
e-Informatica Software Engineering Journal, Volume 12, Issue 1, 2018, pages: 117–131, DOI 10.5277/e-Inf180105

Are We Working Well with Others? How the
Multi Team Systems Impact Software Quality

Mathieu Lavallée∗, Pierre N. Robillard∗

∗Département de génie informatique et génie logiciel, Polytechnique Montréal
mathieu.lavallee@polymtl.ca, pierre.robillard@polymtl.ca

Abstract
Background: There are many studies on software development teams, but few about the interac-
tions between teams. Current findings suggest that these multi-team systems may have a significant
impact on software development projects.
Aim: The objective of this exploratory study is to provide more evidence on multi-team systems
in software engineering and identify challenges with a potential impact on software quality.
Method: A non-participatory approach was used to collect data on one development project
within a large telecommunication organization. Verbal interactions between team members were
analyzed using a coding scheme following the Grounded Theory approach.
Results: The results show that the interactions between teams are often technical in nature,
outlining technical dependencies between departments, external providers, and even clients.
Conclusion: This article hypothesizes that managers of large software project should (1) identify
external teams most likely to interfere with their development work, (2) appoint brokers to redirect
external requests to the appropriate resource, and (3) ensure that there are opportunities to discuss
technical issues at the multi-team level. Failure to do so could results in delays and the persistence
of codebase-wide issues.
Keywords: multi team system, human interaction, quality management, team manage-
ment, industrial study

1. Introduction

Five hundred years ago, John Donne wrote that
“no man is an island”. Individuals achieve great
things by working together as a team. But many
projects require more than an individual team to
achieve success. “No team is an island” [1] would
be a better description of modern project and
organization management.

Teamwork has indeed long been identified as
important to project success [2–4]. Teamwork
in software development is no different, and
software engineering research also highlighted
the impacts that software development teams
can have. As Watts S. Humphrey wrote, “Sys-
tems development is a team activity, and the
effectiveness of the team largely determines the
quality of the engineering” [5, p. 51]. Teams

rarely work in isolation; teams are often in-
terdependent of each other and must work
together. Recent studies have shown the im-
portance of these interactions between teams,
whether on issues such as organization-wide
knowledge sharing [6], coordination of multiple
agile teams [7] or inter-team communication ef-
fectiveness [8].

This paper presents insights gained from
the analysis of data collected in an exploratory
study. These insights confirm the large amount
of inter-team interactions, and identifies which
teams were more closely connected to the develop-
ment team. It also shows the role the developers
play as middlemen between teams, for example
between clients and testers. Finally, this study
presents the importance of inter-team technical
coordination, which is difficult if the organization

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_12/eInformatica2018Art5.pdf


118 Mathieu Lavallée, Pierre N. Robillard

Table 1. Software engineering publications related to MTS in chronological order

Ref Title (publication year)
[9] Using open spaces to resolve cross team issue (2005)
[10] Implementing Scrum in a distributed software development organization (2007)
[11] Forming to performing: Transitioning large-scale project into agile (2008)
[12] Fully distributed Scrum: Replicating local productivity and quality with offshore teams (2009)
[13] Moving back to Scrum and scaling to Scrum of Scrums in less than one year (2011)
[14] Scaling Scrum in a large distributed project (2011)
[15] Scrum practice mitigation of global software development coordination challenges: A distinctive

advantage? (2012)
[16] Coordination in co-located agile software development projects (2012)
[17] Practical Scrum-Scrum team: Way to produce successful and quality software (2013)
[18] Coordination in large-scale agile software development: A multiteam systems perspective (2014)
[6] Fostering effective inter-team knowledge sharing in agile software development (2015)
[19] The effects of team backlog dependencies on agile multiteam systems: A graph theoretical approach

(2015)
[20] A multiple case study on the inter-group interaction speed in large, embedded software companies

employing agile (2016)
[21] The architect’s role in community shepherding (2016)

only supports inter-team administrative coordi-
nation (i.e. resource planning and scheduling).

The next section presents the related work
(Section 2), with a focus on the organizational
psychology concept of multi-team systems and
how it applies to software engineering. The
methodology (Section 3) presents the context
of the study and how the data was collected and
analyzed. The results (Section 4) presents the
data analysis, while the discussion (Section 5)
presents our hypotheses and limitations to the
conclusions of the study. The conclusion (Sec-
tion 6) summarizes the hypotheses and presents
future avenues of research. Note that this paper
represents an extension of a previous shorter pub-
lication [22]. Some elements of the methodology
were reused here, but the results and analyses
are new.

2. Related work

The current software engineering literature uses
different terms to define the interactions be-
tween multiple teams: inter-team, multi-team,
cross-team, etc. However, these concepts are not
always clearly defined, leaving the exact inter-
pretation to the reader. The research field of
organizational psychology has fortunately stud-

ied this topic extensively, regrouping them under
the umbrella of multi-team systems, or MTS [23].
The MTS are defined as:

Two or more teams that interface directly
and interdependently in response to environ-
mental contingencies toward the accomplish-
ment of collective goals. MTS boundaries are
defined by virtue of the fact that all teams
within the system, while pursuing different
proximal goals (e.g. writing a specific code
module), share at least one common distal
goal (e.g. creating a complete working soft-
ware); and in so doing exhibit input, process,
and outcome interdependence with at least
one other team in the system [24].
Many studies have been published on sin-

gle team dynamics in recent decades. Addition-
ally, there is also a large body of knowledge on
global or distributed software engineering, that
is, multi-team systems spanning different sites
across the globe. However, as far as we could
find, there are few publications on the dynam-
ics between co-localized teams. What should
be done to make teams work together effec-
tively within the same site at the organizational
level?

What is required for success in these kinds
of MTSs is coordination both within and be-
tween teams [emphasis theirs]. That is, al-



Are We Working Well with Others? How the Multi Team Systems Impact Software Quality 119

though interventions designed to create a sys-
tem of strong, cohesive component teams
may maximize performance at the team level,
when ultimate system-level goals require syn-
chronization between teams, more is needed.
[...] MTS interventions must also address
interdependencies between teams if perfor-
mance across these kinds of complex systems
is to be maximized [25].
Studies observing MTS in software engi-

neering are still limited [18], with almost all
studies found limited to Agile contexts and
Scrum-of-Scrums meetings, as shown in Table 1.

Mike Cohn, an expert on the Scrum process,
recommends a specific point in the agenda of
“Scrum of Scrums” meeting, his version of MTS
status meetings. Cohn recommends the addition
of a question saying: “Are you about to put
something in another team’s way?” [26]. Cohn’s
recommendation outlines the importance of MTS
and the impact one team can have on another.
This recommendation was used in the field within
“Scrum-of-Scrums” meetings, but with limited
success [7]:

Both case projects started using a model in
which only one issue was discussed: imped-
iments. However, this solution did not turn
out well.[...] Both case projects still recog-
nized the need for project-wide inter-team
synchronization, but did not have any good
solutions to the problem [7].
This shows that while the challenges of MTS

projects are beginning to be better known, work-
ing solutions are still being tested [21].

2.1. Known challenges of MTS projects

This section presents a non-exhaustive list of
challenges of MTS projects, based on what could
be found in the literature. These three challenges
were found to be most prevalent in the context
of this study:
– Finding a compromise between team-level

goals and MTS-level goals.
– Enabling effective communications and tech-

nical knowledge exchange at the MTS level,
– Planning the work at the MTS level.

One of the main MTS challenge is related
to building a compromise between the objec-
tive of the local team goal and the overall goals
of the MTS. In one software engineering case,
the conflicting agendas of team members within
different departments led to the failure of the
project [13]. This challenge has a major impact on
resource allocation. Organizational psychology
researchers observed that “having to simultane-
ously work toward team-level goals along with
MTS-level goals creates a demanding work envi-
ronment” [25]. In software engineering, Santos et
al., reached a similar conclusion. They studied
knowledge sharing between teams in an Agile
context [6]. They noted that the introduction
of new MTS support practices requires more
resources, which must be provided by the orga-
nization, otherwise the practice, and potentially
the project, could fail.

Another challenge is the relative difficulty to
ensure efficient communications at the MTS level,
compared to communications within the team.
A survey conducted by Kiani et al. noted that
due to “lack of communication, almost fourth
of respondents complained that work items they
depended on have changed without any notifica-
tion” [27]. Some basic Agile principles are also af-
fected in MTS contexts. For example, face-to-face
communications are easy at the team level, but
are difficult to apply at the MTS level. It re-
quires the organization to mix people from one
team to another, which is not always possible
[28]. “Boundary spanning”, ensuring communi-
cations between the frontiers of the teams, is an
important challenge within MTS [16,20].

In the same vein, dissemination of technical
information specific to a field of knowledge is also
difficult. Local teams accumulate a significant
amount of knowledge about the specific area in
which they work. How can this knowledge be
effectively communicated to the other teams in
the MTS? If the project is particularly complex,
it may also be difficult to get an overall view
of the project [14]. Each team knows its own
problems, which can be difficult to translate in
a form understandable by other teams that might
not have the same knowledge of the field.



120 Mathieu Lavallée, Pierre N. Robillard

A third challenge is related to how MTS co-
ordination should be planned. Lanaj et al. found
the following.

Decentralized planning has positive effects on
multiteam system performance, attributable
to enhanced proactivity and aspiration levels.
However, [. . . ] the positive effects associated
with decentralized planning are offset by the
even stronger negative effects attributable
to excessive risk seeking and coordination
failures [29].
The study of MTS coordination has been

identified by one study as “underdeveloped” [18].
However, MTS is a concept defined within the
domain of organizational psychology. Research
in software development already has a large body
of knowledge pertaining to inter-team interac-
tions within the domain of global and distributed
software development [30]. While a global or dis-
tributed development team is a form of MTS,
some MTS can be collocated in the same building.
The team observed interacted with other teams
which were almost all collocated within the same
building. The context of this study is therefore
different from the study of global and distributed
software development, where the issues of geo-
graphical distance and temporal distance play
a large role.

3. Methods

3.1. Industrial context

The study was performed on a large telecommu-
nications organization with over forty years of
experience in the industry. Throughout the years,
the organization has developed a large codebase,
which must be constantly updated. This study
follows one such update project. The outcomes
of this study are based on ten months of obser-
vation of a software development team involved
in a two-year project for an internal client. The
project involved a complete redesign of an exist-
ing software package used in the organization’s
internal business processes.

The technical challenge of this update project
is that it requires the modification of COBOL

legacy software, Web interfaces, mobile device
integration and multiple databases. Its purpose
is to manage work orders. To do this, it needs to
extract data from multiple sources within the en-
terprise (employee list, equipment list, etc.) and
send it to multiple databases (payroll, quality
control, etc.).

The project was a second attempt to overhaul
this complex package. A first attempt had been
made between 2010 and 2012 but was abandoned
after the fully integrated software did not work.
Because this project was a second attempt, many
specifications and design documents could be
reused. Accordingly, the development followed
a traditional waterfall process, as few problems
were expected the second time around. This sec-
ond attempt began in 2013 and was successfully
deployed during October and November 2014.

The organization has no formal MTS coor-
dination practices in place. Coordination at the
MTS level is therefore mostly tacit. This means
that when a team needs information from an-
other team, a member of the first team has to
directly contact another member of the second
team. This causes some issues at the MTS level,
because most developers in the team observed
were new to the company [31] when the project
started, and in some cases did not know who
to contact in the other teams. Despite its tacit
nature, an MTS exists. The need for coordina-
tion between the projects means that interactions
between teams are required to perform the work.

This study observes a development team of
nine members: one manager, four senior devel-
opers, two junior developers and two contract
developers. The team was formed specifically
for this project, of which seven are new to the
organization (i.e. less than five years).

Note that the nature of this MTS is different
from an MTS where several teams are working
on the same project (e.g. a Scrum-of-Scrums
development project). In the MTS observed, all
teams had different projects, with their own goals
and objectives. The development project studied
was the responsibility of a single team, the team
observed. However, to perform that project, that
team could not do it alone, and had to seek help
from other teams.



Are We Working Well with Others? How the Multi Team Systems Impact Software Quality 121

The objective of this study is to understand
how a development team interacts with other
external team to do its work. Therefore, the fo-
cus is on the development team. Who does the
development team needs to talk to and why?

3.2. Study approach

The objective of the study was to identify the
cause behind the introduction of quality prob-
lems during software development. Given the
sensitive nature of problem identification within
a large organization, it was decided to opt for
a neutral approach. Data collection was to be
performed using a non-participatory approach,
to avoid organizational influence.

Data collection was limited to weekly sta-
tus meetings because that is the avenue used
by the organization to discuss and resolve MTS
issues. Although there were certainly discussions
between teams outside these weekly status meet-
ings, the most important issues were discussed
at these meetings.

A qualitative approach was chosen to better
understand an area where many variables are
not fully identified. The approach of this study
uses the same rationale as Looney and Nissen:

The present research is exploratory in nature,
is not guided by extensive theory, and is ap-
proaching a “how” research question. Hence
qualitative field research reflects an appropri-
ate method [32].

3.3. Data collection methodology

This study is based on non-participant ob-
servation of the software development team’s
weekly status meetings. These meetings con-
sisted of mandatory all-hands discussions for
the eight developers assigned mostly full-time
to the project, along with the project man-
ager. These meetings included, as needed, de-
velopers from related external modules, testers,
database administrators, security experts, qual-
ity control specialists, etc. The meetings in-
volved up to 15 participants, and up to
five additional participants through conference
calls.

The team discussed the progress made during
the previous week, the work planned for the com-
ing week and obstacles to progress. The problems
raised concerned resources and technical issues.
Few decisions were taken at these meetings, the
purpose being to share the content of the pre-
vious week’s discussions between the different
teams.

A round-table format was used, where each
participant was asked to report on their activities.
The discussions were open and everyone was en-
couraged to contribute. When a particular issue
required too much time, participants were asked
to set another meeting to discuss it. Meetings
lasted about an hour.

The data presented in this study was col-
lected over seven months during the last phase of
the two-year project. It is based on 21 meetings
held between January and July 2014. The same
observer attended all the meetings and took note
of who was involved in each interaction, the topic
being discussed, and the outcome. A typical in-
teraction would last between 5 and 30 seconds.
The notes were then produced as quasi-verbatim
transcripts.

3.4. Coding methodology

Due to the large amount of data collected, it
is necessary to summarize the data obtained in
order to find patterns. This summarization was
performed using a coding methodology based on
the grounded theory approach [33].

Coding was performed after the observa-
tions were completed, based on the meeting
notes taken from February 27th, 2014 to July
31st, 2014. Since it can take time for the peo-
ple observed to be used to the presence of
the researcher [34], and for the researchers
themselves to fully understand the domain
knowledge of the project [35], the data from
the first two meetings were not kept for this
study.

Meetings taking place after July 31st were
also removed from this analysis. These last meet-
ings were mostly related to deployment activities
and featured very little development interactions.
While the analysis of the deployment activities



122 Mathieu Lavallée, Pierre N. Robillard

would be interesting, it was decided to keep the
development discipline and deployment discipline
separate, as the MTS requirements of both disci-
plines are quite different.

Coding schemes were developed following the
Grounded theory approach [33]. In summary,
coding was performed using the following steps:
1. Open coding of all entries, going over the

data as long as new codes can be added.
2. When no new codes can be added, similar

codes are grouped together.
3. Code groups are formalized into schemes.
4. Return to point (1) until no new codes are

added and no new schemes can be formed.
After multiple coding iterations, three coding

scheme emerged. The first scheme pertains to
whether the interaction observation is related to
a technical or administrative topic:
Technical: interactions related to technical is-

sues (requirements, bugs, data, etc.),
Administrative: interactions related to admin-

istrative issues (deadlines, resources, etc.).
The second scheme pertains to one of the four

types of interaction identified:
Team demands (inputs): These interactions

are requests made by team members to some-
one outside the development team.

Team commitments (outputs): These inter-
actions are requests made by someone outside
the development team to the team or a team
member.

Team coordination (in-out): These interac-
tions are related to meetings which had or
will take place between two or more teams
on a given issue.

Team liaison (brokering): These interactions
are information request to the development
team by someone outside the team. The de-
velopment team cannot answer themselves
and therefore act as knowledge brokers with
another team.
The third scheme pertains to the type of team

interacted with:
Client teams: These teams are responsible for

providing requirements and details on what
they need the software to do, along with vali-
dation of the final result.

3rd party teams: These teams represent the
3rd party library support teams, which per-
forms corrections on the software based on
the service-level agreement (SLA) their 3rd
party holds with the organization. Two inter-
nal module support teams are also included
here, as the interaction with these teams fol-
lowed a protocol similar to the interaction
with support teams outside the organization.

Quality teams: These teams are responsible
for quality assurance and quality control
within the organization.

Ancillary teams within the organization:
The organization has many departments, each
with their own expertise and technical compe-
tencies. For example, one ancillary team was
in charge of the creation and configuration
of the development and test environments.

In-house development teams: These teams
represent other development teams working
in parallel projects on the same codebase.

4. Analysis

Data collection returned a total of 464 topics
discussed within the 21 weekly status meetings
analysed. From these 464 topics, 294 were related
to external teams. Therefore, about 60% of all
topics discussed were related to requests to exter-
nal teams, commitments to fulfil for stakehold-
ers, and other interactions that involved external
team members.

Figure 1 presents the number of interactions
between the observed development team and all
external teams. The teams are split based on the
five team types presented in the previous section.
The closer a team is to the dark centre of Figure 1,
the more interactions they had with the observed
team, and the closer they were to them. Note
that since it was an internal development project
for an organization which does not sell software,
the actual clients of the package upgraded was
the Operations team. The Operations team is in
charge of creating and dispatching work orders.
Field workers receive the work orders and must
on occasion interact with the software. A total



Are We Working Well with Others? How the Multi Team Systems Impact Software Quality 123

Observed
development

team

Operations63

25 Upper Management

9 Training
2 User Support

Field Workers, Marketing1

CLIENT
TEAMS

Testing

39

QUALITY
TEAMS18

Security

3

Quality Assurance

Library-T
27

3rd PARTY
TEAMS

25
Library-S
Module-SG

16

Module-ID, Library-U, Library-R
1

ANCILLARY
TEAMS

17
Environment

5
Web, Databases, Workstations

2
Network

1Deployment

IN-HOUSE
TEAMS

9

Project-G
Project-S
Project-R

3
2

1

Project-8, Project-E,
Project-CL, Project-CR,
Project-CO

Figure 1. Proximity of each external team with the observed development team.
The number of interactions are posted on the axes

of 29 different external teams were contacted
during the course of the study.

Table 2 presents the results of the number of
interactions with external team members accord-
ing to their activities, which outlines the amount
of interactions and the rationale for interaction
(to answer team needs, to fulfil team obligations,
etc.). While table 2 present the number of liai-
son interactions, more details are presented in
Figure 2. Table 2 shows that there are numerous
administrative as well as technical interactions
with all the team categories. Note that eight inter-
actions could not be assigned to a specific team,
bringing the total in Table 2 to 294 interactions.

Figure 2 shows the occurrences of liaison
interactions between two teams in which the
observed development team was involved. It
shows that the observed team is pivotal be-
tween the client and the quality group. These
interactions include requirement clarifications,
but also demands by testers to ensure that the

Client teams

C
li

en
t t

ea
m

s

Q
ua

li
ty

 te
am

s
Quality teams

A
nc

il
la

ry
 te

am
s

In
-h

ou
se

 te
am

s

Ancillary teams

3r
d 

pa
rt

y 
te

am
s

3rd party teams

In-house teams

Figure 2. Liaison interactions (knowledge brokering)
between external team categories. Bubble size

represents the amount of liaison interactions (from
one to seven). Black colour represents technical

interactions, while grey colour represents
administrative interactions

initial data in the system are validated by the
clients before testing can start. More details



124 Mathieu Lavallée, Pierre N. Robillard

Table 2. Number of interactions with external teams per team category

Team Category Team Demands Team Commitments Team Coordination Team Liaison Total
Tech Admin Tech Admin Tech Admin Tech Admin

Client teams 22 21 19 11 8 7 8 5 101
3rd party teams 35 7 8 3 6 4 4 4 71
Quality teams 3 6 19 7 6 4 10 5 60
Ancillary teams 14 8 3 1 2 0 7 0 35
In-house teams 4 1 8 2 1 1 1 1 19

about the importance of the client/quality in-
teractions can be found in the next section.

4.1. Interaction purpose examples

Tables 3, 4, 5 and 6 present a glimpse of the rea-
sons through actual quotes from the development
team. Each table covers one of the four types
of interactions. The objective is to give an idea
how a topic was associated with the appropriate
interaction type and the appropriate external
team.

4.2. Failure of the first iteration of the
project

As stated earlier, the project observed had al-
ready been done once, but failed. A private com-
munication with a manager who witnessed the
failure of the first iteration but did not partic-
ipate in the second one provides some details
on the failure. According to the manager, the
following factors may have caused the failure of
the first iteration:
– Personality conflicts between the develop-

ment team, the client teams, and the other
3rd party teams. This can be related to “Orga-
nizational Skirmish” identified by Tamburri
et al. [36].

– Contractual issues between the organization
and 3rd party developers. Contract negoti-
ations dragged so long that the contracts
were signed moments before the code was
scheduled for production.

– Pressure from the project manager to filter
interactions with the development team. This
manager required that all requests had to
be submitted directly to her, resulting in
missed or misinterpreted messages. This can

be related to the “Radio-Silence” identified
by Tamburri et al. [36].

– Documentation mostly incomprehensible by
anyone outside the development team. Only
the client teams’ documentation could be
reused as is.
While this statement is only supported by

one witness, it still provides some insight as to
why the project initially failed.

5. Discussion

This section discusses the results and poses three
hypotheses to resolve the identified issues, along
with their potential impact on quality.

5.1. First hypothesis: Identification of
the critical teams and client
implication

This study shows that although interactions with
external teams are important, some teams are
more important than others. The frequency anal-
ysis shows that the interactions of the team
loosely follow a Pareto distribution. Approxi-
mately 78% of external interactions (229 of 294
interactions) are made from about 28% of all
teams contacted (8 of 29 teams). Based on the
data in Figure 1, the distribution of these eight
teams (categories of the corresponding team in
brackets) are:
1. Operations [client team]: 63 interactions.
2. Testing [quality team]: 39 interactions.
3. Library-T [3rd party team]: 27 interactions.
4. Library-S [3rd party team]: 25 interactions.
5. Upper Management [client team]: 25 interac-

tions.
6. Security [quality team]: 18 interactions.



Are We Working Well with Others? How the Multi Team Systems Impact Software Quality 125

Table 3. Example quotes related to team demands

Demands to Quote

Client “There is a problem with [the client]. We need the configuration data and we have no
answer from [the client]. I did some work on this, but I cannot finish by myself.” The
team had to ask the client again for the configuration data.

Ancillary “Everything has been settled, except for the database configuration. We do not have
the access rights [to the environment] to prepare this. [...] This configuration should be
done by default! It’s like buying a car and not having a key!” The team had to ask the
environment setup team for the rights to change the database configuration.

In-House “We just receive an analysis from Project-G, which is about 60 pages. The analysis
is very badly written and is essentially incomprehensible.” The team had to ask the
Project-G team a clearer document in order to fulfil the analysis.

Table 4. Example quotes related to team commitments

Commitments to Quote

Client Upper Management has approved a new project with a high priority and a very
aggressive calendar. It is likely that some developers from the development team will be
assigned to this new project. The observed development team must finish their current
project as soon as possible, as delays will be unacceptable for upper management.

Quality “What do we do if we find bugs?” Quality teams need development support during
the developers’ holiday, in August. The development team cannot go on holiday all at
once: someone must stay in place to correct the bugs found by quality teams.

In-House The development team must replace a function so it can support true/false/maybe
values. This is in order to support Project-R, developed by another team, which will
be deployed shortly after their current project ends.

Table 5. Example quotes related to team coordination

Coordination with Quote

Client The development team needs the business processes from the client so they can code
the appropriate functionalities. But the client expects that the development team will
explain how the software will work, and therefore adjust their business process in
consequence. There is confusion as to whom is responsible for providing the business
processes.

3rd Party The development team must discuss with Library-T support to determine which changes
will be covered under the current contract and which changes will be charged extra to
the project.

Quality The development team pressures the testing team to start acceptance testing even
though integrated testing is not finished. The testing team disagrees: the two teams
will need to meet afterward in order to decide what to do. “How can I start acceptance
testing if integrated testing only reach 50% success?”

7. Environment [ancillary team]: 17 interac-
tions.

8. Module-SG [3rd party team]: 16 interactions.
While the other 21 teams have less than ten

interactions each.
Therefore, project managers should try to

identify the teams most likely to have an impact
on the project beforehand, and ensure that com-

munication channels with these teams are clear.
In the case observed, this issue was somewhat
alleviated by making the testing team sits in
the same room as the developers towards the
end of the project. They could not do the same
with their 3rd party developers, which resulted in
some serious issues. For example, communication
problems with 3rd party support teams, coupled



126 Mathieu Lavallée, Pierre N. Robillard

Table 6. Example quotes related to team liaison

Liaison between Quote

From client to quality The clients need to provide a description of their workflow for the testing team.
The testing team are planning acceptance testing and want to design tests which
reflect what the client does in its day-to-day work.

From quality to client A client was assigned to the testing team in order to assist them in their work.
However, the client assigned does not answer the telephone or email. The quality
team needs to talk to him.

From quality to ancillary The security team need access to the test environment in order to perform their
tests. The Network team needs to open a port for the security team.

From in-house to quality Testers need to know if they need to perform testing for the integration of
Project-G within the current project. So far, the in-house team developing
Project-G has not answered.

with poor service-level agreements (SLA), re-
quired multiple reworks of some simple change
requests, each taking one month to perform [22].

The Pareto analysis shows that the clients,
the Operations team, is by far the external
team most contacted. However, the development
project followed a waterfall approach, with fixed
requirements. Why so many interactions are
needed with the clients if the requirements are
fixed since the beginning? Many details and sub-
tleties became evident as the developers pro-
gressed into the project. Some requirements have
emerged or have changed very late during the
project. Some of these changes were client re-
quests, but others were tasks that the client
needed to do.

For example, since this project is related to
the update of an old package, some of the new
databases must be updated with the data already
in the old package. However, a lot of the data
in the old package are obsolete: dropdown menu
items are no longer used; database columns are
no longer filled, etc. The developers cannot know
these subtleties, and rely on clients to tell them
which data to port to the new package, and
which data to remove. In this case, the clients
did not have the resources to do this task for the
developers, which leads to multiple delays.

This shows that all projects, whether Agile
or disciplined, require continuous interactions
with stakeholders. But while Agile principles em-
phasize flexibility to clients’ needs (“our highest
priority is to satisfy the customer” [37]), this
study shows that the clients must also be flexible
to developers. Clients have obligations to fulfill.

The domain knowledge of the clients was very
important in this project. Some delays can be
attributed to the unavailability of the client or
to late responses to critical requests. The clients
were required to provide many details about what
the old package did, and why the old package
worked that way, and on what the client wants for
the new package. The clients’ technical expertise
was limited, but they knew very well their work-
flow and how they want the future application
to merge with this workflow.

For project managers, we propose that any
client/provider agreement ensures that the client
is willing to actively help developers. For ex-
ample, the simple task of seeding a database
with its initial dataset is difficult to plan ahead:
it can be done once the database structure is
completed, using data that is usually provided
by the client. In this study, delays in obtaining
clients responses have led to delays in database
configuration, which caused the tests to start
late, and ultimately to be shorter than planned.

Previous Agile studies have used client del-
egates to ensure coordination between the real
client and the development teams [11,14]. Dele-
gation of client duties can prevent constant inter-
ruption of the workflow of developers. One study
assigned each team with “a support person”.

Supporting the customer using all the so-
lutions that the team had to provide was
a critical task. This required a vast amount
of knowledge of all moving pieces. Before we
had the support person, the customers inter-
rupted subject matter experts [i.e. developers]
directly. The subject matter experts typically



Are We Working Well with Others? How the Multi Team Systems Impact Software Quality 127

3rd party
teams

Quality
teams

Client
teams

43

30

26

9

10

In-house
teams

5

42 11

Ancillary
teams

DEVELOPMENT
TEAM

22

4

Figure 3. Chain of commitments between teams. White arrows indicate answers to development team
demands. Grey arrows indicate team commitments that the development team must fulfil

dealt with too many support requests and
ended up context switching in and out of the
tasks at hand [11].
The impact on quality in the case observed

is mainly transcribed in terms of delays. The
failure to provide answers in a due manner to
the questions of the development team led to
multiple delays. In this case, these delays cause
the testing phase to be greatly reduced. In ad-
dition, some code written by 3rd parties could
not be reviewed in time for delivery and was
included in the codebase as-is. By the accounts
of the developers themselves, a lengthy support
process will be necessary post-delivery to ensure
that all the issues are sufficiently smoothed out.

5.2. Second hypothesis: Developers as
knowledge brokers within the MTS

Figure 3 illustrates the two-way interactions be-
tween external teams and the development team,
based on the team demands and team commit-
ments found in Table 2. For example, in the inter-
actions between the development team and the
client teams, the development team had 30 com-
mitments (grey arrow) toward the client teams,
while the client teams answered 43 demands
(white arrow) from the development team.

The left hand side of Figure 3 shows the team
categories with a majority of demands from the
development team (large white arrows), while the
right hand side shows the team categories with
a majority of commitments from the development

team (large grey arrows). The client teams, being
fairly balanced in demands and commitments,
remains in the middle. What should be seen from
Figure 3 is that demands flows from the left to
the right. Ancillary teams fulfil developers’ re-
quests, so that developers can fulfil quality teams’
requests.

Here is an example taken from the interac-
tions observed. The quality teams needed many
test environments in order to perform their work
(acceptance environment, load testing environ-
ment, etc.). The development team was therefore
committed into building these environments and
ensuring that they were coherent with the latest
available versions of the package and that they
were stable enough to support test activities.
While they could do some of the work them-
selves, they needed the support of the environ-
ment setup team, an ancillary team. However,
the environment setup team did not fulfil its
commitment appropriately, causing a number of
issues to the development team. These environ-
mental issues cause the development team to
fail in some of their commitments toward the
quality teams, causing delays and ultimately, the
cancellation of some of the test activities.

Some of these relationships might seem self-ev-
ident, but others might not be as well-known. As
presented in our previous paper [22], managers
should be wary of other projects imposing changes
to the current project. Project managers should
also ensure that all relevant teams (3rd party
teams, ancillary teams) are ready to help the



128 Mathieu Lavallée, Pierre N. Robillard

development team. In the case presented above,
many issues stemmed from poor communications
between the development team and the environ-
ment team.

The role of the development team in this case
is that of a broker. Developers need to redirect
the requests they receive to the appropriate team.
To take an analogy from the TCP/IP protocol,
the development team is the default gateway
for the external teams. External teams needing
something related to the project will ask the de-
velopers first, which will then redirect the team
to the appropriate resource when necessary.

This is especially true of the relationship be-
tween clients and testers. Clients and testers do
not know how the application was built, who
was contacted to code the software, what are
the dependencies. They are mostly conscious
on what they see on their end. When something
goes wrong, their only contact is the development
team. Clients and testers need some answers but
do not know who to ask; developers know and
must assist them.

For project managers, this study shows that
testers cannot work efficiently if they are kept
completely isolated from the development team.
Testers need to ask many questions in order to
perform their work, and these questions must
be efficiently relayed to the appropriate external
team. In the case studied, toward the end of
the project, management had the testing team
sits directly with the development team. Their
goal was to diminish bug resolution times, but
it also helped the testers in the setup of the
different testing phases and testing environment
(integration, acceptance, load, and deployment).
The same can be applied to clients. While it
might not make sense to put the client in con-
tact with every relevant external team, clients’
questions can be distributed by the developers
to the relevant external teams.

The need for knowledge brokers have been
identified in the literature [11, 25, 36]. It is some-
times identified as a “coordinator role” [16].

Brokers are those individuals who link discon-
nected subgroups. [Another study] found that
system-level coordination is achieved more
efficiently when certain key individuals con-

nect different subgroups as opposed to when
all individuals are directly connected to one
another. Complex MTSs may be more effi-
ciently coordinated if certain individuals act
as ambassadors by connecting their team to
others within the system [25].
The question of whom to assign to the role of

knowledge broker varies from study to study how-
ever. It should be someone who has a widespread
knowledge of the system [10,11]. It is, however,
unnecessary to have a broker between each team.
As presented in the previous section, teams with
a potential critical impact on the development
team’s work should be identified. Knowledge bro-
kers can therefore be assigned only for those
critical teams [38]. Minor teams and modules
could be more isolated from the development
team under study.

The impact on quality rests on the fact that
the development team does not work in isolation.
There are many other teams working indirectly
on the project which require adequate support
to perform their work. Here are a few examples:
– Testers need to obtain real data from the

clients in order to perform tests that can be
relatable to what goes on in reality.

– Testers need working testing environment
with an up-to-date code in order to perform
adequate tests.

– Third party support teams need to know the
type of tests to be performed in order to
ensure that their infrastructure will support
these tests (e.g. stress testing or security test-
ing cloud storage services).
Failure to relay the needs of one external

team to another can lead to the cancellation of
important activities.

5.3. Third hypothesis: Managing
technical and administrative
interactions

Before this study, the organization managers and
the development team were convinced that their
meetings were mostly administrative; discussing
deadlines, budget and resources. Observations
proved that most of these discussions were actu-
ally technical and involved bugs, issues, design,



Are We Working Well with Others? How the Multi Team Systems Impact Software Quality 129

solutions, etc. It is therefore not surprising that
most of the interactions with external teams are
also technical in nature.

But this information should not be ex-
changed only from one manager to another.
This study’s suggestion to project managers
is to make sure that developers in different
teams are able to talk to each other. Man-
agers have a tendency to protect their devel-
opers from outside interference, and it is good
to keep an eye on that, as this was an is-
sue with Upper Management in this case [22].
But developers also need to be able to obtain
technical information from other teams, and
to plan technical solutions and strategies to-
gether.

The literature recommends a layered struc-
ture where the lower levels are able to share
technical details, while the higher levels are able
to share the administrative big picture [10,11].

Cross team knowledge sharing is difficult.
[...] After 1.5 year into practicing Agile, we
found the best way to mitigate, is to have
weekly Scrum of Scrums (S2) meetings and
daily tech leads stand-up meeting. For the
stakeholders, Scrum of Scrums of Scrums
(S3) was very helpful to get things priori-
tized [11].
The impact on quality is that technical is-

sues facing the whole codebase are not discussed
anywhere. Individual teams might be aware of
the issues, but without a platform to discuss and
voice their concern, these issues remain latent
and unaddressed. Organizations have adminis-
trative strategies, where managers discuss future
plans and projects, but how many of them have
technical strategies, where engineers can discuss
future maintenance challenges and issues?

5.4. Threats to validity

A threat to the validity with the use of a single
study is the generalizability of its conclusions.
The objective of this study was however not to
build a theory applicable to all software devel-
opment projects, but to identify new potentially
interesting practices and issues from the industry.
While this study is limited to a single case, it

nonetheless presents new qualitative and quan-
titative data showing the role of clients during
development, the role of developers as knowl-
edge brokers, and the importance of technical
coordination at the MTS level.

Proper case study practices recommend tri-
angulating the data, that is to obtain data from
different approaches in order to confirm the con-
clusions [39, p. 97]. For instance, conclusions
made through observations can be confirmed
with interviews and artefact analyses. In this
case, it was not possible to access any other
data source, limiting the work to an exploratory
study instead of a fully fledged case study. That
is why the recommendations are presented as
hypotheses to be tested, instead of solutions.

6. Conclusions and further works

This exploratory study shows the impact interac-
tions within the multi team system can have on
project success. Due to the single study nature
of this research, future research should look into
whether the three hypotheses presented herein
are relevant in other cases.
1. Identify the external teams most likely to

have an impact on the development project,
based on a Pareto analysis and ensure proper
communication channels with the most impor-
tant ones. Otherwise, slow communications
will cause delays during development, which
might result in rush development work and
shorter testing time.

2. Ensure that knowledge brokers exist within
the development team to redirect requests
from one external team to the proper other
external team. Otherwise, some activities
with an indirect impact on the development
project (e.g. testing) might be in jeopardy.

3. Ensure that discussion platforms at the
multi-team level are not limited to administra-
tive issues. Technical solutions and strategies
must be discussed between teams. Otherwise
quality issues affecting the whole codebase
could remain unaddressed.
Project managers should be aware of the im-

pact of multi team systems on their projects.



130 Mathieu Lavallée, Pierre N. Robillard

From a disciplined, plan-driven approach, to an
Agile, people-driven approach, there is a need
for an integrated, organization-driven approach,
where the team is integrated within its organi-
zation. Teamwork experts have recommended
breaking the isolation between individuals in or-
der to ensure that the whole team works together.
We should now see if these recommendations hold
at the organization level, in order to ensure that
the whole organization works together. There
might be no “I” in “team”. But how much place
for “us” and “them” are we willing to work with
within the organization?

7. Acknowlegments

This research would not have been possible with-
out the agreement of the company in which it was
conducted, which prefers to stay anonymous, and
without the generous participation and patience
of the software development team members from
whom the data were collected. To all these people,
we extend our grateful thanks.

This work was supported by the Natural
Sciences and Engineering Research Council of
Canada, under grant number A-0141.

References

[1] J. Porck, “No team is an island: An integra-
tive view of strategic consensus between groups,”
Ph.D. dissertation, Erasmus University Rotter-
dam, 2013.

[2] F.Q. da Silva, A.C.C. França, M. Suassuna, L.M.
de Sousa Mariz, I. Rossiley, R.C. de Miranda,
T.B. Gouveia, C.V. Monteiro, E. Lucena, E.S.
Cardozo, and E. Espindola, “Team building crite-
ria in software projects: A mix-method replicated
study,” Information and Software Technology,
Vol. 55, No. 7, 2013, pp. 1316–1340.

[3] R.A. Guzzo and M.W. Dickson, “Teams in or-
ganizations: Recent research on performance
and effectiveness,” Annual Review of Psychology,
Vol. 47, 1996, pp. 307–338.

[4] R.A. Guzzo and E. Salas, Team Effectiveness
and Decision Making in Organizations. Wiley,
1995.

[5] W.S. Humphrey, “The Team Software Pro-
cess (TSP),” Software Engineering Insti-

tute, Pittsburgh, PA, USA, Tech. Rep.
ESC-TR-2000-023, 2000. [Online]. https:
//www.sei.cmu.edu/reports/00tr023.pdf

[6] V. Santos, A. Goldman, and C.R.B. de Souza,
“Fostering effective inter-team knowledge shar-
ing in Agile software development,” Empirical
Software Engineering, Vol. 20, No. 4, 2015, pp.
1006–1051.

[7] M. Paasivaara, C. Lassenius, and V.T. Heikkilä,
“Inter-team coordination in large-scale globally
distributed Scrum: Do Scrum-of-Scrums really
work?” in Proceedings of the ACM-IEEE Inter-
national Symposium on Empirical Software En-
gineering and Measurement, ser. ESEM ’12. New
York, NY, USA: ACM, 2012, pp. 235–238.

[8] A. Martini, L. Pareto, and J. Bosch, Improv-
ing Businesses Success by Managing Interac-
tions among Agile Teams in Large Organizations.
Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 60–72.

[9] C.M. Tartaglia and P. Ramnath, “Using open
spaces to resolve cross team issue [software de-
velopment],” in Agile Development Conference
(ADC’05), 2005, pp. 173–179.

[10] H. Smits and G. Pshigoda, “Implementing scrum
in a distributed software development organiza-
tion,” in Agile 2007, 2007, pp. 371–375.

[11] E.C. Lee, “Forming to performing: Transition-
ing large-scale project into Agile,” in Agile 2008
Conference, 2008, pp. 106–111.

[12] J. Sutherland, G. Schoonheim, and M. Rijk,
“Fully distributed Scrum: Replicating local pro-
ductivity and quality with offshore teams,” in
2009 42nd Hawaii International Conference on
System Sciences, 2009, pp. 1–8.

[13] R.P. Maranzato, M. Neubert, and P. Herculano,
“Moving back to Scrum and scaling to Scrum of
Scrums in less than one year,” in Proceedings of
the ACM International Conference Companion
on Object Oriented Programming Systems Lan-
guages and Applications Companion. New York,
NY, USA: ACM, 2011, pp. 125–130.

[14] M. Paasivaara and C. Lassenius, “Scaling Scrum
in a large distributed project,” in 2011 Interna-
tional Symposium on Empirical Software Engi-
neering and Measurement, 2011, pp. 363–367.

[15] P.L. Bannerman, E. Hossain, and R. Jeffery,
“Scrum practice mitigation of global software
development coordination challenges: A distinc-
tive advantage?” in 2012 45th Hawaii Interna-
tional Conference on System Sciences, 2012, pp.
5309–5318.

[16] D.E. Strode, S.L. Huff, B. Hope, and S. Link,
“Coordination in co-located Agile software de-

https://www.sei.cmu.edu/reports/00tr023.pdf
https://www.sei.cmu.edu/reports/00tr023.pdf


Are We Working Well with Others? How the Multi Team Systems Impact Software Quality 131

velopment projects,” Journal of Systems and
Software, Vol. 85, No. 6, 2012, pp. 1222–1238,
special Issue: Agile Development.

[17] A. Mundra, S. Misra, and C.A. Dhawale, “Prac-
tical Scrum-Scrum team: Way to produce suc-
cessful and quality software,” in 2013 13th Inter-
national Conference on Computational Science
and Its Applications, 2013, pp. 119–123.

[18] A. Scheerer, T. Hildenbrand, and T. Kude, “Co-
ordination in large-scale Agile software devel-
opment: A multiteam systems perspective,” in
2014 47th Hawaii International Conference on
System Sciences, 2014, pp. 4780–4788.

[19] A. Scheerer, S. Bick, T. Hildenbrand, and
A. Heinzl, “The effects of team backlog depen-
dencies on Agile multiteam systems: A graph
theoretical approach,” in 2015 48th Hawaii In-
ternational Conference on System Sciences, 2015,
pp. 5124–5132.

[20] A. Martini, L. Pareto, and J. Bosch, “A mul-
tiple case study on the inter-group interaction
speed in large, embedded software companies
employing Agile,” Journal of Software: Evolu-
tion and Process, Vol. 28, No. 1, 2016, pp. 4–26,
jSME-14-0083.R3.

[21] D.A. Tamburri, R. Kazman, and H. Fahimi,
“The architect’s role in community shepherding,”
IEEE Software, Vol. 33, No. 6, 2016, pp. 70–79.

[22] M. Lavallée and P.N. Robillard, “Why good de-
velopers write bad code: An observational case
study of the impacts of organizational factors
on software quality,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software En-
gineering, Vol. 1, 2015, pp. 677–687.

[23] M.A. Marks, L.A. DeChurch, J.E. Mathieu, F.J.
Panzer, and A. Alonso, “Teamwork in multiteam
systems,” Journal of Applied Psychology, Vol. 90,
No. 5, 2005, pp. 964–971.

[24] J.E. Mathieu, M.A. Marks, and S.J. Zaccaro,
Multi-team systems. London: Sage, 2001, pp.
289–313.

[25] R. Asencio, D.R. Carter, L.A. DeChurch, S.J.
Zaccaro, and S.M. Fiore, “Charting a course for
collaboration: A multiteam perspective,” Trans-
lational Behavioral Medicine, Vol. 2, No. 4, 2012,
pp. 487–494.

[26] M. Cohn, Advice on conducting the
Scrum of Scrums meeting, (2007). [Online].
https://www.scrumalliance.org/community/
articles/2007/may/advice-on-conducting-the-
scrum-of-scrums-meeting Retrieved 2015-08-21.

[27] Z.U.R. Kiani, D. Smite, and A. Riaz, “Measuring
awareness in cross-team collaborations – Dis-
tance matters,” in 2013 IEEE 8th International

Conference on Global Software Engineering, 2013,
pp. 71–79.

[28] T. Chau and F. Maurer, Knowledge Sharing
in Agile Software Teams. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 173–183.

[29] K. Lanaj, J.R. Hollenbeck, D.R. Ilgen, C.M.
Barnes, and S.J. Harmon, “The double-edged
sword of decentralized planning in multiteam sys-
tems,” Academy of Management Journal, Vol. 56,
No. 3, 2013, pp. 735–757.

[30] J.M. Verner, O.P. Brereton, B.A. Kitchenham,
M. Turner, and M. Niazi, “Systematic literature
reviews in global software development: A ter-
tiary study,” in 16th International Conference on
Evaluation Assessment in Software Engineering
(EASE 2012), 2012, pp. 2–11.

[31] M. Lavallée and P.N. Robillard, in 2015
IEEE/ACM 3rd International Workshop on Con-
ducting Empirical Studies in Industry, 2015, pp.
12–18.

[32] J.P. Looney and M.E. Nissen, “Organizational
metacognition: The importance of knowing the
knowledge network,” in System Sciences, 2007.
HICSS 2007. 40th Annual Hawaii International
Conference on, 2007, p. 190c.

[33] A.L. Strauss, Qualitative Analysis for Social Sci-
entists. Cambridge University Press, 2003.

[34] H.A. Landsberger, Hawthorne Revisited. Cornell
University, 1958.

[35] T.C. Lethbridge, S.E. Sim, and J. Singer, “Study-
ing software engineers: Data collection tech-
niques for software field studies,” Empirical
Software Engineering, Vol. 10, No. 3, 2005, pp.
311–341.

[36] D.A. Tamburri, P. Kruchten, P. Lago, and
H. van Vliet, “Social debt in software engineer-
ing: Insights from industry,” Journal of Internet
Services and Applications, Vol. 6, No. 1, 2015,
p. 10. [Online]. https://jisajournal.springeropen.
com/articles/10.1186/s13174-015-0024-6

[37] P. Runeson, A. Stefik, and A. Andrews, “Varia-
tion factors in the design and analysis of repli-
cated controlled experiments,” Empirical Soft-
ware Engineering, Vol. 19, No. 6, 2014, pp.
1781–1808.

[38] R.B. Davison, J.R. Hollenbeck, C.M. Barnes,
D.J. Sleesman, and D.R. Ilgen, “Coordinated ac-
tion in multiteam systems,” Journal of Applied
Psychology, Vol. 97, No. 4, 2012, pp. 808–824.

[39] R.K. Yin, Case Study Research: Design and
Methods, ser. Applied Social Research Methods,
L. Bichman and D.J. Rog, Eds. Thousand Oaks,
CA, USA: Sage, 2002, Vol. 5.

https://www.scrumalliance.org/community/articles/2007/may/advice-on-conducting-the-scrum-of-scrums-meeting
https://www.scrumalliance.org/community/articles/2007/may/advice-on-conducting-the-scrum-of-scrums-meeting
https://www.scrumalliance.org/community/articles/2007/may/advice-on-conducting-the-scrum-of-scrums-meeting
https://jisajournal.springeropen.com/articles/10.1186/s13174-015-0024-6
https://jisajournal.springeropen.com/articles/10.1186/s13174-015-0024-6

	Introduction
	Related work
	Known challenges of MTS projects

	Methods
	Industrial context
	Study approach
	Data collection methodology
	Coding methodology

	Analysis
	Interaction purpose examples
	Failure of the first iteration of the project

	Discussion
	First hypothesis: Identification of the critical teams and client implication
	Second hypothesis: Developers as knowledge brokers within the MTS
	Third hypothesis: Managing technical and administrative interactions
	Threats to validity

	Conclusions and further works
	Acknowlegments
	References


