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Abstract: This paper reports our estimates of the Value at Risk using Monte Carlo simulations for 
which we developed a computer program. Our approach involves obtaining Monte Carlo parameters 
by fitting real historical data of different periods to probability distributions. We applied the algorithm 
to the WIG20 and mWIG40 stock indices, and performed simulations for the Value at Risk at 95% 
and 99% confidence intervals over six estimation periods ranging from 1 trading day to 250 trading 
days. This approach was evaluated using the percentage failures and the Kupiec Proportion of Failures 
test. Our results indicate that this method is highly influenced by the choice of past historical and 
estimation period lengths considered. Overall, we observed that the Monte Carlo computational scheme 
is a reliable method for quantifying VaR when parametrized well. 
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1. Introduction

The increase in computational power available to people has led to the growth of 
computational finance. Due to certain characteristics of some data sets, e.g. example 
incompleteness, or the objectives of the project, like stock price predictions, it 
was natural to merge analytical and numerical tools. One of the applications 
of computational finance is to perform risk analysis. The Value at Risk (VaR), 
recommended by the Basel II agreement [Basel II 2004], is frequently used as 
a market risk measure. As VaR helps quantify the potential loss of an investment 
and assigns a certain probability to the loss, it plays an important part in the finance 
industry. This forms our motivation to study VaR. In common usage, there are three 
ways to measure VaR – the historical method, the variance-covariance method, and 
the Monte Carlo simulations [Holton 2014].



62	 Aleksandra Helena Pasieczna

The aim of this paper is to perform Monte Carlo computer simulations to 
measure the VaR for different investment periods, past period lengths, and with 
different confidence intervals. In the following section, we present the theoretical and 
computational tools used to estimate the VaR. Section 3. deals with the simulation 
results for the VaR with different parameters. Our results show that the Monte Carlo 
approach works best in estimating VaR at 95% and 99% with historical window of 
500 trading days (2 years) for estimation windows of under one month. We also 
observe a  dependence of the estimation window length and the historical period 
on the VaR. The approach presented here is very general and can be extended to 
different applications with appropriate parameters.

2.	Theory and computational methods

In this section we briefly describe the theory used to construct our numerical model 
– Value at Risk, the Monte Carlo method, and the computer algorithm.

2.1. Value at Risk

We wish to measure the Value at Risk (VaR), which is defined as the maximum 
possible loss, or equivalently the most “negative” price change, whose probability is 
within a pre-defined confidence interval over a pre-defined time horizon (investment 
period). This can be better understood with this example: if a portfolio has a VaR of 
700 PLN over the investment period of one week with confidence of 95%, it implies 
that the portfolio has at most a 5% chance of losing 700 PLN or more over a period 
of one week. Equivalently, there is a 95% chance that the losses over one week will 
not be greater than 700 PLN for the given portfolio.

This definition of VaR is non-constructive in that it specifies a property that VaR 
should have, but not on how to compute VaR. As a result, there are different ways 
proposed to compute it [Holton 2014]. Additionally the definition allows use of VaR 
in risk management and risk measurement. For our purposes, we use the VaR to 
measure the risk of the WIG20 and mWIG40 indices [WIG], which correspond to the 
20 largest and the next 40 largest stocks respectively in terms of market capitalization, 
in the Warsaw Stock Exchange. The stocks within these indices would be a crucial 
part of investment portfolios within Poland by different portfolio managers, and so 
these indices provide a good application case study.

2.2. Monte Carlo methods

We chose the Monte Carlo method [Glasserman 2003] to simulate the WIG20 and 
mWIG40 values for the different investment periods of interest. The main advantage 
of this method is that one can simulate the different sources of uncertainty that affect 
these indices.
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Monte Carlo methods were initially developed for the physics and chemistry 
communities. The advantage to deal with probabilistic events, such as Brownian 
motion, was a  major factor in using these methods in various areas of finance, 
such as corporate finance [Savvides 1994], portfolio optimization [Detemple et al. 
2003], and risk analysis [Evans, Olson 1998]. These methods are widely used in 
dealing with quantities that have a high degree of uncertainty, and where traditional 
analytical ways might fail. Our approach uses Monte Carlo to simulate the uncertain 
price changes and the uncertainty is determined by real historical data.

Two major limitations of Monte Carlo methods in general are their sensitivity 
to the model hyper-parameters (distributions etc.), and the computational costs 
(multiple iterations and runs).

2.3. Program algorithm

Here we present the main essence of the program that calculates the VaR for the 
WIG20 and mWIG40 indices with Monte Carlo simulations. This program was fully 
implemented by us using the Python language. The libraries used for reading the 
data, fitting the data, simulating the prices, and plotting the results were ‘pandas’, 
‘numpy’, ‘scipy.stats.norm’ and ‘matplotlib.pyplot’.
• We chose the daily closing prices of the WIG20 and mWIG40 from 02 April 2007

to 22 December 2017 as the objects of study. The large number of datapoints
provides a relatively large sample to test our program for different investment
and historical period lengths.

• The uncertainty in the index value is assumed to appear through the relative price
change over each day. In our computations, we confirmed the normal distributions
of the relative price change, through the Shapiro-Wilk [Shapiro, Wilk 1965]
and Kolmogorov-Smirnov [Stephens 2012] tests. We also observed that the
percentage price changes have a mean of around 0% and a standard deviation of
around 1%. However, to better represent the trends in our data, for each ‘buying’ 
day we fit the mean and standard deviation of our normal distribution to the past
(historical) mean and standard deviation for period lengths of 250, 500 and 1250
trading days. These correspond to learning periods of approximately 1, 2 and
5 years.

• For each investment period we consider (1, 5, 10, 22, 125 and 250 trading days),
we simulated 50 000 possible prices in the future for each historical period
length. We emphasize that these prices are only hypothetical and are obtained
by generating random numbers corresponding to a  normal distribution with
a mean and a standard deviation that was fit to the chosen past period length.
For comparison all results will be shown from 2012 (to adjust for all past period
lengths).

• We then sorted the price changes over the investment period in ascending order.
The VaR for a given investment period and a given confidence interval is simply
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the percentile value of the price changes for that investment period. For example, 
the VaR for an investment period of 22 trading days, with the confidence interval 
of 95% is the 2500th or the (1-0.95)*50000th value of the sorted price changes 
over 22 trading days. 

•	 To verify that the VaR obtained for the different investment periods follow the 
definition that the price changes will be above (loss = negative price change) 
the VaR with a  probability given by the confidence interval, we performed 
backtesting. Backtesting is the process of comparing the actual price change 
over an investment period with the hypothetical (simulated) price change at the 
VaR over the corresponding investment period.

•	 Finally, all the different parameterizations of the model were evaluated using 
percentage crossings and the Kupiec Proportion of Failures (POF) test [Kupiec 
1995].

3.	Simulation results 

This section deals with our Monte Carlo simulations for the VaR at different 
confidence intervals for the different estimation periods. Backtesting results for 
the VaR at confidence intervals of 95% and 99% over estimation periods of 1, 5, 
10, 22, 125 and 250 trading days are shown graphically. These chosen estimation 
periods correspond to investment periods of approximately one day, one week, two 
weeks, one month, six months and one year respectively. Like most investment risk 
measures, the price change is of more interest than the price itself, since, from the 
investor’s perspective, profits and losses matter. For this reason, the figures plot 
theoretical VaR and actual price changes for comparative purposes. 

In Figure 1 we plot the daily moving averages for different historical periods 
for the two indices of interest. We observe that longer time periods tend to produce 
smoother curves. However, longer time periods are less sensitive to ‘recent’ 
information, which can cause ‘lags’ in fitting the mean and standard deviation (see 
Figure 2). The latter effect can be seen in Figure 2, where a sudden drop in the blue 
curve (mid-2012) is shifted to the right and lessened in intensity in the two curves 
(mid-2013 and mid-2016 for the orange and green curves respectively).

Now we present the comparison curves between the estimated VaR and actual 
price changes. The actual price changes are plotted in red, and the Monte Carlo results 
are shown for historical periods of 250, 500 and 1250 TD in the other colors. We 
highlight that each point on the red curves corresponds to actual price changes, and the 
points on the blue, orange and green curves correspond to price changes between real 
and estimated prices over the corresponding prediction period. The estimations were 
obtained from averages and standard deviations computed over the historical period.

Δ𝑃𝑃𝑀𝑀𝑀𝑀(𝑡𝑡) = 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)−  𝑃𝑃𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎(𝑡𝑡 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃),

Δ𝑃𝑃𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) = 𝑃𝑃𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎(𝑡𝑡) −  𝑃𝑃𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎(𝑡𝑡 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).
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Fig. 1. Comparison of moving averages of relative price changes for different past period lengths 
for the WIG20 (top) and mWIG40 (below) indices

Source: own study.

For the sake of brevity, we restrict ourselves to showing the plots corresponding 
to prediction periods of 1, 10, 125 and 250 TD. These are chosen to represent prices 
changes and VaR curves over short, medium and long time-scales.

Figures 3, 5, 7, and 9 present our results for the VaR with 95 confidence intervals 
for the given indices with estimation periods of 1, 10, 125 and 250 TD respectively. 
We show our VaR results for the VaR with 99% confidence intervals respectively in 
Figures 4, 6, 8 and 10 for the chosen estimation periods.

Generally, we see that the simulated curves are below the actual price changes, 
indicating that our approach captures investment risk. We observe that the historical 
period of 250 TD (blue) tends to be higher than that of 500 TD (orange), which is 
above that of 1250 TD (green). This implies that larger historical periods tend to 
overestimate the risk. It should be pointed out that our results are strictly valid within 
the time-period considered in the dataset. Further study of other indices and different 
time-periods might help to understand this behavior in more detail. 



Fig. 2. Comparison of moving standard deviations of relative price changes for different  
past period lengths for the WIG20 (top) and mWIG40 (below) indices

Source: own study.

Fig. 3. Comparison of price changes with VaR (95%) for different past period lengths over  
an estimation period of 1 trading day for the WIG20 (top) and mWIG40 (below) indices

Source: own study.



Fig. 4. Comparison of price changes with VaR (99%) for different past period lengths over 
an estimation period of 1 trading day for the WIG20 (top) and mWIG40 (below) indices

Source: own study.

Fig. 5. Comparison of price changes with VaR (95%) for different past period lengths over 
an estimation period of 10 trading days for the WIG20 (top) and mWIG40 (below) indices

Source: own study.



Fig. 6. Comparison of price changes with VaR (99%) for different past period lengths over  
an estimation period of 10 trading days for the WIG20 (top) and mWIG40 (below) indices

Source: own study.

Fig. 7. Comparison of price changes with VaR (95%) for different past period lengths over  
an estimation period of 125 trading days for the WIG20 (top) and mWIG40 (below) indices

Source: own study.



Fig. 8. Comparison of price changes with VaR (99%) for different past period lengths  
over an estimation period of 125 trading days for the WIG20 (top) and mWIG40 (below) indices

Source: own study.

Fig. 9. Comparison of price changes with VaR (95%) for different past period lengths over  
an estimation period of 250 trading days for the WIG20 (top) and mWIG40 (below) indices

Source: own study.
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Fig. 10. Comparison of price changes with VaR (99%) for different past period lengths over  
an estimation period of 250 trading days for the WIG20 (top) and mWIG40 (below) indices

Source: own study.

In all the figures shown, we observe that the VaR measure provides a  lower 
threshold for the real (actual) price changes. For most of the estimation periods 
considered, the real price changes cross the two thresholds (95% and 99%) less than 
the corresponding confidence interval set by VaR. This leads us to believe that the 
VaR is a reliable measure of investment risk for the WIG20 and mWIG40 indices.

To obtain a more complete picture of our approach, it is important to compute 
the percentage of the real price changes crossing the thresholds set by VaR. For 
our purposes we present the Kupiec Proportion of Failures test along with the 
corresponding percentage crossings in parentheses. 

The percentage crossings indicate that in the case of short historical periods (250 
TD) used for obtaining the average and standard deviation, there are more crossings 
than expected with the VaR confidence intervals. As this period is increased to 500 
and 1250 TD, the percentage crossings drop reaching 0 for many estimation periods. 
Thus, our computational algorithm, which combines Monte Carlo simulations with 
the parameters determined by the historical data, provides an independent VaR 
measure.



Monte Carlo simulation approach to calculate Value at Risk... 71

Fig. 11. Heatmap for Kupiec POF values for VaR (95%) and VaR (99%) for historical period  
of 250 trading days for the WIG20 (top) and mWIG40 (below) indices (the percentage crossings are 
provided in parentheses) 

Source: own study.

On the basis of the Kupiec POF test, we observe that the Kupiec likelihood ratios 
of the models with the historical period of 250 TD are relatively high, which when 
analyzed along with the percentage crossings, indicates that the models perform 
poorly when the prediction periods are above 125 TD. The best Kupiec likelihood 
ratios (< 1) are obtained for the VaR with 99% for historical period of 500 TD 
and estimation periods of 1, 5 and 10 TD for both indices. The Kupiec likelihood 
ratios for all estimation periods with the historical period of 1250 TD are very high, 
which combined with the very low percentage crossings, indicates that the risk is 
overestimated in this model.
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Fig. 12. Heatmap for Kupiec POF values for VaR (95%) and VaR (99%) for historical period of 
500 trading days for the WIG20 (top) and mWIG40 (below) indices (the percentage crossings are 
provided in parentheses) 

Source: own study.
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Fig. 13. Heatmap for Kupiec POF values for VaR (95%) and VaR (99%) for historical period of 
1250 trading days for the WIG20 (top) and mWIG40 (below) indices (the percentage crossings are 
provided in parentheses) 

Source: own study.

4. Conclusions and perspectives

In this work we have calculated the Value at Risk for different confidence intervals 
over different estimation periods using the Monte Carlo method. The VaR of the 
WIG20 and mWIG40 indices were computed at 95% and 99% confidence intervals 
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over six estimation periods ranging from 1 to 250 trading days, with 50 000 Monte 
Carlo iterations. The Monte Carlo parameters were obtained by fitting historical 
relative price change data of the indices of different historical period lengths to 
a normal distribution. 

Our results show that the model works best for a historical time period of 500 TD 
to fit the average and standard deviation for prediction windows of up to 22 TD. This 
implies that the approach works for relatively short prediction horizons compared 
to the historical time period. Counterintuitively to what one might expect, a longer 
historical time horizon degrades the Kupiec POF due to the overestimation of the 
risk. Additionally, there is no discernible pattern between the prediction window and 
the historical time window.

The program developed here is very general and can be easily adapted to study 
the Value at Risk at different confidence intervals over different estimation periods 
for any price index, based on different historical time periods. Additionally, one can 
easily modify the algorithm to obtain Monte Carlo simulations with any probability 
distribution, which might better reflect the real price changes. While this approach 
was used to estimate VaR, the general algorithm can also be extended for similar risk 
measurements. 

In terms of perspectives, the study of different simulation time periods would 
help avoid over-fitting our model to specific trends or cycles. It would be fruitful to 
study the VaR for more stock indices and portfolios. The use of different probability 
distributions might help in establishing a  stronger understanding, and eventually 
help in developing better investment strategies. Additional use of exponential-
moving averages instead of simple-moving averages to emphasize recent events 
would be helpful, as the model adapts quicker to new information, while reducing 
the dependence on long-past events.
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METODA SYMULACJI MONTE CARLO 
W OBLICZANIU WARTOŚCI ZAGROŻONEJ RYZYKIEM (VAR): 
ZASTOSOWANIE DLA WIG20 I MWIG40 

Streszczenie: W niniejszym artykule przedstawiono oszacowanie wartości zagrożonej ryzykiem VaR 
za pomocą symulacji Monte Carlo, dla której stworzono program komputerowy. Podejście polega na 
uzyskaniu parametrów Monte Carlo przez dopasowanie rzeczywistych danych historycznych z różnych 
okresów do rozkładów prawdopodobieństwa. Zastosowano ten algorytm dla indeksów giełdowych 
WIG20 i mWIG40, dla dwóch przedziałów ufności – wynoszących 95% i 99%, w sześciu okresach 
szacunkowych, które wynosiły od 1 do 250 dni pracujących. Aby uzyskać ocenę wyników symulacji, 
analizowano procentowy udział niepowodzeń oraz test Kupca. Wyniki te wskazują na duży wpływ roz-
piętości zakresu danych historycznych, a także długości okresów szacunkowych na ocenę symulacji. 
Stwierdzono, iż schemat obliczeniowy metody Monte Carlo, przy odpowiedniej parametryzacji, jest 
wiarygodną metodą określania wartości zagrożonej ryzykiem VaR.

Słowa kluczowe: Monte Carlo, wartość zagrożona ryzykiem, WIG20, mWIG40, Kupiec, symulacje.




