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DETERMINING MODELS OF INFLUENCE 

We consider a model of opinion formation based on aggregation functions. Each player modifies 

his opinion by arbitrarily aggregating the current opinion of all players. A player is influential on an-

other player if the opinion of the first one matters to the latter. Generalization of an influential player 

to a coalition whose opinion matters to a player is called an influential coalition. Influential players 

(coalitions) can be graphically represented by the graph (hypergraph) of influence, and convergence 

analysis is based on properties of the hypergraphs of influence. In the paper, we focus on the practical 

issues of applicability of the model w.r.t. a standard framework for opinion formation driven by Markov 

chain theory. For a qualitative analysis of convergence, knowing the aggregation functions of the play-

ers is not required, one only needs to know the set of influential coalitions for each player. We propose 

simple algorithms that permit us to fully determine the influential coalitions. We distinguish three cases: 

a symmetric decomposable model, an anonymous model, and a general model. 
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1. Introduction. Dynamic models of opinion formation 

Models of opinion formation are widely studied in psychology, sociology, 

economics, mathematics, computer sciences, among others; for overviews, see, e.g., 

[32, 1]. A seminal model of opinion formation and imitation was introduced in [16]. In 

that model, individuals in a society start with initial opinions on a subject. The 

interaction patterns are described by a stochastic matrix, whose entry in row j  and 

column k  represents the weight that player j  places on the current belief of player k  

in forming j ’s belief for the next period. These beliefs are updated over time. 
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While Degroot assumes that players update their opinion by taking weighted 

averages of the opinions of all players [16], Grabisch and Rusinowska investigated 

a model of opinion formation in which players update their beliefs according to arbitrary 

aggregation functions [27]. Foerster et al. study a model of opinion formation in which 

ordered weighted averages are used in the process of updating information [21]. In this 

paper, we consider the model of influence based on aggregation functions [27] and 

discuss practical issues of applying this model w.r.t. the standard framework for opinion 

formation driven by Markov chain theory. For a full qualitative analysis of the 

convergence of opinions, i.e., determining all the terminal classes (without their 

probabilities), it is sufficient to identify influential coalitions, which can be easily 

obtained by interviewing the agents. The aim of this paper is to show that a full 

qualitative analysis of convergence is feasible in practical situations. We introduce 

simple algorithms that permit us to fully determine the influential coalitions in three 

cases: the symmetric decomposable model (influential coalitions reduce to individuals), 

the anonymous model (only the number of agents matters, not their identity), and the 

general model. We show how clues on convergence can be obtained in a simple way, 

even without determining the reduced transition matrix. 

There exists a vast literature that presents other variations and extensions of the 

DeGroot model. We briefly recall some of them. In particular, Jackson [32] and Golub 

and Jackson [26] investigate a model, in which players update their beliefs by repeatedly 

taking weighted averages of their neighbors’ opinions. According to these authors, one 

of the issues regarding the DeGroot framework concerns necessary and sufficient 

conditions for convergence of the social influence matrix and reaching a consensus (see 

additionally [9]). Jackson also examines the speed of convergence of beliefs [32], and 

Golub and Jackson analyze, in the context of the DeGroot model, whether consensus 

beliefs are correct, i.e., whether beliefs converge to the right probability, expectation, 

etc [26]. The authors consider a sequence of societies, where each society is strongly 

connected and convergent in opinions, and described by its updating matrix. In each 

social network of the sequence, the belief of each player converges to the consensus 

limit belief. There is a true state of nature, and the sequence of networks is wise if the 

consensus limit belief converges in probability to the true state as the number of 

societies grows. 

Several other generalizations of the DeGroot model can be found in the literature, 

e.g., models in which the updating of beliefs can vary in time and circumstances (see 

e.g., [17, 35, 37, 23, 24]). In the model described by Demarzo et al., players in a network 

try to estimate some unknown parameter [17]. This model allows updating to vary over 

time, i.e., a player may place more or less weight on his own belief over time. The 

authors study the case of multidimensional opinions, in which each player has a vector 

of beliefs. They show that, in fact, individuals’ opinions can often be well approximated 

by a one-dimensional line, where a player’s position on the line determines his position 

on all issues. Friedkin and Johnsen  study a similar framework, in which social attitudes 
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depend on the attitudes of neighbors and evolve over time [23, 24]. In their model, 

players start with initial attitudes and then mix in some of their neighbors’ recent 

attitudes with their starting attitudes. 

Also, other works in sociology related to influence are worth mentioning, e.g., the 

eigenvector-like notions of centrality and prestige [33, 10, 11], and models of social 

influence and persuasion by French [22] and Harary [29] (see also [39]). A sociological 

model of interactions on networks is also presented by Conlisk [13] (see also [14, 15, 36]), 

who introduces interactive Markov chains, in which every entry in a state vector at each 

time represents the fraction of the population with some attribute. The matrix depends 

on the current state vector, i.e., the current social structure is taken into account to model 

how sociological dynamics evolve. Threshold models of collective behavior are 

discussed by Granovetter [28]. In these models, agents have two alternatives and the 

costs and benefits of each depend on how many other agents choose which alternative. 

The author focuses on the effect of individual thresholds (i.e., the proportion or number 

of others that make their decision before a given agent) on collective behavior, discusses 

an equilibrium in a process occurring over time and the stability of equilibrium 

outcomes. Another model of influence is studied by Asavathiratham [2] and Asavathi- 

ratham et al. [3]. This model consists of a network of nodes, each with a status evolving 

over time. The evolution of status acts according to an internal Markov chain, but the 

transition probabilities depend not only on the current status of the node, but also on the 

statuses of the neighboring nodes. 

More research on interaction is presented by Hu and Shapley [31, 30]. The authors 

apply the command structure of [38] to model players’ interactions using simple games. 

For each player, boss sets and approval sets are introduced, and based on these sets, 

a simple game called the command game for a player is built. Hu and Shapley introduce 

an authority distribution over an organization and the (stochastic) power transition 

matrix, in which the entry in row j and column k is interpreted as agent j ’s power 

transfered to k [30]. The authority equilibrium equation is defined. In [30], multi-step 

commands are considered, where commands can be implemented through command 

channels. 

There is also a vast literature on learning in the context of social networks; see e.g. 

[6, 18–20, 4, 5, 25, 12, 7]. In general, in models of social learning, agents observe 

choices over time and update their beliefs accordingly, which is different from models 

where choices depend on the influence of others. 

The paper is organized as follows. Section 2 presents fundamental material on 

models of influence based on aggregation functions, as well as establishing notation and 

terminology, and recalls an essential result, which is the basis for determining the 

qualitative part of the model of influence. Section 3 addresses the problem of 

determining a model of influence in practice and focuses on determining its qualitative 
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part, which is sufficient for a qualitative analysis of convergence. Section 4 gives some 

concluding remarks. 

2. A model of influence based on aggregation functions 

In this section, we recapitulate a model of influence based on aggregation functions 

[27]. Consider a set :={1, ..., }N n  of players that have to make a yes-no decision on 

a certain issue. Each player has an initial opinion, which may change due to mutual 

interaction (influence) between players. By 
,S Tb  we denote the probability that the set S 

of yes-voters becomes T  after one step of influence. We assume that the process of 

influence may iterate, and therefore obtain a stochastic process of influence, depicting 

the evolution of the coalition of yes-players in time. We assume that the process is 

Markovian (
,S Tb  depends on S  and T, but not on the whole history) and stationary 

,( S Tb  

is constant over time). The states of this finite Markovian process are all subsets S N  

representing the set of yes-players, and we also have the transition matrix 

, ,:= [ ] ,S T S T Nb B  which is a 2 2n n  row-stochastic matrix. 

For a qualitative description of the convergence of the process, it is sufficient to 

know the reduced matrix B  given by 

,

,

1, if > 0
=

0, otherwise

S T

S T

b
b





 

and equivalently represented by the transition graph = (2 , ),N E  where E  is the set 

of arcs, its vertices are all possible coalitions, and the arc ( , )S T  from state S  to state T 

exists if and only if , = 1S Tb . 

Definition 1. An n-place aggregation function is a mapping :[0, 1] [0, 1]nA   

satisfying 

(i) (0, ..., 0) = 0,A  (1, ..., 1) =1A  (boundary conditions), 

(ii) If x x  then ( ) ( )A A x x  (nondecreasingness). 

To each player i N  we associate an aggregation function ,iA  which specifies the 

way player i modifies his opinion based on the opinions of the other players. Let 

1:= ( , ..., )nA AA  denote the vector of aggregation functions. We compute (1 )SA  

1= ( (1 ), ..., (1 ))S n SA A , where 1S  is the characteristic vector of S, and (1 )i SA  indicates 

the probability of player i saying yes at the next step when the set of agents presently 
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saying yes is S. We assume that these probabilities are independent over the set of 

agents. Hence the probability of transition from the yes-coalition S  to the yes-coalition 

T is given by 

 
, = (1 ) (1 (1 )).S T i S i S

i T i T

b A A
 

   (1) 

A detailed study of convergence under this model is provided in [27]. It is shown, 

in particular, that three types of terminal class2 can exist: singletons, cycles, and regular 

terminal classes. The first case occurs when a class is reduced to a single coalition 

(called the terminal state). The second one is the case where no convergence occurs 

because the process endlessly cycles over a sequence of coalitions, and the last case 

occurs when the class is a Boolean lattice of the form { 2 | }NS K S L    for some 

sets , .K L  In any case, N  and   are terminal states (called trivial terminal states). 

We emphasize two particular aggregation functions. The first one is the well-known 

weighted arithmetic mean (WAM), defined by 

1

=1

WAM ( , ..., ) =
n

w n i i

i

x x w x  

where 1= ( , ..., )nw w w  is a weight vector, i.e., [0, 1]nw  with the property 
=1

=1.
n

ii
w  

Weighted arithmetic means are used in most models of opinion formation, e.g., the 

DeGroot model. Another noteable aggregation function is the ordered weighted 

arithmetic mean (OWA) [40], defined by 

1 ( )

=1

OWA ( , ..., ) =
n

w n i i

i

x x w x  

where w  is a weight vector, and the inputs have been arranged in decreasing order: 

(1) ( )... .nx x   Note that, unlike in the case of WAM, these weights do not act on inputs, 

but on the rank of the inputs, so that the minimum and the maximum are particular cases, 

by taking = (0, ..., 0, 1)w  and = (1, 0, ..., 0),w  respectively. Applied to our context of 

influence where the input vectors are binary, if each agent aggregates his opinions 

according to an OWA, we obtain a model of anonymous influence, because each agent 

 _________________________  

2A class is a maximal collection of coalitions such that for any two distinct coalitions S, T in the class, 

there exists a sequence of transitions inside the class leading from S to T. A class is terminal if no transition 

to a coalition outside that class is possible. 
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updates his opinion according to the number of agents saying yes, not to which agents 

say yes. Models of anonymous influence have been studied in detail in [21]. 

Definition 2. Let iA  be the aggregation function of agent i. A nonempty coalition 

S N  is yes-influential for i if 

(i) (1 ) > 0,i SA  

(ii) for all ,S S  (1 ) = 0.i SA   

Similarly, a coalition S is no-influential for i if 

(i) \(1 ) <1,i N SA  

(ii) for all S S  , \(1 ) =1i N SA  . 

We denote by yes

iC  and no

iC  the collections of yes- and no-influential coalitions 

for i. Coalition S  is yes-influential for player i  if, when the players in S  say yes and 

every other player says no, i  has a positive probability of saying yes (and similarly for 

no-influential coalitions). Moreover, S  has no superfluous player. If an influential 

coalition is formed by only one player, then we call it an influential player. Note that 

these collections are never empty, since if no proper subcoalition of N  were yes- or no-

influential, then N  would be both yes- and no-influential by Definition 2. More 

importantly, each such collection is an antichain in 2 ,N
 that is, for any two distinct 

members of the collection , ,S S S S   and .S S   

Influential players can easily be represented in a directed graph. Define yes ,GA
 the 

graph of yes-influence, as follows: the set of nodes is the set of agents N, and there is 

an arc ( , )j i  from j  to i  if j  is yes-influential on i. The graph of no-influence noGA
 is 

defined similarly. The representation of influential coalitions requires the more complex 

notion of a hypergraph. 

Definition 3. We define the following concepts: 

(i) A hypergraph [8] H  is a pair ( , )N E  with N  being the set of nodes and E  the 

set of hyperedges, where a hyperedge S E  is a nonempty subset of N. If | | = 2S  for 

all ,SE  then we have a classical graph. 

(ii) A directed hypergraph on N  is a pair ,N E   with D  being the set of directed 

hyperedges, where a directed hyperedge is an ordered pair ( , )S S   (called an hyperarc 

from S  to S ), with ,S S   both being nonempty. 

(iii) A directed hyperpath from i  to j  is a sequence 0 1 1 1 2 2 2( , ) ( , )i S S i S S i   

1... ( , ) ,q q q qi S S i
   where 0 1 1:= , , ..., , =:q qi i i i j i  are nodes, 1 1( , ), ..., ( , )q qS S S S     are 

hyperarcs such that 1k kS i 
   and k kS i  for all =1, ..., .k q  



Determining models of influence 75 

We define the hypergraphs yes no,H HA A
 of yes-influence and no-influence as follows: 

for yes ,HA
 the set of nodes is N, and there is a hyperarc ( , { })C i  for each yes

iCC  

(similarly for no ).HA
 

Grabisch and Rusinowska [27] prove that the hypergraphs yes no,H HA A
 (equivalently, 

the collections yes

iC  and no

iC  for all i N ) are equivalent to the reduced matrix ,B  and 

therefore contain the entire qualitative description of convergence. 

Theorem 1. Consider an influence process B  based on the aggregation functions .A  

Then B  can be reconstructed from the hypergraphs yesHA
 and noHA

 as follows: for any 

, 2 ,NS T   , = 1S Tb  if and only if 

1. For each ,i T  there exists a nonempty iS S   such that iS   is yes-influential on i, 

i.e., yes ,i iSC   

2. For each ,i T  there exists a nonempty iS   such that =iS S   and iS   is no-

influential on i, i.e., no.i iSC  

In particular, , = 0Tb  for all ,T  , = 1,b 
 and , = 0N Tb  for all ,T N , = 1.N Nb  

Recall that (1) is valid only if the probabilities of saying yes are independent over the 

set of agents. Therefore, non-independence in this sense makes the determination of the 

transition matrix difficult. However, B  is insensitive to possible correlation between 

agents, because , = 1S Tb  if and only if (1 ) > 0i SA  for every i T  and (1 ) < 1i SA  for 

every ,i T  regardless of the correlation between agents. 

3. Determination of the model 

An important issue concerns the determination of a model of influence of the above 

type in a practical situation. This implies that we are making essentially two assumptions: 

1. Each agent aggregates the opinion of all the other agents to form his opinion in 

the next step. 

2. The aggregation function is monotonically increasing. 

The latter assumption implies that anti-conformist behaviors (i.e., the more 

individuals say yes, the more I am inclined to say no) cannot be modeled in this 

framework. 
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3.1. General considerations 

Complete determination of the model amounts to identifying either the transition 

matrix B or all the aggregation functions 1, ..., nA A  (assuming the absence of correlation). 

Considering the size of the matrix B  ( 2 2n n ), statistical determination of B  seems to 

be nearly impossible, unless a huge number of observations are made. As for the 

determination of the aggregation functions, the situation is even worse, since 

questioning agents about their aggregation functions (type, parameters) appears to be 

quite unrealistic. We know from Section 2 that knowledge of the reduced matrix B  is 

enough to obtain a qualitative description of the convergence of the model, which is 

insensitive to possible correlations between agents. Moreover, knowledge of B  (size 
22 n ) is equivalent by Theorem 1 to knowledge of the collections of all yes- and no-

influential coalitions of the size at most 2

2

n

n n

 
 
  

  
  

, which is, in turn, equivalent to 

knowledge of the hypergraphs of yes- and no-influence. In some favorable cases (e.g., 

the WAM model), the hypergraphs reduce to ordinary graphs. This immediately 

indicates two ways of identifying the (qualitative part of the) model: either by 

observation of the transitions, i.e., the evolution of the coalition of the yes agents, or by 

interviewing the agents. In the first case, observing a transition from S  to T  yields 

, = 1.S Tb  In the second case, interviews permit us to determine influential coalitions or 

graphs of influence. 

In the remaining part of this section, we mainly focus on the second approach. 

Concerning the first one, we only mention an important fact. The underlying 

assumptions of the model mean that the reduced matrix B  is not arbitrary and has 

specific properties. Recall that , = 1S Tb  if and only if for all ,i T  (1 ) > 0i SA  and for 

all ,i T (1 ) < 1.i SA  This implies the following fact: 

Fact 1. For a given ,S N  , ,S N  the candidates transitions are all sets of the 

form = ,T K L  where 

= { | (1 ) =1}i SK i N A  

{ | 0 < (1 ) < 1}i SL i N A   

In other words, T , the intersection of all possible transitions from S  yields the 

set = { | (1 ) =1},i SK i N A  while \N T  yields = { | (1 ) = 0}.i SK i N A   When S  
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increases, K  increases, while K   decreases. This fact permits us to detect, when B  is 

constructed from observations, possible deviations from the model (e.g., presence of 

anti-conformists). 

3.2. Determination of influential coalitions 

We may distinguish three cases, according to the type of underlying model: 

1. WAM model (symmetric decomposable model): all aggregation functions are 

weighted arithmetic means. 

2. OWA model (anonymous model): all aggregation functions are ordered weighted 

averages. 

3. General model (no special assumptions). 

The symmetric decomposable model. The case of the WAM model is particularly 

simple and has been studied in depth in [27]. It has been proved to be equivalent to 

a symmetric decomposable model. An aggregation model is decomposable if for every 

agent ,i N every yes- and no-influential coalition for agent i  is a singleton. Now, an 

aggregation model is symmetric if a yes-influential coalition for i  is also no-influential 

for i  and vice versa, for every .i N  Note that the first property implies that the 

hypergraphs of yes- and no-influence reduce to ordinary graphs, while the second 

property implies that the two graphs are identical, and therefore the whole (qualitative) 

model is represented by a single graph representing influence. This makes interviewing 

agents particularly simple: it suffices to ask to every agent whom he asks for advice. 

Then, i asks j for advice is translated into the graph representing influence by an arc 

from j to i. 

We applied this technique to a real case [27], namely the manager network of 

Krackhardt [34]. The agents are the 21 managers of a small manufacturing firm in the 

USA, and the network is obtained as follows: each agent k is asked if he/she thinks that 

agent i asks agent j for advice. An arc from j to i is placed in the graph representing 

influence if a majority of agents think that i asks j for advice. From the graph, and due 

to the properties of symmetric decomposable models, many conclusions can be easily 

drawn on the convergence of the model. In particular, it is possible to detect the presence 

of regular terminal classes (Theorem 8 in [27]). There is also a simple criterion to 

determine if there is no regular terminal class: it suffices that for each agent i , there is 

an arc in the influence graph from cl( )i  to every agent outside cl( ),i  where cl( ),i  the 

closure of i, is the set of agents who can reach i  by a path in the influence graph. 

The anonymous model. According to the OWA model, agents do not change their 

opinion due to particular individuals but due to the number of individuals saying yes. 
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Therefore, in general, these are not decomposable models, and one needs to determine 

influential coalitions as in the general case. However, because according to these models 

the players are anonymous, a collection yes

iC  or no

iC  is composed of all sets of a given 

size s, 1 ,s n  and this is characteristic of an anonymous model. Therefore, under the 

assumption of anonymity, it suffices to ask to every agent i  the following questions: 

Q1. Suppose that your opinion on some question is yes. What is the minimal number 

of agents saying no that may make you change your opinion? 

Q2. Suppose that your opinion on some question is no. What is the minimal number 

of agents saying yes that may make you change your opinion? 

Assuming that the answers are respectively s  and ,s it follows that 

no yes={ 2 || |= }, ={ 2 || |= }N N

i iS S s S S s C C  

Now, it is easy to see that given ,s s  for agent i, one can get the form of the weight 

vector w  in the aggregation function OWAw  of agent i  (Proposition 2 in [21]): 

1 zeros 1 zeros

= (00 0 , , 00 0)
s s

w
 

   

where   indicates any nonzero weight. In particular, all agents are yes-influential (no- 

-influential) on i  if and only if 1 > 0w  ( > 0nw ). 

As for convergence under this model, it is shown in [21] (Proposition 3) that no 

cycle can occur but the two other types of terminal classes may occur. Terminal states 

are easily detected as follows: S  of size s  is a terminal state if and only if for every 

,i S the size of a no-influential coalition is at least 1,n s   and for every ,i S  the 

size of a yes-influential coalition is at least 1.s   The absence of regular terminal 

classes can also be characterized only through influential coalitions but this condition is 

more complex (see Corollary 3 in the aforementioned paper). 

The general model. We now address the general case, where no special assumption 

is made on the model, except the following: we assume that each agent is yes- and no- 

-influential on himself, which means that (1 ) > 0,i iA  \(1 ) <1i N iA  (in other words, the 

agent trusts his opinion to a nonnull extent). This induces some simplification in the 

algorithm, but it would not be difficult to generalize it, in order to overcome this 

limitation. 

Interview for Agent i  

0. Set yes ={{ }},i iC  no ={{ }}i iC , yes no \= = 2N i

i iN N  

% yes no,i iN N  are the sets of candidate coalitions. 
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1. For each agent ,j N  ,j i  ask3: 

Q. Suppose that your opinion on some question is yes. Would you be inclined to 

change your opinion if Agent j  says no? 

If the answer is positive: 

 add { }j  to no ,iC  and discard { }j  and all sets containing j from no.iN  

 If no = ,i N  STOP (GO TO STEP 3). 

Otherwise, discard { }j  from no.iN  

2. For = 2  to 1n  , do: 

2.1. Define no={ : | |= }iS SS N . 

2.2. Ask Q: Suppose that your opinion on some question is yes. Would you be 

inclined to change your opinion if one of the coalitions in S says no? In the case of 

affirmative answer, for which ones? 

For every set S  answered, do: 

 add S  to no

iC  and discard all supersets of S  from no

iN  

 If no =i N  or if no| |=

2

i

n

n

 
 
   
 

C , STOP (GO TO STEP 3). 

2.3. Set no no \i iN N S . 

3. Exactly as in Steps 1 and 2 for yes ,iC  Question 1 becomes: Suppose that your 

opinion on some question is no. Would you be inclined to change your opinion if Agent j 

says yes, etc.? 

We give some examples. 

Example 1. (braces are omitted when denoting coalitions) Consider N = {1, 2, 3, 4, 5}. 

We detail the process of interviewing Agent 1. 

1. We have no

1 = {1}C . We take agent 2. 

Suppose that your opinion on some question is yes. Would you be inclined to change 

your opinion if Agent 2  says no? 

Answer: Yes. Hence, no

1 = {1, 2}C , and no

1 ={3, 4, 5, 34, 35, 45, 345}N . 

2. Agent 3. 

Suppose that your opinion on some question is yes. Would you be inclined to change 

your opinion if Agent 3  says no? 

 _________________________  

3As in Step 2, it is possible to gather all these questions into a single one: Suppose that your opinion 

on some question is yes. Would you be inclined to change your opinion if one of the agents in \N i  says 

no? In the case of an affirmative answer, for which ones? 
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Answer: No. Thus no

1 ={4, 5, 34, 35, 45, 345}.N  

3. Agent 4. 

Suppose that your opinion on some question is yes. Would you be inclined to change 

your opinion if Agent 4  says no? 

Answer: No. Thus no

1 ={5, 34, 35, 45, 345}.N  

4. Agent 5. 

Suppose that your opinion on some question is yes. Would you be inclined to change 

your opinion if Agent 5  says no? 

Answer: No. Thus no

1 = {34, 35, 45, 345}N . 

5. Coalitions of size 2. 

Suppose that your opinion on some question is yes. Would you be inclined to change 

your opinion if one of the coalitions in {34, 35, 45}  says no? In the case of an 

affirmative answer, for which ones? 

Answer: Yes, 34. Thus no = {1, 2, 34}iC , and no

1 = {35, 45}N . It follows that 
no

1 = ,N  since all coalitions of size 2 are discarded. STOP. 

Finally, no

1 ={1, 2, 34}C . We do the same for yes

1 .C  

1. For all individual agents. 

Suppose that your opinion on some question is no. Would you be inclined to change 

your opinion if one of the agents 2, 3, 4, 5 says yes? In the case of an affirmative answer, 

for which ones? 

Answer: No. Thus yes

1 ={23, 24, 25, 34, 35, 45, 234, 235, 245, 345, 2345}.N  

2. Coalitions of size 2. 

Suppose that your opinion on some question is no. Would you be inclined to change 

your opinion if one of the coalitions in {23, 24, 25, 34, 35, 45}  says yes? In the case of 

an affirmative answer, for which ones? 

Answer: No. Thus yes

1 ={234, 235, 245, 345, 2345}.N  

3. Coalitions of size 3. 

Suppose that your opinion on some question is no. Would you be inclined to change 

your opinion if one of the coalitions in {234, 235, 245, 345}  says yes? In the case of an 

affirmative answer, for which ones? 

Answer: Yes: 234, 235, 245. Thus yes

1 =N , STOP. 

Finally, yes

1 ={1, 234, 235, 245, 345}.C  

We now give another example to illustrate how the reduced transition matrix B  can 

be obtained from the influential coalitions using Theorem 1. To this end, we suppose 

that the above algorithm has been applied to each agent, in order to obtain all influential 

coalitions. The condition that every agent is self-influential permits us to simplify the 
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application of the theorem to determine each term , .S Tb  Indeed, the following facts are 

easy to show. 

Fact 2. Suppose that yes{ } ii C  and no{ } ii C  for every .i N  It follows that: 

1. , = 1S Sb  for every 2 .NS  

2. If ,T S  condition (1) in Theorem 1 is always sufficient to check that , = 1,S Tb  

moreover, if , = 0,S Tb  then , ' = 0S Tb  for every .T T  Similarly, if , = 1,S Tb then 

, ' = 1S Tb  for every .T T S   

3. If ,T S condition (2) in Theorem 1 is always sufficient to check that , = 1.S Tb  

Moreover, if , = 0,S Tb  then , = 0S Tb   for every ;T T   similarly, if , = 1,S Tb then 

, ' = 1S Tb  for every .S T T   

Example 2. Consider a society = {1, 2, 3, 4}N  of 4 agents. Suppose that the 

following collections have been obtained (braces are omitted when denoting coalitions): 

no yes

1 1={1, 2, 34}, ={1, 234}C C  

no yes

2 2= {2, 34}, = {2, 134}C C  

no yes

3 3= {2, 3}, = {3, 12}C C  

no yes

4 4= {12, 4}, = {4}C C  

Observe that agent 4 is stubborn when he supports yes (no influence is possible 

when agent 4 thinks yes). 

Let us apply Theorem 1. Using Fact 2, one easily finds that , = 1S Tb  only for the 

following ,S T  (braces omitted): 

=1: = , 1S T    

= 2: = , 2S T   

= 3: = , 3S T   

= 4: = , 4S T   
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=12: = , 1, 2, 3, 12, 13, 23, 123S T   

=13: = , 1, 3, 13S T   

=14: = 4, 14S T  

= 23: = 23S T  

= 24: = 24S T  

= 34: = , 3, 4, 34S T   

=123: =123S T  

=124: =124, 1234S T  

=134: = 4, 14, 24, 34, 124, 134, 234, 1234S T  

= 234: = 234, 1234.S T  

We detail the case =12S  for illustrative purposes. We can see from condition (2) 

of Theorem 1 that =T   is possible (i.e., , = 1S Tb ). Indeed, for =1, 2, 3, 4,i  there 

exists a set in no

iC  which is disjoint from 12.  Thus, by Fact 2.2, it follows that 

=1, 2, 12T  are also possible. Now, for =13, 23T  both conditions of Theorem 1 must 

be checked, while for =123,T  only condition (1) has to be checked. Lastly, observe 

that all the remaining sets contain 4. Thus condition (1) of Theorem 1 is never satisfied, 

since there is no yes

4SC  which is included in 12. 

One can check that Fact 1 is satisfied. Observe that this approach is very useful to 

identify quickly all the possible s:T  it suffices to find the minimal one (K) and the 

maximal one ( ).K L The corresponding transition graph   is given in Fig. 1. It is 

seen that, apart from the trivial terminal classes, 23, 24 and 123 are terminal states. 

There is no regular nor cyclic class. 

We now show that it is possible to get conclusions on convergence without 

computing ,B by solely examining the hypergraphs, thanks to results presented in [27]. 

To this end, we need the notion of an ingoing hyperarc. We say that a coalition S  has 

an ingoing hyperarc ( , )T T   in hypergraph H  if \T N S   and T S   (and vice 

versa for an outgoing hyperarc). 
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Fig. 1. Transition graph (loops are omitted) 

Now, Theorem 3 in the aforementioned paper establishes that a nonempty S N  

is a terminal state if and only if S  has no ingoing arc in the hypergraph 
yes * noˆ ˆ( ) ,H HA A

where *()  indicates that the hyperarcs have been inverted, and Ĥ  indicates that only 

normal hyperarcs are considered4. This result can be translated in terms of influential 

collections as follows: 

Fact 3. A nonempty S N  is a terminal state if and only if 

3.1. For every ,i S there is no yes

iTC  such that .T S  

3.2. For every ,i S  there is no no

iTC  such that =T S  . 

Applying this fact to Example 1, we indeed find that the only terminal states are 23, 

24 and 123. For example, 23 is a terminal state, because none of 1, 234 are subsets of 

23 (condition (1) for = 1i ), 4 is not a subset of 12 (condition (1) for i = 4), none of 2, 34 

are disjoint from 23 (condition (2) for = 2i ), and none of 2, 3 are disjoint from 23 

(condition (2) for i = 3). 

The advantage of Fact 3 is that it is not necessary to find all ,S T  such that , = 1S Tb  

(i.e., it is not necessary to know the transition graph) to check whether a given coalition 

is a terminal state (or to find all of them). 

 _________________________  

4 A hyperarc ( , )T T   is normal if = .T T    Note that due to our assumption that every player is 

self-influential, all hyperarcs are normal. 
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4. Concluding remarks 

We have shown how, in a practical situation, one can determine a model of influence 

based on aggregation functions. Exact determination of such a model, yielding the type 

and parameters of the aggregation function of each agent, appears to be out of reach 

without using complex procedures. What we show is that, on the contrary, it is easy to 

obtain the qualitative part of the model, which permits a full qualitative analysis of the 

convergence of opinions, that is, to determine all terminal classes. This is sufficient to 

predict whether a consensus will occur or, on the contrary, society will become 

polarized, or a cycle will appear, etc. Simple criteria are available to detect terminal 

states or the presence of regular terminal classes, without even determining the reduced 

transition matrix. We believe that this study will make the use of models of influence 

based on aggregation functions more familiar and easier to use. 
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