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1.1. Theoretical Background 

1.1.1. Introduction 

The Multilayer Perceptron is an example of an artificial neural network that is 

used extensively for the solution of a number of different problems, including pattern 

recognition and interpolation. It is a development of the Perceptron neural network 

model, that was originally developed in the early 1960s but found to have serious 

limitations. 

Artificial Neural Networks (ANNs) attempt to model the functioning of the 

human brain. The human brain for example consists of billions of individual cells called 

neurons. It is believed by many (the issue is contentious) that all knowledge and 

experience is encoded by the connections that exist between neurons. Given that the 

human brain consists of such a large number of neurons (so many that it is impossible to 

count them with any certainty), the quantity and nature of the connections between 

neurons is, at present levels of understanding, almost impossible to assess. The issues as 

to whether information is actually encoded at neural connections (and not at the 

quantum level for example, as argued by some authors – see Roger Penrose “The 

Emperor's New Mind"), is beyond the scope of this course. The assumption that one can 

encode knowledge neutrally has led to some interesting and challenging algorithms for 

the solution of AI problems, including the Perceptron and the Multilayer Perceptron 

(MLP). 

Neurons can be modelled as simple input-output devices, linked together in a 

network. Input is received from neurons found lower down a processing chain, and the 

output transmitted to neurons higher up the chain. When a neuron fires, it passes 

information up the processing chain. This inherent simplicity makes neurons fairly 

straightforward entities to model. It is in modelling the connections that the greatest 

challenges occur. When real neurons fire, they transmit chemicals (neurotransmitters) to 

the next group of neurons up the processing chain alluded to in the previous subsection. 
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These neurotransmitters form the input to the next neuron, and constitute the messages 

neurons send to each other. These messages can take one of two different forms: 

– excitation – excitatory neurotransmitters increase the likelihood of the next neuron in 

the chain to fire, 

– inhibition – inhibitory neurotransmitters decrease the likelihood of the next neuron to 

fire. 

If we can model neurons as simple switches, we model connections between 

neurons as matrices of numbers (called weights), such that positive weights indicate 

excitation, negative weights indicate inhibition. How learning is modelled depends on 

the paradigm used. 

1.1.2. Learning Modelling 

Using artificial neural networks it is impossible to model the full complexity of 

the brain of anything other than the most basic living creatures, and generally ANNs 

will consist of at most a few hundred (or few thousand) neurons, and very limited 

number of connections between them. Nonetheless quite small neural networks have 

been used to solve what have been quite difficult computational problems. Generally 

Artificial Neural Networks are basic input and output devices, with the neurons 

organized into layers. Simple Perceptrons consist of a layer of input neurons, coupled 

with a layer of output neurons, and a single layer of weights between them (Fig. 1.1.). 

 

 

 

 

 

 

Fig. 1.1. Simple Perceptron Architecture 
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The learning process consists of finding the correct values for the weights 

between the input and output layer. The schematic representation given in (Fig. 1.1.) is 

often how neural nets are depicted in the literature, although mathematically it is useful 

to think of the input and output layers as vectors of values (I and O respectively), and 

the weights as a matrix. We define the weight matrix Wio as an i  o matrix, where i is 

the number of input nodes, and o is the number of output nodes. The network output is 

calculated as follows: 

     O = f(IWio)     (1.1) 

 

Generally the data is presented at the input layer, the network then processes the 

input by multiplying it by the weight layer. The result of this multiplication is processed 

by the output layer nodes, using a function that determines whether or not the output 

node fires. The process of finding the correct values for the weights is called the 

learning rule, and the process involves initialising the weight matrix to a set of random 

numbers between -1 and +1. Then as the network learns, these values are changed until 

it has been decided that the network has solved the problem. Finding the correct values 

for the weights is achieved by using a learning paradigm called supervised learning. 

Supervised learning is sometimes referred to as training. The some testing data is used 

to train the network, this constitutes input data for which the correct output is known. 

Starting with random weights, an input pattern is presented to the network, which makes 

an initial guess as to what the correct output should be. During the training phase, the 

difference between the guess made by the network and the correct value for the output 

is assessed, and the weights are changed in order to minimise the error. The error 

minimisation technique is based on traditional gradient descent techniques. While this 

may sound frighteningly mathematical, the actual functions used in neural networks to 

make the corrections to the weights are chosen because of their simplicity, and the 

implementation of the algorithm is invariably uncomplicated. 
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1.1.3. Activation Function 

The basic model of a neuron used in Perceptrons and MLPs is the McCulloch-

Pitts model, which dates from the late 1940s. This modelled a neuron as a simple 

threshold function: 
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
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x
xf      (1.2) 

This activation function was used in the Perceptron neural network model, and 

as can be seen this is a relatively straightforward activation function to implement. 

1.1.4. Learning Rule 

The Perceptron learning rule is comparatively straightforward. Starting with a 

matrix of random weights, we present a training pattern to the network, and calculate 

the network output. We determine an error function E: 

     E(O) = (T - O)    (1.3) 

Where in this case T is the target output vector for a training input. In order to 

determine how the weights should change, this function has to be minimised. What this 

means is to find the point at which the function reaches its minimum value. The 

assumption we make about the error function is that if we were to plot all of its potential 

values into a graph, it would be shaped like a bowl, with sides sloping down to a 

minimum value at the bottom. 

In order to find the minimum values of a function, differentiation is used. 

Differentiation is used to give the rate at which functions change, and is often defined as 

the tangent on a curve at a particular point. If our function is perfectly bowl shaped, 

then there will be only one point at which the minimum value of a function has a 

tangent of zero (i.e. have a perfectly at tangent), and that is at its minimum point. 

In neural network programming the intention is to assess the effect of the 

weights on the overall error function. We can take (1.3) and combine it with (1.1) to 

obtain the following: 
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    E(O) = (T - O) = T – f(IWio)    (1.4) 

We then differentiate the error function with respect to the weight matrix. The 

discussion on Multilayer Perceptrons will look at the issues of function minimisation in 

greater detail. Function minimisation in the Simple Perceptron Algorithm is very 

straightforward. We consider the error of each individual output node, and add that error 

to the weights feeding into that node. The Perceptron learning algorithm works as 

follows: 

1. initialise the weights to random values in range [-1, 1], 

2. present an input pattern to the network, 

3. calculate the network output, 

4. for each node n in the output layer... 

(a) calculate the error En = Tn - On, 

(b) add En to all of the weights that connect to node n (add En to column n of 

the weight matrix, 

5. repeat the process from 2. for the next pattern in the training set. 

This is the essence of the Perceptron algorithm. It can be shown that this 

technique minimizes the error function. In its current form it will work, but the time 

taken to converge to a solution (i.e. the time taken to find the minimum value) may be 

unpredictable, because adding the error to the weight matrix is something of a 'blunt 

instrument' and results in the weights gaining high values if several iterations are 

required to obtain a solution. This is akin to taking large steps around the bowl in order 

to find the minimum value. If smaller steps are taken, we are more likely to find the 

bottom. 

In order to control the convergence rate and reduce the size of the steps being 

taken, a parameter called a learning rate is used. This parameter is set to a value that is 

less than one, and means that the weights are updated in smaller steps (using a fraction 

of the error). The weight update rule becomes the following: 

    Wio(t + 1) = Wio(t) + εEn    (1.5) 
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Which means that the weight value at iteration t + 1 of the algorithm, is 

equivalent to a fraction of the error εEn added to the weight value at iteration t. 

1.1.5. MLP Learning Algorithm 

The principle weakness of the Perceptron was that it could only solve problems 

that were linearly separable. The simple Perceptron, based on units with a threshold 

activation function, could only solve problems that were linearly separable. Many of the 

more challenging problems in AI are not linearly separable however, and thus the 

Perceptron was discovered to have a crucial weakness, and returning to the problem of 

modeling logic gates, the exclusive-or problem (XOR) is in fact not linearly separable. 

To obtain a bilinear solution we could add another layer of weights to the simple 

Perceptron model, but that brings the problem of assessing what happens in the middle 

layer. For a simple task such as the XOR problem, we could fairly easily work out what 

expected outputs for the middle layer of units should be, but finding a solution that 

would be completely automated would be incredibly difficult.  

The essence of the supervised neural network training is to map input to a 

corresponding output, and adding an additional layer of weights makes this impossible, 

using the threshold function given in (1.2). A better solution to the problem of learning 

weights is to use standard optimisation techniques. In this case we identify an error 

function which is expressed in terms of the neural network output. The goal of the 

network then becomes to find the values for the weights such that the error function is at 

its minimum value. Thus gradient descent techniques can then be used to determine the 

impact of the weights on the value of the error function. 

We need to have an error function that is differentiable, which means it should 

be continuous. The threshold function is not continuous, and so is unsuitable. A 

function that works in a similar way to the threshold function, but that is differentiable 

is the Logistic Sigmoid Function (Fig. 1.2.): 
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Fig. 1.2. Different types of activation function 
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This function, when viewed in profile behaves in a very similar way to the threshold 

function, with x values above zero tending to one, and values below zero tending to 

zero. This function is continuous, and it can be shown that its derivative is as follows: 

    ))(1)(()(' xfxfxf lsflsflsf      (1.7) 

Because the function is differentiable, it is possible to develop a method of 

adjusting the weights in a Perceptron over as many layers as may be necessary. 

The basic MLP learning algorithm is outlined below. This is what you should attempt to 

implement. 

1. Initialise the network, with all weights set to random numbers between -1 and +1. 

2. Present the first training pattern, and obtain the output. 

3. Compare the network output with the target output. 

4. Propagate the error backwards. 

(a) Correct the output layer of weights using the following formula: 

    )( hohoho oww       (1.8) 

where who is the weight connecting hidden unit h with output unit o, η is the 

learning rate, oh is the output at hidden unit h. δo is given by the following: 

    ))(1( ooooo otoo      (1.9) 

where oo is the output at node o of the output layer, and t - o is the target output 

for that node. 

(b) Correct the input weights using the following formula: 

    )( ihihih oww       (1.10) 

where wih is the weight connecting node i of the input layer with node h of the 

hidden layer, oi is the input at node i of the input layer, η is the learning rate. δh 

is calculated as follows: 

    
o

hoohhh woo )()1(      (1.11) 
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5. Calculate the error by taking the average difference between the target and the 

output vector. For example, the following function could be used: 

    
p

ot
E

p

n oo 



1

2)(
    (1.12) 

where p is the number of units in the output layer. 

6. Repeat from 2 for each pattern in the training set to complete one epoch. 

7. Shuffle the training set randomly. This is important in order to prevent the network 

from being influenced by the order of the data. 

8. Repeat from step 2 for a set number of epochs, or until the error ceases to change. 

1.2. List of Problems 

1. Traffic signs recognition using a Multilayer Perceptron. 

2. Thermal pictures of human faces recognition by a Multilayer Perceptron. 

3. Translation system based on a Multilayer Perceptron: pictures of characters and 

digits into a Braille alphabet signs. 

4. Translation system based on Multilayer Perceptron: pictures of characters into a 

Morse alphabet signs. 

5. Neural network as device for a function approximation. 

6. Neural network as an inverted pendulum controller. 

1.3. Phases of Laboratory Exercises 

1. Check and improve the necessary softcomputing knowledge. 

2. Prepare and collect the necessary data sets: for training and for testing. 
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3. Realise the necessary data preprocessing and/or data postprocessing using different 

types of ready-to-use software or by “hand-made” software prepared by the 

laboratory group. 

4. Prepare your own software to implement the proper softcomputing algorithms. The 

main goal is to create the correctly working engine, user interface utilities are not so 

important. The software environments and systems you can use for implementation 

are limited, but the actual possibilities ought to be discussed with the laboratory 

supervisor. 

5. Turn on and tune the prepared software engine, supply the input training and/or 

testing data. If the engine works correctly, check what happens when the starting 

point parameters change, explore the sensitivity of engine for the different sets of 

available parameters and find the solution of the problem. At the end, check if the 

used softcomputing solution is correctly fitted to the problem. 

6. Prepare the final report including the following parts: 

– the short description of the problem with necessary assumptions, 

– definitions and descriptions of the training and testing sets of input data with 

description of the preprocessing procedures, 

– definitions and descriptions of the of output data with description of the 

postprocessing procedures, 

– description of the tuned topology and parameters of the prepared softcomputing 

engine, 

– detailed results analysis and final remarks. 

1.4. Hints for the List of Problems 

Problem No. 1 

1. The graphical definitions of the road signs are described in the Traffic Law – use 

them. 

2. Create the training and the testing tests by choosing the subset of signs from 

each category. 
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3. Set the uniform size – measured in pixels – for all traffic signs pictures, reduce 

the size as much as possible but remember to preserve the most important details 

of the picture. 

4. Convert the traffic signs pictures to gray-scale or to black and white 

representation. 

5. Each pixel is a single component of the input vector for Multilayer Perceptron, 

do not forget to normalise the pixel values. 

6. Train the Multilayer Perception by the training set of pictures, check it using the 

testing set and corrupted pictures of the signs, discuss the type of corruptions 

with the laboratory supervisor. 

Problem No. 2 

1. Thermal pictures of human faces are available from the laboratory supervisor – 

use them. 

2. Divide the available set of pictures into two separable sets: for training and for 

testing. 

3. Set the uniform size – measured in pixels – for all pictures, reduce the size as 

much as possible but remember to preserve the most important details of the 

picture. 

4. Convert the pictures to gray-scale representation. 

5. Each pixel is a single component of the input vector for Multilayer Perceptron, 

do not forget to normalise the pixel values. 

6. Train the Multilayer Perception by the training set of pictures, check it using the 

testing set and corrupted pictures of the signs, discuss the type of corruptions 

with the laboratory supervisor. 

Problem No. 3 

1. The Braille Alphabet signs represent the visible characters and digits by the set 

of convexities in special raster. The size of raster is not uniform – so it is 

necessary to choose the subset of characters and/or digits represented by the 

raster of the identical size. 

2. Code the convexity/no convexity in the raster by binary representation: 1 or 0. 

3. Choose the printable font of visible characters in black and white representation. 

17
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4. Divide the available set of pictures into two separable sets: for training and for 

testing. 

5. Set the uniform size – measured in pixels – for all pictures of characters, reduce 

the size as much as possible but remember to preserve the most important details 

of the picture. 

6. Each pixel is single component of the input vector for Multilayer Perceptron. 

7. Train the Multilayer Perception by the training set of pictures, check it using the 

testing set and corrupted pictures of the signs, discuss the type of corruptions 

with the laboratory supervisor. 

Problem No. 4 

1. The Morse Alphabet signs represent the visible characters and digits by the 

vector of dashes and dots. The size of the vector is not uniform – so it is 

necessary to choose the subset of characters and/or digits represented by the 

vector of the identical size. 

2. Code the dash/dot in the vector by binary representation: 1 or 0. 

3. Choose the printable font of visible characters in black and white representation. 

4. Divide the available set of pictures into two separable sets: for training and for 

testing. 

5. Set the uniform size – measured in pixels – for all pictures of characters, reduce 

the size as much as possible but remember to preserve the most important details 

of the picture. 

6. Each pixel is a single component of the input vector for Multilayer Perceptron. 

7. Train the Multilayer Perception by the training set of pictures, check it using the 

testing set and corrupted pictures of the signs, discuss the type of corruptions 

with the laboratory supervisor. 

Problem No. 5 

1. Choose the trigonometric function, fix the domain and the calculate the values of 

the function. Prepare the samples of the function. 

2. Use as training set the samples taken from the begin and from the end of the 

fixed domain. 

3. The answer of the Multilayer Perceptron should restore the samples from the 

middle part of the fixed domain. 
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4. Check the distance between the correct function value and the value pointed by 

the Multilayer Perceptron. 

Problem No. 6 

1. The general idea is to substitute the real PID controller by Multilayer Perceptron 

based engine. The second Multilayer Perceptron should be used to emulate the 

inverted pendulum. 

2. Use the results of well-known classic solutions of the inverted pendulum 

controller to train the MLP controller. 

3. Take the set of well-known observations describing the real inverted pendulum 

to train the “MLP pendulum”. 

4. It is necessary to find and discuss the relations: velocity, force, angle, 

acceleration. 
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2.1. Theoretical Background 

2.1.1. Introduction 

Suppose that an input pattern has N features and is represented by a vector x in 

an n-dimensional pattern space. The network maps the input patterns to an output space. 

The output space in this case is assumed to be one-dimensional or two-dimensional 

arrays of output nodes, which possess a certain topological ordering. The question is 

how to train a network so that the ordered relationship can be preserved. Kohonen 

proposed to allow the output nodes interact laterally, leading to the self-organising 

feature map. This was originally inspired by a biological model. For example a random 

sequence of two-dimensional patterns can be mapped to an array of output nodes, with a 

preserved topology. 

 

Fig. 2.1. Kohonen Neural Network 

 

2.1.2. Retrieving Phase of Kohonen Neural Network Algorithm 

During the retrieving phase all neurons from Kohonen map calculate the 

Euclidean distance between the weights and the output vector and the winner neuron is 

the one with the shortest distance. So each neuron from Kohonen map calculates the 

output value according to the classical weighted sum: 
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where: 

Out(i, j) – output value calculated by single neuron from Kohonen map indexed 

by (i, j) if Kohonen map is rectangular, for 1-D Kohonen map we have 

only single index i, 

xl  – component of N-elements size input vector, 

wlij – weight associated with connection from component of input learning 

vector xl and neuron indexed by (i, j) if Kohonen map is rectangular, for 

1-D Kohonen map we have only a single index i. 

2.1.3. Classic Learning Algorithm for Kohonen Neural Network 

The most prominent feature is the concept of excitatory learning within a 

neighbourhood of the wining neuron. The size of the neighbourhood slowly decreases 

with each iteration. The selection of a winner can be modulated by the frequency 

sensitivity of the output nodes. The other possible way is to modulate the learning rate 

by the frequency sensitivity. It is hard to say which solution is better or more accurate. 

So for the discussion presented below we decided for the second possibility. 

The learning algorithm is based on the Grossberg rule. All weights are modified 

according to the following equation: 

  ))()(,,,()()()1( kwxjijikkwkw lijl
ww

lijlij     (2.2) 

where: 

k – iteration index, 

 – learning rate function, 

xl – component of input learning vector 

wlij – weight associated with connection from component of input learning vector xl 

and neuron indexed by (i, j) if Kohonen map is rectangular, for 1-D Kohonen 

map we have only a single index i. 
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 – neighbourhood function, (i
w
 ,j

w
) – indexes related to winner neuron, (i, j) – 

indexes related to single neuron from Kohonen map 

The learning rate  is a decreasing function, for presented discussion we assume 

a linear decreasing form. Learning rate function is responsible for the number of 

iterations – it marks the end of learning process. This way there isn't any factor to 

determine if number of iterations is satisfactory. 

The neighbourhood function – often called Mexican Hat –  could be realised in 

many different ways. The main problem is to determine a group of neurons which are 

neighbours of the winner neuron. These neurons increase their output value during 

single learning step. 

The maximum gain is related to the winner, if neighbourhood neuron is further 

to the winner this increase is less significant. Neurons which are not neighbours should 

decrease their output value or their output value should not change. The presented 

solution is based on the following description of the neighbourhood function:  

        

(2.3) 

 

where: 

a – neighbourhood parameter, can be changed during learning algorithm 

r – distance from winner neuron to each single neuron from Kohonen map, 

calculated by indexes of neurons as follows:    (2.4) 
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The learning procedure is iterative. The whole algorithm can be described by following 

steps: 

1. All weights are initialised by random values generated from range (-1, 1). 

2. The winner neuron for each learning vector is created by calculating the net output 

using random values of weights with ordinary Kohonen map retrieving algorithm. 

3. All weights are modified using Grossberg rule (2.1) for single learning vector xl 

using current value of learning rate function as well as current value of 

neighbourhood function assuming the proper winner neuron created in step 2. 

4. The learning rate function value is modified, the neighbourhood parameter a (2.2) 

is modified and if the learning rate function value is greater than zero step 3 is 

executed for the next learning vector, else the learning algorithm stops. 

2.2. List of Problems 

1. Traffic signs recognition using a Kohonen Neural Network. 

2. Thermal pictures of human faces recognition by a Kohonen Neural Network. 

3. Picture compression using a Kohonen Neural Network. 

4. Human recognition based on a fingerprint by a Kohonen Neural Network. 

2.3. Phases of Laboratory Exercises 

1. Check and improve the necessary softcomputing knowledge. 

2. Prepare and collect the necessary data sets: for training and for testing. 

3. Realise the necessary data preprocessing and/or data postprocessing using different 

types of ready-to-use software or by “hand-made” software prepared by the 

laboratory group. 

4. Prepare your own software to implement the proper softcomputing algorithms. The 

main goal is to create the correctly working engine, user interface utilities are not 

so important. The software environments and systems you can use for 
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implementation are limited, but the actual possibilities ought to be discussed with 

the laboratory supervisor. 

5. Turn on and tune the prepared software engine, supply the input training and/or 

testing data. If the engine works correctly, check what happens when the starting 

point parameters change, explore the sensitivity of engine for the different sets of 

available parameters and find the solution of the problem. At the end, check if the 

used softcomputing solution is correctly fitted to the problem. 

6. Prepare the final report including the following parts: 

– the short description of the problem with necessary assumptions, 

– definitions and descriptions of the training and testing sets of input data with 

description of the preprocessing procedures, 

– definitions and descriptions of the of output data with description of the 

postprocessing procedures, 

– description of the tuned topology and parameters of the prepared softcomputing 

engine, 

– detailed results analysis and final remarks. 

2.4. Hints for the List of Problems 

Problem No. 1 

1. The graphical definitions of the road signs are described in the Traffic Law – use 

them. 

2. Create the training and the testing tests by choosing the subset of signs from 

each category. 

3. Set the uniform size – measured in pixels – for all traffic signs pictures, reduce 

the size as much as possible but remember to preserve the most important details 

of the picture. 

4. Convert the traffic signs pictures to gray-scale or to black and white 

representation. 

5. Each pixel is a single component of the input vector for Kohonen Neural 

Network, do not forget to normalise the pixel values. 
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6. Train the Kohonen Neural Network by the training set of pictures, check it using 

the testing set and corrupted pictures of the signs, discuss the type of corruptions 

with the laboratory supervisor. 

Problem No. 2 

1. Thermal pictures of human faces are available from the laboratory supervisor – 

use them. 

2. Divide the available set of pictures into two separable sets: for training and for 

testing. 

3. Set the uniform size – measured in pixels – for all pictures, reduce the size as 

much as possible but remember to preserve the most important details of the 

picture. 

4. Convert the pictures to gray-scale representation. 

5. Each pixel is a single component of the input vector for a Kohonen Neural 

Network, do not forget to normalise the pixel values. 

6. Train the Kohonen Neural Network by the training set of pictures, check it using 

the testing set and corrupted pictures of the signs, discuss the type of corruptions 

with the laboratory supervisor. 

Problem No. 3 

1. Choose not too large picture recorded in grey scale. 

2. Divide the picture into equal rectangular pieces. Each piece is a single training 

vector for the Kohonen Neural Network. 

3. Each pixel is single component of the input vector for the Kohonen Neural 

Network, do not forget to normalise the pixel values. 

4. Train step by step the Kohonen Neural Network using the pieces of the picture. 

Create this way the set of “neurons-winners” responsible for the pieces of the 

picture. 

5. The weight vectors of the “neurons-winners” aggregate the data about the whole 

pieces of the picture. The lower number of the “neurons-winners” mean the 

better compression factor. 

6. Calculate the compression factor as the function of number of pieces 

7. Repeat the experiment with different pictures – try to choose the pictures 

characterised by variant dynamic scale. 
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Problem No. 4 

1. Find the available fingerprint database. Choose the subset of fingerprint pictures 

– each person ought to be described by the same number of prints. 

2. Divide the available set of pictures into two separable sets: for training and for 

testing. 

3. Set the uniform size – measured in pixels – for all pictures, reduce the size as 

much as possible but remember to preserve the most important details of the 

picture. 

4. Convert the fingerprint pictures to gray-scale or to black and white 

representation. 

5. Each pixel is a single component of the input vector for a Kohonen Neural 

Network, do not forget to normalise the pixel values. 

6. Train the Kohonen Neural Network by the training set of pictures, check it using 

the testing set and corrupted pictures of the fingerprints, discuss the type of 

corruptions with the laboratory supervisor. 

 

27



28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part 3. Hopfield Neural Network 



29 

 

3.1. Theoretical Background 

3.1.1. Hopfield Neural Network 

The binary Hopfield net has a single layer of processing elements, which are 

fully interconnected - each neuron is connected to every other unit. Each 

interconnection has an associated weight. We let wji denote the weight to unit j from 

unit i. In Hopfield network, the weight wij  and wji has the same value. Mathematical 

analysis has shown that when this equality is true, the network is able to converge. The 

inputs are assumed to take only two values: 1 and -1. The network has N nodes 

containing hard limiting nonlinearities. The output of node i is fed back to node j via 

connection weight wij. 

 

 

 

Fig. 3.1. Hopfield neural network 
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3.1.2. Retrieving Phase 

During the retrieving algorithm each neuron performs the following two steps [2]: 

Step 1 – computes the coproduct: 

    
p pj

j

N

j pk w v k ( ) ( )  


1
1

    (3.1) 

where: 

wpj – weight related to feedback signal, 

vi(k) – feedback signal, 

p – bias, 

Step 2 – updates the state: 
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The process is repeated for the next iteration until convergence, which occurs when 

none of the elements changes state during any iteration: 

    
p p p pv k v k y   ( ) ( )1     (3.3) 

The initial conditions for the iteration procedure require the following equation: 

    
p p pv x ( )0       (3.4) 

 

The converged state of Hopfield net means the net has already reached one of attractors. 

An attractor is a point of local minimum of energy function (Liapunov function): 
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3.1.3. Hebbian Learning Algorithm 

The training patterns are presented one by one in a fixed time interval. During 

this interval, each input data is communicated to its neighbour N times: 
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The realisation of Hebbian learning algorithm is very easy, but the algorithm results in 

rather low capacity of the net: 

     Mmax = 0,138 N    (3.8) 

where: 

Mmax - maximum number of training vectors, 

M - number of training vectors 

3.1.4. Delta-Rule Learning Algorithm 

The weights are calculated in recurrent way including all training patterns, according to 

the following matrix equation: 

      Tiii xWxx
N

WW )()()( 


   (3.9) 

where: 

  [0,7, 0,9] - learning rate, 

N  - number of neurons, 

W  - matrix of weights, 

x  - input vector. 

The learning rate has the same influence on the training process as a learning 

rate that appeared with the multilayer networks. The learning process stops when the 

next training step generates the changes of weights which are less than the established 

tolerance . 
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The Delta-Rule learning algorithm provides very good robustness of the network 

for the failed input vectors and as good as possible capacity of the net – equal to the 

number of neurons: 

     Mmax = N     (3.10) 

3.1.5. Pseudoinverse Learning Algorithm 

To calculate the proper values of weights we need the full set of the training 

vectors. The correct weight values means that the input signal generates itself as output 

and the converged state is available at once: 

     XXW       (3.11) 

One of the possible solutions can be found as follow: 

      XXXXW
TT

1

      (3.12) 

The algorithm is sophisticated, but guarantees the robustness and capacity of the 

network at the level close to the net trained by the Delta-Rule algorithm: 

     Mmax = N     (3.13) 

3.2. List of Problems 

1. Traffic signs recognition using a Hopfield Neural Network. 

2. Thermal pictures of human faces recognition by a Hopfield Neural Network. 

3. Human recognition based on a fingerprint by a Hopfield Neural Network. 

3.3. Phases of Laboratory Exercises 

1. Check and improve the necessary softcomputing knowledge. 

2. Prepare and collect the necessary data sets: for training and for testing. 
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3. Realise the necessary data preprocessing and/or data postprocessing using different 

types of ready-to-use software or by “hand-made” software prepared by the 

laboratory group. 

4. Prepare your own software to implement the proper softcomputing algorithms. The 

main goal is to create the correctly working engine, user interface utilities are not so 

important. The software environments and systems you can use for implementation 

are limited, but the actual possibilities ought to be discussed with the laboratory 

supervisor. 

5. Turn on and tune the prepared software engine, supply the input training and/or 

testing data. If the engine works correctly, check what happens when the starting 

point parameters change, explore the sensitivity of engine for the different sets of 

available parameters and find the solution of the problem. At the end, check if the 

used softcomputing solution is correctly fitted to the problem. 

6. Prepare the final report including the following parts: 

– the short description of the problem with necessary assumptions, 

– definitions and descriptions of the training and testing sets of input data with 

description of the preprocessing procedures, 

– definitions and descriptions of the of output data with description of the 

postprocessing procedures, 

– description of the tuned topology and parameters of the prepared softcomputing 

engine, 

– detailed results analysis and final remarks. 

3.4. Hints for the List of Problems 

Problem No. 1 

1. The graphical definitions of the road signs are described in the Traffic Law – use 

them. 

2. Create the training and the testing tests by choosing the subset of signs from 

each category. 
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3. Set the uniform size – measured in pixels – for all traffic signs pictures, reduce 

the size as much as possible but remember to preserve the most important details 

of the picture. 

4. Convert the traffic signs pictures to black and white representation. 

5. Each pixel is a single component of the input vector for a Hopfield Neural 

Network. 

6. Train the Hopfield Neural Network by the training set of pictures, check it using 

the testing set and corrupted pictures of the signs, discuss the type of corruptions 

with the laboratory supervisor. 

7. Compare the results of the recognition if the net is trained according to three 

basic training methods. 

Problem No. 2 

1. Thermal pictures of human faces are available from the laboratory supervisor – 

use them. 

2. Divide the available set of pictures into two separable sets: for training and for 

testing. 

3. Set the uniform size – measured in pixels – for all pictures, reduce the size as 

much as possible but remember to preserve the most important details of the 

picture. 

4. Convert the pictures to black and white representation. 

5. Each pixel is a single component of the input vector for a Hopfield Neural 

Network. 

6. Train the Hopfield Neural Network by the training set of pictures, check it using 

the testing set and corrupted pictures of the signs, discuss the type of corruptions 

with the laboratory supervisor. 

7. Compare the results of the recognition if the net is trained according to the three 

basic training methods. 

Problem No. 3 

1. Find the available fingerprint database. Choose the subset of fingerprint pictures 

– each person ought to be described by the same number of prints. 

2. Divide the available set of pictures into two separable sets: for training and for 

testing. 
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3. Set the uniform size – measured in pixels – for all pictures, reduce the size as 

much as possible but remember to preserve the most important details of the 

picture. 

4. Convert the fingerprint pictures to black and white representation. 

5. Each pixel is a single component of the input vector for a Hopfield Neural 

Network. 

6. Train the Hopfield Neural Network by the training set of pictures, check it using 

the testing set and corrupted pictures of the fingerprints, discuss the type of 

corruptions with the laboratory supervisor. 

7. Compare the results of the recognition if the net is trained according to the three 

basic training methods. 
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4.1. Theoretical Background 

4.1.1. Introduction 

Genetic Algorithms are a family of computational models inspired by evolution. 

These algorithms encode a potential solution to a specific problem on a simple 

chromosome-like data structure and apply recombination operators to these structures 

so as to preserve critical information. Genetic algorithms are often viewed as function 

optimizer, although the range of problems to which genetic algorithms have been 

applied is quite broad. 

An implementation of a genetic algorithm begins with a population of (typically 

random) chromosomes. One then evaluates these structures and allocates reproductive 

opportunities in such a way that those chromosomes which represent a better solution to 

the target problem are given more chances to “reproduce” than those chromosomes 

which are poorer solutions. The “goodness” of a solution is typically defined with 

respect to the current population. 

This particular description of a genetic algorithm is intentionally abstract 

because in some sense, the term genetic algorithm has two meanings. In a strict 

interpretation, the genetic algorithm refers to a model introduced and investigated by 

John Holland (1975) and by students of Holland (e.g., DeJong 1975). It is still the case 

that most of the existing theory for genetic algorithms applies either solely or primarily 

to the model introduced by Holland, as well as variations on what will be referred to in 

this book as the canonical genetic algorithm. Recent theoretical advances in modeling 

genetic algorithms also apply primarily to the canonical genetic algorithm (Vose, 1993). 

In a broader usage of the term, a genetic algorithm is any population-based model that 

uses selection and recombination operators to generate new sample points in a search 

space. Many genetic algorithm models have been introduced by researchers largely 

working from an experimental perspective. Many of these researches are application 

oriented and are typically interested in genetic algorithms as optimisation tools. 
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4.1.2. Encodings and Optimisation Problems 

Usually there are only two main components of most genetic algorithms that are 

problem dependent: the problem encoding and the evaluation function. 

Consider a parameter optimization problem where we must optimize a set of 

variables either to maximize some target, such as profit, or to minimize cost or some 

measure of error. We might view such a problem as a black box with a series of control 

dials representing different parameters; the only output of the black box is a value 

returned by an evaluation function indicating how well a particular combination of 

parameter settings solves the optimization problem. The goal is to set the various 

parameters so as to optimize some output. In more traditional terms, we wish to 

minimize (or maximize) some function F(X1, X2, ..., XM). 

Most users of genetic algorithms typically are concerned with problems that are 

nonlinear. This also often implies that it is not possible to treat each parameter as an 

independent variable which can be solved in isolation from the other variables. There 

are interactions such that the combined effects of the parameters must be considered in 

order to maximize or minimize the output of the black box. In the genetic algorithm 

community, the interaction between variables is sometimes referred to as epitasis. 

The first assumption that is typically made is that the variables representing 

parameters can be represented by bit strings. This means that the variables are discrete 

in an a priori fashion, and that the range of the digitising corresponds to a power of two. 

For example, with 10 bits per parameter, we obtain a range with 1024 discrete values. If 

the parameters are actually continuous then this digitisation is not a particular problem. 

This assumes, of course, that the digitisation provides enough resolution to make it 

possible to adjust the output with the desired level of precision. It also assumes that the 

digitisation is in some sense representative of the underlying function. 

If some parameter can only take on an exact finite set of values then the coding 

issue becomes more difficult. For example, what if there are exactly 1200 discrete 

values which can be assigned to some variable Xi. We need at least 11 bits to cover this 
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range, but this codes for a total of 2048 discrete values. The 848 unnecessary bit 

patterns may result in no evaluation, a default worst possible evaluation, or some 

parameter settings may be represented twice so that all binary strings result in a legal set 

of parameter values. Solving such coding problems is usually considered to a part of the 

design of the evaluation function. 

Aside from the coding issue, the evaluation function is usually given as part of 

the problem description. On the other hand, developing an evaluation function can 

sometimes involve developing a simulation. In other cases, the evaluation may be 

performance based and may represent only an approximate or partial evaluation. For 

example, consider a control application where the system can be in any one of an 

exponentially large number of possible states. Assume a genetic algorithm is used to 

optimize some form of control strategy. In such cases, the state space must be sampled 

in a limited fashion and the resulting evaluation of control strategies is approximate and 

noisy (c.f., Fitzpatrick and Grefenstette, 1988). 

The evaluation function must also be relatively fast. This is typically true for any 

optimization method, but it may particularly pose an issue for genetic algorithms. Since 

a genetic algorithm works with a population of potential solutions, it incurs the cost of 

evaluating this population. Furthermore, the population is replaced (all or in part) on a 

generational basis. The members of the population reproduce, and their offspring must 

then be evaluated. If it takes 1 hour to do an evaluation, then it takes over 1 year to do 

10000 evaluations. This would be approximately 50 generations for a population of only 

200 strings. 

4.1.3. Genetic Algorithm – Selection, Mutation, Recombination 

The first step in the implementation of any genetic algorithm is to generate an 

initial population. In the canonical genetic algorithm each member of this population 

will be a binary string of length L which corresponds to the problem encoding. Each 

string is sometimes referred to as a “genotype” (Holland, 1975) or, alternatively, a 
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“chromosome” (Schaffer, 1987). In most cases the initial population is generated 

randomly. After creating an initial population, each string is then evaluated and 

assigned a fitness value. 

The notion of evaluation and fitness are sometimes used interchangeably. 

However, it is useful to distinguish between the evaluation function and the fitness 

function used by a genetic algorithm. The evaluation function, or objective function, 

provides a measure of performance with respect to a particular set of parameters. The 

fitness function transforms that measure of performance into an allocation of 

reproductive opportunities. The evaluation of a string representing a set of parameters is 

independent of the evaluation of any other string. The fitness of that string, however, is 

always defined with respect to other members of the current population. 

In the canonical genetic algorithm, fitness is defined by: fi / f where fi is the 

evaluation associated with string i and f is the average evaluation of all the strings in the 

population. Fitness can also be assigned based on a string‟s rank in the population 

(Baker, 1985; Whitley, 1989) or by sampling methods, such as tournament selection 

(Goldberg, 1990). 

It is helpful to view the execution of the genetic algorithm as a two stage 

process. It starts with the current population. Selection is applied to the current 

population to create an intermediate population. Then recombination and mutation are 

applied to the intermediate population to create the next population. The process of 

going from the current population to the next population constitutes one generation in 

the execution of a genetic algorithm. Goldberg (1989) refers to this basic 

implementation as a Simple Genetic Algorithm (SGA). 

We will first consider the construction of the intermediate population from the 

current population. In the first generation the current population is also the initial 

population. After calculating fi / f for all the strings in the current population, selection is 

carried out. In the canonical genetic algorithm the probability that strings in the current 
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population are copied (i.e., duplicated) and placed in the intermediate generation is 

proportional to their fitness. 

 

 

Fig. 4.1. One generation is broken down into a selection phase and recombination phase 

There are many ways to do selection. We might view the population as mapping 

onto a roulette wheel, where each individual is represented by a space that 

proportionally corresponds to its fitness. By repeatedly spinning the roulette wheel, 

individuals are chosen using “stochastic sampling with replacement” to fill the 

intermediate population. 

A selection process that will more closely match the expected fitness values is 

“remainder stochastic sampling”. For each string i where fi / f is greater than 1.0, the 

integer portion of this number indicates how many copies of that string are directly 

placed in the intermediate population. All strings (including those with fi / f less than 

1.0) then place additional copies in the intermediate population with a probability 

corresponding to the fractional portion of fi / f. For example, a string with fi / f = 1.36 

places 1 copy in the intermediate population, and then receives a 0.36 chance of placing 
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a second copy. A string with a fitness of fi / f = 0.54 has a 0.54 chance of placing one 

string in the intermediate population. 

“Remainder stochastic sampling” is most efficiently implemented using a 

method known as Stochastic Universal Sampling. Assume that the population is laid out 

in random order as in a pie graph, where each individual is assigned space on the pie 

graph in proportion to fitness. Next an outer roulette wheel is placed around the pie with 

N equally spaced pointers. A single spin of the roulette wheel will now simultaneously 

pick all N members of the intermediate population. The resulting selection is also 

unbiased (Baker, 1987). 

After selection has been carried out, the construction of the intermediate 

population is complete and recombination can occur. This can be viewed as creating the 

next population from the intermediate population. Crossover is applied to randomly 

paired strings with a probability denoted pc. (The population should already be 

sufficiently shuffled by the random selection process). Pick a pair of strings. With 

probability pc “recombine” these strings to form two new strings that are inserted into 

the next population. 

Consider the following binary string: 1101001100101101. The string would 

represent a possible solution to some parameter optimization problem. New sample 

points in the space are generated by recombining two parent strings. Consider the string 

1101001100101101 and another binary string, yxyyxyxxyyyxyxxy, in which the values 

0 and 1 are denoted by x and y. Using a single randomly chosen recombination point, 1 

point crossover occurs as follows: 

11010 \/ 01100101101 

yxyyx /\ yxxyyyxyxxy 

Swapping the fragments between the two parents produces the following offspring. 

11010yxxyyyxyxxy and yxyyx01100101101 
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After recombination, we can apply a mutation operator. For each bit in the 

population, mutate with some low probability pm. Typically the mutation rate is applied 

with less than 1% probability. In some cases, mutation is interpreted as randomly 

generating a new bit, in which case, only 50% of the time will the “mutation” actually 

change the bit value. In other cases, mutation is interpreted to mean actually flipping the 

bit. The difference is no more than an implementation detail as long as the user/reader is 

aware of the difference and understands that the first form of mutation produces a 

change in bit values only half as often as the second, and that one version of mutation is 

just a scaled version of the other. 

After the process of selection, recombination and mutation is complete, the next 

population can be evaluated. The process of evaluation, selection, recombination and 

mutation forms one generation in the execution of a genetic algorithm. 

4.1.4. Crossover Operation Details 

The general idea of the crossover operation is to exchange of “genetic material” 

between two individuals from population. The exchange between parents generates 

children – the new individuals. Finally the parents are substituted by children in 

population. 

 

Fig. 4.2. Crossover operation 
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Steps of the crossover operation: 

- select couples of chromosomes from parents set randomly according to a crossover 

probability pc  (0.5, 1), 

- choose a point of crossing lk (gene‟s position in chromosome) as a number from 

[1, L-1], L – length of chromosome, 

- descendants creation by parents genes exchange. 

 

Fig. 4.3. Types of crossover operation 

4.2. List of Problems 

1. Genetic Algorithms for minima search of multimodal functions. 

2. Genetic Algorithms for maxima search of multimodal functions. 

4.3. Phases of Laboratory Exercises 

1. Check and improve the necessary softcomputing knowledge. 

2. Prepare and collect the necessary data sets: for training and for testing. 
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3. Realise the necessary data preprocessing and/or data postprocessing using different 

types of ready-to-use software or by “hand-made” software prepared by the 

laboratory group. 

4. Prepare your own software to implement the proper softcomputing algorithms. The 

main goal is to create the correctly working engine, user interface utilities are not so 

important. The software environments and systems you can use for implementation 

are limited, but the actual possibilities ought to be discussed with the laboratory 

supervisor. 

5. Turn on and tune the prepared software engine, supply the input training and/or 

testing data. If the engine works correctly, check what happens when the starting 

point parameters change, explore the sensitivity of engine for the different sets of 

available parameters and find the solution of the problem. At the end, check if the 

used softcomputing solution is correctly fitted to the problem. 

6. Prepare the final report including the following parts: 

– the short description of the problem with necessary assumptions, 

– definitions and descriptions of the training and testing sets of input data with 

description of the preprocessing procedures, 

– definitions and descriptions of the of output data with description of the 

postprocessing procedures, 

– description of the tuned topology and parameters of the prepared softcomputing 

engine, 

– detailed results analysis and final remarks. 

4.4. Hints for the List of Problems 

Problem No. 1 

1. Choose the representative of the polynomial type of function. 

2. Fix the domain and the value of the function. 

3. Divide the fixed domain into intervals. 

4. Using the known set of genetic algorithm operations find the possible minima in 

each interval. 
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5. Check the influence of the interval division for the achieved results. 

6. Find the optimal interval division for chosen function. 

Problem No. 2 

1. Choose the representative of the polynomial type of function. 

2. Fix the domain and the value of the function. 

3. Divide the fixed domain into intervals. 

4. Using the known set of genetic algorithm operations find the possible maxima in 

each interval. 

5. Check the influence of the interval division for the achieved results. 

6. Find the optimal interval division for chosen function. 
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5.1. Theoretical Background 

5.1.1. Knowledge and its Representation 

Knowledge is a theoretical or practical understanding of a subject or a domain. 

Knowledge is also the sum of what is currently known, and apparently knowledge is 

power. Those who possess knowledge are called experts. Anyone can be considered a 

domain expert if he or she has deep knowledge (of both facts and rules) and strong 

practical experience in a particular domain. The area of the domain may be limited. In 

general, an expert is a skilful person who can do things other people cannot. The human 

mental process is internal, and it is too complex to be represented as an algorithm. 

However, most experts are capable of expressing their knowledge in the form of rules 

for problem solving. 

 IF the „traffic light‟ is green 

 THEN the action is go 

 IF the „traffic light‟ is red 

 THEN the action is stop 

The term rule in AI, which is the most commonly used type of knowledge 

representation, can be defined as an IF-THEN structure that relates given information or 

facts in the IF part to some action in the THEN part. A rule provides some description 

of how to solve a problem. Rules are relatively easy to create and understand. Any rule 

consists of two parts: the IF part, called the antecedent (premise or condition) and the 

THEN part called the consequent (conclusion or action).  

IF antecedent  

THEN consequent  

A rule can have multiple antecedents joined by the keywords AND 

(conjunction), OR (disjunction) or a combination of both. 
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 IF antecedent 1  IF antecedent 1  

 AND antecedent 2> OR  antecedent 2  

      .        . 

      .        . 

      .        . 

 AND  antecedent n> OR  antecedent n  

 THEN consequent  THEN consequent  

The antecedent of a rule incorporates two parts: an object (linguistic object) and 

its value. The object and its value are linked by an operator. The operator identifies the 

object and assigns the value. Operators such as is, are, is not, are not are used to assign 

a symbolic value to a linguistic object. Expert systems can also use mathematical 

operators to define an object as numerical and assign it the numerical value. 

 IF „age of the customer‟ < 18 

 AND „cash withdrawal‟ > 1000 

 THEN „signature of the parent‟ is required  

Rules can represent relations, recommendations, directives, strategies and heuristics: 

Relation  

 IF  the „fuel tank‟ is empty 

 THEN  the car is dead 

Recommendation  

 IF  the season is autumn 

 AND  the sky is cloudy 

 AND  the forecast is drizzle 

 THEN  the advice is „take an umbrella‟ 
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Directive 

 IF  the car is dead 

 AND  the „fuel tank‟ is empty 

 THEN  the action is „refuel the car‟  

Strategy  

 IF  the car is dead 

 THEN  the action is „check the fuel tank‟; 

   step1 is complete 

 IF  step1 is complete 

 AND  the „fuel tank‟ is full 

 THEN  the action is „check the battery‟; 

   step2 is complete 

Heuristic 

 IF  the spill is liquid 

 AND  the „spill pH‟ < 6 

 AND  the „spill smell‟ is vinegar 

 THEN  the „spill material‟ is „acetic acid‟ 

5.1.2. Members of Expert System Development Team 

There are five members of the expert system development team: the domain 

expert, the knowledge engineer, the programmer, the project manager and the end-

user. The success of their expert system entirely depends on how well the members 

work together. 

The domain expert is a knowledgeable and skilled person capable of solving 

problems in a specific area or domain. This person has the greatest expertise in a given 

domain. This expertise is to be captured in the expert system. Therefore, the expert must 

be able to communicate his or her knowledge, be willing to participate in the expert 
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system development and commit a substantial amount of time to the project. The 

domain expert is the most important player in the expert system development team. 

The knowledge engineer is someone who is capable of designing, building and 

testing an expert system. He or she interviews the domain expert to find out how a 

particular problem is solved. The knowledge engineer establishes what reasoning 

methods the expert uses to handle facts and rules and decides how to represent them in 

the expert system. The knowledge engineer then chooses some development software or 

an expert system shell, or looks at programming languages for encoding the knowledge. 

And finally, the knowledge engineer is responsible for testing, revising and integrating 

the expert system into the workplace. 

The programmer is the person responsible for the actual programming, 

describing the domain knowledge in terms that a computer can understand. The 

programmer needs to have skills in symbolic programming in such AI languages as 

LISP, Prolog and OPS5 and also some have experience in the application of different 

types of expert system shells. Additionally, the programmer should know conventional 

programming languages like C, Pascal, FORTRAN and Basic. 

The project manager is the leader of the expert system development team, 

responsible for keeping the project on track.  He or she makes sure that all deliverables 

and milestones are met, interacts with the expert, knowledge engineer, programmer and 

end-user. The end-user, often called just the user, is a person who uses the expert 

system when it is developed. The user must not only be confident in the expert system 

performance but also feel comfortable using it. Therefore, the design of the user 

interface of the expert system is also vital for the project‟s success; the end-user‟s 

contribution here can be crucial. 
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Fig. 5.1. Members of Expert System Development Team 

5.1.3. Structure of the Rule-Based Expert System 

In the early seventies, a production systems model was proposed as the 

foundation of the modern rule-based expert systems. The production model is based on 

the idea that humans solve problems by applying their knowledge (expressed as 

production rules) to a given problem represented by problem-specific information. The 

production rules are stored in the long-term memory and the problem-specific 

information or facts in the short-term memory. 

5.1.4. Expert System Characteristic 

The knowledge base contains the domain knowledge useful for problem 

solving. In a rule-based expert system, the knowledge is represented as a set of rules.  
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Fig. 5.2. Production System Model 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3. Basic Structure of the Rule-Based Expert System 
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Each rule specifies a relation, recommendation, directive, strategy or heuristic 

and has the IF (condition) THEN (action) structure. When the condition part of a rule is 

satisfied, the rule is said to fire and the action part is executed. The database includes a 

set of facts used to match against the IF (condition) parts of rules stored in the 

knowledge base. The inference engine carries out the reasoning, whereby the expert 

system reaches a solution.  It links the rules given in the knowledge base with the facts 

provided in the database. The explanation facilities enable the user to ask the expert 

system how a particular conclusion is reached and why a specific fact is needed. An 

expert system must be able to explain its reasoning and justify its advice, analysis and 

conclusion. The user interface is the means of communication between a user seeking 

a solution to the problem and an expert system. An expert system is built to perform at a 

human expert level in a narrow, specialised domain. Thus, the most important 

characteristics of an expert system is its high-quality performance. No matter how fast 

the system can solve a problem, the user will not be satisfied if the result is wrong. On 

the other hand, the speed of reaching a solution is very important. Even the most 

accurate decision or diagnosis may not be useful if it is too late to apply, for instance, in 

an emergency, when a patient dies or a nuclear power plant explodes. Expert systems 

apply heuristics to guide the reasoning and thus reduce the search area for a solution. A 

unique feature of an expert system is its explanation capability. It enables the expert 

system to review its own reasoning and explain its decisions. Expert systems employ 

symbolic reasoning when solving a problem. Symbols are used to represent different 

types of knowledge such as facts, concepts and rules. Even a brilliant expert is only a 

human and thus can make mistakes. This suggests that an expert system built to perform 

at a human expert level also should be allowed to make mistakes. But we still trust 

experts, even if we recognise that their judgements are sometimes wrong. 

Likewise, at least in most cases, we can rely on solutions provided by expert 

systems, but mistakes are possible and we should be aware of this. In expert systems, 

knowledge is separated from its processing (the knowledge base and the inference 
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engine are split up). A conventional program is a mixture of knowledge and the control 

structure to process this knowledge. This mixing leads to difficulties in understanding 

and reviewing the program code, as any change to the code affects both the knowledge 

and its processing. When an expert system shell is used, a knowledge engineer or an 

expert simply enters rules in the knowledge base. Each new rule adds some new 

knowledge and makes the expert system smarter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4. Complete Structure of the Rule-Based Expert System 
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5.1.5. Forward Chaining and Backward Chaining 

In a rule-based expert system, the domain knowledge is represented by a set of 

IF-THEN production rules and the data is represented by a set of facts about the current 

situation. The inference engine compares each rule stored in the knowledge base with 

facts contained in the database. When the IF (condition) part of the rule matches a fact, 

the rule is fired and its THEN (action) part is executed. The matching of the rule IF 

parts to the facts produces inference chains. The inference chain indicates how an 

expert system applies the rules to reach a conclusion. 

 

 

 

 

 

 

 

Fig. 5.5. Inference Engine Cycles via Match-Fire Procedure 
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  AND B is true 

  AND E is true 

  THEN Y is true 

Rule 3:  IF A is true 

  THEN X is true 

Forward chaining is the data-driven reasoning. The reasoning starts from the 

known data and proceeds forward with that data. Each time only the topmost rule is 

executed. When fired, the rule adds a new fact in the database. Any rule can be executed 

only once. The match-fire cycle stops when no further rules can be fired. Forward 

chaining is a technique for gathering information and then inferring from it whatever 

can be inferred. However, in forward chaining, many rules may be executed that have 

nothing to do with the established goal. Therefore, if our goal is to infer only one 

particular fact, the forward chaining inference technique would not be efficient. 

 

 

 

 

 

 

 

 

Fig. 5.6. Forward Chaining 
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Fig. 5.7. Backward Chaining 

Backward chaining is the goal-driven reasoning. In backward chaining, an 

expert system has the goal (a hypothetical solution) and the inference engine attempts to 

find the evidence to prove it. First, the knowledge base is searched to find rules that 
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might have the desired solution. Such rules must have the goal in their THEN (action) 

parts. If such a rule is found and its IF (condition) part matches data in the database, 

then the rule is fired and the goal is proved. However, this is rarely the case. Thus the 

inference engine puts aside the rule it is working with (the rule is said to stack) and sets 

up a new goal, a subgoal, to prove the IF part of this rule. Then the knowledge base is 

searched again for rules that can prove the subgoal. The inference engine repeats the 

process of stacking the rules until no rules are found in the knowledge base to prove the 

current subgoal. 

If an expert first needs to gather some information and then tries to infer from it 

whatever can be inferred, he or she chooses the forward chaining inference engine. 

However, if your expert begins with a hypothetical solution and then attempts to find 

facts to prove it, he or she chooses the backward chaining inference engine.  

5.1.6. Conflict Resolution 

Lets consider three simple rules for crossing a road: 

Rule 1: 

 IF  the „traffic light‟ is green 

 THEN  the action is go 

Rule 2: 

 IF  the „traffic light‟ is red 

 THEN  the action is stop 

Rule 3: 

 IF  the „traffic light‟ is red 

 THEN  the action is go 

We have two rules, Rule 2 and Rule 3, with the same IF part. Thus both of them 

can be set to fire when the condition part is satisfied. These rules represent a conflict 
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set. The inference engine must determine which rule to fire from such a set. A method 

for choosing a rule to fire when more than one rule can be fired in a given cycle is 

called conflict resolution. in forward chaining, BOTH rules would be fired. Rule 2 is 

fired first as the topmost one, and as a result, its THEN part is executed and linguistic 

object action obtains value stop. However, Rule 3 is also fired because the condition 

part of this rule matches the fact ‘traffic light’ is red, which is still in the database. As a 

consequence, the object action takes new value go.  

Fire the rule with the highest priority. In simple applications, the priority can be 

established by placing the rules in an appropriate order in the knowledge base. Usually 

this strategy works well for expert systems with around 100 rules. 

Fire the most specific rule. This method is also known as the longest matching 

strategy. It is based on the assumption that a specific rule processes more information 

than a general one. 

Fire the rule that uses the data most recently entered in the database. This 

method relies on time tags attached to each fact in the database. In the conflict set, the 

expert system first fires the rule whose antecedent uses the data most recently added to 

the database. 

5.1.7. Metaknowledge 

Metaknowledge can be simply defined as knowledge about knowledge. 

Metaknowledge is knowledge about the use and control of domain knowledge in an 

expert system. In rule-based expert systems, metaknowledge is represented by 

metarules. A metarule determines a strategy for the use of task-specific rules in the 

expert system.  

Metarule 1: 

 Rules supplied by experts have higher priorities than rules supplied by novices. 
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Metarule 2: 

 Rules governing the rescue of human lives have higher priorities than rules 

concerned with clearing overloads on power system equipment.  

5.1.8. Advantages of Expert System 

- natural knowledge representation, 

- an expert usually explains the problem-solving procedure with such expressions 

as this: “In such-and-such situation, I do so-and-so”, 

- these expressions can be represented quite naturally as IF-THEN production 

rules. 

- uniform structure, 

- production rules have the uniform IF-THEN structure. Each rule is an 

independent piece of knowledge, 

- the very syntax of production rules enables them to be self-documented, 

- separation of knowledge from its processing, 

- the structure of a rule-based expert system provides an effective separation of 

the knowledge base from the inference engine.  

- this makes it possible to develop different applications using the same expert 

system shell.  

- dealing with incomplete and uncertain knowledge, 

- most rule-based expert systems are capable of representing and reasoning with 

incomplete and uncertain knowledge. 

5.2. List of Problems 

1. Expert system for car purchase assistance. 

2. Expert system for heart attack risk estimation. 

3. Expert system for diabetes risk estimation. 
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4. Expert system for a type and make of mobile phone selection based on user needs. 

5. Expert system for selection of places for events in Wrocław. 

5.3. Phases of Laboratory Exercises 

1. Check and improve the necessary softcomputing knowledge. 

2. Prepare and collect the necessary data sets: for training and for testing. 

3. Realise the necessary data preprocessing and/or data postprocessing using different 

types of ready-to-use software or by “hand-made” software prepared by the 

laboratory group. 

4. Prepare your own software to implement the proper softcomputing algorithms. The 

main goal is to create the correctly working engine, user interface utilities are not so 

important. The software environments and systems you can use for implementation 

are limited, but the actual possibilities ought to be discussed with the laboratory 

supervisor. 

5. Turn on and tune the prepared software engine, supply the input training and/or 

testing data. If the engine works correctly, check what happens when the starting 

point parameters change, explore the sensitivity of engine for the different sets of 

available parameters and find the solution of the problem. At the end, check if the 

used softcomputing solution is correctly fitted to the problem. 

6. Prepare the final report including the following parts: 

– the short description of the problem with necessary assumptions, 

– definitions and descriptions of the training and testing sets of input data with 

description of the preprocessing procedures, 

– definitions and descriptions of the of output data with description of the 

postprocessing procedures, 

– description of the tuned topology and parameters of the prepared softcomputing 

engine, 

– detailed results analysis and final remarks. 
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5.4. Hints for the List of Problems 

All Problems 

1. Choose and collect the data and information related to the problem. 

2. Divide the collected data into categories, create the knowledge base and 

chaining mechanisms. 

3. Prepare the set of questions for users. 

4. Implement the knowledge base, the chaining, and the user interface. 

5. Tune the system, check the available answers and results. 
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1.1. Theoretical Background 

6.1.1 Fuzzy Set Theory 

The basic idea of the fuzzy set theory is that an element belongs to a fuzzy set 

with a certain degree of membership. A fuzzy set is a set with fuzzy boundaries. A 

proposition is neither true nor false (fuzzy logic), but may be partly true (or partly false) 

to any degree. This degree is usually taken as a real number in the range [0,1]. This way 

the fuzzy logic is an extension of classic two-valued logic – the truth value of a sentence 

is not restricted to true or false. 

In the fuzzy set theory a classical example is a set is tall men. The elements of 

the fuzzy set “tall men” are all men, but their degrees of membership depend on their 

height. 

 

 

 

 

 

 

 

 

Fig. 6.1. Tall men fuzzy set 

The x-axis represents the universe of discourse  the range of all possible values 

applicable to a chosen variable. In our case, the variable is the man‟s height. According 
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to this representation, the universe of men‟s heights consists of all tall men. The y-axis 

represents the membership value of the fuzzy set. In our case, the fuzzy set of tall men 

maps height values into corresponding membership values.  

A fuzzy set is a set with fuzzy boundaries. Let X be the universe of discourse and 

its elements be denoted as x. In the classical set theory, crisp set A of X is defined as 

function fA(x) called the characteristic function of A 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2. Crisp and fuzzy set of tall men 

fA(x): X  {0, 1}, where fA(x) =1 if x  A or fA(x) =0 if x  A 

In the fuzzy theory, fuzzy set A of universe X is defined by function A(x) called the 

membership function of set A 

A(x): X  [0, 1] where A(x) = 1 if x is totally in A or A(x) = 0 if x is not in A 

or 0 < A(x) < 1 if x is partly in A 
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For any element x of universe X, membership function A(x) equals to the degree 

to which x is an element of set A. This degree, a value between 0 and 1, represents the 

degree of membership of element x in set A. 
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Fig. 6.3. More crisp and fuzzy sets defined on the universe 
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Typical functions that can be used to represent a fuzzy set are sigmoid, Gaussian 

and pi. However, these functions are computation-intensive. Therefore, in practice, most 

applications represent fuzzy subsets by linear fit functions. 

A linguistic variable is a fuzzy variable. For example, the statement “John is 

tall” implies that the linguistic variable John takes the linguistic value tall. The range of 

possible values of a linguistic variable represents the universe of discourse of that 

variable. 

For example, the universe of discourse of the linguistic variable speed might 

have the range between 0 and 220 km/h and may include such fuzzy subsets as very 

slow, slow, medium, fast, and very fast. 

A linguistic variable carries with it the concept of fuzzy set qualifiers, called 

hedges. Hedges are terms that modify the shape of fuzzy sets. They include adverbs 

such as very, somewhat, quite, more or less and slightly. 
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1.1.2. Fuzzy Set Operations 

- Complement 

The complement of a set is an opposite of this set. For example, if we have the set of 

tall men, its complement is the set of NOT tall men. When we remove the tall men set 

from the universe of discourse, we obtain the complement.  If A is the fuzzy set, its 

complement -A can be found as follows:  -A(x) = 1  A(x). 

- Containment 

The set of tall men contains all tall men; very tall men is a subset of tall men. However, 

the tall men set is just a subset of the set of men. In crisp sets, all elements of a subset 

entirely belong to larger set. In fuzzy sets, however, each element can belong less to the 

subset than to the larger set. Elements of the fuzzy subset have smaller memberships in 

it than in the larger set. 

- Intersection 

In classical set theory, an intersection between two sets contains the elements shared by 

these sets. For example, the intersection of the set of tall men and the set of fat men is 

the area where these sets overlap. In fuzzy sets, an element may partly belong to both 

sets with different memberships. A fuzzy intersection is the lower membership in both 

sets of each element. The fuzzy intersection of two fuzzy sets A and B on universe of 

discourse X: 

AB(x) = min [A(x), B(x)] = A(x)  B(x), where xX 

- Union 

The union of two crisp sets consists of every element that falls into either set.  For 

example, the union of tall men and fat men contains all men who are tall OR fat. In 

fuzzy sets, the union is the reverse of the intersection. That is, the union is the largest 
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membership value of the element in either set. The fuzzy operation for forming the 

union of two fuzzy sets A and B on universe X can be given as: AB(x) = max [A(x), 

B(x)] = A(x)  B(x), where xX 

 

 

 

 

 

 

 

 

 

 

Fig. 6.5. Operations of fuzzy sets 

1.1.3. Fuzzy Logic 

Fuzzy logic is an extension of classic two-valued logic – the truth value of a sentence is 

not restricted to true or false. Example of fuzzy sentences: Φ = Height(John, tall) 

|Φ| = 0.9, Ψ = Speed(Mazda, fast) |Ψ| = 0.3. The truth value of each logic connective 

can be defined: 

|-Φ| = 1 – |Φ| 
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|Φ  Ψ| = max {|Φ|, |Ψ|}  /* t-conorm */ 

|Φ →Ψ| = min {1 - |Φ| + |Ψ|, 1} /* Lukasiewicz */ 

There are four types of fuzzy logics: 

– Classic logic 

• Crisp sentence: Height(John, 180) → Weight(John, 60)  

• Crisp data: Height(John, 180) 

– Truth-functional multi-valued logic (Fuzzy knowledge base) 

• Fuzzy sentence: Height(John, tall) → Weight(John, heavy)  

• Crisp data: Height(John, 180) 

– Possibilistic logic (Uncertain knowledge base) 

• Crisp sentence: Height(John, 180) → Weight(John, 60)  

• Fuzzy data: Height(John, tall)  

– Uncertain fuzzy knowledge base 

• Fuzzy sentence: Height(John, tall) → Weight(John, heavy)  

• Fuzzy data: Height(John, tall)  

Fuzzy Inference 

– Classic logic 

• Resolution – sound and complete: {l1l2, L1l2}├res {l1L1}  

– Possibilistic logic 

• Possibilitic resolution principle – sound and complete 

{(l1l2,a1), (L1l2, a2)}├pres 

{l1L1,min{a1, a2}} 
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Truth-functional multi-valued logic (Fuzzy knowledge base) 

– Generalized Modus Ponens – sound and complete 

– According to Lukasiewicz:  

 |Φ →Ψ| = min {1 - |Φ| + |Ψ|, 1} 

 => |Φ →Ψ| ≤ 1 - |Φ| + |Ψ| 

 => if set | Φ →Ψ | = 1 - |Φ| + |Ψ| => then |Ψ| = |Φ| + (|Φ →Ψ| – 1) 

– |Ψ| = |Φ| if |Φ →Ψ| = 1, i.e., the truth value of Φ →Ψ is always true, which serves 

as the basis for using “clipping” to get output in Fuzzy Control or Knowledge-

based Systems 

 

1.1.4. Fuzzy Knowledge – Based Systems 

Fuzzy Knowledge-based Systems or Fuzzy Control Systems are a special type of 

truth-functional multi-valued logic. Fuzzy rules are used to relate fuzzy sets, The truth 

value of each fuzzy rule is 1. Fuzzy rule representation: 

IF x is A THEN y is B 

where x and y are linguistic variables; and A and B are linguistic values determined by 

fuzzy sets on the universe of domains X and Y, respectively. 

A fuzzy rule can have multiple antecedents: 

IF  project_duration is long 

  AND  project_staffing is large 

  AND  project_funding is inadequate 

  THEN  risk is high 

72



73 

 

The consequent of a fuzzy rule can also include multiple parts: 

IF  temperature is hot 

  THEN  hot_water is reduced; 

     cold_water is increased 

Difference between crisp and fuzzy rules: 

– crisp rule:  

 IF speed is >100 

 THEN stopping_distance is long 

– fuzzy rule: 

 IF speed is fast 

 THEN stopping_distance is long 

In a fuzzy system, all rules fire to some extent, or in other words they fire 

partially. If the antecedent is true to some degree of membership, then the consequent is 

also true to that same degree.  

Operations for Mamdani fuzzy inference model we can discuss in four steps. 

The first one is a fuzzification of the input variables. The rule evaluation is the second. 

Next we have to aggregate the rule outputs and finally do the defuzzification is 

necessary. 

We examine a simple two-input one-output problem that includes three rules: 

Rule: 1   Rule: 1 

 IF x is A3   IF project_funding is adequate  

 OR y is B1   OR project_staffing is small  
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 THEN z is C1   THEN risk is low  

 Rule: 2   Rule: 2 

 IF x is A2   IF project_funding is marginal  

 AND y is B2   AND project_staffing is large  

 THEN z is C2   THEN risk is normal  

 Rule: 3   Rule: 3 

 IF x is A1   IF project_funding is inadequate  

 THEN z is C3   THEN risk is high  

 

Step 1: Fuzzification 

Take the crisp inputs, x1 and y1 (project funding and project staffing), and determine 

the degree to which these inputs belong to each of the appropriate fuzzy sets. 

 

 

 

 

 

Fig. 6.6. Fuzzification 

Step 2: Rule Evaluation 

Take the fuzzified inputs, (x=A1) = 0.5, (x=A2) = 0.2, (y=B1) = 0.1 and (y=B2) = 0.7, and 

apply them to the antecedents of the fuzzy rules. If a given fuzzy rule has multiple 
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antecedents, the fuzzy operator (AND or OR) is used to obtain a single number that 

represents the result of the antecedent evaluation. This number (the truth value) is then 

applied to the consequent membership function. To evaluate the disjunction of the rule 

antecedents, we use the OR fuzzy operation. Typically, fuzzy expert systems make use 

of the classical fuzzy operation union: AB(x) = max [A(x), B(x)]. 

 

 

 

 

 

 

Fig. 6.7. Mamdani–style rule evaluation 

Similarly, in order to evaluate the conjunction of the rule antecedents, we apply 

the AND fuzzy operation intersection: AB(x) = min [A(x), B(x)]. 

Clipping: The most common method of correlating the rule consequent with the 

truth value of the rule‟s antecedent is to cut the consequent membership function at the 

level of the antecedent truth. Since the top of the membership function is sliced, the 

clipped fuzzy set loses some information. Clipping is still often preferred because it 

involves less complex and faster mathematics, and generates an aggregated output 

surface that is easier to defuzzify. 

Scaling: The original membership function of the rule‟s consequent is adjusted 

by multiplying all its membership degrees by the truth value of the rule antecedent. 
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Scaling offers a better approach for preserving the original shape of the fuzzy set; it 

generally loses less information and can be very useful in fuzzy expert systems. 

 

 

 

 

 

 

Fig. 6.8. Clipped and scaled membership functions 

 

Step 3: Aggregation of the rule outputs 

Aggregation is the process of unification of the outputs of all rules.  We take the 

membership functions of all rule consequents previously clipped or scaled and combine 

them into a single fuzzy set. The input of the aggregation process is the list of clipped or 

scaled consequent membership functions, and the output is one fuzzy set for each output 

variable. 

 

 

 

 

Fig. 6.9. Aggregation of the rule outputs 
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Step 4: Defuzzification 

The input for the defuzzification process is the aggregate output fuzzy set and the output 

is a single number. Centroid technique based defuzzification methods. It finds the point 

where a vertical line would slice the aggregate set into two equal masses. 

Mathematically this centre of gravity (COG) can be expressed as: 

 

           (6.1) 

 

COG can be obtained by calculating it over a sample of points. 

 

 

 

 

 

 

 

 

 

 

Fig. 6.10. COG  
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Finding the centroid of a two-dimensional shape by integrating across a 

continuously varying function is not computationally efficient. For Sugeno fuzzy 

inference model we use a single spike, a singleton, as the membership function of the 

rule consequent. A singleton, or more precisely a fuzzy singleton, is a fuzzy set with a 

membership function that is one at a single particular point on the universe of domain 

and zero everywhere else. Rule representation of Sugeno fuzzy inference model is very 

similar to the Mamdani method. Sugeno changed only a rule consequent. Instead of a 

fuzzy set, he used a mathematical function of the input variable. 

IF  x is A  

  AND  y is B  

  THEN z is f(x, y)  

where x, y and z are linguistic variables; A and B are fuzzy sets on universe of domains 

X and Y, respectively and f (x, y) is a mathematical function. 

The most commonly used zero-order Sugeno fuzzy model applies fuzzy rules in the 

following form: 

IF  x is A  

  AND  y is B  

  THEN  z is k  

where k is a constant. In this case, the output of each fuzzy rule is constant. All 

consequent membership functions are represented by singleton spikes. 

 

 

 

 

Fig. 6.11. Sugeno-style aggregation of the rule outputs 
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Fig. 6.12. Sugeno-style rule evaluation 

 

 

 

 

Fig. 6.13. Sugeno-style defuzzification: Weighted average (WA) 
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and adaptive techniques, which makes it very attractive in control problems, particularly 

for dynamic nonlinear systems. 

1.1.5. Development of Fuzzy Expert Systems 

 Specify the problem and define linguistic variables. 

 Determine fuzzy sets. 

 Elicit and construct fuzzy rules. 

 Encode the fuzzy sets, fuzzy rules and procedures to perform fuzzy inference 

into the expert system. 

 Evaluate and tune the system. 

1.1.6. Tuning Fuzzy Systems 

 Review modelled input & output variables, and if required redefine their ranges. 

 Review the fuzzy sets, and if required, define additional sets on the universe of 

domain. The use of wide fuzzy sets may cause slow performance. 

 Provide sufficient overlap between neighbouring sets. It is suggested that 

triangle-to-triangle and trapezoid-to-triangle fuzzy sets should overlap between 

25% to 50% of their bases.  

 Review the existing rules, and if required add new rules to the rule base. 

 Examine the rule base for opportunities to write hedge rules to capture the 

pathological behaviour of the system. 

 Adjust the rule execution weights. Most fuzzy logic tools allow control of the 

importance of rules by changing a weight multiplier. 
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 Revise shapes of the fuzzy sets.  In most cases, fuzzy systems are highly tolerant 

of a shape approximation.  

1.2. List of Problems 

1. Fuzzy logic controller for an inverted pendulum. 

2. Fuzzy logic used in simple games: tic-tac-toe (cross and circle), sea battle, etc. 

1.3. Phases of Laboratory Exercises 

1. Check and improve the necessary softcomputing knowledge. 

2. Prepare and collect the necessary data sets: for training and for testing. 

3. Realise the necessary data preprocessing and/or data postprocessing using different 

types of ready-to-use software or by “hand-made” software prepared by the 

laboratory group. 

4. Prepare your own software to implement the proper softcomputing algorithms. The 

main goal is to create the correctly working engine, user interface utilities are not so 

important. The software environments and systems you can use for implementation 

are limited, but the actual possibilities ought to be discussed with the laboratory 

supervisor. 

5. Turn on and tune the prepared software engine, supply the input training and/or 

testing data. If the engine works correctly, check what happens when the starting 

point parameters change, explore the sensitivity of engine for the different sets of 

available parameters and find the solution of the problem. At the end, check if the 

used softcomputing solution is correctly fitted to the problem. 

6. Prepare the final report including the following parts: 

– the short description of the problem with necessary assumptions, 

– definitions and descriptions of the training and testing sets of input data with 

description of the preprocessing procedures, 
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– definitions and descriptions of the of output data with description of the 

postprocessing procedures, 

– description of the tuned topology and parameters of the prepared softcomputing 

engine, 

– detailed results analysis and final remarks. 

1.4. Hints for the List of Problems 

Problem No. 1 

1. The general idea is to substitute the real PID controller by fuzzy logic based 

engine. The Multilayer Perceptron should be used to emulate the inverted 

pendulum. 

2. Use the typical for fuzzy logic observations to create the necessary control 

mechanisms for the inverted pendulum driving. 

3. Take the set of well-known observations describing the real inverted pendulum 

to train the “MLP pendulum”. 

4. It is necessary to find and discuss the relations: velocity, force, angle, 

acceleration. 

Problem No. 2 

1. The general idea is to use fuzzy logic combined to other softcomputing methods 

to build better than typical algorithm for a simple game. 

2. The proposed method ought to improve the game algorithm based on the 

previous runs. 

3. Try to compare the results when the softcomputing methods are in use to the 

typical algorithm results. 
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