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This article contains basic theoretical results of mathematical interpretations of some fundamental 
phenomena in the modern digital electronic (electro-optical) imaging devices (systems) with pixel 
photodetection structure mainly from the standpoint of the mean mutual information. For that 
purpose, the systems in question are approximated by a suitable linear and isoplanatic signal 
transfer model of a 2D stationary and ergodic continuous stochastic distribution of the object scene 
-light intensity which is limited in size by the input field of view. The mathematical modelling of 
the phenomena presented is based on utilizing the continuous linear signal transfer theory and the 
extended modern communication and information theory for the spectral domain of spatial 
frequencies, in particular. The equations put forward are acceptable for an analysis and optimal 
synthesis of digital electronic imaging systems fitting the signal transfer model proposed. 
Conventionally, these systems give better information efficiency and image quality in comparison 
with the older analog imaging systems.
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1. Introduction

The digital (sampled) electronic (electro-optical) imaging systems (digital video 
-cameras) under consideration handled for example in publications [ 1 ]—[5], contain a 
pixel photodetection layer and produce optical imaging by means of electronic 
digitizing of image signals. They give conventionally a better image quality (i.e., 
fidelity, sharpness and cleanness) and information efficiency in comparison with the 
classic analog imaging systems (analog video-cameras).

A continuous/discrete/continuous (c/d/c) model is the correct choice for a 
comprehensive analysis of modern digital electronic imaging systems. An example of 
such a model is introduced and described in the paper [4], It is a linear and isoplanatic 
signal transfer model with a continuous input (a continuous 2D distribution of the light 
intensity extended from an object scene), a continuous-to-discrete conversion of the
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optical image signal to its sampled (discrete) electrical form, discrete quantizing and 
encoding (digital processing) of this form and with a discrete-to-continuous conversion 
(restoration) of the obtained digital electric signal into the decoded continuous and 
registered output optical form (registered and recovered resultant optical image) which 
can be observed by a human eye producing a visual signal (conscious image). The 
relevant fundamental phenomena corresponding to the cascade of the aforementioned 
successive steps are called: image gathering (sampled optical-to-electrical scanning 
of the object scene by pixels), image digital processing, image restoration, image 
display (image registration), image eye observation (image visual inspection). These 
phenomena for the predetermined image signal are mathematically interpreted in 
publications [ 1 ]—[8]. The mathematical modelling and analysis of such phenomena 
for stochastic (random) image signals, connected with their informational aspect, 
are introduced in [4], [9], [10]. A sufficiently wide and complete interpretation of these 
signals especially with respect to their probability, self-correlation, self-covariance, 
information entropy and mean mutual information in the continuous spatial and 
spectral domain of spatial frequencies is included in the paper [11]. The main 
purpose of this article is to summarize, interpret and evaluate some basic spectral 
mathematical relations from the last publication and also to present examples of the 
information-theoretic assessment of the image gathering step of digital electronic 
imaging systems, which are represented by the reasonable signal transfer model.

2. Signal transfer model and its basic characteristic quantities

Figure 1 depicts a spectral form of the alternative of the proposed linear and 
isoplanatic (spatially invariant) signal transfer model of a digital electronic imaging 
system with a pixel photodetection structure that is analyzed in this article. The 
distributed, spatially stationary and ergodic stochastic input field of view is of finite 
area. Such a signal (input radiance field) is represented by the optical intensity of 
spatial fluctuations ^ ( x j ,  x2) and corresponding continuous aperiodic Fourier 
spectrum ^0(/^1, f a )  which are responsible for the following statistical and 
informational considerations. This first step in the operation of IG denotation in Fig. 1 
accounts for perturbations due to blurring, aliasing and photodetection noise of its 
output (acquired) image optical signal of spatial fluctuations 53 (x p x2) and of their 
continuous periodic Fourier spectrum s^CjUj, f a ) .  The reference orthogonal system 
of linear nondimensional coordinates (xj, x2) is fixed relative to the object scene and 
relates to the pixel photodetection layer of the image gathering device (acquisition 
subsystem) IG. Distances in this coordinate system are measured relative to the £ jx£2 
interdetector (intersample) discrete distance with the detector (pixel) centers at the grid 
points with the nondimensional serial discrete pixel coordinates (f a , fa)  of the values 
within the field of view considered, as indicated by the dots [5], [6]. Consistent with 
this convention, the corresponding nondimensional spatial frequencies (fa, fa)  are



Fig. 1. Proposed signal transfer model of a digital electronic imaging system.
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measured in harmonie cycles per units of the pixel sampling period (interval) and 
£2 (per sample). So that the sampling frequencies are 1 /^  and l/£2 in the vertical and 
horizontal directions, respectively, and the corresponding Nyquist spatial frequencies 
are 1 /2^  and l/2£2. These cut-off frequencies define the so-called Nyquist sampling 
frequency passband or central sampling frequency passband

-  * , [ h i  * s (i)

of the aperiodic spectrum fJL2) or of the extensive periodic spectrum s'3(/xl, fi2)
of the sampled image optical signal ^3(jcl, -x2)» respectively. Simultaneously, the 
insignificant values of s'0(/u1? ju2) can be neglected. Thus only the representation 
frequency passband

B r = B M ^ i \  ^  ^  N  ^  *72] (2)

of the spectrum s'0(]u,, }i2) with suitable cut-off representation frequencies (77̂  rj2) is 
under consideration in such a case [2]-[7]. The sampling frequency passband has a 
unit area, i.e., |l?s| = 1 , whereas the area of the representation frequency passband is

I»rl = 4ł)|ł72- _
In the only spectral domain (fix, /i2) considered, the subsystem IG can be 

characterized by the deterministic spectral optical transfer (response) function 
h \ ( f i j, /j,2) of its input (scanning) objective (lens), by the ideal deterministic periodic 
spectral form

P2) ^ 'y'j 3 (Mi ~ n i> M2 ~ n2)
(«i> "2)

= S ( Ju l, M2) + 2 / £ < 5 ( M i - n l, ju2 - n2) (3)
(/i j /  0, n2 i1 0)

of the photodetection sampling (pixel) lattice L x{ x x 2) and by the steady-state gain 
Gx of the linear optical radiance-to-electrical signal conversion. Simultaneously, the 
last sum in Eq. (3) accounts for the sampling frequency sidebands (nx ^ 0 , n 2 ^  0).

The continuous radiance field Fourier transform s'0( j u /i2) of the continuous 
input (object) stochastic signal Sq(x ,, x2) is now understood as a realization (represen-
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tative) of the corresponding stationary and ergodic continuous input stochastic process 
y 'o iH j, (JL2). A similar meaning holds for the continuous periodic output Fourier 
spectrum s'3(jux, ju2). By analogy, the continuous Fourier spectrum of the operated 
additive and discrete photodetector electric noise fluctuations y ^ ( x x, -*2) ’ which 
are included in the spectrum s'3{j ix, fi2), is denoted by the symbol ,, ju2).
Similarly, the continuous Fourier spectrum of the operated aliased noise in the signal 
(i.e., the aliased signal w i ( x x, x 2) that an insufficient sampling folds into the sampling 
frequency passband (1)) holds the notation /u2). The sum

n ea{lix, H 2) = n 2) + ^ ( / i | , j u 2) (4)

then represents the continuous Fourier spectrum of the image gathering total noise. 
For further considerations, more acceptable representations of the spectra 

;u2), ~s'3( n v l*2), ^a(Mi, /u2) are the power spectral densities
0's^ l i x, li2), < P ^ i , H 2), C , a( M i^ 2) (/.«., the Fourier spectra 

of the corresponding self-covariance functions [1 1 ]) and also the spectral information 
entropies (spectral mean own information) S { s ’q( i i x, jd2)},  (f{s'3( f i x, fi2)},
S{/?ż( f ix, fi2)},  jW2)}. By means of these spectral quantities and the prob­
ability densities/ [ s ' Q(f i v  fi2)], / [ s ' 3( f lx, fi2)], / [ ^ { f x x, n 2)], / [ K ( l i x, ;U2)] 
of the spectra Sq ( jux , f i2 ) , s '3(/llx, jll2), ^ ( f d x, ju2), ^i{fJLx, jd2 ) it is possible to define 
the corresponding spectral mean mutual information by the relation [4]

^ 2)’ ^3C 1» /^2)} ^ 3( 1» /^2)1 ^ 2)} (^)

where

d { s 3(f l x, [l2)} J  yĆ[s3(Hx, ^ 2)] ^°§2/ ^ [ ‘y3(/^l5 A*2)] d [^3 » Â2 ) ̂

^ ’{ ^ e a (^ ,, M2)} = -  j  / [ ^ e a ( ^ i ,  ^ 2)] l<>g2/* [  *ea(A*l» M2)] d [ ^ e a (^ ,, jU2)] .
- C O  (7 )

The integrated form (information rate) of Eq. (5) over the sampling frequency 
passband ( 1), which is mainly considered in this article, can be expressed by the 
relations [4], [9]—[ 11]
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- 4 J J
(«.)

J /[~Ą{nv ii2)] log2/ [ ^ ( ^ 1, / i2) ] d [ ^ ( ^ 1, jz2)]

00

( 8)

The usefulness and importance of the established quantity (5) or (8) consists in the 
fact that it is a suitable quantitative measure of the information about the quantity 
s'0(Hi> ^ 2) which is transferred by the quantity ^ ( / i j ,  /z2). The signal channel of a 
better transmission performance yields a greater quantity (8).

The second operation of IDP denotation in the signal transfer model according to 
Fig. 1 represents the image digital processing which contains the filtered and 
electrically repeated sampling (presampling), quantizing and encoding of the image 
electric signal ^ ( x j ,  x 2), whose periodically extended continuous Fourier spectrum 
is n 2). The resultant electric digital signal .^ (x p  x2; K) of number k of
quantizing levels and of periodic continuous Fourier spectrum n 2, K) is
influenced by the quantizing noise /?q(xj,x2; k) of spectral form fi2, k). The
characteristic spectral quantities of the subsystem (image digital processing device) 
IDP are the deterministic optional spectral transfer function h2( n {, fi2) and the deter­
ministic presampling spectrum L2{jix, ii2), which is identical with L 1( ^ 1, / i 2). 
The energetic representations of spectra .s3(/^,, ju2), s'5(Hv ji2\ k ), 112\ K)
are the power spectral densities &'s (jU,, /z2), <P's (/z,, /z2; k), S /t (^u,, fi2\ k) 
and the useful spectral information entropies are denoted by p iu2)} and
<f{s'5(]uj, \i2\ /c)}. Simultaneously, the third operation (i.e., the image restoration IR), 
yielding the aperiodic spectrum ~s'6{/ ix, /u2; k ) ,  can be represented by the deterministic 
transfer function n 2, k) of the included spatially invariant improvement
Wiener filter that minimizes the root mean square of the restoring operation IR and 
reduces the influence of the quantizing noise /^ (x ,, x2; k ) and by the deterministic 
spectral transfer function ^ ( /z , ,  fi2) of an auxiliary adaptation) filter. Both filters act 
in cooperation with a suitable interpolation lattice of spectrum (JL2) for an 
effective reduction of the frequency passband and then also for interactively enhancing 
the resultant visual quality of the image displayed. The assumed spectrum I(jux, ^i2) 
has an ideal form (3), but requiring denser sampling points (n\ »  n v n2 »  n2). Such
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interpolation suppresses the blurring and raster effects of the IR phenomenon and of 
the successive image display ID. However, it does not affect the blurring inherent in 
the image display medium whose deterministic smoothing spectral transfer function 
is h5( i i lf /i2) and whose steady-state gain of the linear electric signal-to-optical image 
transformation is G2 (conventionally inverse of Gj). The perturbation due to the display 
medium noise of spectrum jU2; £) can be characterized in terms of the medium
quantizing number e of distinguishable gray levels.

By means of the image eye observation IO depicted in Fig. 1, the displayed image 
of continuous aperiodic spectrum j 2(/z,, /i2; K, e) is transformed into the visual 
signal of spectrum ,, /i2; K, £, X). This operation is characterized by the 
deterministic visual (observer’s eye) spectral transfer function h^{fdv fx2) and by the 
steady-state gain G3 of the assumed linear optical radiance-to-visual signal conversion. 
Simultaneously, the eye observation is also influenced by the photoreceptor sampling 
lattice of the Fourier spectrum L3( f ip fi2), which can be assumed to be analogous to 
the spectrum (3) for n \  »  n x, n2 ^> n2, and by the quantizing number X of discrete 
levels that each nerve fiber can transmit from retina to the visual cartex. If the observer 
is free to view this image closely, then the visual sampling frequency passband Bv of 
the observer’s eye readily encompasses the passband ( 1) of the displayed image. 
Hence, the perturbations in viewing the image are limited only to blurring and to 
visual (observation, eye) noise of the spectrum A*2; X). Similarly, with the case
of I(jnj, \x2), the eye sampling influence of L3(jj,v fL2) can be neglected and then the 
continuous spectrum sg(/x1} H2\ K e, X) remains aperiodic.

3. Information-mathematical modelling

From the input/output (end-to-end) point of view and the aforementioned assumptions, 
signal transfer system, as depicted in Fig. 1, can be characterized by the resultant signal 
transfer spectral relations [4], [11]

^(Mi, m2; k , £, X )

= G3[ ^ ( / z15 fi2; k, e )h6(ldj, / /2)] 0  Z3(Mp B2) + V-2\ x )

=  G 1G 2G 35o(Ml» M2) ^ ( 1 - * 6 ) (M i , M 2 ; K) +  ^eaqdv(Ml> V 2 \ ^  )• (9)

The symbol 0  represents the convolution, the product 

H (i ^ 6)(juv jd2; k )

= Z i(^ i. M2)M /* ,, H2)h3(V 1, M2; Ai2)Z5(M1, li2)h6(l*i, H2) (10)
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is the resultant spectral transfer function of the complete transfer system of Fig. 1, and 
the quantity

-^eaqdv(/^i> A^2’ — ^3^eaqd(/^]> Â 2’ Â 2 ) /^2’

= G3^eaqd(^1, V2, K> M2) + '4(A*p V2‘, A)

=  G 3 |  I G 2(  [^e(A*i ,  ^ 2 ) +  jU2 ) ]  X X  ^ 2(/Ul "  Wl» ^2  -  w2 ) +  "q(A*i,  A ^ * ) }

^  ' ( ai, Vt 0, rt2 ^  0 ) J

M /*l> JU2)+ 1*2 ̂ )

(ID

represents the total noise in the signal (9). Simultaneously, the Eq. (4) is valid, where

A^)] ® X  X  5 (Mi -  -  /i2)
(n j * 0, n-j * 0)

= G x X X  ^0(^1 ~ n v  kl2 ~ n2) ^ 1(^1 ~ n \> V2 ~ n2)- ( 12)
(/i 1 * 0, n2 * 0)

Also the relations:

x / / (3 4)(A<1, M2; K)h5{f iv n 2) + ^d(/*pA*2; *0

X  X  M ^ i  l h ~ ni) = M /* |,A * 2) ® X  X  5 (J“ i “  " 1- ^2 -  "2)-
(»i * 0, /i2 * 0) (n, * 0, n2 * 0) (}3)

t f (3 ->4)(/*i, \ l2\ K) = h i V ] ,  m2; K) M / ^ , / ^ )  (14)

were utilized. The energetic (power spectral density) analogues of the relations (9) and 
( 1 1 ) are:

S i  ( /!,, tu2; k, £, X)

= G3 ^ 7(/*p L h ’  K > M2)|2 ® Z3U-L ju2) + 0 ;/v( ^ p M2; >*)

= (G 1G2G3)20 s'o( / /1, ^ 2) | / / (1 _46)(Ai1, iU2; ^ ) |2+  0 ;/caqdv(/ii, £>A) ’
(15)
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i- t h ’ £- A>

= °3  < ^ 0 *1. W  K"' e ) |* 6(^ i. ^ 2)|2 + ^  A)

= g '  4
U

#*2)

+ ®S'0(A<| -  '!|> #*2 -  n2)|*l0<l “ "l> ^2 -  "2)|
(«!  ̂0, * 0)

l*2(jW| -  «!, /.£2 -  " 2)|2 +
—  0) J

4 ) 0 * p  t h ’, K ) h S( f l lt  V 2 ) \ 2 +  V l  ’ £ )  j  j

X | ^ 6 ( ^ 1 , M 2) | 2 +  f * 2 >  A )

(«l * 0, «2 * 0)

x \H0

( 16)

and at last the resultant spectral and integrated mean mutual information holds the 
general forms:

r/ ' ; ig  -> i o ) ( *ó (M i>  M2 )> H i V i K> £’ * ) }

=  ć U z i l d  1, m 2 ; K  £, A ) }  -  <£{ i /  eaqdv(/^i> /^2 j £> A ) }

00

= -  J M2; k, e, A)] log2/[5 g ( / ij ,  IX2\ k, e, A)] d[5g(^,, jd2; k, e, A)]
—00

00

+ M  êaqdvC/^P ^2»̂ ”> £> A) ]
- O O

X l°g2/^[^eaqdv(^p A*2j >̂ A)] d [ //eaq(jv(^ij, fJ,2>K, £, A)], (17)

'y (IG -> 10)
A

'A(IG -> I O ) ( ^ s )

1
2 J J  ^(IG->I0){^Ó(^I» /*2)» *80*1. ^2; ^  £, A)} d^, dju2. ( 18)
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4. Examples of information-theoretical assessment

Let us consider only the IG step and also the whole input/output transfer system in Fig. 1 
under a Gaussian approximation of the relevant probability densities fj,2) ],
/ ^ e a ( M i ,  /*2)L  A ^ s t e \ »  1*2’ K’ ^ )]  and A  [ ^eaqdv(^i> A*2; K £, A) ] of simi­
lar expressions [9]:

/ [ s ' 2O iv  ju2)]
1

!h)
exp ~Ąte\> )̂j2

(19)

/^ f^ e a ( /^ i>  M2 )]
f /x2 ) | 2

_ — ------------------------
71 ^ 2 )  l  # * . ( # * 1. ^ 2 )

exp (20)

A  I n t e l ’ ^ 2’ K> £>A)]
___________ 1___________

n \ t e i ’ fi 2 ’ K’ £’ A )

exp nte\*i*2’ K’ £> A)[2
<Ps'g(jU,9 jU2; k, e, A) ’

(21)

/ [  êaqdv (^ ,, /i2;x, £, A) ]

exp
f [ ̂ eaqdvl/ 7 j, AG G ^")| 1

l l h ; K  e,A) J71 0 L aJ » V  »2’K’£. * ) l 1. I h * , «.

In this case, the general relations (8) and (18) become [4]

•>IG =  ĴJ l0 g 2 

( A )

1 + G
^ „ ( A G ’ f h )

djUi d M2

where

th)

(22)

(23)

"  G 1 E X ^ s 0(^ l ~ n l’ ^2 ”  " 2) |/ll(Ml -  n \> f^2 -  n l) \2 + G ' ^ t e l ’ ^ )
(* 1 * 0 , n2 * 0 ) (2 4 )
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and

^  (\G —> 10)

= \  J J  * *
(* ,)

1 + (G 1G2G3)
2 < o(Mi,M2) |^ ( i - > 6)(ju ,,/i2; *0 |

m 2 ; ^  A)
d;Uj d ^ 2

(25)

where <p;,eaqdv( ^ j , A*2; K, e, A) is given by Eq. (16).
For simpler expressions of relations (23) and (25), let us also assume the white forms 

of the noises considered. In such a case, their variances fulfil the equalities [4], [9]-[l 1]:

a f  = J J  & ŚJM , ,  M2) dM, d /i2 = Ih )  = const, (26)

(Bs = O

JJ ^  *) d M, <M2
<B, = 1)

=  !h > K< e• A > =  co n st <2 7 >

whereas the variance for the signal spectrum ( /iv fi2) can obtained by means 
of the integration

oo oo

%  = J  J  ^  d^ l  d^2 = J  J  < ( " . •  ^  d^ l  d7<2-
(«,)

Simultaneously, the rates

(S N R )y
G i * s A2

(SN R),
f  G l G 2G 3 a s„

?ca q d \

-"ca ^ (J,
'caqdvV

(28)

(29)

can be advantageously treated as the parametric rms-signal-to-rms-noise ratios for 
calculations of Eqs. (23) and (25).

Typical results obtained from the calculation of theoretical expressions of the 
integrated mean mutual information for separate steps and also for the complete 
input/output cases of digital electronic imaging systems according to the signal transfer 
model of Fig. 1 have already been published [4], [9]—[ 11] with respect to the chosen 
various values of the corresponding parameters. In Fig. 2, only some comparative
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b

Fig. 2. Graphs of the integrated mean mutual information .y\G as a function of the variable quantity cu, (a) 
or £ (b), for the marked values of the parameter (SNR)/( .

graphs are shown, which relate to the simple expression (23). It is considered to be a 
natural stochastic object scene of a typical power spectral density [4], [ 12]—[ 15]

<(M,. Hi)
271 <7. f 2_______ _______

„ 2 3/2
[1 + ( 2 nC<w) ]

(30)

2 2 2
where o f  = + jn2. The distance parameter £ expresses a mean spatial, detail of
the stochastic object scene x 2) relative to the pixel sampling intervals (£h £2) 
of the image gathering operation IG, which is represented by the assumed spectral 
transfer function of a Gaussian shape [6], [10]

, a*2) = exp [~ (^ ) ]• (31)

The quantity ft), is the so-called response index for which h\{}X{, f i2) = h i ( 0 , 0 ) / e .  
The graphs in Fig. 2a refer to the quantity ,ĄQ vs. (0, for the chosen constant
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parameter values £ = 1 and (SNR)„ea = 256 or £=  1 and (SNR)„ea = 32, respectively, 
whereas the graphs in Fig. 2b present the dependence of ,Ąc vs. C, for (oi = 0.3 and 
(SNR)„ea = 256 or (Oj = 0.6 and (SNR)„ea = 32, respectively [4]. These partial results 
testify to significant influence of the parameters considered on the quantity (23). It is 
also evident that the values f  = 1, a),- = 0.3 and (SNR)« = 256 (similar to human eye) 
give the maximum (^ic)max = 4.4, whereas for £= 1, (Di = 0.6 and (SNR)„ea = 32 (similar 
to traditional TV cameras) the corresponding value of the quantity (23) is ,ĄG = 2.4.

5. Conclusions
The contribution of this communication consists in the review, interpretation and 
evaluation of some basic continuous spectral mathematical expressions relating to the 
transfer of a stationary and ergodic stochastic spatial image signal through a digital 
(sampled) electronic (electro-optical) imaging system. This system is represented by 
the proposed linear and isoplanatic signal transfer model and the considerations are 
mainly based on utilizing the spectral and integrated mean mutual information. The 
general mathematical expressions are connected with the information entropy of the 
signals and noises considered and with their probability densities. The spectral mean 
information equations introduced for the model in question are also completed by the 
corresponding resultant signal and power spectral density transfer relations. Besides 
their input/output forms, also the separate image gathering device is considered.

It is also shown that the relations presented for the integrated mean mu tual 
information can be modified into simpler forms by an acceptable assumption that 
the relevant signal and noise probability densities are Gaussian and the noises are 
white. The presented comparative graphs relate to this modification and separately 
to the image gathering step of the transfer model. Simultaneously, a theoretic natural 
stochastic object scenes and Gaussian shape of the gathering step spectral transfer 
function are assumed. The separate graphs testify to the significant dependence of 
the integrated mean mutual information on the chosen parameters. The more 
complete results for various conditions and arrangements are designed for further 
investigations.
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