmittance Z ;,(j®)

Comparison of wave impedance frequency response obtained from calculations and from the
RC model is shown in Fig. 4.9.

a) b)
1000 1 0 >
900 N\ . 2 \\ /k@_\/;//’
800 \ 3 4 2
_= Nas/
3 700 =6 \ /
N 600 I /
N 2 /
500 TS ~10
T~ \/
400 12
102 10° 102  10* fHz 102 10 102 10* fHz

Fig. 4.9. Frequency response of zero sequence wave impedance Zy (jw): a) magnitude;
b) phase 1 — calculations 2 — frequency response of the RC model

The numerical model of the equivalent RC circuit can be derived using the model

setup rules for lumped element circuit. A single i-th RC cell in the chain is described
by the following continuous differential equation:

du.(¢) 1 1.
——=———u () +—1i, (¢ 4.27
& RC 10) C 2, (1) (4.27)
and the known solution of the equation is:
t
u(t)=e "y (1) + Cij e )iZ/ (r)dr (4.28)

i1
where: «; =1/ R,C; t, denotes calculation starting time.

Using the trapezoidal integration method we get (¢ —¢, =T — calculation step):

N
0 ()= k=145 (i, (e=1)+i,, ()

i
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and after rearrangement:
u, (k)= Ry, (k) +v,(k-1) (4.29)

where: R, = % - % v(k=) =" lu,(k=1)+ R, (k=1)).

Series connection of m RC cells along with resistance R, results in the following
numerical model:

u(k) =R, i, (k)+v, (k-1) (4.30)

ko, Ky
where: R, =Ry + Y R, v, (k=)= u,(k=1)+ R i, (k-1).
i=1 i=1

Writing (4.30) in alternative current form we get:
iy (k)= Gu(k)+ j; (k=1) (4.31)

where: G, = I/RZ/ Jz,(k=1)==Gv, (k-1).
In case of propagation function 4(jw) the model can be applied to approximation of

P(jw) (4.23) as it is illustrated by the following example.

Example 4.6. Design the numerical model of function Py(jw) (zero sequence
component) for 400 kV line considered in Example 4.4.

The frequency response of Py(jw) is shown in Fig. 4.5a plot 2. Again applying the fifth order
approximation we get:

(s—z)(s—z,)(s—2)(s—2,)

F(s)=kp
(s =b)(s = by)(s = by )(s — by )(s — bs)
where:
kp =0.0465 z, =—29424 z, =—659.99 z; =—12.89 z,=-0.1915
b, =-9842.8 b, =-3089.5 b, =-569.4 b, =-12.58 b, =-0.1908.

Partial fraction decomposition leads to the equation:
K,+K2+K3+K4+K5

s—b s-b, s-b, s-b, s-b

where: K, = Fy(s)(s— bl.)|

Fy(s)=kp+

s=b, >

and:

K, =-2372.6 K,=31063 K,=9241 K,=0.2916 K,=6.0-10"".

The approximation of the logarithmic frequency response used [34] yields the negative K, so

the in RC circuit model cannot be applied. However calculations can be carried out according
to (4.27)~(4.30) for o, =—b,. (4.31) can be written in changed form for the current excitation

ip, (k) (the input current):
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ip(k) = ip, (k) + jp (k= 1)

5
where: j,(k=1)=G,v,(k—1)= Zipl.(k —1) and by analogy to (4.30):

i=1

> TK.
G=r 2 vp<k—1)=2e”[u,-(k—l)+7'ipw(k—l>j.
2%k, +TY K, =

i=1
After simplification the equation for the current i, (k) is:
ip(k)=Liip, (k) + jp(k=1) i=1..5
T
where: j,(k—1)=e"i,,(k—1)+ L,(k =i, (k-1) L = EGPK[ .
Comparison of respective frequency responses is shown in Fig. 4.10.

Relatively big difference in phase characteristics (Fig. 4.10b) can be attributed to
large error in estimation of the original characteristic for high frequency. If P(s) is the

correct representation of P(je) then 7, can be determined from (4.24). Referring

calculations to the fundamental frequency @, and using (4.8) we get:

7, =wl(arg(P(ja)l))+larg(q/Z’(jwl)Y’(ja)l))) (4.32)

1

a) b)

=

-1/2 \

|Poj )|
(]
Wi
"

arg(Py(jo)), rad

.~
(3}

\
0 \2
102  10° 10? 10* £ Hz 102 10° 10? 10* f Hz

Fig. 4.10. Frequency response of zero sequence surge impedance P, (j®)): a) magnitude;
b) phase 1 — calculations 2 — frequency response of the fifth order model

Both functions Z;(jw) and A(jw) can now be represented by the equivalent lumped
parameter circuits described by the respective transmittances Z,(s) P(s) and time

delay 7, . The equation (4.22) takes the following form in time domain:

i1(k)=i1z, (k) + jy (k —m) (4.33)



90 4. OVER-HEAD LINE MODELS

where: i, corresponds to (4.31) for node 1; j,(k —m) is the current 'seen’ from the
other end of the line; m is the discrete time delay calculated from 7.

Taking into account (4.31) the value of excitation in node 2 of the line is given by
the following sum of currents:

bLpy(K) = by (k) +iy(k) = Guy (k) + i, (k) + joz (K =1) (4.34)
Introducing the delay m and including P(s) we get (see Example4.6):
Jitk=m)=i,p, (k—m)+ j,,(k—m—1) (4.35)

Ky,
where: jop(k—m—=1)=i,,(k—m—1)
i=1
bp (k) = Libyp, (k) + Jop (K =1) 1=1,..,k,
T 2
Gtk =D =e"i,, (k=1)+ Li,p (k=1) L, = EGPKI. Gy=—"7—.
2k, +TY K,
i=1
k, denotes the number of poles b, in P(s) while k, and K, come from the partial
fraction decomposition.
Relations (4.31)—(4.35) describe the digital model of the line with frequency
dependent parameters. (Fig. 4.11).
The currents j(k—m) j,(k—m) ‘seen’ from the other side of the line should be

calculated from (4.34) (4.35).

G i(k) 2
. hy® X
w Q@ o @ w

(k) - o (k=m)| j,, (k1)

Fig. 4.11. The equivalent circuit of the line with frequency dependent parameters.

The currents j,, (k—1) j,, (k—1) along with the conductance G, represent the

wave impedance Z;(jw) according to (4.31).
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4.2. Multi-phase Line Model
4.2.1. Lumped Parameter Model

The generalized model of multi-phase line was developed by Carson [14]. In the
model the multi-conductor arrangement of phase wires along with equivalent
arrangement of identical and symmetrical with respect to earth surface return wires
(Fig. 4.12) is considered.

Parameters of the equivalent line circuit can be determined under assumption that
the sum of currents in all conductors (Fig. 4.122 ) is equal to zero. The equivalent
circuit of the considered line segment is shown in Fig. 4.13. Vector of voltage drop
across that segment is given by the following equation:

(AU | L
AQB lB
AU ¢ Ic
0 [=(R+jaL)| Lv (4.36)
0 Lo
| 0 | | L |
where:
'R,+R, b R, R, R, |
R, R; +R, R, R, R,
R= R, R, R-+R, R, R, L=}
R, R, R, Ry +R, R,
L RD RD RD RD RNM +RD_
R, ..R,,, — conductor resistances (in general temperature, frequency and current
dependent)
R,=9.869x107" /-1 (Q) f — frequency (Hz) [ — conductor length (m);

L, = /2‘_01111% (H) y, =4nx10" H/m — magnetic permeability k,m — conductor
T

km

numbers d,, — conductor radius (equivalent for bunch wires).
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o om'

Fig.. 4.12. Conductor arrangement for equivalent overhead line

In analysis of three-phase lines the simplified line model is applied in which M
return conductors is replaced by one equivalent wire.

Au
i, Ru Ly
o, - 1 O
Lp
is Rp Lp
(o, O
Lc
i c R(‘ L(‘
O - 1 O
L
ivi  Rwi Ly,
. — Y Y
: Lavm
iy Rwm L
- — Y Y Y

Fig 4.13. The equivalent circuit of the multiphase line

In more detailed notation (4.36) takes the form:



4.2. Multi-phase Line Model

93

where:
Zy=R+R,+jo L, Z,,=R,+]joL,,.

The equation (4.37) can be written in compact form as:

ol e

Basing on (4.38) the following equations can be written:
AU=Z,1, +Z,1,
0=Z.1,+Z,1,

The second equation yields:
Iy =-Z,Z.,

Substituting (4.40) to the first equation in (4.39) we get:
AU =7 fI y

where:

Zy Zis Zu
Z, _ZBZBIZC =\Zyp Zsps Zpe
Zi Zpe Zecc

Zf=

is the parameter matrix of the equivalent three-phase line (Fig. 4.14).
The following relations are valid for transposed line in frequency domain:

Zyy=Lpy=ZLoc=2s Lig=Zc=Zpc=2Zy-

_AQA_ Zn le le Z14 Z1(3+M) LA
AQB ZZI Zzz ZB Zz4 Z2(3+M) LB
AQC _ Zs Zs Zs; Zy, Z3(3+M) I

0 Z41 Z42 Z43 Z44 o Z4(3+M) £N1
L 0 i _Z(3+M)l Z(3+M)2 Z(3+M)3 Z(3+M)4 ZM(3+M)__£NM_

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)
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Au
1 iy RA LA 2
A °© > ° A
Ly
u
. iB RB /< LB ta
o, - 1 £ Y Y Y O
L
Uup Ac LBC Upy
ic Rc Lc
O £ Y ¥ ¥ A O
‘ Ucy um{
o, O
)2

Fig. 4.14. Simplified circuit of three-phase line

In time domain voltage drop across the considered line segment is given by:

AU(t)ZRfIf(t)-i-Lf%If(t) (4.43)
where:
U (1) —u (D) i,(0)
AUG) = 4y, () = s ()| 1,(0) =] i ()
U, (t) —ucy (0) ic(?)
Ry Ry Ry L, L Ly
Rf: Ry Ry RBC sz L,y Ly LBC .
Ry Rpe Rec L Lpe Lec

Using the generalized line model (Fig 4.12) the equivalent transverse line model
can be derived under general assumption that all conductors are isolated one from
each other entirely. The electric charges ¢ in physical conductors and in the

equivalent ones located under the earth (mirror reflection) are equal and opposite so it
can be assumed that the voltage between k-th conductor and the earth surface is equal
to the half of the voltage between the conductor and its mirror reflection under the
earth [36]. If so then:

1 1 3+M D

U, =—U, =—_ n e 4.44
=S Y 2ne, = q; d. ( )

m

where: ¢, =L2=8.854><10'12 F/m — electric permeability, g, — charge in i-th
HyC

conductor (C/m), c — light velocity (m/s).
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Similar equations can be written for each isolated phase conductor while the other
conductors are earthed and connected to the zero reference potential. Using the
matrix-vector notation the equations take the form:

U, B, B, R3 A, P1(3+M) q4
Ug P, P, Py P, : P2(3+M) 95
U, _ B, P, P Py B | 4c (4.45)
0 I P, Py Py P4(3+M) qn
| 0 ] _P(3+M)l P(3+M)2 P(3+M)3 P(3+M)4 PM(3+M)__qNM_
where:
B, = ! ln% (m/F) (4.46)
2ne, im

B, is known as Maxwell coefficient.

m

Similarly to (4.37) the equation (4.45) can be simplified and:

KRk s
0 P. [P, |ay

from which:
U, =(p,-P,P,'P.)q, (4.48)
or alternatively
_ -1
a, = (PA ‘PBPach) U,=¢,\, (4.49)
where:
. CAA CAB CAC
c,=(p,-P,P)P.)" =|C,y Cp Cpe| (F/m) (4.50)
CAC CBC CCC

is the capacitance matrix of the equivalent three-phase system.

Conductance is an active element of the transverse line model. Confining
considerations to linear case the corresponding model will be described by the
following equation:
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GAA GAB GAC
1,=G,U,,G,=|G,; Gy Gy |(S/m) (4.51)
GAC GBC GCC

In power line models conductance is not taken into account as being negligibly

small with respect to line susceptance. Thus the line model looks like it is shown in
Fig. 4.15.

Al o IAJ lR—A| /Y%Y\ lA2 OAZ
C
] H_L 7CAC== __—CAB R <LABL _CAB = =__CAC ::Clhl
Blo Ip B B gy o B
sz_ L L, Ly c _sz
. T T ~BC R L “YBCT T
. c c icy
Clo—» — 3 YT Y o C2
C33== ==C33
o) 0

Fig. 4.15. The equivalent circuit of the three-phase line

The current flowing through the transverse elements at any side of the three-phase
line model can be determined by the following equation:

L,=Y,U,, Y, =G, +joC, (Sm) (4.52)

in frequency domain or by:

d
ly(t)=Gfo(t)+CfEUf(t) (4.53)
in time domain.

It should be noted that the respective capacitances in the line model are divided
into two equal parts connected to each end of the line. The values of phase-to-phase

capacitances are negative while the respective phase-to- ground capacitance values
are:

C11 = CAA _CAB _CAC7
Cy, =Chp —Cyp —Cyes

Cy3=Cpc =Cye = Cye.

and if the line is transposed then:
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Cry=Cp=Cec=C5 Cpp=Cyc=Cpc=Cy.

In the model of transposed line the parameters in all phases can be assumed as
being equal and then the line parameters for symmetrical components can be used.
The respective relations can be obtained after transformation of phase coordinates into
the symmetrical ones by use of the fundamental formula:

U, =SU, (4.54)

for voltages (the same formula holds for currents) where:

1 1 1
s=1l1 a a2 aze =_—1+j£ (4.55)
3 5 2 2
1 a= a
Uy
U, =| U, | — symmetrical voltage(current) component vector.
v,

Applying transformation (4.54) to (4.41) the relation between phase Z, and

symmetrical Z  component impedance matrices is obtained and:
Z,=S"Z,8 (4.56)

If the three-phase system is transposed then the matrix of symmetrical impedance
components is diagonal:

Z = Z (4.57)

In case of power line: Z, =2,

and (4.56) shows that for the transposed line the following relations hold:
Zo=Zs+2Zy Zi=Zs—Zy

It should be born in mind that transformation into symmetrical components refers
to complex vectors of currents and voltages which represent fixed frequency harmonic
functions of time in steady state. Therefore the transformation is not applied directly to
transient analysis of electric networks. However all the relations shown are important
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for the model setup since line and cable parameters are very frequently available in
symmetrical component form.

4.2.2. Distributed Parameters Model

Derivations of the multi-phase distributed parameter line model and of the single
phase one are very much alike. In case of n phases (1.75) takes the form:

3 au;x,z) CR'I(n.f)+ L’ aI(ax, 1)
e - ! (4.58)
0x ot
where:
ul(xat) il(xat)
|u(xn) b0 .
U(x,t) = : I(x,t)= : — voltages and currents of n-phase line;
un (x’ t) in (x’t)
R ’11 R '12 R lln
' R’12 R,ZZ ,211 . " ey qs . ..
R'=| . . (/km) — matrix of “per unit’ line resistance (similarly to
R'nl R,nZ Rlnn
G' L' C").

In general, parameters in (4.58) are frequency dependent but for the sake of model
simplicity this effect can be neglected.

a) Constant Parameters Model

In case of lossless multiphase line (4.58) can be written as (by analogy to (1.79)):

2 2
% IZJ _L,C,aat? =0
X
1 1 (4.59)
2o -cLi=0
ox ot

The matrices:
A,=L'C" A, =C'L’
are complete and symmetrical. Therefore:

A=(A) (4.60)
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Subscripts i and u indicate either current or voltage matrix in (4.59).

The line model will be simplified significantly if the matrices in (4.59) are diagonal
since in such case the multiphase system gets uncoupled and the model of n-phase line
splits into n single phase ones.

Diagonalization of matrix A, is described by the equation:

A, =T'AT (4.61)

imod

where: T, is the square eigenvalue matrix in which the A-th column s, (the

1

eigenvector’ of A, ) is the function of k-th eigenvalue 4, of the matrix A, so that the
following equation is satisfied [21]:

(A, =A1)s, =0 (4.62)

Relation (4.61) is known as similarity transformation in which the eigenvalues of
A, and A, , are the same. For the voltage equation in (4.59) we get similarly:

1 MOH

A, .=T'AT (4.63)

u mod uu

The respective inverse transformations yield:

u moclrl‘lu_1
o (4.64)

imod ~i

A, =L'C'=T,A
A, =C'L'=TA

Substitution of (4.64) to (4.59) results in multiphase line equation for modal
components:

azUmod azUmod —
2 A yumod 2 -
ox o (4.65)
a Imod — A a Imod —
axz imod at2
where:
L= Ti_II = Ti_II/’ U ot = Tu_lU = Tu_lUf >
subscript findicates phase components.
Further, using (4.60) and (4.64) we can write:
TuAu mod’I‘u_1 = (’I‘iIAimod’Ti_1 )T = (Ti_l )T AiTmod’I‘iT (466)

and:

? Eigenvalues of the square matrix A are equal to the roots of the equation: det(A—A1) = 0;
Eigenvector x is related to the eigenvalue A by equation: Ax = Ax [21, 83].
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=T,(17) A

imod

A T'T,=D'A, D=A,

imod imod

(4.67)

umod
where:
D=T'T,=dl d #0 (4.68)

T —
imod —

A
In many cases it can be assumed that d = 1 and as implication: T/ =T".
If matrix A, (A,) is real (like in (4.59) the eigenvalue matrices T, (T, ) are also

real. Moreover if the parameter matrix is symmetrical then the following relation
holds:

is the diagonal matrix of identical elements and A

imod *

T'T =1and: T'=T" (4.69)

The same applies to matrix T,. Matrix which satisfies (4.69) is said to be orthogonal’.
In such case for d = 1 both matrices are equal:

T =T, =T (4.70)

The condition is also satisfied for transposed lines.
If the current and voltage transformation matrices satisfy (4.69) then current and
voltage wave propagation velocities are identical and

o _
v
4.71)

umod — “Fimod T

<
Do

1
)
v}l

1

L', C', —parameters of the k-th mode.

— wave propagation velocity for the A-th mode,

Similar relations are valid for wave impedance (1.82).
To include resistance into the line model the line equation in frequency domain can
be used (for steady state — see (4.5)):

3 In case of complex form the orthogonal matrix is called the unitary one.
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2
d IZJ -7'Y'U=0
(4.72)
ar o,
F -Y'Z'l = O
where:
Z'=R+jw L Y'=G+jw C (conductance G usually neglected),
vectors U and I are function of distance x and by analogy to (4.4):
_du =7'1
(‘;f (4.73)
-—=Y'U
dx

For complex model (4.72) eigenvalue matrices T, and T, are, generally, also
complex and:
A

A

= TJIAM’I;I
1 (4.74)
=T'AT,

u mod
imod
where: A, =Z'Y' A, =Y'Z'.

Using the diagonal matrices of parameters (4.72) takes the form:

d’U

—l2110d - Aumod mod = O
ddzx (4.75)

Imo
dx—zd - AimodImod = 0
Interpretation of parameters located in the matrix diagonal is the same as for (4.6):
v
}/2
Au mod — Aimod = : . (476)

2

Y

where: ¥, =./Z' (jo)Y',(jo) = a, + jp, is the propagation constant for the k-th mode.
Comparison of (4.71) and (4.76) yields f& = @/v.. Substitution of (4.74) to (4.4)
leads to the following relations:

Zmod = Tu_IZVI‘i

4.77)
Ymod = TiilY ' Tu
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The matrices T, and T, in (4.77) are usually complex what makes further

calculations cumbersome. To avoid this drawback the matrices are approximated by
the respective real ones. This is usually obtained by rotation of the complex matrix to
minimize the imaginary parts of complex elements. The respective algorithm of such
approximation is shown in [24]:

1. Determine the matrix T, =T, (the matrix is complex) assuming that the
admittance matrix Y' comprises of reactance ( imaginary elements) only.
2. Calculate Y, , =T ' Y'T,, using (4.77) for T' =T_' (d=1 in (4.68)).

wmod uw uw uw iw

Such

elements can be written as: joC,, &'“ . To get the normalized (rotated) form of

3. Since the matrix T,, is complex the real parts appear in elements of Y,

wmod *

the matrix T, — T, the columns should be multiplied by the complex
i%/2 A5 a result the imaginary elements of the new matrix Y, _, become

mod

operator e
very small and can be neglected.

It must be stressed that the line model in frequency domain (4.72) is meant for
determination of the model parameters and the eigenvalue matrices only while the
modelling algorithm remains the same as for the lossless line and can be
complemented by the lumped resistance model if necessary (in EMTP the total line
resistance is divided into four parts— see Fig. 4.10b). The diagram of the model
considered is shown in Fig. 4.16.

The model is realized for each mode according to the algorithm discussed in sect.
1.3.6. The phase vectors of currents and voltages at both sides of the line are
transformed into the modal ones in each calculation step. Then after processing by
(1.91) and (1.92) the original phase voltages and currents are recovered.

Line model in modal coordinates

node L node P
Ar iy, iy upy Lmi ml ypy ipy 4,  Ap
o } { O
u_/1, UAP
B, i, iy up, R Rz upy ipy is,  Bp
o - T, T; T, T °
u
Bl uBI
Ci ic, i3 upy R Rus  upyips ic, Cp
o { } { } o
uc .
€L Uc,
e O
)2
phase coordinates | modal coordinates | phase coordinates

Fig 4.16. Multiphase line in modal arrangement
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The following example illustrates how the diagonal matrices are calculated in
ATP-EMTP.

Example 4.7. Calculate the line parameters of the line in Example 4.1 for phase and
modal components assuming that the line is untransposed. Use the LINE
CONSTANTS supporting program available in ATP-EMTP.

The line cross section (Fig. 4.1) indicates that the parameters of the middle phase (capacitance
and inductance ) (B) differ from the parameters of other phases. The input file for parameter
calculating subroutine in ATP-EMTP is also different as compared to the file used in Example
4.1 (the bold typed control line) The control lines read as follows:

col. 34: 1 — calculate capacitances for the equivalent three-phase system.

col. 38: 1 — calculate impedances for the equivalent system

col. 44: 1 — capacitance in (F) units not as @ C (S) — like before;

col. 70: 1 —line is untransposed — the current eigenvalue matrix T, .must be calculated

BEGIN NEW DATA CASE

C Line 400 kv

LINE CONSTANTS

METRIC

C Data for LINE CONSTANTS

C 345678901234567890123456789012345678901234567890123456789012345678901234567890

1 .231 .0564 4 3.15 -10.3 24.5 12.0 40.0 0.0 2
2 .231 .0564 4 3.15 0.0 24.5 12.0 40.0 0.0 2
3 .231 .0564 4 3.15 10.3 24.5 12.0 40.0 0.0 2
0 0.5 .2388 4 1.565 -6.87 31.0 23.5
0 0.5 .2388 4 1.565 6.87 31.0 23.5
BLANK CARD ENDING CONDUCTOR CARDS OF "LINE CONSTANTS" CASE
C 1 2 3 4 5 6 7 8
C 345678901234567890123456789012345678901234567890123456789012345678901234567890
C >< Freq >< FCar > <ICPR> <IZPR> =< DIST > <PP>==< >< >< ><><>
100.0 50.0 1 1 1 180.0 1

BLANK CARD ENDING FREQUENCY CARDS
BLANK CARD ENDING "LINE CONSTANTS"
BEGIN NEW DATA CASE

BLANK

The relevant fragment of the output file is shown in the next page. Here comes the short
comment of results:
Capacitance matrix refers to the phase-to- earth capacitances C, (F) (4.50). The lower part of

these matrices is given only since the matrix is symmetrical. The same refers to the impedance
matrix R, + joL, (Q).

Further the modal parameters are printed: resistance, reactance, wave impedance propagation
velocity V: in lossless actual line « (attenuation). All three modal components are of different
values. The current eigenvector matrix T, is complex but in this case the normalized

imaginary form is given.



104 4. OVER-HEAD LINE MODELS

It can be verified that T, is not orthogonal: T'T, #1 so equation (4.70) does not hold.

Assuming d = 1 calculation of: T, = (T,.T )_l yields:
5.802174291013298e—01 —7.071067811865468¢—~01 —3.760128057084046¢—-01
T, =|5.737902829739805¢ - 01 —2.248770831006496e—15  8.483917484204246¢—01 |-
5.802174291013300e—-01 7.071067811865482e—-01 —3.760128057084001e—01
Let’s follow — using MATLAB - calculation of the eigenvalue matrices T, T, The matrix
A, =7"Y' is:
—0.1353E -5+ j0.0197E =5 —0.0195E =5+ j0.0085E —=5 —0.0205E -5+ jO.0100E -5
7'Y'=|-0.0218 E-5+j0.0095E -5 -0.1310E =5+ j0.0192E -5 —-0.0218 E—5+ j0.0095E -5 |-
—0.0205E -5+ jO.0100E -5 —0.0195E —5+ j0.0085E —5 —0.1353E -5+ j0.0197E -5
The function eig() calculates eigenvalues and eigenvectors of Z'Y' :
[TuV]=eig(ZY)
where: Tu is the desired matrix T, and V (=V ) is the diagonal eigenvalue matrix:
—0.1751-107° +j0.0383-10°°
V= —0.1148-10° +j0.0097-10°°
-0.1118-107° +j0.0108-107

Columns 8, k=1 2 .. n of the eigenvector matrix T, = [s, s, - sn] are obtained by
solution of the following equations (4.62):
(A, =A1)s, =0
where: A, k=12 ... n are the subsequent eigenvalues of Z'Y".
MATLAB returns the following result:
0.5792-j0.0179 -0.7071-3j0.0003  0.3754+ j0.0105
T, =| 0.5727-j0.0195  0.0000 + j0.0000 —0.8469 — j0.0280 |.
0.5792-j0.0179  0.7071+j0.0003  0.3754+ j0.0105
which is different from that obtained in ATP-EMTP (different sign in the last column).
Now the modal admittance matrix Y,,, can be calculated:
0.0000 + j0.2429 0.0000 + j0.0000 0.0011+ j0.0001
= T“TY’Tu =| 0.0000 + j0.0000 0.0000 + j0.3270 0.0000 + j0.0000 |-107° (S/km).
—0.0011+j0.0001 0.0000 + j0.0000 0.0000 + j0.3769

The matrix is not diagonal and not entirely reactive due to the calculation errors and needs to
be normalized [24]. Further we skip this stage assuming that the matrix is diagonal and
reactive:

Y,

mod

j0.2429-107°
j0.3270-107° (S/km).
j0.3769-107°

Y,

mod —



Fragment of output file L400_PAR PH.LIS.

Capacitance matrix, in units of [farads/kmeter ] for the system of equivalent phase conductors.
Rows and columns proceed in the same order as the sorted input.

1 9.962258E-09
2 -1.526980E-09 1.026383E-08
3 -4.467067E-10 -1.526980E-09 9.962258E-09

Impedance matrix, in units of [chms/kmeter ] for the system of equivalent phase conductors.
Rows and colums proceed in the same order as the sorted input.

1 7.161787E-02
4.594878E-01

2 4.331943E-02 7.258155E-02
1.448813E-01 4.494188E-01

3 4.185105E-02 4.331943E-02 7.161787E-02
1.082764E-01 1.448813E-01 4.594878E-01

Modal parameters at frequency FREQ = 5.00000000E+01 Hz
Mode Resistance Reactance  Susceptance The surge impedance in units of [ohms] Lossless and actual
ohms/km ohms/km s/km real imag lossless velocity in [km/sec]
1 1.570727E-01 7.187872E-01 2.435554E-06 5.464474E+02 -5.900984E+01 5.432519E+02 2.374383E+05 2.360498E+05
2 2.976682E-02 3.512114E-01 3.270073E-06 3.280156E+02 -1.387556E+01 3.277220E+02 2.931480E+05 2.928856E+05
3 2.846724E-02 2.958356E-01 3.778321E-06 2.801410E+02 -1.344745E+01 2.798181E+02 2.971497E+05 2.968071E+05

Eigenvector matrix [Ti] for current transformation: I-phase = [Ti]*I-mode. First the real part, row by row:
5.991431833176021E-01 -7.071067811865462E-01 -4.052167378310909E-01
5.310884029689407E-01 -2.670468863295909E-15 8.195113121629626E-01
5.991431833176025E-01 7.071067811865489E-01 -4.052167378310873E-01
Finally, the imaginary part, row by row:
0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00

Attenuation
nepers/km
1.437217E-04
4.537410E-05
5.080878E-05

[opON dur'T aseyd-nnA 'Y

SOl
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The modal impedance matrix can be calculated using the eigenvalue matrix V and the
relationV=27Z_ Y,

mod ~ mod :

A . o .
Z, ot = —— where subscript k indicates the mode number A, is the k-th element of the
kmod

matrix V. Thus we get:
0.1575+j0.7206

Z, .= 0.0298 +j0.3512 (Q/km).
0.0285 + j0.2966

The modal wave impedance (4.10) is:

V4
Z gimos = o| =24 and further:
» Yk mod

547.83-j59.16
L= 328.02-j13.88 Q).
280.85—-j13.48
The matrix Z, ., elements should be real since they are physical parameters of the actual line.

so their imaginary parts can be neglected as coming from the calculation errors. [24].

Now the wave impedance matrix in phase coordinates can be determined using (4.77):
387.58 92.56 59.56

,=T,Z,.,T'=| 9256 38155  92.55| (Q)

4 u™ fmod ~i
59.56 9255 387.58

The eigenvalue matrix T can be calculated using algorithms available in many
software packages [66]. The eigenvalue matrices are always real for transposed lines
and the relations (4.69) (4.70) hold. Then one of the known from the three-phase
circuit theory transformations can be applied for the purpose.

In Clarke transformation® (also known as O/ transformation) the following
matrices are applied [19]:

2 2 0 11 1
=12 .1 B2l o1 o (4.78)

20 21 -3 0 3 -43

which after normalization to (4.69) yield the following transformation pair:

* Edith Clarke (1883-1959).
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1 2 0 11 1

B P R E ) I B O ) |

T—ﬁl 5 5 T _\/5\/5 7 (4.79)
A Nt} o B =3
V22 V22

The parameters of line models derived for (0¢f) modal coordinates and for
symmetrical components are the same. If, for instance, matrices (4.79) are used for
transformation of transposed line resistance matrix then the result according to (4.77)
and (4.69) is:

RO RS RM RM
Ry = R, =T" R, R, R,|T (4.80)
Rl RM RM RS

and similarly for the other parameters. Moreover the components ¢/ are orthogonal in
steady state. The ¢fff coordinates make the base for definition of the space vector [76]:

. 3 x
zlY:fa+]fﬂ:\/;(j_’l+£2) (4.81)
which relates the modal coordinates (via (4.79))with the phase ones (4BC):
fo S
frx = T_l .fB
/ B S c

and also with the symmetrical components: positive— f ] i and negative — f )

superscript ~ denotes the complex conjugate function.
The space vector plays an important role in analysis of three-phase AC circuits [24,

76].
b) Frequency-dependent Line Model

There are many algorithms applied to modelling of multiphase circuits with frequency
dependent distributed parameters.
All of them employ two basic methods of transients representation in the long line:
— calculation of transients by use of the Bergeron’s model (see sect. 1.3.7 that
refers to the lossless line),
— application of the line model in frequency domain and return to the time
domain by use of the inverse Fourier transform.
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In case of multiphase line the mutual coupling between particular phases have to be
taken into account. To solve this problem one of the following techniques is used:

1. By diagonalization of the multiphase line parameters the line model splits into
many uncoupled single line modal models (the aforementioned approach).

2. The line model is derived for phase coordinates with full parameter matrices under
assumption that the line is untransposed [3 24 58 87].

Below the approach to frequency dependent model of the multiphase line setup as
used in ATP-EMTP is discussed. Application of this approach to a single-phase line is
shown sect. 4.1.2.

The multi-phase line model is as shown in Fig. 4.18) and the constant resistances in
particular models for modal coordinates are replaced by filters of frequency responses
Z;(jow) and A(jw) — like in (4.20) and (4.21) — which are represented by in series
connected linear RC cells of transmittances Z,(s) and A(s) respectively.

The models for particular modal components are as shown in Fig. 4.10. The
following example shows how the line parameters are calculated.

Example 4.8. Calculate phase and modal parameters of the line in Example 4.1 Assume
that the line is untransposed and the line parameters are frequency
dependent. Use the IMARTI SETUP procedure available in ATP-EMTP

[3].

Model of the frequency dependent long line offered by ATP-EMTP is known as JMARTI [24
58]. The input data for the model are calculated by MARTI SETUP support along with LINE
CONSTANTS procedure (Example 4.7) which calculates the basic line parameters. The
respective input file is shown below.

BEGIN NEW DATA CASE

JMARTI SETUP 1.0 {Note use of PDTO = 1 to allow reduction of order
SERASE

C Line 400 kv

BRANCH PA KA PB KB PC KC

LINE CONSTANTS

METRIC

[¢] Data for LINE CONSTANTS

C 345678901234567890123456789012345678901234567890123456789012345678901234567890

1 .231 .0564 4 3.15 -10.3 24.5 12.0 40.0 0.0 2
2 .231 .0564 4 3.15 0.0 24.5 12.0 40.0 0.0 2
3 .231 .0564 4 3.15 10.3 24.5 12.0 40.0 0.0 2
0 0.5 .2388 4 1.565 -6.87 31.0 23.5
0 0.5 .2388 4 1.565 6.87 31.0 23.5
BLANK CARD ENDING CONDUCTOR CARDS OF "LINE CONSTANTS" CASE
C 1 2 3 4 5 6 7 8
C 345678901234567890123456789012345678901234567890123456789012345678901234567890
C >< Freq >< FCar > <ICPR> <IZPR> =< DIST > <PP>==< >< >< ><><>
100.0 5000.0 180.0 1 1

100.0 50.0 180.0 1 1
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100.0 .01
BLANK CARD ENDING FREQUENCY CARDS
BLANK CARD ENDING "LINE CONSTANTS"
DEFAULT
$SPUNCH
BLANK card ending JMARTI SETUP data cases
BEGIN NEW DATA CASE
BLANK

180.0

The file is very much alike to that in Example 4.7. The notable differences are:

— Template JMARTTI SETUP indicates the procedure type.

—  Declaration of nodes for both sides of the line (BRANCH).
—  Declaration of frequencies (5000, 50 and 0.01 Hz) for which the frequency response is

to be calculated.

—  The numbers 3 (col. 62) and 4 (col. 65) in the last line. The former indicates that the
frequency response is to be limited to 3 decades on the logarithmic frequency scale and
the latter means that the frequency response will be approximated in 4 points within
each decade (the numbers should be much greater, say 9, 10; here the small values are

used to reduce the output file size).

—  Line: $PUNCH means request for the output file * PCH printout.

The output file obtained is as below:

-1 PA KA 2. 1.00 -2
9 7.3615544019279970000E+02
5.16160970375891200E+03 -4.62836678876982000E+03
2.21428884708777900E+02 4.37807446832278400E+02
2.24591087014093900E+02 4.55263702130293400E+02
2.54324867047940400E-01 2.58267247958202700E-01
7.43821799922729000E-01 1.32805685385736000E+00
2.90622851912841100E+00 6.69971775060332200E+00

1 1.01750277755441

4.96285426218186400E+02
4.96823791675659200E+02
-2 PB KB 2.
9 3.41345238243024
5.30870510194876300E+02 2
3.50337060561525300E+02 6.
2.48049348808883800E+03 -1.
1.97752951677736800E-01 2
1.06867294826728000E+00 2
8.95197627537033100E+00 9.
1 6.27968781075658
4.68508344800458900E+02

4.69023674409433600E+02
PC

12 2.94048007726685
4.05546694218969000E+02 5.
1.28675981115441400E+02 3.
3.84565069398721800E+02 7.

KC 2.

30000E-03

1.00
10000E+02

.02556181590067800E+01

29292421363313800E+02
24353670385984700E+03

.77134426872770100E-01
.21360731622174100E+00

97585888710791700E+00
30000E-04

1.00

10000E+02
42993557914113500E+01
02482667071249200E+02
79608344392276500E+02

w

3

-1

3

.34908920073601300E+02
.04928174781558700E+02
.02771805987124600E+03
.75266615734256900E-01
.97949231121861500E+00
.50030074511141000E+01

.68086180404834000E+02
.27034282349728200E+02
.20930281998335600E+02
.53515928524456700E-01
.74655773786376000E+00
.65795393675722400E+01

.04056571557813800E+02
.59727123238581600E+02
2.

12278761695224800E+03
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.19401802383945500E+03
.75763316432903900E-01
.19898614965812600E-01 .56134028988414100E-01
.02757957168211700E+00 .44555679851210300E+00
.10764943326363400E+01 1.13569798059043500E+01
1 6.2206229083791410000E-04

.22175997238486200E+02

4.22644824279796200E+02

.92613893168671900E+02
.65010489469351300E-01

.99694164961513600E+02
.77287520425178000E-01
.08558003958717100E+00
.65825030962793800E+00
.81281850219694700E+01

RPN R e
=S N
[N R i S I\

IS

0.58407538 -0.70710678 -0.41958805
0.00000000 0.00000000 0.00000000
0.56365939 0.00000000 0.80491722
0.00000000 0.00000000 0.00000000
0.58407538 0.70710678 -0.41958805
0.00000000 0.00000000 0.00000000

The file comprises of three parts which refer to the modal components of the line model and
are numbered —1 ... —2 ... =3 ... respectively.

In the subsequent line in each part the order of Z r (s) transmittance (9 for the first and the

second mode and 12 for the third one) and the limit value of the respective impedance for
infinite frequency is printed.

The subsequent three lines show zeroes of the approximating function (9 in total) and in the
next three lines the poles of that function are shown.

Further the information about parameters of A(s) transmittance which approximates the
propagation function for the first mode is shown including the order of the transmittance (1 in
this case) and the wave propagation time for infinite frequency.

The next 2 lines show zeroes and poles of A(s) respectively (in this case it is the first order
function).

In the last part of the output file the eigenvector matrix T; is printed.

The essential simplification of the line model discussed in the example shown is
that the transformation between phase and modal coordinates is assumed to be
frequency independent. In fact if the line parameters depend upon frequency then the
eigenvector matrix T, =T (w) becomes frequency dependent too (4.74). This

dependence is particularly strong for cable feeder models [62]. The solution to the
problem is based on representation of the eigenvector matrix elements by respective
transmittances as it as applied in case of wave impedance and propagation function.
Such approximation is possible after normalization of the diagonalization matrix.
[62].

The most adequate is the model based on direct solution of (4.72). In application to
multi-phase line the equations yield:

U,(jo)=Z,(jo)l,(jo) + A(j a))(Zflz (j) + U, ()

. e AR . (4.82)
L(jo) =Z ] (jo)U,(jo) - A(j0)Z;U,(jo) +1,(jo)
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-JY'Z'l

where by analogy to (4.19): A(jw)=e

Z,(joy=yZ'(Y')" .

The subscripts 1, 2 refer to the respective line ends.
The parameters of the frequency model obtained (matrices Z ,(jw) and A(jw)) must

and the wave impedance matrix(4.10) is:

be determined for the specified frequencies so that they can be approximated in the
considered frequency range [71]. The model excitation functions (input — output)
should be transformed into frequency domain [72].

Exercises

4.1. Check that the equivalent long line IT circuit shown in Fig 4.3 and the equations (4.16)
correspond to the line model described by equations (4.15).

4.2. In Example 4.3 the 400 kV line is analysed for the fortieth harmonic (at fundamental
50 Hz) for which the respective wavelength is A, =147.776 km. Determine the steady

state output current for the metallic short-circuit at the end of the line if the positive
sequence line input voltage is:

u, (t) = \E 400 cos(40at) kV.

Repeat calculations for two values of the line length: a) /=1, b) / = 0.75 4,.

Hint: Write the input voltage as a phasor and use (4.15) assuming that the output voltage
is equal to zero. Note that voltage U, waveform in Fig. 4.4 shows the envelope of the
steady state AC voltage.

4.3. In three-phase transposed line models the parameter matrices comprise of two different
elements — those located in the matrix diagonal and those located aside. The matrices can
be transformed in many different ways including the symmetrical component
transformation. In practice only the matrices with real elements are used, like (4.79), or the
Karrenbauer’s transformation [29, 78]:

11 1 11 11
T=|1 -2 1 T"=§1 -1 0].
1 1 =2 1 0 -1

Check that in all cases the obtained diagonal matrices for modal components are the same.






5. TRANSFORMER MODEL

5.1. Introduction

The transformer is a device in which the electric power is conveyed between two
electric circuits by means of magnetic induction. The magnetic circuit of the
transformer comprises the ferromagnetic core with nonlinear characteristic of
magnetic induction B versus inducing magnetic field H, whose characteristic feature is
the hysteresis loop. In such a circuit, aside of losses related to heat dissipation in
windings resistance, the magnetic losses caused by the core hysteresis loop
(magnetization of the transformer core) and the losses due to eddy currents which heat
the transformer core are observed.

The electric and magnetic circuits of power transformers may have various designs
depending on purpose which the transformer unit is applied for. Thus we have: the
single phase transformers (usually used as measuring CTs and VTs or the auxiliary
transformers) and three-phase two- and multi-winding ones. The windings in three
phase transformers can be connected in A or Y arrangement so that many various
groups of connections are possible.

The windings at both sides of the transformer can be separated or connected — the
latter arrangement is characteristic for autotransformers.

Making the transformer model the frequency range in which the transformer works
must be taken into account. From this point of view the low and the high frequency
models are considered. For the latter the turn-to turn and turn-to ground capacitances
as well as the frequency dependence of the transformer parameters (the skin effect)
must be taken into account when formulating the model equations.

Another classification is related to the structure of the transformer models. Here the
two approaches are applied. In the first one the windings create the ideal transformer
in required connection arrangement and the magnetizing branch is connected to one of
the windings. In the second the transformer model is represented as multi- terminal
circuit.

In this Chapter the various aspects of power transformers computer modelling are
presented.
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5.2.  Single-phase Transformer
5.2.1. Equivalent Scheme

The basic diagram of the single phase two-winding transformer is shown in Fig 5.1
where the main magnetic flux ¢, along with the stray fluxes ¢ and ¢ related to
transformer windings of turn numbers VN, and N,, respectively, are marked. The fluxes

induced by the currents in the windings (i;, , ) have the same direction so they add

since the winding direction is also the same. The beginnings of the respective
windings are marked with asterisks. In this respect the common rule is applied: if the
current flows towards the asterisk in one of the winding then it must flow out of the
asterisk in the second one (Fig. 5.1).

Let’s recall the basic equations of the transformer equations.

A @ T .
I u ! I
O »- 4 I—e—o0
| T
. ™
]\/1 — ¢1 ¢2 ™ N2 u2
L |
\_\ —
Oo— o O

Fig. 5.1. The single phase two-winding transformer

The voltages at both sides of the ideal transformer for which the stray fluxes and
winding resistances are neglected, i.e.: ¢, = ¢, =0 and R =R, =0, are described by
the following equations:

de, (1) de,(?)
u (1) =N, gt , u,(1)=N, (;'t (5.1
from which the transformer turn ratio is obtained and: Mo % =
U, 2

The magnetic force related to the winding currents is given by [8]:

F =N+ N,i, = Rm¢/4 (5.2)
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where R, is the reluctance of the magnetic circuit. In an ideal transformer the
reluctance is infinite due to the infinite value of magnetic permeability assumed. In
such case we have:

=9 (5.3)

and this means that in the ideal transformer the current and voltage transformations
remain in inversely proportional relation.

If the winding resistances and the stray fluxes are taken into account the
transformer terminal voltage equations are:

u, (1) = Rji, (ﬂ"’w
dy‘/” o (5.4)
u, () = Ryl (1) + “ar

where: y,,, =y, +¥, =N, (¢M +¢1) — for electromagnetic flux (Wb) coupled with
the first winding and, similarly: y,,, =w,, + ¥, = N,(8,, + ¢,) for the second one.
Moreover, noting that:
w=1Li (5.9

L — inductance (H), and splitting in (5.4) terms related to the main and mutual flux
@,, we get:

u,(t) =R, (t)+ L, di, (1) +N, dg,, (1)
dr dr

dir (1) , 49, () 0
i, (t t
N=Ry,(t)+L,—~—>+ N,
uy (1) =Ry, (1) + L, dr 274
After further manipulations we get finally:
u(0) = Riy0)+ L, 9D 4 g (1) 2R, 2D _ 921 i(ﬁj (5.7)
% de\ ¢
The equation (5.7) can also be written in the following form:
w®= R0+ L 5D i) - Ry o) - 1, 20 (58)
dr dr
where:
’ _ -1 _ i2 (t) 1 _ .92 r_ 92
u', (1) =0u, (), i',(t) = , Ry =0"R,, L', =¢L, (5.9)

(2
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are the quantities and parameters at the secondary side of the transformer ‘seen’ from
the primary side. The equivalent transformer circuit corresponding to (5.8) is shown in
Fig. 5.2a while the circuit in Fig. 5.2b corresponds to (5.7).

In the next step towards the real transformer model formulation the reluctance in
(5.2) is assumed to be finite and greater than zero: R, >0 (magnetic permeability is

finite). In such case:

. Ro, 1. 1.
llleﬂ—glzzlﬂ—glz (510)

R
where: i, = ”’—¢” is the magnetizing current inducing the flux in the transformer core.
1

The magnetizing current is related to voltage via flux (5.4) i.e.:

u,(t)=N, d¢§t(t) =L di, ) (5.11)

“ode

2

N, .
where: L, = R—l (compare with (5.5)).

o

212

o

Fig. 5.2. The equivalent circuits of the single phase two-winding transformer:
a) calculated for the common voltage, b) with ideal transformer
and c), d) with magnetizing branch

The eddy currents and the hysteresis losses are represented by the resistance Ry, .
(Fig. 5.2c and 5.2d).
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5.2.2. Two-winding Transformer

a) The Equivalent Circuit

The equivalent diagram of the transformer considered (Fig 5.2) can be represented as
the two-port circuit. Neglecting the resistance R, the following relation between
currents and voltages at the transformer terminals is valid (Fig. 5.2d):

mngug+L%nn (5.12)

where:

[w®] . _[40] o _[& L [Ernnw
O Lol %o T R VT Lie (Ler)ier|

The respective digital model can be obtained by analogy to a single RL branch.
Solving (5.12) for the derivative of current vector we get the equation:

%ﬂﬂ=nhm—HTW) (5.13)

which can be represented by use of one of the known digital models.

In some cases problems with determination of matrix L' may appear since the
inductance of magnetizing branch is much greater than the stray inductance of
transformer windings: L,>L,L, and, for =1, all matrix L elements are nearly

identical. Thus very high accuracy of those parameters is required.
Matrix L becomes singular if the magnetizing current is neglected (or is negligibly

small - L, =co) In order to avoid numerical problems the inverse matrix L'’ for

nodes 1 and 2 can be determined directly, by analogy to the admittance matrix in
nodal method [11, 24]:

L 1 L+L, 0L,
S LL+(L L)L, | -OL, & (L, +1,)

(5.14)

To relate the transformer parameters with the transformer ‘plate data’ solution of
(5.12) for fundamental frequency in steady state is used:

u=2 (5.15)

> In ATP-EMTP it is called AR notation in distinction to RL notation which refers to the
inductance representation like in (5.12) [11, 24].
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YT U, _ I _ Zy Zy, _ .
where: U = , I= , L= =R+ joL,
g2 !2 ZZI Z22

or, in admittance form:

YU=1 (5.16)

where: Y=2"".

Due to the problems of inverse matrix L calculation for coupled RL circuits which
are encountered in computer programs the circuit parameters are represented by
matrices R and L' instead of impedance and admittance ones. In such case only
reactance (susceptance) appears in (5.15) and (5.16) and the resistance is processed
separately. (The simplification is justified if the resistance is much smaller than the
reactance) [24]. Neglecting resistance in (5.16) we get:

—-jBU=1 (5.17)

where: B = iL’1 = {

(0

Bl + B12 - BIZ i|
- BIZ Bz + Bl2

The equation is represented by the IT circuit as in Fig 5.3. with parameters ((5.14)
and (5.17)):

2 2
_1 L+(-9), B:le‘Ll+(z9 -9, s 1 oL, |
D wLL+(L+L)L, 7 oLL+(L+L)L, 7 oLL+(L+L)L,
I 1 By, 2 I
(o 1 - o]
iB
a8 1B, 1B, U,
7 7

Fig. 5.3. The equivalent IT circuit of the transformer

The values of those parameters can be determined from the ‘plate data’ of the
transformer:

1 AP U; ,
R = E% (under assumption that R, = #’R,),

rl
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2
Z, = %% =RI+X!, X, =Z'-R}=wl, (under assumption
"9

X, =9°X,),

The transverse (magnetizing) branch parameters (referred to the primary sidel):
2 - UZ 7 - 100-U2 v o B2y _ L

Fe s . s s
AIDFe g ZO.Srl g ﬂRge—ZIz) “

where: S, —nominal power for the side 1, (MVA),
U,, —nominal voltage —side 1, (kV),

AP, — active(dissipation) losses at both sides, (kW),
AF;, — active losses in the core, (kW),

i, —the idle current, (%) referred to the nominal one.

that

In more general approach the two-winding transformer is represented by the five-
terminal element. The fifth terminal is earth. This terminal is necessary in case of multi-

winding or multiphase transformers since any winding can be connected to earth.

The extended representation of the transformer with the earth terminal is shown in
Fig. 5.4. The circuit is said to have the primary form [11, 24]. The resulting
conductance matrix is singular and the circuit can be solved if one of the two-terminal

circuit nodes is earthed.

1 I 1 G I, 2
o——f  }——=—0
Ul G = U U

Fig. 5.4. Illustration of extended transformer representation

By analogy, (5.17) can be extended to the following form:

GU, =1, N |: G -G |U, =|:11
-G G|U,| |1,]

B, +B, -B, |-B -8B, B, |U| |1

. -B, B,+B, B, -B,-B, | U |_|L

- B, -B, By, B, + B, — B, U, I,
B, -B,-B, - B B, +Blz__Q4_ 14_

(5.18)
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The corresponding equivalent circuit is shown in Fig. 5.5. Terminals 1-2 refer to
the primary winding and 3—4 — to the secondary one. Also in this case the circuit can
not be solved without additional earthing which is realized by admittances marked
with dotted line. The admittance values have to be added to the respective elements
located in the diagonal of the conductance matrix in (5.18). This way the winding-to-
earth capacitances or other resistive earthing can be included into the transformer
model [6].

ll 1 j(Bl+Blz) 3 !3
o——s - . o o
Y, \ / EPe
Y, JBlz JBlz U,

lz Ve 7 14
Py 2 .l—| P 7o)
J(B,+B,,) 4
Ve 7/

Fig 5.5. 5-terminal equivalent circuit of the two winding transformer

The resistance representing the losses in the core is not included into the
transformer model discussed. Also, the magnetizing inductance is usually neglected
(L, =e0) and the transverse branches of the circuit in Fig. 5.2 are connected to one of

the two sides of the circuit in Fig. 5.5. In ATP-EMTP the discussed transformer
model is realized by BCTRAN procedure [7].

b) Structural Model

In another approach to the transformer model setup the circuit in Fig. 5.2d is split into
two equal parts as shown in Fig. 5.6.

(e, O

Fig. 5.6. The equivalent circuit of the structural transformer model
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The first part which includes the transverse (magnetizing) branch is represented by
the I'-type circuit described by the equation:

Lo R
i i](t) — Rl Rl u](t) _ L1 L1 i](t) (5 19)
delis@)| |1 _Ri+Re Jug(n)| | L _ L+l i) '
Rl R]RFe Ll LIL,u

while the equation of the second one with connected ideal transformer is [24]:

. 1ol R ool
i Z,S(t) :L o 9 us(t) _ L2 l.s(t) (520)
de[n@0] Lzl | w®] | o RlL0
5,

2

[S]

The resistance R, is included into the model.

The presented approach can easily be extended for the multi-winding transformer
model in which (5.19) refers to the primary side (High Side) while the particular
secondary (Low Side) windings are represented by (5.20). In the model the additional
node S appears (Fig. 5.6).

The discussed equations describe linear and continuous transformer model. The
digital model can be obtained using one of the derivative numerical approximation
methods. The following example illustrates the transformer parameters calculation.

Example 5.1. A three phase transformer 400/15.75 kV comprises of the three single
phase units. Determine the digital model of the single phase unit and
simulate the short-circuit at the HS

Parameters of the three phase transformer:
Nominal power S, =250 MVA, the short-circuit voltage u, =12%, the active losses

AP, =500 kW, losses in the core AP, =240 kW, the idle current i;= 0,7%, nominal turn

ratio of the single unit & = 400/+/3 /15,75 kV/kV.

We assume that the magnetizing branch is connected the HS winding. and the transformer
parameters have to be determined for both HS and LS. The HS parameters can be calculated
from the following equations:
2

R, = ARl 105 (400/?)2 1920,

2(s./3) 2 (250/3)

2
1 wU; 112-1400/+/3
g = - [200/+53) =3840,

2100-S,/3 2 100-250/3
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X, =+Z} Ry =+/38.4>—1.92% =38350Q.
The coefficients ', indicate that the longitudinal transformer parameters are divided into two
equal parts for both sides of the transformer. The same parameters as ‘seen’ from’ the LS are:

R, =R, /8" =0.0089 Q,

X, =X,/ =0.178Q.

The transverse (magnetizing) branch parameters at the HS:
U2, [400/-3)

AR, 0.24

, _100.U5 100(400/-/3 ]
QS /3 0.7-250/3

R =2222 kQ,

=91.43 kQ,

R.Z,
X, =—L2_=100.3 kQ.
R, -Z;

To simulate the short-circuit let’s assume that the supply source of source impedance
Z,=0.008+j0.069Q is connected to the LS of the transformer and short-circuit via

resistance R, =0.5Q is incepted at the HS. In normal operating conditions the transformer is
loaded by impedance Z, =610+ j450 Q (Fig. 5.7).

Fig. 5.7. The analysed circuit diagram

The short-circuit current waveform at the LS of the transformer is shown in Fig. 5.8. The short-
circuit occurs at the time instant f, =25 ms when the instantaneous value of the supply

voltage is equal to zero. In such case the large decaying DC. component appears in the short-
circuit current.

The circuit modelled by use of ATPDraw program is shown in Fig. 5.9. The linear transformer
model is applied for which inductance L, is determined by only one point on the linear

magnetizing characteristic ¥ —i,: W =15971 Vs, i,=1 A (another point is located at the

origin 0,0). The absolute values of that point coordinates are not essentially important - the
important thing is that the value of the inductance L, (5.5) obtained satisfies the relation:

XﬂzwLﬂ.
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Fig. 5.8. The current waveform at the LS of the transformer

Fig. 5.9. ATPDraw diagram of the circuit model

The magnetizing branch in ATP-EMTP model is always connected to the primary (HS) side of
the transformer (P in Fig. 5.9).

5.2.3. Three-winding Transformer

The three winding transformer circuit is usually presented as it is shown in Fig. 5.10.
The magnetizing branch model can be assigned to any of the three transformer
windings. All windings are magnetically coupled by the transformer core.

The subscript digits in Fig. 5.10 refer to the winding numbers. (P, S, T (tertiary) or
H, L, M (medium) notations are also used).

Parameters of the equivalent circuit are determined experimentally from idle run
and from short-circuit tests of the transformer. Power and highest winding voltage are
usually the base values.
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u,

O

R
3 l3
O
‘u3
O

Fig. 5.10. The equivalent circuit diagram of the three winding transformer

The equivalent transformer circuit for longitudinal parameters is shown in Fig.
5.11a. The respective impedances are determined from the equations

zuKHLUVZH :uKHTUrZH 7 =M (5.21)
HL 100-S, HT 100-S, ’ L 100-S, ~

where: Uy, , Uy, Uy are the respective short-circuit voltages (%); U, ,U,, ,U,,
are the nominal voltages across the respective windings (kV); S, is the base nominal
power (MVA) (usually at the HS).

a) b)
L
ZHL
H
ZTL
ZH T
T

Fig. 5.11. The equivalent circuit of the three winding transformer a) in A arrangement and b) in
Y arrangement

Similarly, knowing the power dissipated in the transformer windings their
resistances can be calculated from the equations:

2
_ APCuLT UrL

2 2
_ APC uHL UrH AF)CUH T UrH R
- ’ LT — 2
S)"

g2 , Ry = I (5.22)

RHL
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Using (5.21) and (5.22) the reactance of the respective windings can be
determined. Note that Z,, and R,, refer to the low side (LS) voltage. The respective

HS values can be obtained from:
Zyr =%Z,; (5.23)

and in the same way for resistances.
The parameters of the circuit in Fig. 5.10 can be determined by transformation of
the diagram in Fig. 5.11a into Y arrangement (Fig. 5.11b):
Zy =052y + 2,y -7',,)
Z, =052,y + 2" - 2') (5.24)
Z, =052y 42, - 7'y,
and all impedance values refer to the HS.

The transverse (magnetizing) branch parameters are determined like for the two-
winding transformer from the transformer idle run test results:

2 U} R.Z
Rl 7 100U o ReZy (5.25)

AR s, T R -2

for the branch connected to the HS of the transformer.

5.2.4. Autotransformer Model

Taking into account the equivalent circuit diagrams the autotransformer and the
transformer are very much alike. In this case the LS winding is the part of the HS one
(Fig. 5.12a) thus reducing the autotransformer unit size and production cost. Both
windings have galvanic connection. The magnetizing branch model can be connected to
any side of the equivalent circuit.

b)

iH RH LH NHZ NL LL RL iL
uH RFe 1I_ E § % ML
O - ¢ . o]

Fig. 5.12. The equivalent circuit diagram of the autotransformer: a) winding configuration and
b) the equivalent circuit
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5.2.5. Model of Magnetic Circuit

In the presented considerations it was assumed that the magnetic circuit and active
losses in the core are linear and, as a consequence, the branch parameters are constant.
In fact such assumption can be applied in very low number of cases. That is why the
EMTP offers more adequate models of the effects observed in the transformer
magnetic core. Further the basic models of nonlinear inductance are presented.

Magnetizing Characteristic

The magnetizing characteristic of ferromagnetic material is determined by the relation
between magnetic field intensity H (A/m) and the magnetic induction B (T): H = f
(B)°. The relation is nonlinear with hysteresis loop (Fig. 5.13a). The loop size is
determined by the maximal magnetic remnant induction B, and the magnetic coercion

H

¢

a)

Fig. 5.13. The magnetizing characteristic with hysteresis loop: a) limit loop and b) inner loops

At slow and symmetrical changes of the magnetic field the magnetizing
characteristic takes the shape of many inner loops whose width is determined by the
magnitude of the magnetic field A (Fig. 5.13b). The inner loop vertices determine the
magnetizing characteristic of the magnetic core material (curve 1) [20]. In many cases
the hysteresis loop can be neglected and then the magnetizing characteristic is
represented by the function which is equal to the mean value of the limit hysteresis
loop (curve 2).

To relate the magnetizing characteristic with the electric quantities in the
transformer windings let’s recall some basic equations. The electric current i flowing
through the coil of N, turns wound around the core of the mean length / induces the

magnetic field of intensity H (A/m) and:

$1T=1Wb/m?=1 Vs/m*.
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H=-¢j (5.26)

in which the stray flux is neglected and i is called the magnetizing current. The
magnetizing current and magnetic field intensity can be functions of time: i =i(t),
H=H().

The corresponding magnetic induction B =f{H) is uniquely identified by the
magnetic flux ¥ (Wb) in the N, turn coil whose mean value can be calculated from
the equation’:

w=NSB=N.g (5.27)

where S (m?) is the core cross-section.
The magnetic flux is related to the voltage drop across the coil (5.4) so:

w(t)= ju(z’)dz’ +y, (5.28)

)

The similar relation holds for the magnetic inductance B (with coil parameters like in
(5.27)).
In case of alternate voltage the magnetizing flux strongly depends upon the voltage
initial value. The steady state flux for the sinusoidal voltage of frequency @ is (5.28):
1

Y=—1U (5.29)
w

The properties of the core magnetic material are characterized by the magnetic
permeability ¢ (H/m):

ne (5.30)

which is related to the inductance L by the coil the core size:

2
2w NS (5.31)
di /

In practice it is much easier to use the characteristic =£{i,) (instead of B = f{H))
where the subscript ¢ indicates that the magnetizing current induces the magnetic field
H.

There are many representations of the core magnetizing characteristic used for
choke and transformer models. Some of them are shown in Fig. 5.14.

"1Wb=1Vs.
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In simplest case the piecewise approximation of the magnetizing characteristic
comprises of three segments for which (Fig. 5.14a): L,=0 (the segment lies on
axis) and L, =L (two segments for positive and negative values of the magnetizing
current). The greater number of segments (Fig. 5.14b) results in the better
approximation of the characteristic. The ideal one is the continuous characteristic (Fig.
5.14c¢).

2) 5y

A

Y

Fig. 5.14. Some representations of the core magnetizing characteristic

The magnetizing characteristic can be approximated by a continuous function and
resulting model is called a true type one. The approximation is obtained by use of odd
functions, for instance:

w(i,) = ai, +ai, +asiy + ..., (5.32)

and good result is obtained of the first two terms of the series (a; # 0 and a, # 0).

Inclusion of losses due to the hysteresis and more accurate approximation of losses
in the core can be obtained for the characteristic with the hysteresis loop (Fig. 5.14d),
which can also have the piecewise approximation. The function like in (2.41) can be
used for this purpose:

wi,)=q -arctg(az(iﬂ ilc)>+ asi, (5.33)

where /. denotes the magnetizing current corresponding to coercion H.. If /. > 0, then
the function enables the coarse approximation of the hysteresis loop including the
inner loops (the sign depends upon the sign of y/ds).
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Accurate approximation of effects in the ferromagnetic core in transient state is
difficult [15, 85] and it is important that the model includes the initial conditions for
induction (By) or the flux ().

The initial value of the flux determines the point on the inner loop (Fig. 5.15a).

a) v b) "
78
v (7
I %
it
___Jl | lﬂ
/
27
5 .

Fig. 5.15. Initial condition in the model: a) with hysteresis
and b) without hysteresis

In the model without hysteresis the initial conditions can not be set directly (the
magnetizing characteristic passes through the origin — Fig. 5.15b). The problem can be
solved by introduction of the voltage source which is active in the first calculation
step. The following example shows how the problem is solved in ATP-EMTP.

Example 5.2. Using the ATPDraw interface set up the protection CT model in which
the magnetizing characteristic is represented by 98 (pseudo-nonlinear)
element with the option of setting the flux initial value.

Let’s consider the 5P20® type CT of the following parameters:

nominal power: S, =20 VA (S, =1;,Z,..)

nominal load impedance: Z_,_, =20 Q, cos¢ =0.5,

current ratio: 500:1 (/,, : 1,, ) A/A, winding turn ratio: 500:1 (N, : N,),

the core cross-section: S = 28.8cm” = 2.88-10° m’, the length of magnetic loop: / = 0.675 m,
the secondary resistance winding: R, =4.5 Q.

The magnetizing characteristic is shown in Fig. 5.16. The characteristic has been obtained
experimentally (by measurement) for sinusoidal excitation and the respective values are the
peak ones. It must be noted that such a characteristic is not accurate for large values of
inductance since the corresponding magnetic field intensity H is calculated for r.m.s. values of

current which is strongly distorted; the professional computer programs use the special
correcting procedures [24].

¥ Protection CT of composite error 5% at rated accuracy limit primary current and Standard
Accuracy Limit Factor 20 [46, 47].
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In ATP-EMTP the magnetizing characteristic of the 98 element is represented by the function
w = f(i) (for peak values). Transformation of this characteristic can be effected by use of

(5.26) and (5.27): i, = NLH, w =N,SB.

2

B, T

10°

107!

1072

I 1
I 1
i i
| I
10° 10! 10

10* H, A/m

Fig. 5.16. CT’s magnetizing characteristic

Substituting the values taken from Fig. 5.16 the following data (Table 5.1) are obtained which

can be used for type 98 element set up.

Table 5.1. CT’s magnetizing characteristic: w = (i)

i, A v, Vs
0.0143 0.1440
0.0382 1.4400
0.0573 2.0160
0.0955 2.3184
0.1909 2.4912
0.7637 2.6928
3.8184 2.8368
28.6378 2.9664

The calculation step 7=10"s has been selected and the respective ATPDraw diagram is
shown in Fig. 5.17. The dotted line denotes the CT’s elements; the other ones are: the source

impedance (Z _S') and the load impedance (Z _obc).

The nominal CT’s load is Z

over-current ratio equal to 20.

oben

=10+ j17.3 € and the excitation source allows obtaining the

The CT’s magnetizing branch comprises of element 98 connected in series with the DC.
voltage (source 11) which is used for setting of the inductance y . initial value.
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Z obc Z2 ZS

S «l

Fig. 5.17. The circuit with the CT model

The secondary current i, waveform along with the magnetizing current i, and the flux ¥

waveforms are shown in Fig. 5.18 for two values of the remnant flux: y, =2 Vs (Fig. 5.18a)
andy, =0 (Fig. 5.18b).

a
)i,A
N
204 /v N
/J__-\-\
107/ \\‘

0
—104
-20

=30

b
)i, A
20-

10

0
—~10-
~20-

=30 ; ; ; ; i i ; ; ;
0.00 0.02 0.04 0.06 0.08 t,s

Fig. 5.18. The result of CT’s switch-on: a) for remnant flux ¥, =2 Vs
and b) for zero remnant flux

Basing on (5.28) the external voltage source is switched on at #,, = 0 (TSTART = 0) and
switched off after one calculation step at to = t,, + T (TSTOP=T + £, where & is the fraction
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of T— the declared time interval of the voltage source activation must be slightly longer than T;
otherwise the source will not be switched on. The peak value of U is calculated from (5.28)

written in discrete form for one calculation step: w =UT from which: U =y, /T where: y, —

the initial value of the remnant flux.

5.3. Three-phase Transformer
5.3.1. Two-winding Transformer

The properties of the three-phase transformer depend on arrangement of the windings
connection which is called the winding connection group and on the transformer core
design. In majority of applications the transformer windings are connected in A or in
Y arrangement.

The transformer windings are assumed to be symmetrical that implies the identical
winding equivalent parameters. Moreover, in the low frequency range (up to.
2000 Hz) the transformer capacitances (phase-to-phase and phase-to-ground) as well
as the skin effect can be neglected.

Just like for the single phase transformer the three-phase unit can be considered as
a multi-terminal element or as the circuit corresponding to the transformer design with
distinguished primary and secondary side. Further, the multi-terminal approach to the
transformer winding connection will be presented.

The transformer winding connections are normalized according to respective
standards and, generally, different winding connection groups are applied to different
power networks [36, 91]. Some of them are shown in Table 5.2.

Knowing the transformer winding arrangement the transformer model can easily be
developed. The equivalent circuit of the transformer in Yd11 connection is shown in
Fig. 5.19a. The equivalent circuits of the respective winding pairs are the same as for
the single-phase transformer. Due to the LS winding connection the LS voltage vectors
lead the HS voltage vectors by 30°. The Y side voltage is equal to the phase one while
the A side voltage is the phase-to-phase one. Thus, the winding turn ratio is 3 times
greater.

The transverse (magnetizing) branch can be connected to any side of the
transformer. In ATP-EMTP the magnetizing branch is always connected to the
primary side of the transformer model.

The considered representation of the three phase transformer is acceptable if the
magnetic circuit configuration allows splitting of the transformer into three separate
phase units. It can be done for units with magnetic core as shown in Fig. 5.20b.

The magnetic core design in the three phase transformer determines the
transformer properties, in particular, the equivalent representation for the zero
sequence component. This component produces the magnetic flux which has the same
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sign in all transformer columns. In case of the three column unit (Fig. 5.20a) this flux
loop closes only via external environment (oil, air) which has very high reluctance.

Table 5.2 Selected winding connections of the two-winding transformers

lte Conn
. . *
m ection Diagram Voltage vectors Remarks
group
Y y QIY gly
Uy U, ly
1 YyO0 Uy Uy gly =U, 19
U3Y U. 3y Q}Y sz L/J,v sz
N n
A y
Uy T~~~ Lo U, U U
2 DyS Yan Uyy gl,v - J:_IA
Usy o~ Tl U}y u 39
no o
Y A U
Uyo—yv Uy Uiy U, -
3 | Ydll Usyo—m Uy Uy, U U,=U,/7
Uyyo—r~vy| U o
3 L]lY QZY
No
Y A
U, g,
Uwo_r‘v‘v‘\_ UIL 1Y 1L U,
4 | Ydl Unyo—rvyy Uy U. U, U,=U,/?
Uyyo—r~vv| U. Yt oL
’ * QSY QZY
No
Y 4
Uy Uy Uy
Uy U,
5 Yz5 | .
3y Uy,
N n Uy Uy
A z
Ui Uy Yy
U’?H U QIA QIL
6 | D20 | " U,=U,'9
3 (/,’,L QZL
n Uy Uy Y

*9=U,/U,,U,=U,,U, =U,.

v




134 5. TRANSFORMER MODEL

ing Ry Ly Ny: N, L, R, iz 2)
L1H L1L
Upiy Uy,
Ry, U Uiy
i o0 iL2L
I2H o»{"H —:’—7—4—0 L2L
Uy U
U, Uy
i 130 iL3L
L3H o= H H— ++—=—o [L3L
Upsy Uy
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o N
U, U Upi b)
14 U,,
Ups
Up
U3Y UZY U3A

Fig. 5.19. The equivalent circuit of the Yd11 transformer

The magnetizing characteristic of such magnetic loop is more flat as compared to
the ferromagnetic core characteristic and the nonlinearity effect is reduced. In effect
the magnetizing inductance for zero sequence component L, is much lower. The four

and five column transformers (Fig. 5.20b) are devoid of this effect since the zero
sequence flux loop closes via additional columns.

Similarly to the single phase transformer the magnetizing circuit can be represented
by the nonlinear magnetizing branch as shown in Fig. 5.20 [87]. In case of the three
column transformer the effect of the zero sequence flux loop can be modelled by
additional circuit as shown in Fig. 5.21.
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Fig. 5.20. The three phase transformer cores: a) three column, b) five column

Due to the different magnetic loops for the positive and zero sequence flux
components the three column transformer impedance for the latter is 3 — 5 times
greater [8].

Using two extra ideal transformer of 1:1 turn ratio (Fig. 5.21) the triple value of the
zero sequence voltage 3ugy, at transformer HS is obtained. The triple nonlinear
inductance represents the magnetic circuit for the zero sequence flux component.

ing By Ly Ny:

L1H log
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o
-
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L3H

s 131
O

oN
Fig. 5.21. The equivalent circuit of the YyO transformer with the three column core

In ATP-EMTP the input data format for this model is determined by
TRANSFORMER THREE PHASE (TRAYYH 3 in ATPDraw interface). The relevant
details are illustrated by the following example.
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Example 5.3. Using the ATPDraw graphical interface set up the model of the
110/20 kV power system fragment with 40 MVA YnOyO three column
transformer (Y/Y with earthed HS and unearthed LS - Fig. 5.22).

E 7 110kV 20kV

@ — |@@|

15km

N
N

Fig. 5.22. The diagram of the modelled power system fragment

The transformer parameters:
nominal power: S, =40 MV-A;
nominal voltage: 115/22 kV.
the following parameters have been measured at the transformer LS:
For the positive sequence component:

loses in the core: AR, =32 kW;

magnetizing current: [, =11.4 A;

magnetizing voltage U,, =19.0 kV;

load loses in windings: AP, =205 kW;

short-circuit current: 7, = I,,, =200.8 A;

short-circuit voltage: U, =12.07 kV;
For the zero sequence component:

loses in the core: AR, = 168.1 kW;

magnetizing current: /,,, =280 A ;

magnetizing voltage: U, =1.636 kV (voltage at the short-circuited LS terminals);
=12.5kW;

short-circuit current: /_,, =95 A;
source impedance: Z;; = 0.15+j2.5 Q, Z, =0.26+j3.4 Q;
=254+j158 VA, S,,. , =4.5tj2.2 MVA.

The magnetizing characteristic for LS is shown in Table 5.3).

The 20 kV overhead line:

The line length /=15km; R =0.36Q/km; X, =0.38Q/km; R, =0.60/km;
X, =1.55 Q/km; C, =10.5 nF/km; C, = 4.2 nF/km.

The data are necessary to set up the transformer model (TRAYYH 3 in ATPDraw). The
following calculations are automatically carried out by the program:

load loses in windings: AR,

loading power: S

obc_a obc
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2 2
1, =IWU—N=11.4§=13.2 A, APy, = APy, Yy =32(2j =429 kW,
U 19 U 19

Subscript p indicates that the measurements were not taken in nominal conditions so, assuming
that the circuit is linear, the nominal values are recovered.

Table 5.2. The magnetizing characteristic y = (i) for LS (22kV)

iy, A v, Vs
18.62 57.20
38.95 64.56
367.6 75.27
1121.0 77.97
3587.0 80.43
The same for the zero sequence:
21#01, Uy 280 22 — 7246 A,

40 L
3 \3U,, 3 1.636v3

2 2
U 22
AP, =AP., | —Y | =168.1 =10133 kW.
Feo Fco,,[ﬁuﬂoj [1.636@)

The measured magnetizing current /,, and magnetizing voltage U, determine the linear part

of the magnetizing characteristic § = f(i,) . The respective values are:

i, =21, =114J2 =16.12 A, y =2U,, /[30)=19000y2 /(31443 )= 49.38 Vs.
The values are used for calculation of the magnetizing branch reactance:

X, =

u o
Ly

which, in turn, is used for calculation of the initial steady state of the network.
The transformer impedance can be determined from measurement data obtained in the short-
circuit conditions:

AF,, 205000 u, 12,07

=D SV ) 695Q, Z, =% = =
T3 342008 "B 0.2008V3
Xy =22 - R2 =347 —1.695> =34.66 Q.

and the respective winding parameters are:
R, =R;/2=08475Q, X, =X,;/2=17.35Q,

2 2
221 00319 x, = x,[ 22| —06359.
115 115

34.7Q,

RL:RH(
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As the losses in iron for positive and zero components are different they can not be represented
by the resistor connected in parallel with the inductance L, (Fig. 5.21). The losses can be
represented by the external three phase element of mutually coupled resistors connected to the
transformer terminals. The resistance matrix of that element can be determined from the
symmetrical components relation:

Rpy +2R;, Riy— Ry,
Rl:egz F03 F]’RFeMZ F03 F]’
3U; 1.636° U, 19°
where: Reoo = HOp 3-1.636 1000 =48 Q, Ry, = “ =11000=11281§2.
APy, 168.1 AP,
. 48-11281
Thus: R < S8H2IBL o AR
3 3
These resistances are calculated with respect to the L-side and form the following matrix:
Reis Rewy Reas 7536.8 —3744.0 —3744.0
Ri, =|Reuyy Ries Rypay |=| —3744 75368 —3744.0 |
Riey  Rreeyr  Rrpes —-3744.0 -3744.0 7536.8

Using the ATPDraw interface the coupled resistors in form of the type 51, 52, 53 elements are
connected to the transformer model by default [7].

The constant zero sequence inductance Lo, is represented by the reluctance at the LS of the
transformer:

:!UNL/\E! _

3L,

The inductance L, can be estimated from the equation:

U, _ii
“or INL ZNH
LO

m0

N Uy
u= , where I,, =—=~—, Z,,, =— represent the base values at the
ol ,, /3 J3U,, Sy

primary and the secondary side of the transformer, respectively (Fig. 5.21).
Substituting the necessary data we get:

1636(1_ 724.6 34.7) ,
2
Lo, - 1049.7330.6) _ 517 H, and: &, = (2/43) _ 2
1007-280/3 3Ly, 9:0.0517

The neutral point earthing resistance Ry,. is determined as the difference between power losses
for zero and positive sequence components measured in the transformer winding:

2 2
AP,, = AR, — AR, , where APy = APy, []IBJ =1 2,5[29(;(;?) =502.57kW (referred to
z0

=1039 €.

the nominal current). Thus:
APy, =502.27-205.0 =297.27 kW.

The earthing resistance value is:
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AP, 297270 0

=R, = " _08
@By ) T (3-200.8)

In ATPDraw interface the resistance is included by default.
The load impedance is calculated from the equation:

2
Z,=—2 (the asterisk denotes the conjugate value). Further:

=0

Ry,

2 2
Zope a =L_=11.35+j7.069, Z e b =279
- 254-j158 - 45-j22
The load impedance is represented by the RLCY3 element while the line is modelled by use of
the three phase IT circuit with the following matrices R, X, C:
_ R,+2R, R,-R,
3
Ry =6.6Q, R, =12Q.

=71.74+ 35.07 Q.

Ry , Ry, = , where: R, =15-0.6=9.0L, R, =15-0.36=5.4Q. From that:

Similarly, the line reactance is:

X,=15-1.55=2325Q, X, =15-038=57Q, X, =11.55Q, X,, =5.85Q.

The line capacitances are represented by the respective susceptances (B =wC =2nfC,
f =50Hz):

B, =100m-15-42-107 =19.79 uS, B, =1007-15-10.5-107 = 49.48 uS.

By +2B, _19.79+2-49.48 _ 39.5811S, B, = B, - B, _49.48-19.79 —_9.97uS.

3 3 3 3

The ATPDraw model of the system considered is shown in Fig. 5.23. The primary side current
waveforms calculated for the transformer switch-on in ‘no load’ conditions are presented in
Fig. 5.24. The highest voltage in phase L1 results in very small value of the magnetizing
current in this phase. The currents in other phases are biased in the same direction (positive or

negative half-waves) so the content of the second harmonic is very large in these currents.

B =

Fig. 5.23. ATPDraw model of the system considered
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Fig. 5.24. The current waveforms during switch-on of the unloaded transformer
Large zero sequence current 3/, flows through the earthed neutral point at the transformer
primary side.
5.3.2. Multi-winding Transformer

Three winding transformers are applied in power systems very frequently. The third
winding, if connected in A arrangement (mostly in autotransformers), effectively
reduces the transformer zero sequence impedance in networks operating with the
earthed neutral point. Transformers with grater than three number of windings are
used rarely.

Some examples of winding arrangement in three winding transformers are shown
in Fig. 5.25. The tertiary winding is denoted by T.

Yy0d11 Ydl1dl11
T T1

H @ L H @ T2
(A (AD)

Fig. 5.25. Examples of winding arrangement in three winding transformers
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The three phase three winding transformer model can be obtained by connection of
three single winding three phase transformer models (s. 123). If one of the windings is
in A arrangement then the impact of the zero sequence component flux can be
neglected’. The example 5.4 shows how the three winding transformer model is
realized in ATP-EMTP.

Example 5.4. Using the ATPDraw interface set up the model of the 220/110/10 kV
power system fragment with YnOynOd11 160 MVA transformer (Fig.
5.26). The load at MV side (10kV) is §,=32 + j1§ MV-A. and the
secondary winding load is S, =105 + j28 MV-A. The other system
parameters are as below.

The transformer parameters:
nominal power: S, /S, /S ;=160/160/50 MV-A,;

nominal voltage: 230/120/10,5 kV;
short-circuit voltage: uy,;, =10%, e =33.5%, uy,; =20.8% (referred to HS);

idle current: i, =0.5%;
losses in the core: AP, =0.25% ;

winding resistance: 320/80/2.4 mQ;
source  impedance:  Z,,=035+3.77Q, Z,,=1.16+10.42Q; Z, 6 =0.18+1.55Q,

Z,, =0.56+j2.75 Q.

Fig. 5.26. The system diagram

The magnetizing characteristic (the relative values) is as in Table 5.4.

The turn ratio calculation:
Sy = U"H _230 =219, ¢, = U :@:1.92-
U, 105 U, 120

’ The zero sequence voltage at the Y side which induces the flux is small since the A
winding enhances the zero sequence current flow at the YN side.
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Table 5.3. The transformer magnetizing characteristic

iy /i,u(J I///V/O
1.0 1.0
1.4259 1.2285
4.0846 1.5015
74.517 1.7745
322.0 1.911

The transformer short-circuit impedance:
2 2 2 2
B T L e T
_ gy Upy _ﬁ2302 -
100 S, 100 160
The calculations refer to the HS. The winding impedances (Fig. 5.25) are (for the HS):
Zy=05(Z,y +Z, —Z,,)=0.5(33.06+110.76 — 68.77) = 37.52 Q,
7', =05(Zy + 7,0 =2, )=0.5(33.06 +68.77 - 110.76) = —4.46 Q,
7', =052, +Z,, -7, )=0.5(110.76 + 68.77 - 33.06) = 73.23 Q,
and: Z, =7, /0%, =—4.46/1.92> =-1.21 Q, Z, =Z', /8, =73.23/21.9> =0.153 Q.
Knowing the resistance values the winding reactance can be calculated:

X, =z} -R}

Assuming the magnetizing characteristic is determined for the HS the relative values (Table
5.4) must be multiplied by the nominal ones:

_~2U,; _~/2-230000/43
By 314.16

i =21,y 1100=+2 - jgogz(()) -0.005=12.84 A,

As a result the magnetizing characteristic for the 230/4/3 kV winding as in Table 5.4 is

obtained. Resistance representing the losses in the core at the HS:
U, _100U7, 100-230°

Fe ™ -

AP, AP.S, 0,25-160

=110.76 <,

HL

68.77 Q.

=597.77 Vs,

R =132 kQ.

Table 5.4. The magnetizing characteristic for the 230/ Y3 kv winding: y = /(i)

i, A v, Vs
2.84 597.8
4.05 734.4
11.6 897.6
211.6 1060.7
914.50 11423
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The load impedance for MV (10 kV) network (A arrangement):
_ Uy _ 105°

oS, 32418
In case of the three winding transformer the reactance of one winding is negative what may
bring about the numerical stability problems. That is why the magnetizing branch should be
connected to one of the transformer terminals but to the neutral point (Fig. 5.19). In our case
this is HS winding [17]. The considered model diagram is shown in Fig. 5.27. The transverse
branches are represented by TYPE-98 (pseudo-nonlinear reactor) elements which in
ATPDraw are denoted as NLININD.

=2.62+j1.47 L.

LY LY i
LIL LiL
LRve RHY LHY
L1H
R Iy
Fe H— 1 e+—=o[.1T
Ly Ry,
i
L— S5 2L
iL2H
L2H
I Ipor
EM—: o.2T
i
L—— 25 3L
iL3H
L3H
2 f Ip3r
EM_: ol.3T
NH © °NL

Fig. 5.27. The considered transformer model
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The power system model is shown in Fig. 5.28. To stabilize the model the unearthed 10 kV
winding is connected to the earth via 10 nF capacitors (corresponding susceptance 10.87 uS) in
each phase. Being equivalent to few tens of meters of cable feeder the capacitors do not
essentially change the system operating conditions.

| =

A

iy
3000 —

1000 -

—1000 -

-3000—

—5000 -

77000 T T T T T T T T T
0,00 0,02 0,04 0,06 0,08 t,s

Fig. 5.29. Current waveforms at the HS of the transformer

The magnetizing branches are connected to the earthing resistor R, =1.0 Q at the HS of the

transformer.
The L1-G fault at the 110 kV bus-bar was simulated via fault resistance R_ =0.5Q. For this

purpose the splitter was used. The respective current waveforms are shown in Fig. 5.29.
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The multi winding transformer model can be applied to modelling of winding
internal faults. In such case the faulty winding is divided into two parts and fault
model is connected to the winding fault location. Using the ATPDraw interface
transformer models the faulty winding division must be done in all three phases. Thus
modelling the internal winding fault in two winding transformer the three phase one
must be used in which two in series connected windings make one winding of the two
winding transformer.

5.3.3. Z (zig-zag)-connected Transformer

The HV/MV transformers usually operate in Yd arrangement with adequate phase
shift. In order to get the possibility of MV side neutral point earthing (for instance, via
Peterson coil or resistor) the special earthing transformers are used. In such
transformers the earthing windings are connected in Z arrangement (zig-zag — Table
5.2) in order to minimize the transformer zero sequence impedance value. The
windings connection can provide positive or negative phase shift (Fig. 5.30). In
general, Z connected windings may have different number of turns and the resulting
relations are [40, 41]:
—  turn ratio:

N, U, sina

oy SN 5.34
* N, U, sin(n/3-a) (5:34)

Fig. 5.30. Zig-zag connections



146 5. TRANSFORMER MODEL

— voltage vector relation in the first phase:
— QIL
W (5.35)
— QILZ?zejpnB
Yo =T gom (-36)
where p denotes the sign which for positive phase shift (Fig. 5.30a) is also positive
(p =1, index k = 2). For negative phase shift (Fig. 5.30b) p =—1, index k= 3.
In the equivalent circuit the winding resistance is proportional to the turn number
and the reactance of in series connected winding is proportional to the squared turn
number. Thus, (R=R. +R,, X =X_+X )

R=_R_p_Ro (5.37)
1+ T 1+8

X XY
R R

(5.38)

The magnetizing current is measured for unloaded transformer and can be
determined for any winding. In case of the first phase the magnetizing current is
related to the first core column and can be determined from the
equation/, =U,, / jX . The losses in core iron can be neglected. Using the first part

of the winding the magnetizing current is:

[,=1, =2 (5.39)

The second winding on the same column refers to the phase L3 and the related
magnetizing current is:

U, :
1,=—"2=1,¢"" (5.40)
= u . =z

y JX/ly

Equations (5.39) and (5.40) are valid for the transformer with positive phase shift

(Fig. 5.30a). For negative phase shift the sign of power in (5.40) must be changed.
Multiplying (5.40) by &, and subtracting (5.39) from (5.40) we get:

_ U
lm(l_zgzejzn/z):_%z _192 _—le (5.41)
J J

w w
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where: X = FX . - Applying this relation along with (5.35), (5.36) and (5.38) to
(5.41) we get the final formulas [40]:

2
X X,

U

- H X, =M 5.42
ol d T 1+ 8+ (>42)

which enable to calculate the magnetizing branch reactance from the measured
reactance X, .

In similar way the magnetizing reactance for zero sequence component can be
determined. The zero sequence currents in windings on the same column flow in the
same direction and bear the opposite signs so, by analogy to (5.39) and (5.40),
equation (5.41) takes the form:

U

L,(1-8)= o~ 8,20 (5.43)
JXyzo .]X,uyo

where: U _,, U, — the zero sequence voltage on the respective windings; X ., X,

— the respective zero sequence magnetizing reactances.

Equations analogous to (5.35), (5.36) and (5.38) applied to (5.43) yield:
2

u, 2 U, 20 (5.44)

S () A A (]

where: U,, I, — the r.m.s. values of the zero sequence voltage and current at the

transformer Z terminals.
Note that for ¢ =1 (both windings have the same number of turns) the zero

sequence magnetizing reactance tends to infinity (no magnetizing branch). The
transformer impedance, as ‘seen’ from point n (Fig. 5.30), is very small (equal to the
winding resistance and the stray reactance only).

The phase shift ¢ =2n/6 of the earthing transformer can be adjusted in ‘hour’
steps (0, 6, 5, 11,...) depending on how the third winding is connected.

Changing the ratio ¢, the phase shift & of any arbitrary value can be obtained.

This property is applied in design of three winding Zdy transformers which supply
the electronic power converters. In such application the transformer is supplied from
the Z winding side and the phase shift value between A and Y windings is selected to
minimize ripples in the 12-pulse converter d.c. output current. [40]. The winding
connection diagram of such a transformer along with the vector diagram are shown in
Fig. 5.31. In ATPDraw interface such a transformer is modelled by use of
SATTRAFO block and the input data can be calculated from equations presented in
this paragraph.
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a) b)

L
oY,

E
Z, o [; é; oD,
oY,
Z; 0 [}; © Dy
oY,

|

N, o oN,

Fig. 5.31. Transformer ZNd11y: a) wiring diagram, b) voltage vector diagram

Exercises

5.1. Show the winding connection diagrams for the two winding transformers in the following
connection groups:

a) Yd5 b) Zy5 c¢)Zyll d) Dz6 ¢) Dd6 f) Yy6 g) DO h) Dyll

5.2. In Example 5.3 the modelling procedure for the three column YyO transformer is shown.
The presented magnetizing characteristic (Table 5.3) refers to the LS (22 kV) of the
transformer. Rescale that characteristic for the HS (115 kV) of the transformer.

5.3. The LS winding of the YyO transformer in Example 5.3 has been rearranged into A
connection thus making the new Ydl unit. Calculate the LS nominal voltage of the new
transformer for which the original magnetizing characteristic doesn’t have to be re-scaled.
Set up the ATPDraw model of the new transformer using the original transformer data.
Carry out the relevant comparison tests.
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5.4. Below the results of the magnetizing characteristic measurement for the LS winding of

5.5.

the Yd1 transformer are shown. The transformer parameters are:
§. =63 MVA, U, =115/11 kV, AF,, =kW, AP, =kW, i, =0.8%.

Measurement results:

LA U, kV
1.53 11.0
2.86 12.1
9.55 13.2
28.6 13.7
107.9 14.3

Determine the characteristic ¥ = f'(i,) which can be used in ATP-EMTP (peak values).

Note: In ATP—EMTP such calculations can be carried out using SATURA subroutine. As
the input data the relative values of the original characteristic (as above) must be entered
(voltage and current referred to the nominal values for the winding considered)— see file
saturl.dat.

Set up and examine the transformer Zy5 20/0,5kV model of the following parameters:
S,,;=630kV-A, S,=100kV-A, u,=4.5%, AP, =1.5% (referred to S, ). The short-
circuit power at the 20 kV busbar S, = 6000 MV-A. The neutral point at the SN side is

earthed via resistor and at the LS is earthed solidly. Determine by experiment the earthing
resistance value for which the short-circuit current at the 20 kV busbar for the phase—to-
ground fault is equal to 100 A r.m.s.






6. MODELLING OF ELECTRIC MACHINES

In this Chapter rotating electric machines are analysed. It is assumed that the Reader
knows the basic theory of electric machines design and operation. Electric machines,
due to the magnetic coupling between the stator and the rotor windings, are similar to
the transformer. However, since the rotor winding is in continuous motion with
respect to the stator ones the analysis of the electric machine is more complex.

The presented here analysis is limited to the synchronous and the AC induction
(asynchronous) electric machines operating as electric motors or as power generators.

6.1. Synchronous Machines

The basic functional diagram of an electric machine is shown Fig. 6.1. The electric
machine design details may differ significantly depending mainly on the applied
rotating velocity of the machine rotor. This velocity is related to the power network
frequency f by the following equation:

f= % (Hz), (6.1)

where: n — the rotating velocity of the rotor, (1/min), p — the number of pole pairs.

Fig. 6.1. The functional diagram of a three phase rotating electric machine; p = 1
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The factor n/60 (Hz) in (6.1) is the rotating velocity of the electric machine shaft.
Multiplication of the machine pole pair number results in adequate increase of the
electric and magnetic quantities related to the rotating magnetic field produced by the
machine rotor. For example, if the angular speed of the magnetic field in the machine
7. changes p times faster than the angular speed of the rotor ¥, then:

v, = DY, (6.2)

In case of cylindrical rotor with a single pair of poles (as in turbo generators) the
rotor speed is equal to 3000 rotates/min (for the network fundamental frequency of
50 Hz). The power generators driven by the water turbines (hydro generators) usually
rotate with the lower speed so they must have the greater number pole pairs.

6.1.1. Model in 0dgq Coordinates

a) Electric Part

The machine shown in Fig. 6.1 can be represented by the equivalent diagram
comprising of four separate circuits as shown in Fig. 6.2. The three-phase circuit
represents the stator windings. If the stator windings are connected in star arrangement
the neutral point can be earthed directly or via impedance The excitation winding is
represented by the circuit of the equivalent parametersr,, L, and is supplied by the

external d.c. voltage u, .

Iir 1y ig
A A
L7 Ly L Uy
r'4
I 7
b D N rg Lss i
Y Y Y
A
Lp
re Up
io 1o Lecc
ic
LQ UCT

Fig. 6.2. The equivalent circuits of the synchronous machine
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The other two circuits represent the damping windings located at the machine
rotor. The damping windings are meant for suppression of the rotor oscillatory swings
which occur in transient states. These equivalent (and in fact dummy) circuits are
located in the main rotor (7,, Lj) axis and in the vertical one (7,, L,). In case of

relatively low power units (up to a few MVA) the excitation flux is generated by
permanent magnet rotors thus improving the machine reliability and efficiency.

The stator windings can be connected in star or in delta arrangement. The three
following circuits are related with the machine stator: the excitation circuit driven by
the external source to produce the magnetic field and the two equivalent D and Q
circuits. The current and voltage directions (arrows) are shown in Fig. 6.2 for the
stator and rotor windings.

All the circuits are mutually coupled (the equivalent damping circuits are short-
circuited) and represent sort of a transformer which can be described by the following
equations [10, 24]:

u=—Ri- ¥ (6.3)
dr
where:
i Uy ] _ZA_ _l//A_ _rA i ]
Ug Iy Vs Tg i
u 1 v !
u= __C_ . 1= —C- , \I]: —l//—c- R R: ————___E_:_ _________ s
U Ly Yy Py
0 Ip Yp i p
L 0 | Lo | 1Yo | i ! "o |

and, assuming that the circuit is linear, the particular fluxes are proportional to the
values of currents:

_WA_ _LAA LAB LAC i LA] LAD LAQ_—IA_
Vg Lyy Lgp Ly i Ly Ly, Ly | ip
l//C L CA L CB LC C : LCf L CD L co iC
| =5y Fo————s—————= < (6.4)
vy Ly Ly L Ly Lp Lp|i
I
Vp Ly, Lpgy Lpe : LD/' Ly, LDQ Ip
Vol Lot Los Loc 1Ly Lop Lgg | g ]

or, in compact form:
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L, L_J|i
W s :{ s xr:| .ABC 6.5)
Vo | Ly L, 1wo
in which the quantities related to the rotor and stator are separated. However, since the

rotor turns, reluctances for particular magnetic fluxes change. In effect the inductances
in the machine equations depend on the rotor angle position ¥ (Fig. 6.3):

v =L(y)i (6.6)

and:
t
y=7.=[odr+y, (6.7)
0

where: @ = w, = w(t) — electric angular velocity, y, — the initial value of y,.

It should be noted that the rotor angular velocity depends on the pole pair number
and, by analogy to (6.2):

w, =—= (6.8)

The equation (6.8) is characteristic for synchronous machines in which the rotor and
stator magnetic field rotation velocities are the same in the steady state. The rotor
synchronous rotation velocity is p times lesser.

Analysis of the diagram in Fig. 6.3 leads to the following equations for the stator
inductance matrix Lg elements:

Ly, =Lg+Ly,cos2y,Ly,=Lg+L, 008(27—2?“} Lec =Ls+ Ly °05(2y+ ?j

Ly=L, =—|Ms+L, cos[27/+%jj,

Lye=Loy=— My+L, cos(Z]/—%D,

Loy=L,.=—M;+L, cos(2y+5?nD,

where: Ly, Ls, My are the constant inductances; ¥ is the angle between the rotor main

axis d and the magnetic field axis of 4 taken as the reference.

In dg coordinates the axis d leads the axis ¢ and such arrangement is in accordance
with the adopted standards of synchronous machine analysis [10, 24].

Inductance Ly, appears in model of machines with salient poles; for machines with
cylindrical rotors Ly, = 0.
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direction
of rotation

Yc

Fig. 6.3. the equivalent diagram of synchronous machine

The stator and rotor mutual inductances can be determined in the similar way:

27 2n
L,=L,=M,cosy,L,,=L,=M_,.cos|y—— |, L., =L,.=M,cos|y+—|,
ar =tp 7 COSY, Ly =Ly 1 (7 3) o =L 1 [7 3]

27
L,,=L,,=M,cosy, L,,=L,,=M,cos j/—T s
LCDzLDczMDCOS[}/+2Tn),

. . 2n . 2n
Liy=Ly,=Mysiny, Ly, =Ly, =MQSIH(]/—?j, Lep =Lyc =MQSIH(]/+?].

The self- and mutual inductances of the rotor do not depend upon its angular
position and the inductances of vertically laid windings are equal to zero:
Lp =Ly =My, Lp=Ly =0,
Lpp =Ly, =0.
The parameter matrix in (6.4) and (6.5) is symmetrical (L, =L ).
The machine model described by (6.3)(6.7) is called the natural one or the

machine model in phase coordinates. The model parameters are time-varying what is
clearly noticeable after substitution of (6.6) into (6.3):
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u=—Ri—Mi—L(y/)ﬂ (6.9)
dt dt

Numerical solution of (6.9) is cumbersome and sometimes essential for the natural
machine model feasibility.

Simplification of the problem is obtained by replacement of coordinates attached to
the machine stator by the coordinates attached to the revolving rotor. The coordinates
are determined by mutually vertical axes d—¢. This approach is known as the Park’s
transformation. The third coordinate is related to the zero sequence component and is
taken into account if the stator windings neutral point is earthed. The stator currents
and voltages are transformed into Odg coordinates in the following way:

igg, = Pil(?’)iwc

y (6.10)
u,, =P (M 5c

Ly Uy
where: 1, =i, [, W, =| U,

Ly Uy

The same relation can be written for the magnetic flux.

Matrix P(y) contains coefficients which project the stator phase quantities onto d—
g axes of the revolving rotor. The zero sequence components are like in standard
symmetrical component transformation:

1 1 1
V2 V2 V2
Pl(}/)=\/g cosy cos(y—é—nj cos(y/+2?nj (6.11)
sin sin| ¥ — 2 sin| ¥ + 2n
I /4 /4 3 4 3))

The constant normalizing coefficient has been introduced to make the matrices
orthogonal:

cosy siny

1
2
P(y)=[P"(y)]T=\E % cos(y—%”) sin(y—%"} 6.12)
1
2

cos(;/ + 2—“) sin(y + 2_1{)
3 3
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and to simplify the inverse transformation:

ipc = P(?’)iwq (6.13)
W pc = P(}/)UOdq '

since now the normalizing coefficients used for both transformations are the same.
Substitution of (6.13) into (6.3) with reference to (6.4) and (6.5) leads to the
following equation:

{P(V) j||:u0dq } _ {rwc }{P(V) j||:i0dq } _d [P(V) :||:‘|’Odq } (6.14)
1]juy, L% 1jig, | dt 1] W mo ‘
and further:
|:u0dq } _ _|:I'ABC }{iom] } 3 i{|:\ll0dq }} N {Q j||:\|’()dq } (6.15)
U o Too || Ipo | df || Wm0 0 Wmo

where matrix:

b 00 0
Qz%P(y)z 00 -1 (6.16)
01 0

is the rotation matrix [30].

Note that resistance matrix R being diagonal remains unchanged after
transformation. Moreover, it can be assumed that resistances in all phases are
identical:

V=V, =T, =7,

To facilitate calculations (6.15) is represented using the machine resistance and
inductance R L parameters. Substituting (6.13) into (6.5) we get:

{P(V) }{Wodq } _ {LS LS'}{P(J/) }FO‘M } , and further:
1 \l’jDQ Lrs Lr 1 lfDQ

{MHP (DLP() Pl(y)Lx,}{iwq} 6.17)
Vo L, P(y) L )

r

The inductance matrix in (6.17):
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L, 0 0 0 0 0
0 L, 0 kM, kM, 0
LE{PT(@LSPW) P00 L0 0 kM| o
L, P(y) L, 0 kM, 0 1 L, M, 0
0 kM, 0 | M, L, 0
0 0 KMy, 0 0 I

is constant and time invariant and:
Ly=Lg—2Mg, L, =Lg+Mg+kiL,, L,=Ls+Mg—k’L, , k=~3/2.
Moreover, the normalized form of matrix P(y) makes the inductance matrix

symmetrical thus facilitating the respective numerical calculation procedures.
Finally, (6.17) can be written in the following compact form:

Wy =L, (6.19)
i
where: vy, = Wou Jip =]
Y mo )

Relations between electric quantities in 0dg model of electric machine are
presented graphically in Fig. 6.4.
In similar compact form (6.15) can be written:

Wi o Ri,—u,+u, (6.20)
dt
or:
d(;—f:L_El(—RiE—uE+uw), (6.21)
where:
0
u —
W no oy,
0

W, =L, +kMyiy, v, =Ly, +k(M,i +Mpi,).
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stator winding rotor winding
7, i
Uy
Ta i
Uy
Iy rQ pd "a iq
kM,
A T A
u
L, L, 4

Fig. 6.4. Graphical representation of synchronous machine for Odg coordinates

Equations (6.20) — in flux notation or (6.21) — in voltage notation, along with (6.10)
and (6.13), define the electric part of the synchronous machine for Odg coordinates
(Fig. 6.4). The angular velocity @ in (6.21) refers to magnetic field changes and is
related to the rotor angular velocity according to (6.8) which describes the coupling
between electrical and mechanical part of the machine model.

The presented model can be modified according to actual needs (simplification of
calculations, better representation of electromagnetic effects). In order to obtain the
identical coefficients of mutual inductance the transformation ratios between windings
in d axis can be modified [24]:

V3/2M  =N3/2M =My =1L,,.
The modification is effective for correct turn numbers in particular windings. The
first equation (M, =M,) can easily be satisfied since the damping winding is
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dummy. The second one is true for corrected turn number of the excitation winding
which can be calculated from the following relations:

. |
Loy = T iy Yo =ik, W, ug, =kk,u;,, (6.22)
1"m

M,
where: k, =—.
R

The modification also requires the adequate rescaling of the excitation current
value what can be done outside of the model.

Due to the modification the equivalent voltages in the coupled magnetic circuits
(Fig. 6.4) are the same so the circuits can be directly connected. As a result the
equivalent circuits as shown in Fig. 6.5 are obtained. Splitting (6.21) into three parts
respectively related to Odg coordinates we get:

—— Y
MQm l/lq

Fig. 6.5. The equivalent circuit diagram of the synchronous machine for 0dg coordinates
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d ld Ld Mm Mm rs id ud - a)l//qm
o i |=| My Ly M, | | = T fin L |~ " U | T 0 (6.23)
iDm Mm Mm LDm L rDm n _iDm _ L 0 _ O
- o - _
i L M, r, I u w
Al | B Mo | o ||t | ] OV an (6.24)
dt| iy, MQm LQm ] Tom | fom | | 0 0
diy _ 1o, _to (6.25)
dt L, L,
where:
W, =L, +Myigns Wy=Liig+M, (i, +iy), M,=kk,M,, L,=k%L,,
LDm = klzkniLD b LQm = klzkriLQ > MQm = klzkmMQ > rfm = klzkjlrf > Tpm = klzkrfer >
Yom = k]2 k,i T -

The coefficient k,, in (6.22) can be determined by measurements for idle (no load)
run of the machine [24] when i;=i,=ip=0and u, =@M i, . Then, using (6.22), we

can write:
oM, iy \/EUGrﬁn
\/gklUG kla)lNMm ’

k, (6.26)

where: Ug — the nominal voltage of the generator (r.m.s. phase-to-phase value for
stator windings in delta arrangement or r.m.s. phase-to-ground value for stator
windings in star arrangement), iro — the excitation current for machine idle run.

It is assumed that the machine model parameters in ¢ axis can be modified by use
of the same coefficient %,,.

More accurate modelling of the machine operation in transient states can be
achieved if the greater number of the dummy short-circuited windings is included into
the machine model in both (d and ¢) axes. Having different parameters the windings
can model the effects in the machine iron that have different time constants [4, 8, 57].

The parameters 74 1 M, in (6.26) as well as the other ones are determined
according to the specified standards [64]. The machine parameters measurements can
be carried out both in short-circuit and in idle run conditions. Usually the following
machine parameters are deemed to be the basic ones [24, 64]:

R — stator winding resistance;

s

X, — stator winding stray reactance;
X, — zero sequence reactance of the machine;
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X',, X', — transient reactance: series and transverse, respectively;
X", , X", — sub-transient reactance: series and transverse, respectively;
7,, T, —transient time constants: series and transverse, respectively;

7', , 7', — sub-transient time constant: series and transverse, respectively.
The reactances in the list above refer to the nominal frequency, for example,
X, =w,yL, while the time constants determine the transient d.c. components decay

rate:

L X

T=—= .
R  w,\R

Parameters which refer to the open generator circuits (idle run) are denoted by extra
‘o’ in the subscript, for example: 7/,, denotes the time constant in d axis for the idly

running generator.
The further details concerning the machine model parameters determination can be
found in [4, 24, 64].

b) Saturation Consideration

Accurate modelling of magnetic circuit saturation effect in rotating machines is a
complex problem which requires the cumbersome analysis of the machine magnetic
core design by use of advanced numerical methods like Finite Element Method [123].
Therefore the commonly applied methods of transient state analysis in electric
machines are based on the following simplifying assumptions [24, 60]:

— the overall magnetic flux produced by a given winding comprises of the basic
and the stray flux only; the saturation intensity of the magnetic material
depends upon the value of the overall magnetic flux;

— the stray flux does not get saturated;

— the mutual inductance of the rotor is sinusoidal;

— the hysteresis and the eddy currents effects are negligible.

The magnetizing characteristic of the idly running generator (open stator circuit
while the excitation current is changed at nominal rotation velocity) is necessary for
inclusion of the saturation effect into the machine model (see Fig. 6.6 [53]). The
characteristic can be continuous or piecewise approximated.

Calculation of saturation effect impact is carried out by iteration process in which
the new points on magnetizing characteristics are calculated for all generators present
in the analysed network. The process is illustrated in Fig. 6.6. The reference base for
inductance calculation is the linear part of the magnetizing characteristic whose slope
m; = tan(¢y). Let’s assume that the machine working point 4; has been determined in
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the current calculation step. The point is located on the linear characteristic whose
slope m, = tan( ). In the next calculation step the new operating point A, located on
the same linear characteristic is determined along with the new value of the
magnetizing current i,,. Using this new excitation current value the corrected flux B,
is calculated from the nonlinear magnetizing characteristic.

The resulting inductance correction ratio is: }» =m,/m;. According to the
simplifying assumptions correction concerns the main flux only, for example:
Ldﬁnas = Ld[ +/’K2k1Mf s (627)

where: L, — stray inductance along d axis or:

A

14 /

linear ’ L ‘/—B
.. s
characteristic——~ 2

linearized
g characteristic

A\

imZ im
Fig. 6.6. Idle run magnetizing characteristic of the generator
MRinas ZXZMR (628)

for the mutual inductance f~D (Fig. 6.4).
The algorithm can be modified according to the numerical methods being used for
calculations [24, 53, 60].

¢) Mechanical Model

The basic dynamic equation of the machine rotor mechanical balance is as follows:

2
VAL (6.29)
d dt
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where: J — inertia torque of the rotating mass, (kg:m?)'’; D — damping factor,
(N'-m/(rad/s)); T,, T, — turbine (mechanical) and generator (electromechanical)
torque, respectively, (N-m).

The angle ¥ is related to w, by (6.7). In case of power generator —7,>7, — turbine

energy is transmitted to power system.
Electromagnetic torque of the machine can be determined from (6.9). For i=i(?),

y=y(t) and for L=L(i,, y), where i, — the current in inductance which is an element
of matrix L' we get:

we—Ri—| ML di  oLdyl ,di (6.30)
oi, dt Jy dt dt
Multiplying (6.30) by vector i the instantaneous machine power is obtained:
P,=-P,-P,-P, (6.31)
where:
P. = i’u — output power, (6.32)
P, =i"Ri — power loss in windings, (6.33)
P, = oF, _ i(liTL i) i 4 +a—Ldii + la—Lﬂl — magnetizing power, (6.34)
dt  dt\2 dt i, dt 29y dt

E; — energy of electromagnetic field,

p=ii a—L%l =Ly a—Lia)r =T, — electromagnetic power.  (6.35)

2 o9ydt 2 oy

The electromagnetic torque in the air slot between stator and rotor is given by the
equation:

T = %iT[d—LJi (6.36)

where i is the vector of phase currents in stator and rotor and L is like in (6.6).
Using 0dg coordinates (6.36) reduces to [9]:

T, = p(’//diq - l//qid) (6.37)

' Inertia torque is also expressed in (N-m-s®); 1 kg-m*=1 N-m-s*.
' Important for nonlinear magnetic circuits where inductance is a function of current.
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The remarks concerning the physical interpretation of discussed relations are:

e Signs of particular powers in (6.31) correspond to current and voltage notation
in Fig. 6.5.

e The magnetizing power P, is produced by each magnetic field change while P,
is related to the rotor rotation (changing angle ).

e The zero sequence component (6.37) does not affect the electromagnetic
torque.

Sometimes, instead of inertia torque, the inertia constant A is used and:

E, 1W-sleW-s

=4 (6.38)
Sy VA MVA
where:
E, = %Ja)fN %107 (MW-s) — energy of rotating mass'?;
®,, —nominal (synchronous ) rotor angle velocity (1/s);
Sy —nominal apparent power (MVA).
Thus:
2 -6 2
= 9390 X107 s yeny 00 L () (6.39)
Sy Sy

60w, . . . .
where n,, = 5 V. _ nominal rotating velocity (rot/min).
T

Equation (6.29) and definition (6.38) show that for nominal driving torque 7; = Ty,
(N-m) at D = 0 machine will attain the nominal rotation velocity after time 7,, = 2H (s)
(parameter 7, is sometimes called the mechanical time constant [57] or the running in
time. The inertia torque J in (6.29) can be expressed by parameters which are easier to
obtain:

J=In"on '2SN ><106=—2H;SN x106:—182'3782'H'SN x10° (6.40)
a)rN wrN nN
and the dynamic equation of the machine can be rewritten as:
2
H-Sy 4, 4 p3e_p_p (6.41)

nf, def VT dr 0

where: f,,, — nominal rotor frequency (Hz); F,, P, — turbine and generator power

(MW), respectively.

21Ws=1Nm=1]J.
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The time constant 7, takes the values from the range 1-20 s depending on the size
and the nominal power of the machine.

If the rotating system contains several masses linked by resilient couplings then the
mechanical torque conveyed is proportional to the angle displacement between
particular elements (Fig. 6.7). In such a multi-section arrangement couplings convey
the resilience torque 7, to adjacent elements so the torque signs have to be

differentiated accordingly. In general case we have [24]:

T, = Ki—l,i(yi—l - 71): -TI;, (6.42)

s

where: K, |, —the resilience coefficient between rotating masses i—1, i.

The damping in particular elements also has to be differentiated as the 'self-' and
the mutual one. The latter represents losses caused by the resilient link swings and can
be expressed by the following equation:

dy, d d
T,.=D,—~+D._,.—\¥,—v)+D,..,—\v.—v, 6.43
d,j i dl i—1,i dt (7/1 %71) ii+1 dl (}/z }/Hl ) ( )
where: D, ,;, D,;,, —damping coefficients in couplings between respective masses.

In the system shown in Fig 6.7 sections 1-3 generate the driving torque (in
direction of the system rotation) while sections 45 are those driven ones.
Using (6.42) and (6.43) the multi-mass system equation takes the form:

N Yz 7 74 ”s

— —a/ I —a,

\‘,,,/
LNV e i TN )
¥ / / / :
\Mlz 4 D ;) D ) Ds /
Tl T 2 T 3 T. 4 T 5
driving units load units

Fig. 6.7. Diagram of the multi-stage rotating system

Jd—2 +Di +Ky=T -T (6.44)
a2 Y Q@ YyrRy=1-1, .
where:

J — diagonal matrix of inertia torque (Jy, J2, ..., J,) for particular elements;

v — vector of angles (¥, 1, ..., }) for particular elements;

K — matrix of the resilience coefficients:
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[ K, - K
-K, K, +K23 _Kzs
K= - Ky Ky+Ky —Ky >
- anl,n anl,n

D — matrix of damping coefficients:

_Dl +D, -D, |

-D, Dy, + D, + Dy, =D,

D= =D, Dy +Ds+Dy, =D,

+D

n—l,n n-l,n n

T, — vector of turbine driving torques;

T, — vector of electric driving torques

Since (6.44) refers to the generator so the rotor angle y = y; in Fig. 6.7. Parameters
required in (6.44) are usually difficult to obtain so the model can be applied to special
cases only.

In EMTP the mechanical part model of synchronous machine is combined with the
electrical part model by default so user should only enter the necessary data.

d) Calculation Algorithms

In complex power system simulation models the generator equations should be solved
along with the equations of the other system elements. However, due to the specific
form of the generator equations the direct representation of the system equations (for
instance, the use of the nodal voltage method) becomes difficult. Therefore, in
practice, the generator models and the models of the other system elements are
processed as separated subsystems. To ensure the electric balance between particular
subsystems (voltages and currents in common nodes and branches must be the same)
the adequate numerical methods of simultaneous calculations for all subsystems have
to be applied. For this purpose one of the following methods is used:

1. Direct iteration method of the system balance calculation in each simulation step.
Solving the generator equations for specified initial conditions (calculated in
previous iteration step) the new current values at the generator output terminals are
determined which, in turn, are used for calculation of voltages in the other
subsystems which become the corrected generator output voltages. The calculation
process is continued until the assumed convergence of results is obtained [57].

2. Representation of the network by the equivalent voltage (Thévenin’s theorem) or
current (Norton’s theorem) source. The equivalent circuit is connected to the
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generator and solved along with the machine equations. This approach is called the
compensation method " [12, 24].

3. Representation of electric machines by the equivalent voltage or current sources
connected to the system model. The method is known as prediction method [12, 24,
60]. Common calculations ensure balance between both subsystems but some
machine quantities must be predicted.

The direct iteration method is accurate and stable but due to iterations applied in
each simulation step makes the calculations time-consuming.

The compensation method is also accurate but the subsystem with generators must
not contain any true type nonlinear element. In ATP—EMTP this method is used by the
model of Universal Machine (UM) [7, 12].

The prediction method is applied in EMTP to simulation of complex networks
(Type 59 model) [24].

6.1.2. Model in Phase Coordinates

The basic drawback of the synchronous machine representation in Odg coordinates is
the lack of direct transformation between 0Odg and phase coordinates since
transformation coefficients depend upon solution which is unknown and use of
extrapolations may result in instability of the network model [12].

The generator model in phase coordinates is as follows:

i|:L.\‘(7/) L,w(?/)} ipc __ Y 5c ipc | Wasc (6.45)
dt Lrs (}/) Lr (}/) ifDQ rfDQ ifDQ ufDQ
where the notation is like in (6.3)—(6.7) and usually L,() = L,.

On the basis of (6.3) the digital model of the generator is developed and is directly

connected to the network model. Both models are solved together. Calculations are
carried out according to the following algorithm [12, 13]:

1. Predict the rotor angular velocity @ and the rotor angle position y. Determine the
equivalent parameters of the generator.

2. Calculate the rotor currents and the electric torque using (6.36). Solving the
equations of the mechanical model the new values of @ and y are obtained.

3. Check the solution convergence with respect to @. In case of unacceptable
discrepancy return to p. 2.

In EMTP the method is applied in Type-58 generator model [13]. The method is
stable and the nonlinear elements in the network model are acceptable [53, 60].

1 Compare with p. 2.3.2.
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6.2. Induction Machines
6.2.1. General Notes

The name induction machine refers to the wide group of rotating electric machines in
which electromagnetic (generators) or electrodynamic (motors) force is produced by
magnetic fields induced in stator and rotor. The rotor magnetic field is produced by
the current induced in the rotor windings (or short-circuited cages) when the rotor
moves in the stator magnetic field. Contrary to synchronous machines the rotor and
stator magnetic field frequencies are different and that is why the induction machines
are also called the asynchronous ones.

Taking into account the design features induction machines of the following types
are used in practice:

1. Cage (or squirrel-cage) rotor electric machines in which the rotor winding is
made of cooper or aluminium rods connected at their ends (Fig. 6.8). In case of the
cage machine the alternate stator magnetic field induces electric current in the rotor
cage and the resulting rotor magnetic flux produces the rotation torque.

stator rotor

copper bars

rotor shaft

phase A stator
winding

Fig. 6.8. Squirrel-cage induction machine model

Stator and rotor magnetic fields rotate in the same direction so the current in rotor
cage can be induced when the stator and rotor rotation velocities are different. The
difference is defined as the slip s and:

s=n"0e 7% (6.46)
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where: n; — synchronous rotation velocity (angular velocity @,), n, — rotor filed
rotation velocity (rotor field angular velocity @, ).

In the machine with pole pairs number p > 1:

W, =pw, (6.47)
where @, - rotor angular velocity and:
w, = w,(d-5) (6.48)
p

The current in symmetrical rotor winding has the frequency:

_Sh_ s n
fr = b T 1-5 60 (Hz) (6.49)

where 7, =n — rotation velocity (rot/min).
The value of slip depends upon machine operating state. At the beginning of machine

starting § =1 and decreases gradually to the value s >0 which depends on machine

load. In case of induction power generator s <0.
To facilitate the machine starting (to get the greater torque for reduced inrush
current) the machine rotors are modified by application of multi-cage and deep bar

rotor designs (Fig. 6.9).
Such designs take advantage of the skin effect properties to increase the rotor
resistance during machine inrush when the machine slip is big.

a) b) c)

Fig. 6.9. Examples of rotor design: a) normal, b) deep,
¢) double cage

_ _

2. Wound-rotor machines in which standard windings (in star or delta
arrangement) are connected to s/ip rings (Fig. 6.10).
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; T
i
o !

(

Fig. 6.10. Slip ring machine model.

Such design essentially facilitates the machine inrush process since the external
variable resistances can be connected in series with the rotor windings. The value of
the start controlling resistances, being large at the beginning of machine starting, is
gradually reduced to zero when machine rotation speed increases [6, 10].

3. Doubly-fed induction machine design is similar to the wound-rotor machine
one; here the slip rings are used for connection of external excitation source of
specified frequency so the machine rotation speed (in motor) or the output voltage
frequency (in generator) can be controlled [9]. In some conditions the doubly-fed
machines behave like the synchronous ones. Mutual reaction of rotor and stator

magnetic fields of frequencies f,, and f,, respectively, fixes the ‘synchronous’

FS

rotation speed at the value determined by slip according to (6.46).
6.2.2. Mathematical Model

Induction and synchronous machine models are very much alike. The voltage equation
in phase coordinates for a single three phase rotor winding is like in (6.3):

u s R i s s
4BC(s) | _ _{ s } .ABC( ) _i W 4Bc(s) (6.50)
~UW pcrr) R, | 1peey | A Wascron
where the extra ‘7’ subscript indicates the rotor winding.
The rotor winding voltages can be different from zero in doubly-fed machines.

Magnetic fluxes produced by stator (s) and rotor windings (#) can be determined by
the following equation:
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W sc(s)
WV Bcr(r)

}

L, L,
LI'S Lr

Lc(s)
Lcrir)

(6.51)

where the inductance matrices comprise of the following sub-matrices:

_ LMS‘ _ LMs _ LMr _ LMr
RAY 2 2 rr 2 2
Ls‘ =1 LMS Lw _ﬁ > Lr =~ LMV rr _i b
’ 2 - 2 2 2
— LMY — LMY Lsy _ LMr _ LMr er
L 2 2 ] L 2 2 ]
[ ( ZEJ ( 2n )_
cosy cos| y+— | cos| y——
3 3
2 2
L,=L, cos(}/— Tnj cosy cos(;/+ ?n] ,L,=L",
( 21rj ( 27tj
cos| y+— | cos| y—— cosy
i 3 3
and:
N, N,
LMS = Lsr Nr 4 LMV = Lsr NA. ’ Lss = L.YI + LM; ’ er = Lrlr + LMr >
L,, L, —stator and rotor stray inductance, respectively,
L

— magnitude of mutual inductance between stator and rotor windings,
N;, N, —number of turns in stator and rotor, respectively,

sr

¥= 7. — electric angle between stator and rotor coordinates.

To simplify the machine equivalent model the rotor circuit voltages can be
transformed to the level of the stator windings ones. The relevant transformation
formulas are [10]:

k _ Lsr k2 _ LMV L _ Lrlr R _ Rrr
sr_L ’sr_L s r]_kza r_kz
‘Ms 'Ms sr sr (6 52)
1 . . ‘
W 3c(r) :k_uABCr(r)’ Lipcry = ksrlABCr(r)

sr

The next step towards the induction machine model simplification is the
transformation of the stator and rotor phase coordinates into the Odg ones:

Wouy(s) __ ROdq(s) iOdq(s) _i Wodg(s) +|:Q } Wodg(s) (6.53)
) ROdq(r) iOdq(r) dr || Wouyr) 0| Wour)
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where the angular velocity in the matrix Q (6.16) is the rotor electric velocity:
O=DpO5 Wouisy» Woagry denote the stator (s) and rotor () magnetic fluxes in Odg

coordinates — like in (6.17):

\I’Odq(s) — P_l(}/) 0 IJ];&' Lsr P(}/) 0_1 deq(s) (654)

Wouq(r) 0 C|L, L, 0 C gy
in which matrix C represents relation between phase (4BC) and 0dq rotor coordinates.
Elements of vector ugg are different from zero for the slip-ring machines (Fig.

6.10); in cage machines the rotor circuits are short-circuited. The transformation
matrix P(y) is like in (6.11); y is the electric angle and can be calculated from (6.7)

for w=pw, so, that:

dy
——=pw. =w 6.55
G P =@ (6.55)

Matrix C' transforms the three phase quantities in the rotor winding into 0dg
coordinates and is related to the matrix P(y) by the following equation:

L 0
> \/15 A 1 0 0
P(y)=C-E(y)=\gﬁ S S 0 cosy siny (6.56)
s V3
V2 2

0 siny —cosy

Matrix C is known as the transformation matrix between three phase and 0o
coordinates in normalized form (4.81). Matrix E(y) represents the angular
displacement (rotation) of stator coordinates with respect to the rotor ones - axis d
leads the axis g — like in the synchronous machine model (Fig. 6.3). Transformation of
three phase stator and rotor quantities into Odg coordinates is given by the equations:

oigi) =P Ligeiy =ET ()€ e (6.57)

. .
ioign =C 1pe(r

for currents and, by strict analogy, for other quantities.
Substituting (6.57) to (6.54) we get:

\IJOdq(s) _ LOdq(s) LOdq(sr) lOdq(s) (6 58)
= T . .
‘I’Odq(r) LOdq(sr) LOdq(r) lOdq(r)



174 6. MODELLING OF ELECTRIC MACHINES

where:

L, L, 0

N r

LOdq(s) = Lds > LOdq(r) = Ldr > LOdq(.sr) = Ldsr
L L L

s qr qsr
Taking into account the assumed symmetry of stator and rotor windings the
equality of the model parameters can be verified:

L = qur = Lm ’ Lds = qu = Ls = le + Lm > Ldr = Lqr = Lr = Lrl + Lm (659)

dsr

where: L,, L, — stray inductances of the stator and rotor windings unified to the

common level.
Resistance matrices in 6.53) can be determined using the transformation matrices
P(y) and C. Symmetry of the stator and rotor windings implies that:

Rogye) = R, s Roggry = R, (6.60)

where: R, =Ry =R, = R, Ry =Ry,y =R =R,
Equations (6.53) and (6.54) describe the induction machine model in 0Odg

coordinates attached to rotor. The machine equations for particular coordinates are

simple (diagonal parameter matrices) since d i ¢ coordinates are mutually vertical.
Let’s consider in more detail the voltage equations of the equivalent stator and

rotor circuits for d coordinate:

i g, ey (1,41, +L,i,)

dt dr

udr = Rridr + (Lrl + Lm )d(;_;l: + Lm

uds = _Rsids - (le + Lm )

6.61
di, (6.61)

dt

Subtraction of (6.61) results in the voltage equation of the equivalent machine
circuit along d axis:

di di
ud\' = _R\'id\‘ - Rridr - L\'l & - Lrl ld” + w((L\'I + Lm )l s + Lml r )+ udr

. i (6.62)

= Riy —Ri, L, % Y i v e

stds rdr sl dl rl dt s“qs m°qr dr
In the similar way the voltage equation along ¢ axis can be derived:
. . diqs diqr . .

uqx = _R.\‘lqs - erqr - le ., Lrl . a)(led.\‘ + Lmldr )+ uqr (663)

dr dr
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and also for zero sequence component:

di di
u,, =—Ri, —L,—% y =-Ri —L,— 6.64
Os s°0s sl dt or r or rl dt ( )
The respective equivalent circuit diagrams are shown Fig. 6.11 in which:
idm = lds - idr s iqm = iqs - iqr (665)

a) idx R a)% s LS / Lrl R

b ;R oo Ly L, R

Fig. 6.11. Equivalent circuit diagram of induction machine:
a) for d axis, b) for ¢ axis and c) for zero sequence components

Connection of the discussed model to the model of the external network requires
inverse transformation of calculated quantities into phase coordinates as ‘seen’ at the
real machine terminals in each simulation step.

In case of slip-ring machines the starting resistance has to be included into the
overall rotor resistance. The model equations have to be modified for other than
considered number of rotor windings [10, 30].
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6.2.3. Electro-mechanical Model

The basic dynamic equation of the rotor mechanical balance is as follows: (compare
with (6.29)):

dw,
J +Dw =T, -T, (6.606)
dt

where: J — inertia torque of rotating system, (kg-m?); D — damping coefficient,
(N-m/(rad/s)); T,, — mechanical torque, (N-m); @, — rotor angular velocity, (rad/s); T, —
electromagnetic torque, (N-m) (in the air slot).

The electromechanical torque can be determined using (6.36), where: i denotes
vector of stator and rotor phase currents while L is the complete inductance matrix
like in (6.51). In the 0dg model the moment can be calculated using the stator and
rotor quantities:

T, = pWaiy, ~Vis)= PWai, — i) (6.67)

or, after relevant transformation to Odg coordinates, from (6.37). Power transmitted
from stator to rotor in induction motor (or in reverse direction in generator) is related
to the electromechanical torque by the following equation:

1—
pe=Tea)r=Te(ﬂ (6.68)
P
The rotor angular position can be determined from the equation:
t
}/r = J.a)rdz- + er (669)
0

T >T, for power generator and 7, <7, if the machine is used as the electric
motor.

If the electric motor drives a machine via resilient coupling or elastic shaft then the
torque 7, conveyed to the machine being driven is:

T,=T,0)=K,(y,)-7,0)=K,|(0,(0)-0,)dr+T,, (6.70)

o —

where: %, %, — angular position of rotor and a lumped mass of the machine driven,
respectively; K,, — the resilience coefficient of the shaft; 7\,o= 7,,(0).

In such case the compact mechanical system described by (6.66) can be split into
two rotating mechanical devices linked by the shaft (Fig. 6.12). Dynamics of the
particular devices are then described by the two following equations:
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dw,

J. +Dw =T, -T, (6.71)
dt
dw

Jm dtm + mem = TW - 7’;}1 (6‘72)

where T, is like in (6.66).

J T, J

r m

Fig. 6.12. Mechanical system with two rotating masses

In this arrangement the mechanical model of the driving system ‘motor—load’ with
elastic link is described by (6.71)—(6.72) and can be extended to the grater number of
elements as it is shown for the synchronous generator (6.44). Assuming that the link is
stiff (K,, — <o) the single mass model is obtained which is described by (6.66) where:
D=D.+D,, J=J.+J, &= 0= w,.

As the model of the electric part of the machine is represented by the adequate
electric circuit the same representation can be applied to the mechanical part'*. Note
that (6.71)—(6.72) have the same form as the equations of the equivalent electric
circuits:

cdu Lo i (6.73)
dt R

c Y L, (6.74)
dt R

LA oY,y (6.75)
dt

The analogy between variables and constants in mechanical and the equivalent
electrical circuit equations is as shown below:

' This approach is applied in ATP-EMTP
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inertia torque J (kg:m?) > capacitance C (F);
damping coefficient D (N-m/(rad/s)) © conductance  1/R (1/Q);
rotation torque T (N-m) > current i(A);
angular velocity w (rad/s) > voltage u (V)
resilience coefficient K (N-m/rad) > 1/inductance  1/L (1/H);
angular displacement ¥ (rad) > magnetic flux  w(V-s).

Thus, the equations (6.73)—(6.75) can be modelled by the electric circuit shown in
Fig. 6.13. The current source T, represents the electric torque which in mechanical
model of the machine is described by (6.37) while T,, is the DC current source which
corresponds to the constant load torque (1 A =1 N-m). The values of voltage in the
electric circuit correspond to rotation velocities @, @,, according to analogy:
1 Vel radss.

r UK

T, ® 1/13,,[ up, =7, (),

— T
<
[l
1
B
8
— T

Fig. 6.13. The equivalent electric circuit of the mechanical part of the machine

Example 6.5. Set up the model of the slip-ring induction motor including the equivalent
supply network. Examine transients in the motor windings for a single
phase break in the supplying network for nominal load conditions.

The motor parameters: Uy = 6 kV, 50 Hz, Py =420 KM'3, n = 1458 rot/min (at the nominal
load) cos@p=0.84, sy=2.8%, n=97% (power efficiency); the initial torque 7,,=0.95 p.u.;
inrush current /,= 6 p.u.; H=1.1s.
The pole pairs number can be calculated from the equation:

_n_ f-60 50-60

n,  onm, 1500
In case of electric motors the load torque, the damping coefficient or the inertial torque can be
estimated from the motor plate data [33]:
T, = P _70235- P(RM) _9349.3 PW) =2024 N-m, n —nominal rotation speed (rot/min).

w n n

51 KM =0.73549875 kW for g = 9.80665 m/s.
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To calculate the detailed motor parameters the Windsyn program can be applied [33]. Using
this program for the motor considered we get (notation as in ATPDraw):

LMUD =LMUQ = 0.913927 H (magnetizing inductance for d and g axes),

Lsd = Lsq=Lrd = Lrq = 0.031485 H (stator and rotor inductance for d and g axes),

Rsd =Rsq=0.613031 Q (stator resistance for d and g axes),

Rrd = Rrq =2.33505 Q (rotor resistance for d and ¢ axes).

J=130.06 kgm?, D = 1/2.91 N-m/(rad/s).

The ATPDraw model of the system considered is shown in Fig. 6.14. The capacitor
30.06-10° uF in the model of the mechanical part represents J, and the voltage drop across the
capacitor corresponds to the angular velocity. If the initial rotation velocity is nominal then the
initial capacitor voltage is:

Mm=0_”@=ﬂ_%m&

100t =152.7 V.

The parallel resistor of the value 1/D represents the mechanical damping.

Since the motor parameters are determined for the nominal load the current source representing
the machine load can be neglected. The current source of very small value is used in the model
to meet the calculation procedure requirements only.

motor model supply

A = [

L] =
rN\/‘—ﬂ@\; >
T 1

!

mechanical part
model -

Fig. 6.14. The ATPDraw model of the considered system

The block MODEL (implemented by use of MODELS) is applied to calculation of the motor
current symmetrical components.

The rotor current in phase A is shown in Fig. 6.155. The beginning of the waveform refers to
the normal operating conditions of the motor (Fig. 6.15a). The rotor current is sinusoidal and
has the frequency (1,4 Hz ) determined by the slip (w—a,y ) value.

When the break in phase A occurs at £,= 3 s the stator electromagnetic field gets distorted due
to the supply asymmetry and comprises of two components which rotate in mutually reverse
directions. It is the well known effect which is manifested by sudden increase of the r.m.s.
value of the rotor current (Fig. 6.15a). The component of double fundamental frequency
appears in the rotor current (Fig. 6.15b) and the remarkable increase of the negative sequence
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current at the motor terminals is observed (Fig. 6.16b). Practically, the machine slows down
(Fig. 6.16a), gets abnormally heated and weaker and can get damaged if not switched off on
time.

a) b)
i A i A
100+ 100+
50+ 50
0+ 0-
504 50+
~100+ ~100+
71500 1 2 3 g4 't,s'7502,98 3,00 3,02 3,04 3,06 3,08 ts

Fig. 6.15. The rotor current waveform: a) in full simulation time span b) right after the phase
break occurrence

a) b)
a)r’ S71 a)s Isk’A
156,54 o 504
155,0 1 40
153,51 304
152,0 1 20+ !
11,

150,54 et 10 :
149,0 —_— e e 0 -

0 1 2 3 4 ts 0 1 2 3 4 t,s

Fig. 6.16. Rotor angular velocity change (a) and the stator current positive /; and negative I,
symmetrical components (b)

6.2.4. Numerical Models

The induction machine models, just like the synchronous ones, can be represented in
0dg coordinates (6.53)—(6.54) or in the natural (phase) ones. The same concerns the
common solution of the machine and the network equations — the compensation and
the prediction method can also be applied for the purpose.

In ATP-EMTP the induction machine models represented in 0dg coordinates are
implemented in universal machine model. The Type-56 model is the implementation
of the machine model in phase coordinates.
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6.3. Universal Machine

The Universal Machine term (UM) refers to the general model of the rotating electric
machine. The UM concept combines many electric machines which have similar or
identical mathematical models. Such an approach results in significant reduction of
computer program blocks meant for implementation of numerous machine types. The
attached to UM auxiliary programs unify the representation of mechanical devices
which cooperate with electric machines and also facilitate the external control of UM.
[54].

In ATP-EMTP the block UM contains models of twelve machine types, namely,
[7]:

e Synchronous:
1. 3-phase armature,
2. 2-phase armature;

e Induction:

3. 3-phase armature, cage rotor,
4. 3-phase armature, 3-phase field,
5. 2-phase armature, cage rotor;

e Single-phase a.c.:

6. — 1-phase field,
7.—2-phase field;

e Direct Current:

8. — separate excitation,
9. — series compound field,
10. — series field,
11. — parallel compound field,
12. — parallel field (self-excitation).

The number of item position in the list is also the UM type code, e.g.: UM-3 means
3-phase cage rotor induction machine.

Despite of unified mathematical model the particular implementations may differ in
input data format representation and in the initial conditions determination procedures.
In ATP-EMTP the UM model connection to the electric network model can be based on
compensation or prediction method — the choice is up to the user [7, 24].
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Excersises

6.1 Basing on the induction machine model operating in steady state (Fig. 6.11)) calculate the
equivalent circuit parameters for the cage induction motor. Use the following data:

Nominal power 1.8 MW
Nominal voltage 6 kV
Pole pairs number 4
Power factor 0.9
Nominal slip 1%

Neglect losses.
6.2 Power in stator and rotor for vector model of electric machine are given by:

P = %(uz tuyi,)= ;LL ui,

20 . . 2L, .
QS = g(u.rylxx - uS.\’l,Yy ) = 3Lm uS (l)’.\’ - lm )

for stator and for rotor:

Pzé(ui +ui)

r rx'rx ryry

Qr = %(uwirx - u)"Xil'y )

Using the relevant model equations estimate how the active rotor power depends on the
stator one. Neglect losses.
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