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Abstract. In the teaching of calculus, we consider horizontal and slant asymptote. In this 
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1. Horizontal and slant asymptote 

The term „asymptote‟ means usually a straight line, thus a line l is an 

asymptote to a curve if the distance from point P to the line l tends to zero 

as P tends to infinity along some unbounded part of the curve. If the curve is 

the graph of a real function this definition includes a vertical 0,x x  

a horizontal 0ay  , and a slant asymptote 01 axay  (Clapham 1996; 

Kudravcev 1973). 

It is known that the horizontal asymptote of function  xfy   has its 

parameter  xfa
x 

 lim0 , if it is investigated as x , the slant asymptote 

has its parameters: 

 
x

xf
a

x 
 lim1     and     xaxfa

x



10 lim . 
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In the case x  the result can be different. Function xy arctan  has 

two different asymptotes if 

x  









2


y  and 

2


y  if  x . 

The same is the case for slant, parabolic and polynomial asymptote.  

The reader certainly knows many examples of the function with hori-

zontal or slant asymptote.   

Example 1. The most simple example of a function which has the hori-

zontal asymptote 0y  is 
x

y
1

 . 

Example 2. The sum:  f(x) = const + 1 / x  has the horizontal asymptote  

y = const. 

Example 3. The sum of the linear function baxy   and the hyperbo-

la from example 1 is a rational function and its slant asymptote is the linear 

function: 
x

xy
1

2  : 

 

Fig. 1. A rational function with the slant asymptote 

Source: own elaboration. 

3 2 1 1 2 3
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5
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Example 4. Function  
x

x
xf

sin
   is not rational and has the horizon-

tal asymptote  0y : 

 

Fig. 2. The function oscillates closer and closer around its horizontal asymptote 

Source: own elaboration. 

Example 5. Let  
x

x
baxxf

sin
  where 0a . This function oscil-

lates closer and closer around its slant asymptote baxy  . 

2. Parabolic asymptote 

The term „parabolic asymptote‟ is defined similarly  (Janaszak 2000).  

Definition 1. A parabola 01

2

2 axaxay   is a parabolic asymp-

tote of the function   xfy  , as x , if  

      0lim 01

2

2 


axaxaxf
x

. (1) 

In the case x  the result can be different.  

10 5 5 10
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Theorem 1. Let function  f  be given in any interval  ,m , and have 

the parabolic asymptote defined by (1), then there exist three limits:  

 
 

a
x

xf

x


 2
lim , (2) 

 
 

b
x

xaxf

x






2

2lim , (3) 

     cxaxaxf
x




1

2

2lim , (4) 

and the parameters a2, a1, a0  are equal: a, b, c. 

Proof. The equalities (1) and (4) are equivalent as 0ac   .  

Let  ε  be a positive number. By formula (1) there exists a number 



0

1

a
M    such that for each  x > M1  inequality  

     101

2

2  axaxaxf  (5) 

where 0011  aM  , holds. The inequality (5) can be divided by       

x > M1,  then the sequence of inequalities 

   
1

10101

2

210

1

10

M

a

x

a

x

xaxaxf

x

a

M

a  












   

holds, hence  

   
 




x

xaxaxf 1

2

2 , 

the inequality above proves that  

 
   

0lim 1

2

2 


 x

xaxaxf

x
 (6) 

i.e. 

 
 

1

2

2lim a
x

xaxf

x





, (7) 

thus the limit (3) exists, and ba 1
. 



Some remarks about horizontal, slant, parabolic and polynomial asymptote 

 
49 

Now we need to prove that the equality (2) holds, and ca 2
. Let 

0 , by (7) there exists a  number 


1

2

a
M    such that for each  x > M2  

double inequality  

 
21

2

2
21  


 a

x

xaxf
a  

holds, where 0122  aM  . Because  

2121   aa  and  2121   aa , 

the inequality below is true: 

 
21

2

2
21  


 a

x

xaxf
a . 

Now the above inequality is divided by x > M2: 

 

2

2121

2

2

221

2

21

M

a

x

a

x

xaxf

x

a

M

a  












 . 

We have 

 
 

 



2

2

2

x

xaxf
. (8) 

The double inequality  (8) implies the equality (2) where 
2aa  . The proof 

is complete. 

Corollary 1. The function  xfy   has the parabolic asymptote, as 

x , if and only if the formulas (2), (3), (4) hold; the parabola is given 

by formula cbxaxy  2 . 

Corollary 2. Function  f  has at most one parabolic asymptote.  

The proof can also be made directly by definition. If the formula (1) 

holds and the equality  

    0lim 01

2

2 


xfcxcxc
x

 (9) 

holds too, then the addition of the left side of  (1) and (9) has the limit equal 

to zero, i.e. 
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      0lim 01

2

201

2

2 


axaxacxcxc
x

, (10) 

so 

   0lim
2

0011
22

2 






 





 x

ac

x

ac
acx

x
; (11) 

the formula (11) proves that 
22 ac  , from here it follows that the formula 

(10) is equivalent to 

      0lim 0101 


axacxc
x

 (12) 

i.e. 

   0lim 00

11 






 


 x

ac
acx

x
; (13) 

the formula (13) entails that 
11 ac  , and the formula (10) is equivalent to 

  0lim 00 


ac
x

 i.e. 00 ac  . The direct proof of corollary 2 is complete.  

Example 6. Let a rational function f be given by the following formula: 

 
x

xxx
xf

6116 23 
 . 

Its decomposition has the form: 

 
x

xxxf
6

1162  . 

The parabolic asymptote of  f  is defined by 1162  xxy  with the vertex 

in the point 3x , 2y .  Function  f  has the form: 

 
     

x

xxx
xf

321 
 . 

The table of signs of  f  helps to made the plot of the function f; it runs above  

the x-axis on the intervals 

 0, ;    2,1 ;    ,3  

and below it on the intervals 

 1,0    and    3,2 . 
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Similarly, it is located above its parabolic asymptote on the interval 

 0, , and below on  ,0 . In Figure 3 there is presented a graph of 

function  f , and its parabolic asymptote. 

 

Fig. 3. A rational function with its parabolic asymptote 

Source: own elaboration. 

Example 7. The function given by the formula 

 
x

x
xxxg

sin
1162   

has the same parabolic asymptote as  f  in example 6; as x . The 

graph of it is a sinusoid which runs closer and closer around the parabola 

1162  xxy .  

3. Polynomial asymptote 

Similarly to parabolic asymptote, there is defined the term „polynomial  

asymptote‟. 

Definition 2. A polynomial  

   



n

i

i

i xaxp
0

  (14) 

2 2 4

40

20

20

40

60
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is said to be a polynomial or multinomial asymptote of the function  

 xfy  , as x ,  if the equality  

      0lim 


xpxf
x

 (15) 

holds. In the case x  the result can be different.  

Theorem 2. Let a polynomial  xp  given by (14)  be a multinomial    

asymptote of function  xf  and the domain of function f includes any inter-

val  ,m . Then there exists  n + 1  limits: 

 
 

nnx
b

x

xf



lim ,     (16) 

 
 

11
lim 




nn

n

n

x
b

x

xaxf
, (17) 

and so on 

 

 

kk

n

ki

i

i

x
b

x

xaxf



 




1lim ,  (18) 

and so on 

 

 

1

2lim b
x

xaxf
n

i

i

i

x






, (19) 

 

 

0

1

1
lim b

xaxf
n

i

i

i

x






, (20) 

and for each ni ...,,0  the equality ii ba   holds.  

Proof. The proof is made by induction. The first induction step is trivial 

because the equalities (15) and (20) are equivalent when 00 ab  .   

Second induction step: let the formula (18) be true for each 

rk ...,,1,0 , and  ii ba   for each ri ...,,0 , where r  is a natural num-

ber: such that  20  nr  . It needs to be proved that  
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 

11

2lim 






 
rr

n

ki

i

i

x
a

x

xaxf

. (21) 

By the induction assumption the formula  

 

 

rr

n

ri

i

i

x
a

x

xaxf



 




1lim  (22) 

holds. Let 0 , by (22) there exists 


1

1



 
k

r

a
M  such that for each 

1 rMx  the double inequality below is true: 

 

1

1

1 



 






rrr

n

ri

i

i

rr a
x

xaxf

a  , 

where 011   rrr aM  . The inequality above can be broadened: 

 

11

2

1

1

11 







 






rrrrr

n

ri

r

r

i

i

rrrr aa
x

xaxaxf

aa  . 

The last inequality is divided now by 
1 rMx : 

 
1 1 2

1 1 1

1

1 1

1 1

1

n
i

i
r r r r i r

r r r

r

r r r r

r r

r

f x a x
a a

a a
M x x

a a
a a

x M

 

 

   
  



 

 




 

   

 
   



 

that is 

 
 



 






11

2

1 rr

n

ri

i

i

r a
x

xaxf

a ; 

the inequality above proves that  
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 

kk

n

ki

i

i

x
a

x

xaxf



 




1lim  (23) 

for each 1...,,0  nk . It is necessary to prove that  

 
 

nnx
a

x

xf



lim . (24) 

Let it now be noted 

 
 

11
lim 




nn

n

n

x
a

x

xaxf
. (25) 

For each 0  there exists 


1


n

n

a
M  such that for each nMx  , and for 

1 nnn aM    the inequality 

 
 

nn

n

n

n

n

x

xaxaxf









1

1

1  (26) 

holds. Hence the inequality below holds too: 

 
 

nnn

n

n a
x

xaxf



 11

. (27) 

For the conclusion of the proof, we need to divide (27) by nMx  : 

 
 











 

n

nnnn

n

n

n

M

a

x

a

x

xaxf 11
 (28) 

and so the equality (24) holds.  

Corollary 3. Function f has at the most one polynomial asymptote. The 

coefficients of the polynomial are given by the formulas (16)-(20). 

Theorem 3. Suppose the function  xfy   has the polynomial asymp-

tote  xpy   which is given by (14). Then  f  can be represented by the 

sum 

      xrxpxf    (29) 
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where   

   0lim 


xr
x

.  (30) 

The polynomial  p  is said to be the principal part of function  f, with respect 

to the set of multinomials, and  r  the remainder part of it.  

Proof. By assumption the equality (15) holds, function r is given by the 

formula 

      xpxfxr   (31) 

from here 

             xfxpxfxpxrxp  ; (32) 

the proof is complete. 

Theorem 4. Let  xf  be a rational function: 

  
 
 xQ

xP
xf    (33) 

where  xP  and  xQ  are polynomials. Then  f  has a decomposition: 

    
 
 xQ

xP
xpxf 1  (34) 

where p  and P1 are polynomials too, and the degree of  P1  is less than Q. 

The polynomial p is the principal or integer part of the rational function        

f  and  1 
P

Q
 is the remainder or fractional  part of it. 

Example 8. The function  

 
1

345
2

35






x

xxx
xf  

is rational and has the decomposition 

 
1

3
4

2

3




x
xxxf . 

The polynomial xxy 43   is the multinomial asymptote of the function. It 

is not difficult to make a graph of the function and its asymptote. 
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Fig. 4. A rational function with a cubic asymptote 

Source: own elaboration. 

References 

Clapham C. (1996). Mathematics. Oxford. 

Janaszak T. (2000). Funkcje wymierne. Wydawnictwo Akademii Ekonomicznej we   

Wrocławiu. 

Kudravcev L.D. (1973). Mатематический анализ.  “Высшая школа”. Moskwa. 

4 2 2 4

40

20

20

40




